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Abstract

Scientific information extraction (SciIE) has
primarily relied on entity-relation extraction
in narrow domains, limiting its applicability
to interdisciplinary research and struggling to
capture the necessary context of scientific infor-
mation, often resulting in fragmented or con-
flicting statements. In this paper, we intro-
duce SciEvent1, a novel multi-domain bench-
mark of scientific abstracts annotated via a uni-
fied event extraction (EE) schema designed
to enable structured and context-aware under-
standing of scientific content. It includes 500
abstracts across five research domains, with
manual annotations of event segments, trig-
gers, and fine-grained arguments. We define
SciIE as a multi-stage EE pipeline: (1) seg-
menting abstracts into core scientific activities—
Background, Method, Result, and Conclusion;
and (2) extracting the corresponding triggers
and arguments. Experiments with fine-tuned
EE models, large language models (LLMs),
and human annotators reveal a performance
gap, with current models struggling in domains
such as sociology and humanities. SciEvent
serves as a challenging benchmark and a step
toward generalizable, multi-domain SciIE.

1 Introduction

Scientific information extraction (SciIE) distills
structured knowledge from unstructured scientific
articles and supports key scientific applications
such as literature review (Hong et al., 2021), pa-
per recommendation (Ikoma and Matsubara, 2023),
and knowledge discovery (Stavropoulos et al.,
2023), especially in recent years as many domains
are facing a publication deluge.

Existing works on SciIE generally follow an
entity-relation extraction (ERE) paradigm that aims
to extract isolated scientific concepts and connect
them by identifying semantic relations, either bi-

1Our code and benchmark are released at
https://github.com/desdai/SciEvent.

Figure 1: Conflicting statements in entity-relation ex-
traction. ⟨GPT-3.5-Turbo, better than, GPT-4-Turbo⟩ vs.
⟨GPT-4-Turbo, better than, GPT-3.5-Turbo⟩

nary (Luan et al., 2018; Zhang et al., 2024) or N -
ary (Jain et al., 2020; Zhuang et al., 2022). Despite
remarkable contributions made by prior studies,
one major concern is that representing scientific
content as disconnected entity-relation tuples may
fragment the underlying narrative and even intro-
duce conflicting statements, especially when syn-
thesizing information across multiple publications.
As shown in Figure 1, one paper may generate
the tuple ⟨ “GPT-3.5-Turbo”, “better than”, “GPT-
4-Turbo”⟩, while another produces the opposite.
Lacking contextual cues such as task setup or eval-
uation criteria, these tuples alone fail to convey
meaningful or reliable scientific insights.

Inspired by the heavily context-dependent nature
of scientific publications, we adopt an event extrac-
tion (EE) paradigm. This paradigm focuses on iden-
tifying triggers that best represent each event and
extracting associated arguments, which are then as-
signed specific semantic roles. This enables a more
structured and context-aware representation of im-
portant scientific information. Despite its potential
for representing scientific information, a major lim-
itation of existing EE efforts in the scientific do-
main is their narrow focus on specific fields, often
resulting in the development of domain-specific EE
schemas. For example, Zhang et al. (2024) and Jain
et al. (2020) focus on machine learning, and Kim
et al. (2011) focus on bio-molecule area. Given
the rapid growth of interdisciplinary research in
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recent years (Leto et al., 2024; Okamura, 2019),
there is an increasing need for a unified scientific
EE schema capable of generalizing across diverse
scholarly domains.

To address this gap, we introduce SciEvent,
a unified EE schema for scientific texts, along
with a dataset featuring manually annotated events
and fine-grained arguments drawn from diverse
research abstracts. Building on this dataset, we
define three SciIE tasks: (1) event segmentation,
which involves dividing the text into spans that rep-
resent core scientific activities such as Background,
Method, Result, and Conclusion; (2) trigger identifi-
cation, which aims to detect the key anchor of each
scientific event; and (3) argument extraction, which
focuses on identifying the arguments involved in
each scientific activity and assigning them roles
such as context, method, or result. Differing from
conventional EE pipelines, we introduce event seg-
mentation as a preliminary task, recognizing that
events in scientific texts often span multiple sen-
tences and lack clear boundaries. Additionally,
trigger words in scientific texts—such as “show”,
“demonstrate”, or “present”—are frequently shared
across different event types. Without first segment-
ing the text into discrete events, it becomes chal-
lenging to accurately delineate event boundaries,
increasing the risk of misinterpreting or misclassi-
fying both triggers and their associated arguments.

SciEvent contains 500 abstracts from five diverse
scientific domains, each fully annotated using an
EE paradigm. To evaluate the challenges posed
by this dataset, we assess the performance of fine-
tuned EE models, tuning-free large language mod-
els (LLMs), and human annotators. The results
demonstrate SciEvent’s broad domain coverage
and reveal that existing models consistently lag
behind human performance. This gap highlights
the limitations of current approaches and the ab-
sence of EE models capable of generalizing across
scientific domains.

2 Related Work

Event Extraction Existing work on event ex-
traction (EE) typically frames the task via two
paradigms. One is trigger-argument extraction
(Walker et al., 2006; Hsu et al., 2022; Lin et al.,
2020), where the trigger serves as the event an-
chor, most clearly signaling the occurrence of an
event, while the arguments represent entity men-
tions that participate in the event, each fulfilling dis-

tinct roles. The other one treats EE as a trigger-free
template-filling task (MUC, 1992; Du and Cardie,
2020a; Huang et al., 2021), aiming to extract event-
relevant arguments and assigning them to specific
roles within each event template. The latter mainly
focuses on document-level EE (Du and Cardie,
2020a), while the former has been widely used
in both sentence-level (Walker et al., 2006) and
document-level EE (Li et al., 2021). Our bench-
mark follows the trigger-argument paradigm.

Regarding EE benchmarks, prior studies have
largely focused on data in generic domains. Pop-
ular examples include newswire (Grishman and
Sundheim, 1996; Nguyen et al., 2016; Dodding-
ton et al., 2004; Ebner et al., 2020; Song et al.,
2015), Wikipedia (Li et al., 2021; Pouran Ben Vey-
seh et al., 2022), social media (Sharif et al., 2024;
Wang and Zhang, 2017; Comito et al., 2019) and
widely-used knowledgebases like FrameNet (Baker
et al., 1998) and PropBank (Bonial et al., 2014).
While some researchers have broadened the scope
of EE to scientific literature, their efforts tend to
center the biomedical domain, particularly em-
phasizing state changes and interactions between
biomolecules such as genes and proteins (Kim
et al., 2011; Pyysalo et al., 2012; Kim et al., 2013).
Differing from prior work, we extend EE to encom-
pass a broader range of scientific domains, creating
a unified annotation schema designed to facilitate
interdisciplinary information extraction.

Scientific Information Extraction Research on
scientific information extraction (IE) primarily tar-
gets two main types of information: (1) citation-
based analysis, which involves identifying either
binary citation influence classification (Kunnath
et al., 2020; N. Kunnath et al., 2021; Maheshwari
et al., 2021) or multi-class citation intents (pur-
pose) classification (Cohan et al., 2019; Jurgens
et al., 2018), and (2) content-based analysis (Gupta
and Manning, 2011; Tsai et al., 2013; Gábor et al.,
2016; Pronesti et al., 2025), which primarily fo-
cuses on extracting scientific entities, supporting
evidence, and semantic relationships among them,
with the ultimate goal of building concept-centric
knowledge graphs (Ma et al., 2022; Zhang et al.,
2020; Sap et al., 2019). For example, SciERC
(Luan et al., 2018), consists of 500 scientific ab-
stracts annotated with scientific entities, their pair-
wise relations, and coreference clusters. SciREX
(Jain et al., 2020) provides annotations across 438
full documents, covering four entity types: TASK,
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DATASET, METHOD, and METRIC. Beyond gen-
eral knowledge extraction, some studies further fo-
cus on specific research subjects. This line of work
designs domain-specific event extraction tasks to
capture fine-grained scientific activities (He et al.,
2024,Kim et al., 2011, Huang et al., 2020, Björne
et al., 2010). For example, various biomedical EE
tasks have been proposed to investigate biological
processes such as protein-protein and gene-disease
interactions (Kim et al., 2013; Kim et al., 2011;
Björne et al., 2010). Our work similarly focuses
on scientific EE. However, differing from prior
works targeting specific domain, we aim to design
a unified schema for organizing general scientific
activities across diverse scientific domains.

3 SciEvent Benchmark
Data Collection To support cross-domain evalu-
ation and capture diverse writing conventions, we
select publicly available, peer-reviewed scientific
abstracts published in 2023 to reflect contemporary
language use. We select five domains: natural lan-
guage processing (NLP) from the Annual Meeting
of the Association for Computational Linguistics
(ACL) (Association for Computational Linguistics,
2023), social computing (SC) from the Proceed-
ings of the ACM on Human-Computer Interaction
(CSCW) (Association for Computing Machinery,
2023), medical informatics (MI) from the Journal
of Medical Internet Research (JMIR) (JMIR Publi-
cations, 2023), computational biology (CB) from
the Bioinformatics (Oxford University Press, 2023),
and digital humanities (DH) from the Digital Hu-
manities Quarterly (Alliance of Digital Humanities
Organizations, 2021–2023)2.

These domains are selected for their methodolog-
ical diversity, resource availability, relevance to
interdisciplinary research, and representativeness
of their respective fields. NLP and CB domains
are well-studied and offer structured, technical ab-
stracts, while SC and DH are underrepresented
and characterized by more narrative, context-rich
writing. To support document-level modeling, we
retain abstracts with at least three sentences and
two identifiable events, filtering out those that are
too short to provide meaningful structure. In to-
tal, we collect 500 scientific abstracts—100 each
in NLP, SC, and CB, 120 in DH, and 80 in MI.
DH has fewer publications and shorter abstracts,
so we extend the sampling range to 2021—2023

2Full source attributions are included in the benchmark
metadata available in our public GitHub repository.

and include 120 abstracts to ensure sufficient cov-
erage of domain variation. MI abstracts are longer
and denser, so we select 80 abstracts to balance
event content comparability across all five domains.
We conduct a detailed keyword analysis based on
each domain’s call for papers to ensure compre-
hensive coverage and minimize bias in our dataset.
Additional details are provided in Appendix G

Annotation Pipeline Overall, our annotation
pipeline consists of two stages: (1) event segmen-
tation, and (2) trigger-argument extraction. In the
first stage, we segment an abstract into four event
types: Background, Method, Result, and Conclu-
sion, which are adopted from the most common
aspects of scientific publications (U.S. National
Library of Medicine, 2023). In the second stage,
we further annotate each segment at a fine-grained
level, focusing on identifying the event trigger and
role-specific arguments.

In prior event extraction works, particularly in
newswire and broadcast domains, triggers like “at-
tack” define clear and stable event frames, with
roles such as “attacker” and “target” naturally
grounded in the trigger’s semantics. In scientific
texts, however, single-word triggers like “show”
lack this clarity. Even after event segmentation and
the event type (e.g., “Result”) is known, the trig-
ger alone does not specify what the event is about.
Roles like “people who show” or “shown item” are
not meaningful on their own, as the event’s mean-
ing depends on the full proposition. For example,
“showing a promising result” differs from “showing
a methodological limitation”. With this considera-
tion, we represent the trigger as a tuple of ⟨Agent,
Action, Object⟩, anchoring the event in its core se-
mantics. Notably, our empirical investigation on
raw data shows that in some cases, the object in an
event trigger may consist of two non-contiguous
text spans. For example, “protein sequences” and
“gene expression profiles” in a “Method” event:
“We analyze protein sequences, which exhibit struc-
tural variation, and gene expression profiles . . . ”
are the objects of the action “analyze”. Accord-
ingly, we specify the labels Primary Object and
Secondary Object for annotation. When we have
two annotated object spans in an event, we concate-
nated them for further analysis.

Given the trigger identified per event, we then
annotate its relevant arguments. We define nine
argument roles: Context, Purpose, Method, Result,
Analysis, Challenge, Ethical, Implication, and Con-
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tradiction. Each role targets a specific dimension
of scientific abstract, adapted from Core Scientific
Concepts (Liakata et al., 2012) and inspired by
scientific writing guides (Paltridge, 2002; Alley,
1996). While some argument roles share names
with event types (e.g., Method, Result), they are
not restricted to those events. For example, evalua-
tion method often appear within the Result event.
We attach the detailed codebook in Appendix B.

Annotation Quality We employ five graduate
students as annotators, all specializing in NLP and
are either native English speakers or PhD students.
Each annotator has domain expertise in at least one
of the five selected fields, ensuring comprehensive
coverage across all diverse scientific areas. To eval-
uate the quality of event segment annotations, we
randomly sample 10 abstracts per domain and had
two annotators independently annotate each. In-
tercoder reliability, measured by Cohen’s Kappa
(Cohen, 1960), is 0.83, showing strong agreement.

Considering that trigger and argument extraction
involve more fine-grained and complex annotations
than event segmentation, it increases the likelihood
of annotator disagreement. To ensure consistency,
we employ a collaborative, multi-round, discussion-
based annotation process (Oortwijn et al., 2021)
rather than a single-pass approach. Annotators first
label the data independently, followed by review
sessions with a meta-annotator to enforce codebook
alignment. This cycle is repeated over six rounds,
yielding 100% agreement on triggers and 95.41%
agreement (4703/4929) on arguments. The remain-
ing 4.59% are resolved through majority voting
among all five annotators, resulting in full team
consensus on the final annotations. Notably, all
disagreements in trigger and argument annotations,
such as span variations and ambiguous argument
roles, are resolved through specific rules outlined
in the Codebook (Appendix B.4). To assess hu-
man performance for comparison with models, we
additionally recruit six untrained annotators to in-
dependently annotate a randomly selected subset
of our benchmark (consisting of 75 abstracts). For
these annotators, we only provide them with a brief
task description and basic instructions for using the
annotation interface (see appendix B.1).

Data Analysis Using the above annotation
pipeline, we construct a dataset of 500 annotated
scientific abstracts containing 8,911 structured
mentions, as shown in Table 1. Its broad domain
coverage supports robust cross-domain analysis.

Figure 2: Distribution of (a) argument roles and (b)
event types across the dataset.

As shown in Figure 2, the most frequently an-
notated arguments are Context (CTX), Method
(MET), and Result (RES), highlighting the
dataset’s emphasis on core components of scientific
reporting. Rare arguments such as Contradictions
(CTD) and Ethical (ETH) suggest that such aspects
are rarely discussed in the abstracts. The most com-
mon event type is the Method, consistent with typi-
cal abstracts structures. Moreover, Figure 3 shows
that argument types align well with event types.
For example, Context appears predominantly in
Background events, supporting the reliability and
internal consistency of our annotations.

Figure 3: Distribution of argument across event types

4 Task Definition

Given a document represented as a sequence of
sentences D = {s1, . . . , sN}, our goal is to ex-
tract a set of scientific events E = {e1, . . . , eM},
where each event ei is a tuple defined as: ei =
⟨sij , typei,Triggeri,Argi⟩, where sij denotes a
contiguous sentence span in D, typei is the event
type, Triggeri is the event trigger and Argi consists
of event arguments involved in ei. Specifically, we
define Triggeri as an agent-action-object tuple:

Triggeri = ⟨σagent, σaction, σobject⟩,
where σ ∈ D is a token span that specifies who-
does-what in ei, respectively. We further define
Argi as a list of argument-role pairs:
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Dataset #Doc #Mentions Arg./Ent. Types Avg Sent./Evt Paradigm Source Domains

SCIREX 438 8,592 4 - ERE Full paper ML
SCIERC 500 8,089 6 - ERE Abstract Speech, ML, CV, AI
SEMEVAL17 493 8,529 3 - ERE Paragraph CS, MS, Physics
SEMEVAL18 500 7,505 1 - ERE Abstract CL
SCIER 106 24,518 3 - ERE Full paper ML
GENIA2011 1,224 21,549 10 1 EE Abstract/Full BioMol
SCIEVENT (OURS) 500 8,911 9 2.95 EE Abstract NLP, SC, CB, MI, DH

Table 1: Comparison of scientific IE datasets. Abbreviations: Arg./Ent. Types = Argument/Entity Types, Avg
Sent./Evt = Average Sentence Per Event, NLP = Natural Language Processing, SC = Social Computing, CB
= Computational Biology, MI = Medical Informatics, DH = Digital Humanities, ML = Machine Learning,
AI = Artificial Intelligence, CV = Computer Vision, CS = Computer Science, MS = Material Science, CL =
Computational Linguistics, BioMol = Biomolecular.

Argi = {aij , r},

where aij ∈ D denotes the token span that refers to
a participating argument entity, and r is the specific
role that the argument aij plays in ei.

To achieve our goal on SciEvent, we define three
tasks: (1) event segmentation, (2) trigger identifi-
cation, and (3) argument extraction. The details of
each task are described below.

Task 1: Event Segmentation This task aims to
segment any given document D into contiguous
sentence spans {sij}, with each span sij corre-
sponding to an event classified under one of four
scientific event types typei.

We evaluate model predictions using Exact
Match (EM) and Intersection over Union (IoU) met-
rics, adapted from span-based evaluation metrics in
SemEval (Segura-Bedmar et al., 2013) and MUC-5
(Chinchor and Sundheim, 1993). For each pre-
dicted event segment (ŝij , ˆtypei), the above met-
rics are defined as follow:

• Exact Matching (EM): ŝij = sij and ˆtypei =
typei

• Intersection over Union (IoU): |ŝij∩sij |
|ŝij∪sij | > 0.5

and ˆtypei = typei.

For both strategies, we report Precision (P), Recall
(R), and F1-score (F1) over the set of predicted and
gold event segments.

Task 2: Trigger Identification This task focuses
on extracting the trigger for each detected event. As
this is a document-level task and scientific events
often include multiple candidate triggers, we han-
dle this step separately to explicitly evaluate the
model’s ability to correctly identify the core seman-
tic components of an event once its span and type
have been identified.

For evaluation, we concatenate each trigger
tuple’s three components and compute macro
ROUGE-L (Lin, 2004) between predicted and an-
notated triggers. Given that ROUGE-L measures
the longest common subsequence overlap, we be-
lieve that this metric can capture both lexical simi-
larity and structural alignment

Task 3: Argument Extraction We decompose
this task into two sub-tasks:

• Argument Identification (Arg-I): Predict the
set of argument entity spans {aij} per event.

• Argument Classification (Arg-C): Predict the
semantic role r associated with each identified
argument span aij .

We evaluate Arg-I using the F1 score based on
the span-matching strategies described in Task 1:
EM and IoU (with a threshold of 0.5). For Arg-C,
a prediction is considered correct only if it both
matches the gold argument span and also assigns
the correct argument role.

5 Experiment Settings

Prompting-based LLM baselines We consider
four state-of-the-art LLMs as baseline models, in-
cluding: (1) meta-Llama-3.1-8B-Instruct (Llama)
(Meta AI, 2024), (2) Qwen2.5-7B-Instruct (Qwen)
(Qwen Team, 2024), (3) DeepSeek-R1-Distill-
Llama-8B (DS-R1-Llama) (DeepSeek-AI, 2025),
and (4) GPT-4.1 (GPT) (OpenAI, 2025). For Task
1, we conduct a preliminary study on prompt de-
sign under the zero-shot manner and used the best
prompt adapted from Sharif et al., 2024. For
Task 2 and 3, we design the prompt template
based on a preliminary analysis of existing prompt-
ing strategies, including metacognitive prompting
(Wang and Zhao, 2024), instruction-based prompt-
ing (Sharif et al., 2024) and paraphrasing these
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prompts. Considering the risk of model perfor-
mance being sensitive to the number of examples
in the prompt, we test prompts with 0 to 5 exam-
ples. We finally employ the prompt adapted from
Sharif et al., 2024, which shows consistently better
performance across multiple trials. Notably, the
prompt content (see details in Appendix C) is de-
rived from our annotation codebook, to ensure a
fair comparison between LLMs and humans.

Tuning-based baselines In addition to
prompting-based baselines, we follow prior
studies (Huang et al., 2024; Tong et al., 2022) and
also employ turning-based models on our event
extraction tasks, adopting three state-of-the-art
approaches: (1) DEGREE (Hsu et al., 2022),
a data-efficient generative approach to event
argument extraction that leverages prompt-based
learning for better generalization. (2) OneIE
(Lin et al., 2020), a joint information extraction
framework that simultaneously performs entity,
relation, and event extraction using a unified
representation. (3) EE_QA (Du and Cardie,
2020b), a transformer-based model that frames
information extraction as a question-answering
task, enabling contextualized argument extraction.
For all three models, we follow the splitting
practice used in prior work (Huang et al., 2024)
and adopt the same approach and split the training,
development, and test sets by document with a
ratio of 80%, 10%, and 10%.

6 Experiment Results

Model EM IoU
P R F1 P R F1

DS-R1-Llama 31.26 34.13 32.63 58.97 64.38 61.56
Qwen 43.51 36.30 39.58 70.30 58.65 63.95
Llama 38.67 31.70 34.84 62.04 50.85 55.89
GPT 59.07 62.96 60.95 82.98 88.45 85.63

Table 2: Scientific event segmentation performance (%)
on zero-shot LLMs using Exact Match (EM) and Inter-
section over Union (IoU) metrics, showing Precision
(P), Recall (R), and F1-score

Scientific event segmentation Table 2 shows the
results of LLM performance under zero-shot man-
ner. We observe that GPT clearly outperforms all
others by a wide margin, achieving 60.95% F1
under EM and 85.63% under IoU, indicating its
strong ability to identify and segment coherent sci-
entific spans. Qwen ranks second, while Llama
and DS-R1-Llama trail closely with modest differ-
ences. These results suggest that segmentation is

best handled by higher-capacity models like GPT.

Methods P R F1
Tuning-based models
EEQA 81.93 34.57 45.05
DEGREE 64.56 63.49 56.85
OneIE 73.73 79.40 72.40
Zero-shot LLMs
DS-R1-Llama 29.12 27.10 26.74
Qwen 43.84 55.25 47.57
Llama 54.88 61.07 55.83
GPT 65.38 72.73 67.57
One-shot LLMs
DS-R1-Llama 41.81 41.94 40.72
Qwen 56.17 68.48 59.98
Llama 53.08 63.83 56.45
GPT 72.67 77.77 74.05
Two-shot LLMs
DS-R1-Llama 34.59 36.21 34.29
Qwen 57.27 69.71 61.18
Llama 58.94 61.18 58.34
GPT 73.38 78.45 74.76
Five-shot LLMs
DS-R1-Llama 38.63 35.63 35.18
Qwen 57.43 66.88 60.18
Llama 32.05 32.83 31.37
GPT 73.70 78.82 75.08

Table 3: ROUGE-L scores (%) for baseline models on
the SciEvent trigger identification task, showing Preci-
sion (P), Recall (R), and F1.

Trigger Identification Table 3 displays the mod-
els’ performance on trigger identification. GPT
(five-shot) achieves the best result (F1: 75.08%),
while OneIE also performs competitively (F1:
72.40%). EEQA exhibits extremely high preci-
sion (P: 81.93%) but poor recall (R: 34.57%),
suggesting over-conservative predictions. Across
all LLMs, one-shot prompting consistently im-
proves performance, with DS-R1-Llama showing
the largest gain (F1: +13.98%). While the im-
provement from zero-shot to one-shot is substan-
tial, surprisingly, further adding more examples
yields at most a 1% gain and can sometimes even
reduce performance, particularly for Llama and
DS-R1-Llama. Our observation aligns with prior
findings that in-context learning may amplify re-
liance on superficial patterns in demonstrations
(Min et al., 2022), which is insufficient for the
fine-grained comprehension required by event ex-
traction. Accordingly, our subsequent analysis fo-
cuses on zero-shot and the overall best-performing
one-shot prompts.
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Methods Arg-I (IoU) Arg-C (IoU)
P R F1 P R F1

Tuning-based models
EEQA 32.09 33.77 32.91 25.85 27.20 26.51
DEGREE 67.79 19.13 29.84 48.99 13.83 21.57
OneIE 51.11 56.29 53.57 39.69 43.71 41.61
Zero-shot LLMs
DS-R1-Llama 31.11 16.46 21.53 16.32 8.63 11.29
Qwen 35.68 26.41 30.35 17.58 13.01 14.96
Llama 24.37 24.90 24.63 11.68 11.93 11.80
GPT 43.03 55.56 48.50 30.40 39.25 34.26
One-shot LLMs
DS-R1-Llama 42.62 17.67 24.98 19.59 8.12 11.48
Qwen 46.33 30.36 36.69 20.96 13.74 16.60
Llama 44.70 34.08 38.68 18.93 14.44 16.38
GPT 50.14 50.22 50.18 34.60 34.66 34.63
Two-shot LLMs
DS-R1-Llama 42.66 20.01 27.24 14.37 6.74 9.18
Qwen 46.16 31.43 37.39 21.08 14.35 17.08
Llama 40.87 25.11 31.11 18.10 11.12 13.78
GPT 49.12 51.29 50.18 33.99 35.49 34.72
Five-shot LLMs
DS-R1-Llama 36.31 20.92 26.55 13.62 7.85 9.96
Qwen 46.94 31.36 37.60 21.67 14.48 17.36
Llama 38.36 8.93 14.49 14.98 3.49 5.66
GPT 50.04 49.93 49.98 34.51 34.42 34.47

Table 4: IoU-based Precision (P), Recall (R), and F1-
score (%) on baseline models for argument identification
(Arg-I) and classification (Arg-C) tasks.

Argument Extraction Table 4 reports the per-
formance of all baselines on argument extraction
in SciEvent. OneIE achieves the highest scores
(Arg-I: 53.57%, Arg-C: 41.61%), benefiting from
its global features and constraints. DEGREE shows
high precision but low recall, indicating that it
often misses relevant arguments in scientific ab-
stracts. Among LLMs, GPT (two-shot) performs
best (Arg-I: 50.18%, Arg-C: 34.72%), while other
models perform notably worse, especially on argu-
ment classification (Arg-C around 15%). One-shot
prompting provides a modest gain over zero-shot
settings, whereas adding more in-context exam-
ples shows similar diminishing returns observed
in trigger identification. This indicates that merely
increasing the number of few-shot examples is in-
sufficient to overcome the fine-grained challenges
of scientific argument extraction.

Human performance We compare model and
human performance on argument classification. We
do not report results for event segmentation, as the
Cohen’s kappa score of 0.83 (exact match) on a sub-
set indicates consistently high agreement among
annotators, suggesting that event segmentation is
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Figure 4: Human performance compared to all baselines
on argument classification (Arg-C) using IoU F1 scores.

relatively unambiguous for humans. As shown in
Figure 4, there is a substantial gap between hu-
man performance and the best model (20%). This
highlights the challenge of multi-domain scientific
event extraction and the value of SciEvent for ad-
vancing argument level scientific event extraction.

What is the impact of argument type on ar-
gument classification? Figure 5 displays IoU-
based F1 scores for argument classification across
argument roles. Among tuning-based and LLM-
based models, OneIE and GPT achieve the
strongest performance across nearly all argument
roles. Qwen achieves a spike on Contradiction, due
to a few correct extractions, but shows worse per-
formance overall. Across all models, Challenge,
Result, and Method yield the highest F1 scores,
due to their clearer lexical cues and more regular
positioning in scientific abstracts. In contrast, ar-
guments like Ethical, Contradiction, and Analysis
remain challenging due to data sparsity and a lack
of consistent lexical patterns.

What is the impact of event type on argument
classification? The arguments in Method exhibit
a notable gap: strong performance with supervi-
sion (OneIE, EEQA) but poor with zero-/one-shot
LLMs on argument classification task (Figure 6).
This finding suggests that arguments in the Method
events are most demanding, due to event’s com-
plex structure, arguments’ varied phrasing, and
dependence on technical details, making perfor-
mance poorer without supervision. Furthermore,
Conclusion shows the lowest Arg-C performance
for most models. EEQA performs better because its
QA-based templates help extract the implicit and
interpretive content typical of Conclusion events.
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Figure 5: Intersection-over-Union (IoU) on Arg-C F1-scores (%) across different argument roles for various models
on Analysis (ANA), Challenge (CHA), Context (CTX), Method (MET), Purpose (PUR), Result (RES), Ethical
(ETH), Implication (IMP), Contradictions (CTD).

Figure 6: Comparison of Intersection-over-Union (IoU) on Arg-C F1-scores (%) across different event types for
various models on Background, Method, Result, and Conclusion events.

To examine whether event type awareness can im-
prove argument extraction for LLMs, we exper-
iment with incorporating event type information
into the prompts. Specifically, we explore two
strategies: (1) providing the true event type directly
in the prompt, and (2) asking the LLM to first pre-
dict the event type and then proceed with argument
extraction. Both strategies outperform the origi-
nal prompt, which lacks event type information,
by approximately 2 to 4% (Table 5), suggesting
that event type awareness enhances LLMs’ perfor-
mance on our benchmark.
What is the impact of scientific domains on argu-
ment classification? In the argument classifica-
tion task (Figure 7), Natural Language Processing
and Computational Biology domains yield the high-
est F1 scores, benefiting from consistent linguistic
patterns and clearer argument structures. In con-
trast, Digital Humanities and Medical Informatics

present greater challenges, due to varied rhetorical
styles and longer, denser abstracts, respectively.
How does removal of domain affect perfor-
mance? We compare the argument classification
performance of the OneIE model under the Exact
Match (EM) setting using the full training set ver-
sus ablated training sets (Figure 8). Removing a
domain from training data leads to a noticeable
drop in its corresponding performance, confirm-
ing that domain-specific knowledge contributes
directly to accurate argument classification. The
largest declines are observed in Digital Humanities
and Computational Biology, indicating that these
domains contain more unique or specialized lin-
guistic patterns that are not easily generalized from
other domains. In contrast, Medical Informatics
shows relatively smaller drop, suggesting better
generalizability or partial overlap with language
patterns present in the other domains.
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Figure 7: Comparison of Intersection-over-Union (IoU) on Arg-C F1-scores (%) across different academic domains
for various models on Natural Language Processing (NLP), Computational Biology (CB), Social Computing (SC),
Digital Humanities (DH), and Medical Informatics (MI).

Methods Arg-I (IoU) Arg-C (IoU)
P R F1 P R F1

True Event-Type LLMs
DS-R1-Llama 27.25 17.95 21.64 16.50 10.87 13.10
Qwen 31.92 35.81 33.75 16.74 18.78 17.70
Llama 17.51 27.90 21.51 9.41 14.99 11.56
GPT 42.12 57.13 48.49 31.29 42.44 36.02
Pred Event-Type LLMs
DS-R1-Llama 28.29 17.61 21.70 17.12 10.65 13.13
Qwen 31.93 35.28 33.52 17.17 18.97 18.02
Llama 20.53 28.71 23.94 10.36 14.48 12.08
GPT 44.42 55.22 49.23 32.51 40.42 36.04

Table 5: IoU-based Precision (P), Recall (R), and F1-
score (%) comparing argument identification (Arg-I)
and classification (Arg-C) performance given true event
type or predicted event type.
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Figure 8: Arg-C F1-scores reported for full training
versus training with one domain removed for OneIE
under Exact Match (EM).

7 Conclusion

In this paper, we introduce SciEvent, a novel
benchmark for SciIE across multiple domains. By
framing scientific texts as a sequence of univer-

sal events and corresponding fine-grained argu-
ments, SciEvent provides a unified and domain-
independent structure for representing scientific
information. Specifically, We develop an annota-
tion pipeline comprising event segmentation and
trigger-argument extraction, and defined three cor-
responding tasks: (1) event segmentation, (2) trig-
ger identification, and (3) argument extraction.
Our benchmark covers five diverse domains with
manual annotations, enabling robust evaluation of
Event Extraction. Experiments on diverse state-of-
the-art tuning-based Event Extraction systems and
tuning-free LLMs show clear performance gaps
(∼20%) between model predictions and human
annotations, especially on argument classification
task. SciEvent supports applications such as knowl-
edge graph construction, cross-domain literature
review, and scientific summarization. It provides
a challenging testbed for extracting nuanced scien-
tific information, benefiting both NLP researchers
for advancing event extraction methodology and
evaluating cross-domain generalization, and inter-
disciplinary scholars for accelerating literature re-
view, synthesizing findings, and generating domain
knowledge resources.
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Limitations

One limitation of our work is the potential for
data contamination in large language models, as
our dataset is constructed from recent publications
(mostly from 2023, and 2021 to 2023 for Digital
Humanities), which may overlap with LLM pre-
training corpora. Nevertheless, we emphasize that
our benchmark offers a novel formulation by repre-
senting scientific abstracts as structured sequences
of events, enabling a context-aware capture of key
scientific information. This event-centric SciIE
schema is novel, and current LLMs lack training
to extract scientific content in this structured man-
ner. Additionally, SciEvent is built on abstracts
only, which, while concise and widely available,
may omit key discourse elements found in full pa-
pers limiting applicability to document-level in-
formation extraction. In future work, we plan to
extend SciEvent to include full papers to better sup-
port comprehensive scientific IE, and also consider
more event types and arguments roles since the
full paper can contain more information such as
Assumptions.

Ethical Considerations

We provide details about compensation rate for an-
notators. We recruited eleven graduate students in
total and provided a compensation rate of $12.80
per hour. This rate applied to both gold-standard
annotation and human performance baseline anno-
tations.
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We report the distribution of argument types
across scientific domains (Figure 9). While all do-
mains emphasize Results, Digital Humanities (DH)
is a notable exception, being dominated by Con-
text arguments. Among STEM domains—Natural
Language Processing (NLP), Computational Biol-
ogy (CB), and Medical Informatics (MI)—Method
arguments are the most prevalent, reflecting their
methodological focus. In contrast, DH and Social
Computing (SC) place more emphasis on Context
and Results, respectively, aligning with the rhetori-
cal nature of these fields. Notably, MI contains the
highest number of arguments overall, likely due to
the length of its abstracts, even though fewer were
annotated to balance domain coverage.

B Codebook details

B.1 Annotation Tool
We deploy our annotation tool on Render3. Fig-
ure 10 shows our annotation interface.

B.2 Event Type Definition
• Background: Briefly outlines the context,

motivation, and problem being addressed. It
highlights the research gap and the paper’s
objectives or research questions.

• Method: Summarizes the methodologies,
frameworks, or techniques used to conduct
the study, including experimental setups, al-
gorithms, datasets, or analytical tools.

• Result: Reports the main outcomes of the
research, emphasizing key data, trends, or dis-
coveries. Focuses on what was achieved or
learned.

• Conclusion: Discusses the significance of the
findings, their impact on the field, potential
applications, and how they address the initial
problem or research gap. May include recom-
mendations or future research directions.

B.2.1 Trigger Definition
• Action: The most representative verb or verb

phrase in the event, including auxiliary verbs
like am, is, are, have, and has.

• Agent: The entity responsible for initiating
or performing the Action, such as a person,
system, method, or organization.

3https://render.com/

• Object: The entity that receives, is affected
by, or is the focus of the Action (e.g., a con-
cept, result, or entity being acted upon). Dur-
ing annotation, Objects may be separated; in
such cases, annotate them as Primary Object
and Secondary Object. Include only the Ob-
ject spans themselves, and do not include the
separators or intervening material.

B.3 Argument Definition

• Context
Definition: Provides foundational or situa-
tional information of the event.
Example: Deep learning has revolutionized
natural language processing tasks, enabling
state-of-the-art results in translation, summa-
rization, and question answering.

• Purpose
Definition: Defines the purpose or aim of the
event.
Example: This study aims to develop a
lightweight transformer model suitable for
deployment on edge devices.

• Method
Definition: Techniques, tools, methodology,
or frameworks used in the event.
Example: We employ a combination of
knowledge distillation and parameter prun-
ing to reduce model size while maintaining
accuracy.

• Result
Definition: Observations or outputs of the
event.
Example: The proposed method achieves a
40% reduction in model size with only a 1%
drop in accuracy on the GLUE benchmark.

• Analysis
Definition: Interpretation or explanation of
other arguments.
Example: The slight decrease in accuracy
can be attributed to the removal of redun-
dant parameters that minimally impact over-
all model performance.

• Challenge
Definition: Constraints or weaknesses of the
context, method, or results.
Example: One significant limitation of the
approach is its dependency on large-scale
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Figure 10: Annotation Tool Interface

labeled datasets for effective knowledge dis-
tillation.

• Ethical
Definition: Ethical concerns, implications,
and justifications of the event.
Example: The deployment of these models
must address concerns about potential biases
in training data that could unfairly disadvan-
tage certain user groups.

• Implication
Definition: Broader applicability, signifi-
cance, or potential for future research.
Example: Our approach opens the door for
deploying advanced NLP models on low-
power devices, paving the way for accessible
AI in remote or resource-constrained envi-
ronments.

• Contradiction
Definition: Disagreements with existing
knowledge.
Example: Contrary to previous studies sug-
gesting that parameter pruning significantly
reduces accuracy, our results demonstrate
minimal performance loss with careful
pruning strategies.

B.4 Additional Annotation Rules

• Annotate by Breaking Down Sentences:
Please annotate segments of a sentence (a part
of a sentence) instead of a full sentence if dif-
ferent segments of the sentence can be fit into
different arguments.

• Passive Tense: In a passive tense structure:
Something (Agent) + is done (Passive Verb) +
by Someone/Something (Object).

• Indirect Object: If there is no direct object,
you should leave the Object empty.

• Entire Clause as Object: In the following
structure, the entire clause is the <Object>:
<Agent> + <Actions like: show, demonstrate,
illustrate, prove, found, explain, indicate, con-
clude, etc.> + that / what / who / which / where
/ when / how / whether + clause.

• Text that Fits Multiple Arguments: If a text
span can fit into multiple <Arguments>, fol-
low this order of importance: Results > Pur-
pose > Method > Analysis > Implication >
Challenge > Contradiction > Context > Ethi-
cal. Results is the most important, and Ethical
is the least.

• Abbreviation: You should use both the orig-
inal term and its abbreviation when both are
given together, e.g., Chain-of-Thought (CoT),
not only Chain-of-Thought or CoT.

• Use of Primary and Secondary Object: An-
notate as Primary Object and Secondary Ob-
ject when an Object is expressed in two sep-
arate spans within a sentence. Two common
cases occur:

(1) Parallel Objects: The structure is Action
+ Primary Object + (and / as well as / also) +
Secondary Object. Intervening clauses (e.g.,
“which . . . ”, “that . . . ”) may appear between
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Objects; ignore these clauses and annotate
only the Object spans. Example: “We ana-
lyze protein sequences, which exhibit struc-
tural variation, and gene expression profiles.”
Annotation: <Primary Object>: protein se-
quences; <Secondary Object>: gene expres-
sion profiles.

(2) Transformation Objects: The structure
is Action + Primary Object + (into / to / for)
+ Secondary Object. The Primary Object
is what is transformed, and the Secondary
Object is where it is mapped or placed. Al-
ways include the preposition introducing the
Secondary Object. Example: “We aimed to
map the most frequently discussed factors into
health systems and practical use.” Annota-
tion: <Primary Object>: the most frequently
discussed factors; <Secondary Object>: into
health systems and practical use.

In both cases, please only annotate separate
spans of Primary Object and Secondary Ob-
ject, DO NOT include intervening descriptive
clauses or anything in between.
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C Prompts

Considering the sensitivity of LLM performance to prompt phrasing, we explore a variety of prompt
variations to identify the optimal one. These variations include incorporating the Metacognitive Prompting
technique (Wang and Zhao, 2024), adopting role definitions with direct information extraction instead of
a QA format, and paraphrasing prompt instructions—for example, replacing “### Output (JSON only)”
with “### Your Answer (JSON format).” Each prompt version was evaluated in at least three runs to assess
prediction stability, and the final prompt was selected based on its consistent performance across trials.

In this section, we present the prompt designs for each task. We include the Zero-Shot prompt for
Scientific Abstract Segmentation and Trigger Identification & Argument Extraction, and the One-Shot
prompt for Trigger Identification & Argument Extraction. Additionally, we provide the two event type
awareness prompt as well, (1) True Event-Type Trigger Identification & Argument Extraction and (2)
Predict Event-Type Trigger Identification & Argument Extraction.

Zero-Shot Scientific Abstract Segmentation Prompt

You are a strict extraction assistant. Never explain, never repeat, only extract in the required format.
# # # Abstract: # # #
{abstract}
# # # Extraction Rules: # # #

• Copy full, continuous sentences from the abstract. No changes, summaries, or guessing
allowed.

• Each sentence must belong to only one section.

• Sections must use continuous text spans. No skipping around.

• If no content fits a section, output exactly <NONE>.

• No explanations, no extra text, no format changes.

# # # Section Definitions: # # #

• Background: Problem, motivation, context, research gap, or objectives.

• Method: Techniques, experimental setups, frameworks, datasets.

• Result: Main findings, discoveries, statistics, or trends.

• Conclusion: Importance, impact, applications, or future work.

# # # Exact Output Format: # # #
[Background]: <EXACT TEXT or <NONE>>

[Method]: <EXACT TEXT or <NONE>>

[Result]: <EXACT TEXT or <NONE>>

[Conclusion]: <EXACT TEXT or <NONE>>
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Zero-Shot Trigger Identification & Argument Extraction Prompt

You are an expert argument annotator. Given a part of a scientific abstract, you need to identify
the key trigger for the event (the main verb or action that signals an important research activity)
and annotate the abstract with the corresponding argument components related to this trigger.
Extractions should capture complete phrases around this key trigger and be organized in a single
JSON format, containing only what is explicitly stated in the text without adding any interpretation.
# # # Abstract Segment to Analyze:
{abstract}
# # # Argument Components to Extract:
Action: What is the SINGLE most representative trigger (verb or verb phrase) in the segment?
Agent: Who or what is performing the Action?
Object:

• Primary Object: What is directly receiving or affected by the Action?

• Secondary Object: What is a secondary entity also receiving the Action?

Context: What provides foundational or situational information of the event?
Purpose: What is the purpose or aim of the event?
Method: What techniques, tools, approaches, or frameworks are used in the event?
Results: What are the outcomes, observations or findings of the event?
Analysis: What are the interpretations or explanations of other arguments?
Challenge: What are the constraints or weaknesses of the event?
Ethical: What are the ethical concerns, justifications or implications of the event?
Implications: What is the broader significance or potential for future applications/research?
Contradictions: What are the disagreements with existing knowledge?
# # # Extraction Rules:

1. Extract complete phrases, not just single words.

2. Only extract elements that are explicitly present. Mark missing elements as ["<NONE>"].

3. Use the exact text from the abstract.

4. Break down sentences when different parts fit different arguments.

5. NEVER use the same span of text for multiple arguments - each piece of text must be assigned
to exactly one argument type. However, multiple text spans can be part of the same argument
(e.g., ["text span 1", "text span 2".....] can be used for a single argument type) if
different parts of the text contribute to the same argument.

6. If text could fit multiple arguments, prioritize in this order: Results > Purpose > Method >
Analysis > Implication > Challenge > Contradiction > Context > Ethical

# # # Output Format:
{
"Action": "EXACT TEXT or <NONE>",
"Agent": ["EXACT TEXT or <NONE>"],
"Object": {
"Primary Object": ["EXACT TEXT or <NONE>"],
"Secondary Object": ["EXACT TEXT or <NONE>"]
},
"Context": ["EXACT TEXT or <NONE>"],
"Purpose": ["EXACT TEXT or <NONE>"],
"Method": ["EXACT TEXT or <NONE>"],
"Results": ["EXACT TEXT or <NONE>"],
"Analysis": ["EXACT TEXT or <NONE>"],
"Challenge": ["EXACT TEXT or <NONE>"],
"Ethical": ["EXACT TEXT or <NONE>"],
"Implications": ["EXACT TEXT or <NONE>"],
"Contradictions": ["EXACT TEXT or <NONE>"]

}
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# # # IMPORTANT INSTRUCTIONS:

• You MUST return ONLY ONE JSON structure.

• NO explanation text, thinking, or commentary before or after the JSON.

• NEVER repeat the JSON structure.

• ALL fields must use arrays with ["<NONE>"] for missing arguments.

• Follow the EXACT format shown in the template.

• ONLY extract arguments that are explicitly present in the text. DO NOT hallucinate or add
any information not found in the abstract.

# # # Output (JSON only)
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One-Shot Trigger Identification & Argument Extraction Prompt

You are an expert argument annotator. Given a part of a scientific abstract, you need to identify
the key trigger for the event (the main verb or action that signals an important research activity)
and annotate the abstract with the corresponding argument components related to this trigger.
Extractions should capture complete phrases around this key trigger and be organized in a single
JSON format, containing only what is explicitly stated in the text without adding any interpretation.
# # # Abstract Segment to Analyze:
{abstract}
# # # Argument Components to Extract:
Action: What is the SINGLE most representative trigger (verb or verb phrase) in the segment?
Agent: Who or what is performing the Action?
Object:

• Primary Object: What is directly receiving or affected by the Action?

• Secondary Object: What is a secondary entity also receiving the Action?

Context: What provides foundational or situational information of the event?
Purpose: What is the purpose or aim of the event?
Method: What techniques, tools, approaches, or frameworks are used in the event?
Results: What are the outcomes, observations or findings of the event?
Analysis: What are the interpretations or explanations of other arguments?
Challenge: What are the constraints or weaknesses of the event?
Ethical: What are the ethical concerns, justifications or implications of the event?
Implications: What is the broader significance or potential for future applications/research?
Contradictions: What are the disagreements with existing knowledge?
# # # Extraction Rules:

1. Extract complete phrases, not just single words.

2. Only extract elements that are explicitly present. Mark missing elements as ["<NONE>"].

3. Use the exact text from the abstract.

4. Break down sentences when different parts fit different arguments.

5. NEVER use the same span of text for multiple arguments - each piece of text must be assigned
to exactly one argument type. However, multiple text spans can be part of the same argument
(e.g., ["text span 1", "text span 2".....] can be used for a single argument type) if
different parts of the text contribute to the same argument.

6. If text could fit multiple arguments, prioritize in this order: Results > Purpose > Method >
Analysis > Implication > Challenge > Contradiction > Context > Ethical

Here is a one-shot example of a complete abstract:
Background Event
For abstract: "Second language acquisition (SLA) research has extensively studied cross-linguistic
transfer, the influence of linguistic structure of a speaker’s native language [L1] on the successful
acquisition of a foreign language [L2]. Effects of such transfer can be positive (facilitating
acquisition) or negative (impeding acquisition). We find that NLP literature has not given enough
attention to the phenomenon of negative transfer."
Output:
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{
"Action": "has extensively studied",
"Agent": ["Second language acquisition (SLA) research"],
"Object": {
"Primary Object": ["cross-linguistic transfer"],
"Secondary Object": ["<NONE>"]
},
"Context": ["Effects of such transfer can be positive (facilitating acquisition) or negative (impeding acquisition)"],
"Purpose": ["<NONE>"],
"Method": ["<NONE>"],
"Results": ["<NONE>"],
"Analysis": ["<NONE>"],
"Challenge": ["We find that NLP literature has not given enough attention to the phenomenon of negative transfer"],
"Ethical": ["<NONE>"],
"Implications": ["<NONE>"],
"Contradictions": ["<NONE>"]

}

Method Event
For abstract: "To understand patterns of both positive and negative transfer between L1 and L2,
we model sequential second language acquisition in LMs. Further, we build a Multilingual Age
Ordered CHILDES (MAO-CHILDES) — a dataset consisting of 5 typologically diverse languages,
i.e., German, French, Polish, Indonesian, and Japanese — to understand the degree to which native
Child-Directed Speech (CDS) [L1] can help or conflict with English language acquisition [L2]."
Output:
{
"Action": "model",
"Agent": ["we"],
"Object": {
"Primary Object": ["sequential second language acquisition in LMs"],
"Secondary Object": ["<NONE>"]
},
"Context": ["<NONE>"],
"Purpose": ["To understand patterns of both positive and negative transfer between L1 and L2"],
"Method": ["we build a Multilingual Age Ordered CHILDES (MAO-CHILDES)"],
"Results": ["<NONE>"],
"Analysis": ["a dataset consisting of 5 typologically diverse languages, i.e., German, French, Polish, Indonesian, and

Japanese"],
"Challenge": ["<NONE>"],
"Ethical": ["<NONE>"],
"Implications": ["<NONE>"],
"Contradictions": ["<NONE>"]

}

Result Event
For abstract: "To examine the impact of native CDS, we use the TILT-based cross lingual transfer
learning approach established by Papadimitriou and Jurafsky (2020) and find that, as in human SLA,
language family distance predicts more negative transfer. Additionally, we find that conversational
speech data shows greater facilitation for language acquisition than scripted speech data."
Output:
{
"Action": "use",
"Agent": ["we"],
"Object": {
"Primary Object": ["the TILT-based cross lingual transfer learning approach"],
"Secondary Object": ["<NONE>"]
},
"Context": ["<NONE>"],
"Purpose": ["To examine the impact of native CDS"],
"Method": ["<NONE>"],
"Results": ["as in human SLA, language family distance predicts more negative transfer", "conversational speech data

shows greater facilitation for language acquisition than scripted speech data"],
"Analysis": ["<NONE>"],
"Challenge": ["<NONE>"],
"Ethical": ["<NONE>"],
"Implications": ["<NONE>"],
"Contradictions": ["<NONE>"]

}

Conclusion Event
For abstract: "Our findings call for further research using our novel Transformer-based SLA models
and we would like to encourage it by releasing our code, data, and models."
Output:
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{
"Action": "call for",
"Agent": ["Our findings"],
"Object": {
"Primary Object": ["further research"],
"Secondary Object": ["<NONE>"]
},
"Context": ["<NONE>"],
"Purpose": ["<NONE>"],
"Method": ["using our novel Transformer-based SLA models"],
"Results": ["<NONE>"],
"Analysis": ["<NONE>"],
"Challenge": ["<NONE>"],
"Ethical": ["<NONE>"],
"Implications": ["we would like to encourage it by releasing our code, data, and models"],
"Contradictions": ["<NONE>"]

}

# # # Output Format:
{
"Action": "EXACT TEXT or <NONE>",
"Agent": ["EXACT TEXT or <NONE>"],
"Object": {
"Primary Object": ["EXACT TEXT or <NONE>"],
"Secondary Object": ["EXACT TEXT or <NONE>"]
},
"Context": ["EXACT TEXT or <NONE>"],
"Purpose": ["EXACT TEXT or <NONE>"],
"Method": ["EXACT TEXT or <NONE>"],
"Results": ["EXACT TEXT or <NONE>"],
"Analysis": ["EXACT TEXT or <NONE>"],
"Challenge": ["EXACT TEXT or <NONE>"],
"Ethical": ["EXACT TEXT or <NONE>"],
"Implications": ["EXACT TEXT or <NONE>"],
"Contradictions": ["EXACT TEXT or <NONE>"]

}

# # # IMPORTANT INSTRUCTIONS:

• You MUST return ONLY ONE JSON structure.

• NO explanation text, thinking, or commentary before or after the JSON.

• NEVER repeat the JSON structure.

• ALL fields must use arrays with ["<NONE>"] for missing arguments.

• Follow the EXACT format shown in the template.

• ONLY extract arguments that are explicitly present in the text. DO NOT hallucinate or add
any information not found in the abstract.

• Carefully study the one-shot examples to understand how arguments should be correctly
annotated from the text.

# # # Output (JSON only)
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True Event-Type Trigger Identification & Argument Extraction Prompt

You are an expert argument annotator. Given a part of the text and the event type from the
scientific abstract (e.g., "Background", "Method", "Result", "Conclusion"), you need to identify
the key trigger for the event (the main verb or action that signals an important research activity)
and annotate the abstract with the corresponding argument components related to this trigger.
Extractions should capture complete phrases around this key trigger and be organized in a single
JSON format, containing only what is explicitly stated in the text without adding any interpretation.
# # # Event Type Definitions:

• Background: Problem, motivation, context, research gap, or objectives.

• Method: Techniques, experimental setups, frameworks, datasets.

• Result: Main findings, discoveries, statistics, or trends.

• Conclusion: Importance, impact, applications, or future work.

# # # {event_type} Event Abstract Segment to Analyze: # # #
{abstract}
# # # Argument Components to Extract:
Action: What is the SINGLE most representative trigger (verb or verb phrase) in the segment?
Agent: Who or what is performing the Action?
Object:

• Primary Object: What is directly receiving or affected by the Action?

• Secondary Object: What is a secondary entity also receiving the Action?

Context: What provides foundational or situational information of the event?
Purpose: What is the purpose or aim of the event?
Method: What techniques, tools, approaches, or frameworks are used in the event?
Results: What are the outcomes, observations or findings of the event?
Analysis: What are the interpretations or explanations of other arguments?
Challenge: What are the constraints or weaknesses of the event?
Ethical: What are the ethical concerns, justifications or implications of the event?
Implications: What is the broader significance or potential for future applications/research?
Contradictions: What are the disagreements with existing knowledge?
# # # Extraction Rules:

1. Extract complete phrases, not just single words.

2. Only extract elements that are explicitly present. Mark missing elements as ["<NONE>"].

3. Use the exact text from the abstract.

4. Break down sentences when different parts fit different arguments.

5. NEVER use the same span of text for multiple arguments - each piece of text must be assigned
to exactly one argument type. However, multiple text spans can be part of the same argument
(e.g., ["text span 1", "text span 2".....] can be used for a single argument type) if
different parts of the text contribute to the same argument.

6. If text could fit multiple arguments, prioritize in this order: Results > Purpose > Method >
Analysis > Implication > Challenge > Contradiction > Context > Ethical

7. Consider the event type when determining the most appropriate argument assignments.
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# # # Output Format:
{
"Action": "EXACT TEXT or <NONE>",
"Agent": ["EXACT TEXT or <NONE>"],
"Object": {
"Primary Object": ["EXACT TEXT or <NONE>"],
"Secondary Object": ["EXACT TEXT or <NONE>"]
},
"Context": ["EXACT TEXT or <NONE>"],
"Purpose": ["EXACT TEXT or <NONE>"],
"Method": ["EXACT TEXT or <NONE>"],
"Results": ["EXACT TEXT or <NONE>"],
"Analysis": ["EXACT TEXT or <NONE>"],
"Challenge": ["EXACT TEXT or <NONE>"],
"Ethical": ["EXACT TEXT or <NONE>"],
"Implications": ["EXACT TEXT or <NONE>"],
"Contradictions": ["EXACT TEXT or <NONE>"]

}

# # # IMPORTANT INSTRUCTIONS:

• You MUST return ONLY ONE JSON structure.

• NO explanation text, thinking, or commentary before or after the JSON.

• NEVER repeat the JSON structure.

• ALL fields must use arrays with ["<NONE>"] for missing arguments.

• Follow the EXACT format shown in the template.

• ONLY extract arguments that are explicitly present in the text. DO NOT hallucinate or add
any information not found in the abstract.

• Use the provided event type to guide your analysis and ensure the extraction is appropriate
for that type of event.

# # # Output (JSON only)
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Predict Event-Type Trigger Identification & Argument Extraction Prompt

You are an expert argument annotator. Given a part of the text from a scientific abstract, you
need to first determine what type of event this text represents, then identify the key trigger for the
event (the main verb or action that signals an important research activity) and annotate the abstract
with the corresponding argument components related to this trigger. Based on the event type you
determine, perform the argument extraction accordingly. Extractions should capture complete
phrases around this key trigger and be organized in a single JSON format, containing only what is
explicitly stated in the text without adding any interpretation.
# # # Event Type Definitions:

• Background: Problem, motivation, context, research gap, or objectives.

• Method: Techniques, experimental setups, frameworks, datasets.

• Result: Main findings, discoveries, statistics, or trends.

• Conclusion: Importance, impact, applications, or future work.

# # # Abstract Segment to Analyze: # # #
{abstract}
# # # Argument Components to Extract:
Action: What is the SINGLE most representative trigger (verb or verb phrase) in the segment?
Agent: Who or what is performing the Action?
Object:

• Primary Object: What is directly receiving or affected by the Action?

• Secondary Object: What is a secondary entity also receiving the Action?

Context: What provides foundational or situational information of the event?
Purpose: What is the purpose or aim of the event?
Method: What techniques, tools, approaches, or frameworks are used in the event?
Results: What are the outcomes, observations or findings of the event?
Analysis: What are the interpretations or explanations of other arguments?
Challenge: What are the constraints or weaknesses of the event?
Ethical: What are the ethical concerns, justifications or implications of the event?
Implications: What is the broader significance or potential for future applications/research?
Contradictions: What are the disagreements with existing knowledge?
# # # Extraction Rules:

1. Extract complete phrases, not just single words.

2. Only extract elements that are explicitly present. Mark missing elements as ["<NONE>"].

3. Use the exact text from the abstract.

4. Break down sentences when different parts fit different arguments.

5. NEVER use the same span of text for multiple arguments - each piece of text must be assigned
to exactly one argument type. However, multiple text spans can be part of the same argument
(e.g., ["text span 1", "text span 2".....] can be used for a single argument type) if
different parts of the text contribute to the same argument.

6. If text could fit multiple arguments, prioritize in this order: Results > Purpose > Method >
Analysis > Implication > Challenge > Contradiction > Context > Ethical
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7. Consider the event type when determining the most appropriate argument assignments.

# # # Output Format:
{
"Action": "EXACT TEXT or <NONE>",
"Agent": ["EXACT TEXT or <NONE>"],
"Object": {
"Primary Object": ["EXACT TEXT or <NONE>"],
"Secondary Object": ["EXACT TEXT or <NONE>"]
},
"Context": ["EXACT TEXT or <NONE>"],
"Purpose": ["EXACT TEXT or <NONE>"],
"Method": ["EXACT TEXT or <NONE>"],
"Results": ["EXACT TEXT or <NONE>"],
"Analysis": ["EXACT TEXT or <NONE>"],
"Challenge": ["EXACT TEXT or <NONE>"],
"Ethical": ["EXACT TEXT or <NONE>"],
"Implications": ["EXACT TEXT or <NONE>"],
"Contradictions": ["EXACT TEXT or <NONE>"]

}

# # # IMPORTANT INSTRUCTIONS:

• You MUST return ONLY ONE JSON structure.

• NO explanation text, thinking, or commentary before or after the JSON.

• NEVER repeat the JSON structure.

• ALL fields must use arrays with ["<NONE>"] for missing arguments.

• Follow the EXACT format shown in the template.

• ONLY extract arguments that are explicitly present in the text. DO NOT hallucinate or add
any information not found in the abstract.

• Use the provided event type to guide your analysis and ensure the extraction is appropriate
for that type of event.

# # # Output (JSON only)
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Methods Arg-I (EM) Arg-C (EM)
P R F1 P R F1

Tuning-based models
EEQA 14.26 15.01 14.63 11.59 12.20 11.88
DEGREE 44.97 12.69 19.79 34.23 9.66 15.07
OneIE 32.03 35.27 33.57 25.38 27.95 26.61
Zero-shot LLMs
DS-R1-Llama 10.33 5.46 7.15 6.23 3.30 4.31
Qwen 9.59 7.10 8.16 5.08 3.76 4.33
Llama 7.01 7.17 7.09 3.73 3.81 3.77
GPT 17.84 23.03 20.10 13.37 17.27 15.07
One-shot LLMs
DS-R1-Llama 13.28 5.51 7.79 7.08 2.93 4.15
Qwen 13.98 9.16 11.07 7.24 4.74 5.73
Llama 13.02 9.93 11.27 6.55 5.00 5.67
GPT 25.75 25.79 25.77 19.38 19.41 19.4

Table 6: EM-based Precision (P), Recall (R), and F1-
score (%) on baseline models for argument identification
(Arg-I) and classification (Arg-C) tasks.

D Argument Extraction with EM Metrics
and detailed Human Performance
Comparison
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Figure 11: Performance comparison of various methods
on argument identification (Arg-I) using IoU F1 scores.
Methods are grouped by type: Human baseline, tuning-
based models, zero-shot LLMs, and one-shot LLMs.

In Section 6, we analyze argument extraction un-
der the IoU metric and examined the human–model
performance gap for argument classification (Arg-
C) using IoU. Here, we complement that analysis
by reporting results under the EM metric for argu-
ment extraction, as well as argument identification
(Arg-I) and trigger identification with ROUGE-L
human–model gaps, to provide a more comprehen-
sive evaluation. As shown in Table 6, OneIE re-
mains the best-performing model, while DEGREE
continues to exhibit high precision but low recall.
Among LLMs, GPT-4.1 consistently achieves the
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Figure 12: Performance comparison of various methods
on ROUGE-L F1 scores. Methods are grouped by type:
Human baseline, tuning-based models, zero-shot LLMs,
and one-shot LLMs.

best performance, and one-shot prompting again
improves results across all LLMs. Overall, the
findings remain consistent—switching from IoU
to EM does not alter the relative comparison be-
tween models, but EM results in lower scores for
all models due to its stricter matching criteria.

Figure 11 shows the Arg-I performance gap be-
tween humans and models, which closely mirrors
the Arg-C results. The gap remains around 20%,
highlighting the need for multi-domain scientific
EE models. In contrast, Figure 12 reveals a smaller
gap in ROUGE-L scores for trigger identification,
indicating that this task is considerably easier and
most models perform well. Nevertheless, since
argument extraction is the core challenge, there
remains significant room for improvement in ad-
dressing multi-domain scientific EE.

E Effects of removal of domains on each
tuning-based model

We present domain ablation results for DEGREE
and EEQA under the EM setting in Figure 13 and
Figure 14, respectively. For DEGREE, removing
a domain consistently leads to performance drops,
similar to OneIE, though the impact is generally
smaller. This suggests DEGREE benefits from
domain-specific training but is somewhat more re-
silient, possibly due to its generative nature. In con-
trast, EEQA shows minimal sensitivity to domain
removal. This may be because its QA-based design
relies more on question formulation and span selec-
tion, making it less dependent on domain-specific
linguistic patterns.
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F Trigger and Argument Identification by
Event Types and Domains

Results for trigger identification and argument iden-
tification are presented by event type and domain,
providing supplementary detail to the analysis in
Section 6 and offering deeper insight into how
event types and domains impact SciEvent perfor-
mance.

Figure 15 presents ROUGE-L scores for trigger
identification by event type, where the Conclusion
event achieves the highest performance. This is
likely due to its shorter and simpler structure, offer-
ing fewer candidate verbs, making trigger extrac-
tion easier. The performance trends for other event
types are similar to those discussed in Sections 6
on argument classification. Figure 16 reports IoU
scores for argument identification, which closely
mirror the argument classification results but show
an overall performance increase of about 20%, due
to the easier argument identification task.

Figure 17 shows some difference in the Medical
Informatics (MI) domain compared to argument
classification. MI exhibits lower trigger identifica-
tion performance, due to longer texts containing
more verbs, which increases ambiguity and makes
trigger extraction more difficult. Figure 18 again
shows a 20% performance boost across all models,
due to the easier argument identification task, while
preserving trends consistent with those observed in
argument classification.

G SciEvent keywords analysis

We present a detailed keyword analysis grounded
in each domain’s call for papers in table 7. For Dig-
ital Humanities (DHq 2021—2023), we include
the majority of abstracts from 2021 to 2023 due
to limited publications, ensuring comprehensive
coverage and minimizing bias. On the other hand,
as shown in the tables below for the rest four do-
mains, we observe that our dataset covers all major
research topics outlined in each venue’s call for
papers. This suggests that our benchmark includes
a diverse set of scientific articles and is reasonably
representative within each domain.
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Figure 13: F1-scores reported for full training versus
training with one domain removed for DEGREE under
Exact Match (EM).
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Figure 14: F1-scores reported for full training versus
training with one domain removed for EEQA under
Exact Match (EM).
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Figure 15: Comparison of Rouge-L F1 scores (%) across different event types.
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Figure 16: Comparison of Intersection-over-Union (IoU) on Arg-I F1-scores (%) across different event types.
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Figure 17: Comparison of Rouge-L F1 scores (%) across different academic domains.
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Figure 18: Comparison of Intersection-over-Union (IoU) on Arg-I F1-scores (%) across different academic domains.
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H Detailed example of SciEvent dataset

We show one detailed example of SciEvent dataset, including event segmentation and event extraction in
Figrue 19

Figure 19: Full event extraction example from SciEvent, including event segmentation and event extraction, where
trigger is a tuple including Agent, Action and Object.
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Domain Count
NLP (ACL 2023)
Computational Social Science and Cultural Analytics 2
Dialogue and Interactive Systems 10
Discourse and Pragmatics 2
Ethics and NLP 8
Generation 26
Information Extraction 10
Information Retrieval and Text Mining 2
Interpretability and Analysis of Models for NLP 24
Language Grounding to Vision, Robotics and Beyond 2
Multilingualism and Language Contact 16
Linguistic Theories, Cognitive Modeling, and Psycholinguistics 6
Machine Learning for NLP 50
Machine Translation 6
NLP Applications 3
Phonology, Morphology, and Word Segmentation 2
Question Answering 8
Resources and Evaluation 62
Semantics: Lexical 2
Semantics: Sentence-level, Textual Inference, Other Areas 4
Sentiment, Stylistic, Argument Mining 6
Speech and Multimodality 10
Summarization 6
Syntax: Tagging, Chunking and Parsing 6
CB (Bioinformatics 2023)
Genome analysis 6
Sequence analysis 4
Phylogenetics 4
Structural bioinformatics 14
Gene expression 16
Genetic and population analysis 18
Systems biology 14
Data and text mining 6
Databases and ontologies 12
Bioimage informatics 4
SC (CSCW 2023)
Social and crowd computing 67
System development 6
Theory 42
Empirical investigations 78
Data mining and modeling 27
Methodologies and tools 77
Domain-specific social and collaborative applications 31
Collaboration systems based on emerging technologies 7
Ethics and policy implications 33
Crossing boundaries 19
MI (JMIR 2023)
Clinical Decision Support 47
Automated Feedback 7
Virtual Patient Development 25
Content Quality and Prompting 23
AI Curriculum Design 11
Patient Education via ChatGPT 19
Preparing for AI-Literate Patients 9
Ethics and Legal Concerns 44
Academic Integrity and Policy 15
Trends and Use Cases 24
Future Outlook 3
Practical Tutorials 8

Table 7: Domain distribution and counts across different
research venues and conferences.
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