SynC-LLM: Generation of Large-Scale Synthetic Circuit Code
with Hierarchical Language Models

Shang Liu®, Yao Lu®, Wenji Fang, Jing Wang, Zhiyao Xie*
The Hong Kong University of Science and Technology
{sliudx, yludf, wfang838, jwangjw}@connect.ust.hk, eezhiyao@ust.hk

Abstract

In recent years, Al-assisted integrated circuit
(IC) design methods have shown great potential
in boosting IC design efficiency. However, this
emerging technique is fundamentally limited
by the serious scarcity of publicly accessible
large-scale circuit design data, which are
mostly private IPs owned by semiconductor
companies. In this work, we propose SynC-
LLM, the first technique that exploits LLM’s
ability to generate new large-scale synthetic
circuits. Our hierarchical circuit generation
process includes three stages: 1) A directed
graph diffusion model will learn to generate
the skeleton of large circuits with sequential
registers. 2) The expected function of the input
cone of each sequential register will be anno-
tated. Each cone, named flesh, consists of all
combinational logic that controls the register
value. 3) A level-by-level customized prompt-
ing technique will guide LLM to complete
the design code of each cone. Experiments
show that our generated circuits are not only
valid and fully functional', but also closely
resemble realistic large-scale designs and can
significantly improve Al models’ performance
in multiple IC design tasks. The code and data
are open-sourced in https://github.com/hkust-
zhiyao/SynCircuitData.

1 Introduction

The advancement of artificial intelligence (Al)
has led to unprecedented computational demand
for hardware integrated circuits (ICs). However,
the ever-increasing IC complexity and design costs
are challenging traditional IC design methods. In
recent years, Al-assisted IC design techniques have
demonstrated great potential (Rapp et al., 2021;
Chen et al., 2024; Xie et al., 2018; Liu et al., 2023b;

¢ Equal contribution.

* Corresponding author.

“Fully functional” means each generated circuit is a com-
plete, self-contained design that is syntactically valid, simulat-
able, and will produce deterministic outputs for given inputs.

500K lines circuit design Single LLM

E g Learned dataset
Cc

E * C .es
s /ﬁ
Interface
skeleton
Graph generative j‘
model -

Figure 1: SynC-LLM is a novel hierarchical frame-
work that generates large-scale and syntactically valid
synthetic IC designs. SynC-LLM first learns both the
sequential logic skeleton of realistic designs and then
the detailed function flesh of all combinational logic.
The generated synthetic IC designs can significantly en-
hance the performance of Al models in IC design tasks.

EDA model
performance

R1embedding R1code func
R2embedding R2code func 1
R3 embedding R3code func

Function ENG)

Function
annotation

Fang et al., 2025c,a,b). However, these Al-driven
approaches are fundamentally constrained by the
scarcity of circuit data. Such data scarcity is due
to the proprietary nature of commercial IC designs
as valuable intellectual properties (IPs) (Liu
et al., 2025b,a). As a result, researchers only have
access to small-scale and outdated circuit data,
significantly hindering the development of new
Al-driven IC design techniques.

Most recently, LLMs are extensively applied in
generating IC design in code format according to
given design descriptions (Liu et al., 2023a; Chang
et al., 2024; Liu et al., 2024a; Lu et al., 2024; Liu
et al., 2024b; Li et al., 2025). However, as Table 1
shows, existing LLM solutions typically only
generate very small-scale IC design components,
from dozens to a few thousand gates after synthesis.
Such a limited size implies the lack of scalability
in LLM-assisted IC generation.

In this work, we propose SynC-LLM, a novel
multi-stage framework that generates large-scale
synthetic circuits. Our generated synthetic circuits
reach millions of gates after synthesis, significantly
exceeding the scale of existing works. Moreover,
our generated synthetic circuits closely mimic real-

17350

Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 1735017365
November 4-9, 2025 ©2025 Association for Computational Linguistics

istic designs with complex functions. This ensures
that ML models trained with our synthetic circuits
apply to IC design tasks, such as the analysis and
optimization of IC timing, power, and area.

SynC-LLM mainly comprises three stages to
obtain large-scale hardware design code. In stage
1, a graph diffusion model will learn to generate
the skeletal structure of the design. This skeleton
is formulated as a directed graph that reflects the
dependency and transition relationships among
various digital states, capturing the overall logical
functionality of the circuit. In stage 2, we utilize a
retriever to annotate each register of the generated
new skeleton with a functional description.
The retriever is trained on real design data by
aligning the skeleton’s graph embeddings with the
corresponding code function embeddings. This
alignment effectively bridges the high-level struc-
tural information and the low-level code details,
providing crucial contextual cues for subsequent
code generation. In stage 3, each node’s functional
description is employed as a prompt input to an
LLM to generate the corresponding cone code. In
addition, we further introduce a logic-level control
strategy within the prompt to regulate the timing
length of the generated circuit. A syntax checker
is applied to ensure that every code segment
adheres to syntactic rules and embodies practical
logical functionality. Finally, we integrate the
cone codes according to the skeleton to obtain the
complete design. This method not only facilitates
data augmentation for downstream Al-assisted IC
design tasks but also provides researchers with a
robust benchmark dataset.

In summary, we propose a novel LLM-based
approach for generating large-scale IC code. Con-
tributions of SynC-LLM are summarized below:

* SynC-LLM proposes a new hierarchical gen-
eration strategy, considering both graph and
natural language modalities. It first generates
the overall sequential logic skeleton in graph
modality and then generates combinational
code. This strategy is highly scalable to sup-
port generating complex synthetic circuits.

* SynC-LLM proposes to generate the combi-
national code based on the skeleton structure.
By providing structural function descriptions
as context, LLMs generate more realistic com-
binational logic in synthetic circuits.

* SynC-LLM proposes layer-by-layer circuit

Design Scale Design Scale

Beizllirmc:rk (#K Gates) (#K Lines)
{Median, Max} | {Median, Max}
RTLLM2.0 (Lu et al., 2024) {le-1,2) (5e-2, 5¢-1)
VerilogEval (Liu et al., 2023a) {1le-2, 2e-1} {1e-2, 6e-2}
SynC-LLM { 22,56} {7,17}
Table 1: Comparison of LLM-generated circuits.

RTLLM and VerilogEval are de facto standard bench-
marks in LLM for IC generation. SynC-LLM can pro-
duce much larger-scale hardware designs.

generation prompts to enable precise control
over path lengths and logic depths of gener-
ated synthetic circuits.

* Experiments demonstrate that SynC-LLM-
generated circuits exhibit similar circuit statis-
tics to real-world designs. Moreover, these
synthetic circuits significantly improve the ac-
curacy of Al-assisted IC design models.

2 Related work
2.1 Data Scarcity in Al for IC Design

In recent years, Al-assisted IC design techniques
have demonstrated remarkable potential in expe-
diting the chip design process. Notable applica-
tions include automated chip design generation (Pei
et al., 2024; Liu et al., 2023b), fast chip quality pre-
diction (Fang et al., 2023; Xu et al., 2022; Zou et al.,
2024), automated chip design planning (Bai et al.,
2023), etc. A long-lasting bottleneck is the scarcity
of open-source, large-scale circuit data, which sig-
nificantly hampers data-driven Al advancements in
IC design. Although several open-source circuits
datasets (Chai et al., 2023; Jiang et al., 2023; Pan
et al., 2023; Chowdhury et al., 2023; Liu et al.,
2023a) have been proposed for various IC design
tasks, these datasets mostly only help generate la-
bels of existing open-source circuit designs, instead
of generating brand-new circuit designs. The total
number of valid circuits in the public domain is
still very limited.

2.2 LLM for Circuits HDL Generation

Recently the automatic generation of IC design in
hardware description language (HDL) based on
LLMs has been widely explored (Lu et al., 2024;
Liu et al., 2023b, 2024b; Pei et al., 2024; Liu et al.,
2023a; Ho et al., 2024; Thakur et al., 2023). How-
ever, these methods are predominantly focused
on relatively small-scale design tasks. In recent
years, several works (Chhabria et al., 2021; Kim

17351

et al., 2021) have explored the generation of circuit
datasets at the layout stage. However, these genera-
tive methods are limited to circuit layouts, without
enforcing valid circuit designs. For tasks such as
those involving logic synthesis (Xu et al., 2022;
Fang et al., 2023, 2024), existing circuit generation
methods are not directly applicable.

3 Problem Definition

Given a dataset of realistic circuit designs for train-
ing, SynC-LLM will learn to generate new syn-
thetic designs of comparable scale. The generated
synthetic designs will be in hardware description
language (HDL) code format. Synthetic circuits
should satisfy the following criteria:

1) Syntax Validity: The generated HDL code
should first pass hardware syntax checking and can
be successfully synthesizable into netlist by stan-
dard logic synthesis tools (e.g., Design Compiler).

2) Structural Similarity: After being synthesized
into netlists, synthetic circuits should exhibit simi-
lar characteristics compared to realistic circuits.

3) Data Augmentation Effectiveness: The gener-
ated synthetic circuits should serve as augmented
training data to enhance the performance of Al
models in IC design tasks. In this way, they ad-
dress the long-lasting data scarcity problem in Al-
assisted IC design.

We respectfully clarify that specific generated
circuit functions are not strictly required in our
target application. The target of this work is to pro-
duce many large-scale synthetic circuits, providing
training data for downstream Al-based IC tasks
(such as power, performance, and area prediction
in our experiment, which is fundamentally impor-
tant in the digital chip design process). Therefore,
this data generation application is different from
LLM-assisted coding (e.g., Copilot), which strictly
enforces correct functionalities. This application
focuses more on the structural characteristics (such
as timing features), similarity to realistic designs,
diversity, and benefit to trained Al models.

4 SynC-LLM Overview

Circuit Modeling: Skeleton and Flesh. Digi-
tal IC is typically designed with HDL code such
as Verilog. After parsing the structural informa-
tion in HDL, each design can be modeled as a
graph of word-level elements in both sequential
and combinational logic (Fang et al., 2023). Let
S = {s1,s2,...,s,} represent the set of sequen-

tial cells (i.e., registers) and input/output (I0) ports.
Such a collection .S maintains and represents the
circuit’s state at each clock cycle. We refer to the
graph G of all registers and IO ports? as the circuit
design’s skeleton>.

For any register s; in this skeleton, its value de-
pends on the values of all its parent registers. There
is only combinational logic between its parent reg-
isters (as inputs) and s; itself (as output). This
multi-input and single-output subcircuit filled with
combinational logic is referred to as the input cone
of register s;. The union of all input cones of all
registers constitutes the design’s flesh.

Based on the formulation with skelefon and flesh,
we propose a hierarchical generation scheme that
incorporates both graph and text modalities to gen-
erate large-scale circuit code. As Figure 2 shows,
the generation process comprises three stages:

Stage 1: Skeleton Generation. In the first stage
(@ in Figure. 2), a graph diffusion model is em-
ployed to first generate the IC design skeleton. This
skeleton reflects the dependencies between all reg-
isters and IO ports, thereby capturing the overall
logical state of the whole circuit.

Stage 2: Function Annotation. In the second
stage (@ in Figure. 2), a multimodal encoder model
will help annotate the expected functionality of the
input cone of each register in the skeleton. These
annotations will serve as contextual guidance for
the subsequent generation of circuit flesh. The
encoder is trained with self-supervised learning,
aligning the register’s skeleton-graph embeddings
and the function description in text embeddings.

Stage 3: Cone Code Generation: In the third
stage (® in Figure. 2), LLMs will generate the com-
binational logic in each cone in a layer-by-layer
manner. Each register cone’s annotated function
description is used as context in our proposed LLM
prompt. After the prompted LLM generates the
cone code, a syntax checker is applied to ensure
that every cone code is syntactically correct and
embodies practical logical functionality.

Finally, the complete large-scale circuit is gener-
ated by integrating each register’s cone codes into
the skeleton’s graph structure. This resulting de-
sign can both enhance downstream IC design tasks
through data augmentation and serve as a bench-
mark, providing sufficient test data.

For simplicity, we may only mention registers without
explicitly discussing the very small portion of IO ports in S.

*Two registers are connected in the skeleton graph G if
there is any combinational-logic path connecting them.

17352

@ Sequential Skeleton Generation |, @ Joint Function Annotation

Sequential Ind dd
) ndexed dataset
r‘,\: _=O skeleton ® ® @
D Limited =¥ ® ~JRCicuit Granh i
A _’ Denoisin rap| R1 embedding R1 code func
design ® 6 £ b d " Encoder R2 embedding R2 code func
Parser ® R3 embedding R3 code func
Cone code @3
Limited Model flesh G G 7 Query
T 0
EDA Tasks Performance

© Joint Code Generation

Area
Prediction
Timing
Prediction
Power
Prediction

[Prompt] Part 1
Here's a description of the design:

Part2

Please use what| just described to write similar verilog code with
the following requirements:
Given 7 inputs named sa3 01_sr, ld. sal

1 with bit widths of 8, 8, 1,128, 8, 8, 32
respectively, Also, a one-bit clk signal s also an input portand one
outputnamed sa32_srwith bit width of 8.
The Verilog code should contain ...(specific requirements)
Put ##end
codet##. Please considerthe design description provided in the
promptbeginningto guide your code writing.

Augmented
A , Model Performance

=

ML Models

®.§ ? @
Co 52 ::c
S Conelcode
@ES; c\cé

###design descriptiont##

The assignment logic of _ex_op2 Tand_ex_op1_Tdetermines
the second and first operand of the ALU operation...

ALU input selection: ...

ALU operations:

Branchingdecision: ...

Summary: This code implements the logic of ...

#it#tend design description###

New Large-scale
RTL Design

[Response]

(7:0] layerl_wirel;
#codet o

module sa32_sz(
out [7:0] sa3l_sr,

elk,
reg [7:0] sa3z_sr

##end codett#

Figure 2: We propose a hierarchical generation scheme for large-scale circuit design with three stages. The
integrated new designs can significantly enhance Al models in IC design. Stage 1 uses a graph diffusion model to
create a skeleton capturing sequential dependency relations. Stage 2 annotates each register within the skeleton with
functional descriptions via a retriever. Stage 3 leverages these annotations to guide LLM-based cone code generation.

5 SynC-LLM Methodology Details
5.1 Stage 1: Sequential Skeleton Generation

Each circuit in HDL code can be parsed and con-
verted to a skeleton graph G, an attributed directed
graph. In stage 1, SynC-LLM will learn the un-
derlying distribution of G from real circuits, such
that it can generate new synthetic skeletons that
preserve similar structural characteristics.

Graph Diffusion Model: We adopt a diffusion-
based generative model to learn the generation of
the circuit skeleton. In the forward process, the
original graph is gradually noised. Let Ay denote
the adjacency matrix of the graph, and define a
sequence {A;}L_, with the following transition:

q(AeAr1) = N (ApVar Aq, (1—a)l),
where a; € [0, 1] is a noise scheduling parameter
and I is the identity matrix. In the reverse process,
our diffusion model pg will recover A from A
by iteratively applying:

Po(Ai—1|Ar) = N (Ay_1; 19(As, 1), Tg(Ay,t)),
where pg(+) and Xy (-) are learned functions pre-
dicting the mean and variance, respectively.

Edge Direction: We integrate the directional
prediction directly into the reverse process. For
any candidate edge between nodes u and v, we
derive their latent node embeddings h,, and h,. We
then concatenate these embeddings and pass them
through an MLP to generate the probability of an

edge existence from u to v:
p(u,v) = o (MLPg([hy; hy)))

5.2 Stage 2: Function Annotation

After obtaining the circuit skeleton G in stage 1,
stage 2 will annotate each register s; in the skeleton
with a function description. This annotation will
describe the expected functionality of the cone flesh
of register s;. The annotation will later guide LLM
to generate the HDL cone code in stage 3.
Motivation: In digital circuits, the function of
each code flesh is related to the position of its corre-
sponding register s; in the graph skeleton G. For ex-
ample, a high-bit-width register s; near the graph’s
primary inputs is typically responsible for data read-
ing, decoding, or handling of various instructions.
In contrast, a high bit-width register s; with a larger
distance from inputs may perform extensive com-
putational operations. These observations motivate
our proposed function annotation on skeleton.
Recognizing that our collected real design
datasets cover a wide range of functionalities,
we introduce the retrieval-augmented approach
(retriever) of reusing existing design data to anno-
tate each register’s expected function. The database
is constructed and applied in the following ways:
Indexing: In the indexing stage, each circuit
is decomposed into paired components: a regis-
ter and its associated cone code. Each register is
transformed into a graph embedding using our pre-
trained graph encoder. Along with their correspond-
ing natural language function descriptions, these
embeddings are stored in a dedicated database that
serves as a reference for future retrieval tasks.

17353

Sequential . RTL Cone code
skeleton > % .
design

iz
3
=

Graph Modality Text Modality

Reg2 Cone Code,

—

| Input | [Constant]|

assign W1 = [5:0] & Reg2;
assign W2 = W1 + [5:0]

é]‘.v‘:ays @ (posedge clk)
g3 <= W25;

Graph
(’ Encoder LLM function
analysis
Triplet loss
[Response]
This code implements input
Skeleton IR selection, immediate value
embedding space generation, and arithmetic
g sp and logical operations.
PReg2 | Text
<D Encoder
<=
BERT
| Vi
— |
Query Cone
interface Function Text embedding space
Regl emb Regl code func @ D
Reg2 emb Reg2 code func @
Reg3 emb Reg3 code func " @
1

Figure 3: We propose a self-supervised multimodal
graph encoder that links circuit skeleton features (graph
modality) with functional semantics (text modality).

Retrieval & Inference: During the inference
phase, register embeddings of the skeleton are ob-
tained, which are then used to query the established
database. A top-k search is performed based on the
distance metric to retrieve the nearest entries which
are expected functionally similar and can provide
augmentative references to inform the new cone
code generation.

Self-Supervised Multimodal Encoder: Since
we query the function based on graph embeddings,
we need to bridge the gap between the circuit’s
skeleton features and its cone function details. In
other words, it is essential to learn a graph embed-
ding space where registers with similar functions
are mapped to nearby points.

We propose a self-supervised, multimodal con-
trastive learning technique to train the graph en-
coder as Figure 3 shows. The skeleton and cor-
responding cone codes are extracted firstly from
circuit designs using a parser and we consolidate

the skeletons of all designs into a single graph G/,
where different designs remain disconnected. The
data processing flows in the graph and text modali-
ties are explained as follows:

1. Graph Modality: Let G, = (V, E) denote the
skeleton graph, where each node v € V' is as-
sociated with an embedding h7 derived from
a graph encoder which needs to be trained.

2. Text Modality: For each cone code corre-
sponding with register v, we use commercial
LLM to perform function analysis, thereby
obtaining its natural language description (de-
tailed prompt examples can be found in Ap-
pendix F). These descriptions are then trans-
formed into a text embedding h! using a
pre-trained text encoder (e.g., BERT, text-
embedding-ada-002).

To align the two modalities, we choose positive
and negative samples for each register and utilize a
triplet contrastive loss to train the graph encoder:

Positive and Negative Sample Selection: For
each node v, we consider its text embedding !, and
compute the distances ||, —h%|| forall j € V'\{v}.
The k,, nodes with the smallest distances form the
positive set for v: We define the positive set for
each node v as:

Pv) ={j e V\{v}[j € NN, (v)}.

where NNy (v) denotes the set of the &, nearest
neighbors of v in the text embedding space. For
the negative samples, we randomly select k,, nodes
from the remaining nodes:

N(v) < (V\ ({v} U P(v))).

Contrastive Alignment Loss: Our objective is to
learn graph embeddings such that h{ is close to 17
for all j € P(v) and far from Y for all i € N (v).
This is enforced via a triplet loss. For each triplet
(v,7,i) with 7 € P(v) and i € N(v), we define:

Loji = max{0, d(hd,h%) — d(hY, hf) + 5},

where d(-, -) denotes a chosen distance metric and
0 is a margin hyperparameter. The overall loss is
computed by averaging over all nodes and their
corresponding positive-negative pairs:

> D L

1 1
c=Lty 1
VI & POINOI & 4

17354

5)

s N
% Prompt

Here's a description of the design:

#i##design description###

The assignment logic of _ex_op2_T and _ex_op1_T determines ...
Summary: This code implements the logic of ...

#i##end design description###

module sa32 sr (

input clk,

)i
Please use what | just described to write similar verilog code with the
following requirements: wire ...
Given 7 inputs named sa37_sr, sa07_sr, ld_r, text in_r, sa11_sr, sa21_sr,
u0_w_1_with bit widths of 8, 8, 1, 128, 8, 8, 32 respectively, Also, a one-bit
clk signalis also an input port and one output named sa32_sr with bit
width of 8.

The Verilog code should contain ...(specific requirements)

20 - {Tips: Every intermediate is named by format 'layerN_wireK’,
@‘ where N is the layer index and K is the K wire in that layer. Please
generate code by logic layers (from layer 1 to target layer number 10)
Specifically, the assigned variable in the i # logic layer must have at least
one direct parent in the (i-1) % logic layer, and the left parents must be
from the 1to (i-1) layers. }

Put the complete pure code between ##code## and ##end code##.
Please consider the design description provided in the prompt beginning end
_to guide your code writing.) \endmodule

Response

input [7:0] sa3l_sr,
input [7:0] sa0l_sr,

output reg [7:0] sa32_sr
wire [7:0] alu inl;

assign alu inl = (1d r) ? sa3l_sr :
assign alu_in2 = (1d r) ? sall_sr :

assign immediate = (1d_r) ? text_in r[7:0] : 8'b0; Layer

assign selected data = alu inl * alu in2;

always @(posedge clk) begin
sa32_sr <= selected data + immediate;

Response with Tips @

module sa32_sr (
input [7:0] sa3l_sr,
input [7:0] sa0l_sr,

input clk,
output reg [7:0] sa32 sr
)i

wire [7:0] layerl wirel;

wire [7:0] layer2 wirel;

wire ...

sa01_sr; wire [7:0] layerl0_wirel;

sa21_sr;
Layer 1

assign [7:0] layerl 1 = sa3l_sr * sa0l_sr;

assign [7:0] layer2 1 = 1d r ? layerl 1:sall_sr;
Layer 3

Layer 9
assign [7:0] layer9_1 = layers_3 * sall_sr;

Layer 10
always @(posedge clk) begin
sa32_sr <= layer9 1;
end
endmodule
AN J

(a) Our prompt example for cone code generation (b) Response without logic level control

(c) Response with logic level control

Figure 4: Basic prompt with the retrieved functional specifications and I/O constraints instructs the LLM in
generating the corresponding code. However, the LLM is not directly aware of the logic level and tends to produce
code that is overly flat and lacks sufficient logical depth. To address this, we proposed a layer-by-layer generation
prompt technique which results in new code that more accurately reflects the timing characteristics of real circuits.

5.3 Stage 3: Cone Code Generation

After each register in our circuit skeleton is anno-
tated with a functional description in stage 2, these
annotations will serve as a reference for LLM in
stage 3 to generate the corresponding cone code,
thus completing the circuit’s flesh.

Basic Prompt: For every register s; in the skele-
ton with known function annotation, parents, and
associated bitwidth attributes, we can instruct the
LLM to generate the cone code for s; by providing
I/0 ports declaration and function reference.

Logic Level Control Technique: In real cir-
cuits, many cone codes exhibit a deep logic struc-
ture, characterized by potentially long paths from
input to output, resulting in a slender structure. The
length of these paths can partially reflect signal
propagation delays, which is crucial in IC design.

In our approach, we propose a new customized
prompt technique to query the LLM. Starting with
the input and proceeding through a specified logic
depth, the LLM is instructed to construct the circuit
layer by layer. This generation method ensures that
the resulting code exhibits a deeper hierarchical
organization, thereby achieving the required logic
level for realistic timing behavior. Specifically,
this new prompt technique mainly consists of the
following two aspects:

 Variable Naming Convention: Each variable
is named based on its layer index following
the convention layerN_K, where N denotes
the variable’s layer and K indicates its order
within that layer. This systematic approach
guarantees clarity and consistency in signal

identification throughout the circuit.

* Layer Consistency Enforcement: To ensure
that the layer number in the variable names
reflects their actual position within the circuit,
the prompt explicitly instructs the LLLM that
for any variable designated in the :th layer, at
least one assignment variable must belong to
the (i — 1)th layer. Moreover, all additional as-
signment variables must originate from layers
ranging between 0 and ¢ — 1.

Example Demonstration: As illustrated in Fig-
ure 4, in the absence of logic level control guidance
within the prompt, the generated code only exhibits
three logic layers from input to output. However,
with the enhanced instructions, the response cor-
rectly produces a ten-layer logic circuit, also en-
suring that the naming of each variable precisely
matches its actual logic depth.

6 Experiments

In our experiment, we will first evaluate the simi-
larity between synthetic circuits with real designs
in multiple circuit statistics* Then we will evaluate
if our newly generated synthetic circuits, as train-
ing data augmentation, can help boost ML model
performance in IC design tasks.

17355

Degree Cluster Orbit Spectral

MMD | MMD, MMD | MMD |
GraphRNN (You et al., 2018) 0.015 0.343 0.136 2.46
DVAE (Zhang et al., 2019) 0.043 0.458 0.371 0.036
SynC-LLM 0.005 0.022 0.007 0.003

Table 2: The directed register dependency graph similar-
ity between the generated designs with the real datasets.

6.1 Experiment Setup

Circuit Design Compilation: Initially, we assem-
bled a dataset consisting of 22 circuit designs ex-
tracted from open-source RTL repositories(Corno
et al., 2000; Albrecht, 2005; Amid et al., 2020).
This collection spans a diverse range of digital cir-
cuit modules, reflecting some of the highest-quality
designs available in the open-source community.
Dataset details are in Appendix A. It should be
noted that although the dataset comprises only 22
designs, the training process of SynC-LLM utilizes
several thousand cones extracted from these data.
Moreover, the data employed for the timing task
in the downstream application (using the register
path) consists of tens of thousands of data points.

To obtain netlist-level labels serving downstream
Al-based PPA prediction tasks, including design
area, register slack, and total negative slack (TNS)
prediction, we employed Synopsys Design Com-
piler™ 2021 with the NanGate 45nm technology
library to get design labels. We randomly desig-
nated 7 of the designs as the test set, leaving the
remaining 15 in the skeleton generative model train-
ing, retriever database building, and Al-based IC
tasks model training.

Circuit Generative Methods. In contrast to our
hierarchical multi-modal generation scheme, we
implement generation baselines on circuit graph
representation, motivated by an artificial netlist
generator (Kim et al., 2021). We selected two
representative graph generative models, including
GraphRNN (You et al., 2018) and DVAE (Zhang
et al., 2019), to generate new synthetic circuits as
baselines. The detailed methodology and baselines
settings are shown in Appendix D. For each gener-
ation method, we obtain 25 synthetic new designs
for analysis and data augmentation. In addition,
we provide a method complexity comparison in the
Appendix C.

“*Generating large-scale synthetic hardware designs is a
novel research direction, and consequently, a standardized or
mature evaluation framework for rigorously quantifying de-
sign similarity does not yet exist. We have made a concerted
effort in our work to propose a set of reasonable and represen-
tative metrics from a hardware engineering perspective.

1004
80

60

SynCI-LLM
w/o LLC

Cone Logic Depth

T T 1
SynC-LLM GraphRNN DVAE

w/ LLC

T
Real designs

Figure 5: Statistics of the cone code’s logic level depth.
SynC-LLM with logic level control (LLC) generates
cone code with much higher similarity to real circuits.

6.2 Synthetic Design Statistics

Register Dependency Graph (i.e., skeleton):
The skeleton is parsed from the HDL code which
represents the sequential logic characteristics
of the design code. We compare the similarity
in the register dependency graph between the
generated circuits and the real designs using four
metrics (Chen et al., 2023; Vignac et al., 2022): 1.
Degree: node connectivity distribution. 2. Cluster:
local connectivity via clustering coefficients. 3.
Orbit: recurring local subgraph patterns through
orbit counts. 4. Spectral: global structure
extracted from the graph Laplacian eigenvalue.
The statistics distribution similarity is calculated
by the Maximum Mean Discrepancy (MMD).

MMD?*(P, Q) = Eq ot p[k(z,2')] + By yrnqlk(y, y')]

— 2Esnpy~q k(2 y)]

where P and () denote two graph statistics dis-
tribution, and k(-, -) denotes a kernel function.

Table 2 lists MMD scores of GraphRNN (You
et al., 2018), DVAE (Zhang et al., 2019), and SynC-
LLM. Lower scores are preferable as they indicate
a closer match to the real design’s skeleton. Results
show that the hierarchical generation in SynC-LLM
is more effective in capturing the circuit’s global
sequential skeleton structure.

Cone Logic Depth: We examined the logic
depth of all the cones in the generated HDL code.
Results are shown in Figure 5. SynC-LLM is
able to generate code that more closely captures
the cone logic depth distribution of real designs
compared to GraphRNN (You et al., 2018) and
DVAE (Zhang et al., 2019). Furthermore, we re-
moved the logic level control (LLC) component

17356

Model Register Slack TNS Area
R—1 MAPE| RRSE] R—1 MAPE| RRSE] R—1 MAPE| RRSE]
No synthetic data augmentation 0.70 27% 0.83 0.81 50% 0.97 0.89 30% 0.62
GraphRNN (You et al., 2018) 0.70 27% 0.83 0.80 54% 0.97 0.84 44% 0.75
DVAE (Zhang et al., 2019) 0.69 29% 0.94 0.78 50% 0.97 0.84 61% 0.86
SynC-LLM w/o retriever 0.76 24% 0.76 0.85 47% 0.83 0.85 33% 0.70
SynC-LLM w/ retriever 0.79 17% 0.73 0.95 42% 0.58 0.93 25% 0.43

Table 3: Al model’s accuracy in predicting the post-synthesis register slack, TNS, and area before synthesis. The
basic training dataset consists of 15 real designs. The augmented dataset combines the basic dataset and 25 synthetic
designs generated from SynC-LLM w/ retriever, SynC-LLM w/o retriever, GraphRNN (You et al., 2018), and

DVAE (Zhang et al., 2019).

from the prompt used by SynC-LLM. Results show
that SynC-LLM w/o LLC exhibits a noticeably
shallower code structure compared to SynC-LLM
and has a greater discrepancy from real designs.
This observation indicates the effectiveness of our
prompt technique.

Netlist Timing: We evaluate the circuit netlist
statistics by calculating the ratio of Total Nega-
tive Slack (TNS) to the Number of Violated Paths
(NVP). Results are shown in Figure 6. These met-
rics not only quantify the overall severity of timing
violations but also reflect the distribution of delays
across the circuit.

Figure 6 shows that graphs generated by
GraphRNN (You et al., 2018) and DVAE (Zhang
et al., 2019) exhibit very small TNS/NVP values,
failing to capture the inherent delay characteristics
of circuits. In contrast, our SynC-LLM w/ retriever
demonstrates a more similar distribution to real
designs. This suggests that SynC-LLM is more
effective in modeling the timing behaviors present
in real designs. In addition, after removing the
retriever®, the SynC-LLM w/o retriever shows a
significant TNS/NVP value reduction. It proves the
contribution of the function retrieval component
for more realistic design generation.

6.3 Synthetic Designs as Training Data

In this section, we evaluate the effectiveness of
generated synthetic circuits as training data aug-
mentation in Al-assisted IC solutions. These Al
application details can be found in Appendix G.
This experiment is motivated primarily by the Al-
assisted prediction of timing and area proposed in
MasterRTL (Fang et al., 2023) and the fine-grained
timing slack prediction by RTL-Timer (Fang et al.,
2024). To rigorously assess model performance,

SWe directly prompt LLM to generate cone code without
function annotation retrieval

0.0
=

-0.21
£ 0.4
&
78—0.6—
E ‘
=} 4
2-08
k]
s —1.0
=
2 -1.24
4
-

~1.4 1

-1.6- J_

r T T T 1
Real Designs SynC-LLM SynC-LLM GraphRNN DVAE

w/ Retriever w/o Retriever

Figure 6: Netlist statistics. The synthetic designs gen-
erated by SynC-LLM w/ retriever exhibit more similar
TNS/NVP distribution to those of the real designs com-
pared to baselines. It should be noted that the TNS/NVP
value of GraphRNN is very small, so it cannot be clearly
displayed in this Figure.

we adopt three key metrics: the Pearson correlation
coefficient (R), Mean Absolute Percentage Error
(MAPE), and Root Relative Squared Error (RRSE).

Table 3 shows the model accuracy comparisons.
Models augmented with synthetic data from SynC-
LLM consistently surpass those trained solely
on real designs, achieving superior performance
across all evaluation metrics. Additionally, we re-
moved the function annotation step (remove the
retriever) from SynC-LLM in generating new de-
signs. The SynC-LLM w/o retriever results indi-
cate that the new designs even lead to a decrease in
model performance compared with the basic train-
ing dataset. This may be due to the significant dis-
crepancies between these designs from SynC-LLM
w/o and real design characteristics, as evidenced
by our analysis in Section 6.2.

7 Conclusion

SynC-LLM is the first work to leverage large lan-
guage models (LLMs) for large-scale hardware syn-

17357

thetic code generation, effectively addressing the
scarcity of publicly available circuit design data.
Our innovative three-stage process—comprising
circuit skeleton synthesis, register function an-
notation, and level-by-level HDL code comple-
tion—not only produces valid large designs but
also significantly enhances Al performance in vari-
ous IC design tasks, marking a pivotal step forward
in Al-assisted IC design techniques.

8 Acknowledgment

This work is supported by the Hong Kong Research
Grants Council (RGC) CRF Grant C6003-24Y,
GRF Grant 16200724, and ACCESS — Al Chip
Center for Emerging Smart Systems, sponsored by
InnoHK, Hong Kong SAR.

9 Limitations

We respectfully clarify that generating large-scale
synthetic hardware designs is a novel research di-
rection, and consequently, a standardized or mature
evaluation framework for rigorously quantifying
design similarity does not yet exist. Measuring the
similarity between complex digital circuits—often
containing over 20,000 nodes or 10,000 lines of
code—is an inherently challenging task. Our anal-
yses and augmentation training results indicate that
our synthetic circuits bear significant resemblance
to real designs. However, a comprehensive, sys-
tematic metric for evaluating circuit similarity and
quality has yet to be established. Developing a rig-
orous framework to quantify would not only further
validate our approach but also guide future efforts
in synthetic circuit generation.

References

Christoph Albrecht. 2005. Iwls 2005 benchmarks. In
International Workshop for Logic Synthesis (IWLS):
http://www. iwls. org.

Alon Amid, David Biancolin, Abraham Gonzalez,
Daniel Grubb, Sagar Karandikar, Harrison Liew, Al-
bert Magyar, Howard Mao, Albert Ou, Nathan Pem-
berton, et al. 2020. Chipyard: Integrated design, sim-
ulation, and implementation framework for custom
socs. IEEE Micro, 40(4).

Chen Bai, Jiayi Huang, Xuechao Wei, Yuzhe Ma,
Sicheng Li, Hongzhong Zheng, Bei Yu, and Yuan
Xie. 2023. Archexplorer: Microarchitecture explo-
ration via bottleneck analysis. In Proceedings of the
56th Annual IEEE/ACM International Symposium on
Microarchitecture, pages 268-282.

Zhuomin Chai, Yuxiang Zhao, Wei Liu, Yibo Lin, Run-
sheng Wang, and Ru Huang. 2023. Circuitnet: An
open-source dataset for machine learning in vlsi cad
applications with improved domain-specific evalua-
tion metric and learning strategies. IEEE Transac-
tions on Computer-Aided Design of Integrated Cir-
cuits and Systems.

Chen-Chia Chang, Yikang Shen, Shaoze Fan, Jing
Li, Shun Zhang, Ningyuan Cao, Yiran Chen, and
Xin Zhang. 2024. Lamagic: Language-model-based
topology generation for analog integrated circuits.
arXiv preprint arXiv:2407.18269.

Lei Chen, Yiqi Chen, Zhufei Chu, Wenji Fang, Tsung-
Yi Ho, Ru Huang, Yu Huang, Sadaf Khan, Min Li,
Xingquan Li, et al. 2024. Large circuit models: op-
portunities and challenges. Science China Informa-
tion Sciences (SCIS).

Xiaohui Chen, Jiaxing He, Xu Han, and Li-Ping Liu.
2023. Efficient and degree-guided graph genera-
tion via discrete diffusion modeling. arXiv preprint
arXiv:2305.04111.

Vidya A Chhabria, Kishor Kunal, Masoud Zabihi, and
Sachin S Sapatnekar. 2021. Began: Power grid
benchmark generation using a process-portable gan-
based methodology. In 2021 IEEE/ACM Interna-
tional Conference On Computer Aided Design (IC-
CAD), pages 1-8. IEEE.

Animesh B Chowdhury, Shailja Thakur, Hammond
Pearce, Ramesh Karri, and Siddharth Garg. 2023.
Towards the imagenets of ml4eda. In IEEE/ACM
International Conference on Computer Aided Design
(ICCAD). IEEE.

Fulvio Corno, Matteo Sonza Reorda, and Giovanni
Squillero. 2000. Rt-level itc’99 benchmarks and first
atpg results. Design & Test of computers (ITC).

Wenji Fang, Wenkai Li, Shang Liu, Yao Lu, Hongce
Zhang, and Zhiyao Xie. 2025a. Nettag: A mul-
timodal rtl-and-layout-aligned netlist foundation
model via text-attributed graph. arXiv preprint
arXiv:2504.09260.

Wenji Fang, Shang Liu, Hongce Zhang, and Zhiyao
Xie. 2024. Annotating slack directly on your verilog:
Fine-grained rtl timing evaluation for early optimiza-
tion. In Proceedings of 2024 ACM/IEEE Design
Automation Conference (DAC), pages 1-6. ACM.

Wenji Fang, Yao Lu, Shang Liu, Qijun Zhang, Ceyu Xu,
Lisa Wu Wills, Hongce Zhang, and Zhiyao Xie. 2023.
Masterrtl: A pre-synthesis ppa estimation framework
for any rtl design. In Proceedings of 2023 IEEE/ACM
International Conference on Computer-Aided Design
(ICCAD), pages 1-9. IEEE.

Wenji Fang, Jing Wang, Yao Lu, Shang Liu, Yuchao
Wu, Yuzhe Ma, and Zhiyao Xie. 2025b. A survey
of circuit foundation model: Foundation ai mod-
els for vlsi circuit design and eda. arXiv preprint
arXiv:2504.03711.

17358

Wenji Fang, Jing Wang, Yao Lu, Shang Liu, and
Zhiyao Xie. 2025c. Geneda: Unleashing genera-
tive reasoning on netlist via multimodal encoder-
decoder aligned foundation model. arXiv preprint
arXiv:2504.09485.

Chia-Tung Ho, Haoxing Ren, and Brucek Khailany.
2024. Verilogcoder: Autonomous verilog coding
agents with graph-based planning and abstract syn-
tax tree (ast)-based waveform tracing tool. arXiv
preprint arXiv:2408.08927.

Xun Jiang, Yuxiang Zhao, Yibo Lin, Runsheng Wang,
Ru Huang, et al. 2023. Circuitnet 2.0: An advanced
dataset for promoting machine learning innovations
in realistic chip design environment. In International
Conference on Learning Representations (ICLR).

Daeyeon Kim, Hyunjeong Kwon, Sung-Yun Lee, Se-
ungwon Kim, Mingyu Woo, and Seokhyeong Kang.
2021. Machine learning framework for early routabil-
ity prediction with artificial netlist generator. In 2021/
Design, Automation & Test in Europe Conference &
Exhibition (DATE), pages 1809-1814. IEEE.

Mengming Li, Wenji Fang, Qijun Zhang, and Zhiyao
Xie. 2025. Specllm: Exploring generation and re-
view of vlsi design specification with large language
model. In 2025 International Symposium of Elec-
tronics Design Automation (ISEDA), pages 749-755.
IEEE.

Mingjie Liu, Nathaniel Pinckney, Brucek Khailany, and
Haoxing Ren. 2023a. Verilogeval: Evaluating large
language models for verilog code generation. In 2023
IEEE/ACM International Conference on Computer
Aided Design (ICCAD), pages 1-8. IEEE.

Shang Liu, Wenji Fang, Yao Lu, Jing Wang, Qijun
Zhang, Hongce Zhang, and Zhiyao Xie. 2024a. Rtl-
coder: Fully open-source and efficient llm-assisted
rtl code generation technique. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and
Systems.

Shang Liu, Wenji Fang, Yao Lu, Qijun Zhang, and
Zhiyao Xie. 2025a. Towards big data in ai for eda
research: Generation of new pseudo-circuits at rtl
stage. In Asia and South Pacific Design Automation
Conference (ASPDAC).

Shang Liu, Wenji Fang, Yao Lu, Qijun Zhang, Hongce
Zhang, and Zhiyao Xie. 2023b. Rtlcoder: Outper-
forming gpt-3.5 in design rtl generation with our
open-source dataset and lightweight solution. arXiv
preprint arXiv:2312.08617.

Shang Liu, Yao Lu, Wenji Fang, Mengming Li, and
Zhiyao Xie. 2024b. Openllm-rtl: Open dataset and
benchmark for llm-aided design rtl generation. In
2024 IEEE/ACM International Conference on Com-
puter Aided Design (ICCAD). IEEE/ACM.

Shang Liu, Jing Wang, Wenji Fang, and Zhiyao Xie.
2025b. Syncircuit: Automated generation of new
synthetic rtl circuits can enable big data in circuits.
arXiv preprint arXiv:2509.00071.

Yao Lu, Shang Liu, Qijun Zhang, and Zhiyao Xie. 2024.
Rtllm: An open-source benchmark for design rtl gen-
eration with large language model. In 2024 29th Asia
and South Pacific Design Automation Conference

(ASP-DAC), pages 722-727. IEEE.

Jingyu Pan, Chen-Chia Chang, Zhiyao Xie, and Yi-
ran Chen. 2023. Edalearn: A comprehensive rtl-
to-signoff eda benchmark for democratized and re-
producible ml for eda research. arXiv preprint
arXiv:2312.01674.

Zehua Pei, Huiling Zhen, Mingxuan Yuan, Yu Huang,
and Bei Yu. 2024. Betterv: Controlled verilog genera-
tion with discriminative guidance. In Forty-first Inter-
national Conference on Machine Learning (ICML).

Martin Rapp, Hussam Amrouch, Yibo Lin, Bei Yu,
David Z Pan, Marilyn Wolf, and Jorg Henkel. 2021.
MLCAD: A survey of research in machine learn-
ing for CAD keynote paper. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and
Systems (TCAD).

Shailja Thakur, Baleegh Ahmad, Zhenxing Fan, Ham-
mond Pearce, Benjamin Tan, Ramesh Karri, Brendan
Dolan-Gavitt, and Siddharth Garg. 2023. Bench-
marking large language models for automated ver-
ilog rtl code generation. In 2023 Design, Automation
& Test in Europe Conference & Exhibition (DATE),
pages 1-6. IEEE.

Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bo-
han Wang, Volkan Cevher, and Pascal Frossard. 2022.
Digress: Discrete denoising diffusion for graph gen-
eration. arXiv preprint arXiv:2209.14734.

Zhiyao Xie, Yu-Hung Huang, et al. 2018. RouteNet:
Routability prediction for mixed-size designs using
convolutional neural network. In ICCAD.

Ceyu Xu, Chris Kjellgvist, and Lisa Wu Wills. 2022.
SNS’s not a synthesizer: a deep-learning-based syn-
thesis predictor. In Proceedings of the 49th Annual
International Symposium on Computer Architecture
(ISCA), pages 847-859.

Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton,
and Jure Leskovec. 2018. Graphrnn: Generating
realistic graphs with deep auto-regressive models. In
International conference on machine learning, pages
5708-5717. PMLR.

Muhan Zhang, Shali Jiang, Zhicheng Cui, Roman Gar-
nett, and Yixin Chen. 2019. D-vae: A variational
autoencoder for directed acyclic graphs. Advances in
neural information processing systems, 32.

Jialv Zou, Xinggang Wang, Jiahao Guo, Wenyu Liu,
Qian Zhang, and Chang Huang. 2024. Circuit as set
of points. Advances in Neural Information Process-
ing Systems, 36.

17359

Design Scale

Design Scale

Beizﬁrmczelrk Dfs;)gfns (#K Gates) (#K Lines)
{Min, Median, Max} | {Min, Median, Max}

(et 2005y | ® (2.6.35) (2.8,76)

(AmicdhcigideOZO) 8 (12, 19, 52} (3,12, 24}

C Method Complexity and Cost

We demonstrate that SynC-LLM exhibits a signifi-
cantly lower time and space complexity compared
to the two state-of-the-art baselines (You et al.,
2018; Zhang et al., 2019). We show the comparison
of time and space complexity below:

A Real Dataset Details

This dataset has adopted most of the widely
adopted designs recognized by the community,
considering the severe scarcity of high-quality
open-source IC designs. High-quality digital HDL
projects are exceptionally rare. Our 22 designs
constitute the most comprehensive open-source col-
lection, curated from three authoritative sources:
academic benchmarks (ITC’99), industrial-grade
repositories (OpenCores), and ecosystem platforms
(Chipyard’s RISC-V). In addition, this dataset
represents significant diversity within the digital
design space. It spans CPUs, DSPs, memory
controllers, and synthesis benchmarks, with gate
counts ranging from 2K-52K (ITC’99: 9-45K;
OpenCores: 2—-35K; Chipyard: 12-52K) and code
complexity from 2K—76K lines.

Although it is possible to search for new IC
designs from unverified public repositories (e.g.,
untested GitHub forks), these less validated de-
signs lack the community’s previous recognition
and may not accurately reflect Al model’s perfor-
mance.

B SynC-LLM Utility

The key to SynC-LLM’s versatility lies in its core
capability: generating synthetic designs directly
at the early hardware code stage. These synthetic
codes serve as the initial input for the standard dig-
ital IC design flows (EDA flow). Consequently,
the synthetic HDL generated by SynC-LLM can
be seamlessly processed through established EDA
toolchains for synthesis, placement, routing, and
analysis. This enables circuit representations at dif-
ferent design stages, such as gate-level netlists or
even physical layouts. As a result, critical features
and labels corresponding to each task at different
stages (e.g., post-synthesis timing information and
post-placement congestion maps) can be extracted
using standard tools. These features and labels can
support Al models for any relevant task, includ-
ing the prediction of IR drop, congestion, DRC
violation, crosstalk, etc.

Generative Method

Space Complexity

Time Complexity

GraphRNN Graph O(N) O(N?)
DVAE Graph O(N) O(N?)
SynC-LLM (ours) Graph+Text O(R?) O(R?T)

Table 4: Comparison of time and space complexity.

Specifically, both GraphRNN and DVAE are au-
toregressive models that generate graphs (i.e., cir-
cuits). Given that a circuit consists of N nodes
and that these models must predict the edge con-
nectivity between every pair of nodes, their time
complexity is O(N?), and their space complexity
is O(NN) for storing node embeddings.

In contrast, our SynC-LLM employs an edge-
based generation strategy during the initial
skeleton-generation phase, achieving a worst-case
time complexity of O(R?T) and a space complex-
ity of O(R?), where R represents the number of
registers in the skeleton and 7" denotes the number
of diffusion steps (we set T" as 64 in experiment).
Notably, at the word level, registers usually ac-
count for around 1% to 10% of the circuit (i.e.,
R/N ~ 0.01to0.1). As a result, on our 4090
GPU platform, SynC-LLM is capable of gener-
ating a skeleton in mere seconds—using less than
10% of the time required by GraphRNN and DVAE.
Moreover, during the text generation phase, the in-
dependent nature of each cone allows us to invoke
the LLM API in parallel, with each cone being gen-
erated within tens of seconds. Overall, these factors
underscore the superior scalability of SynC-LLM
in generating large-scale circuits.

As for the Stage 2 cost in practice, we detail
that, for the approximately 3,000 cone code seg-
ments, the entire function annotation process was
completed in less than 12 hours with a computa-
tional cost of less than $10 USD using gpt-4o-mini.
For the cone code generation phase in Stage 3, ap-
proximately 5000 cone codes for the 25 synthetic
circuit designs were generated using 5 parallel gpt-
4o0-mini api around 8 hours, and cost around 20
$USD.

17360

D Baselines and SynC-LLM Experiment
Setting

For the baselines, as these node-ordering-based
autoregressive approaches for GraphRNN and
DVAE (You et al., 2018; Zhang et al., 2019) are
not directly applicable to generating directed cyclic
circuits, we preprocessed the training circuits by
breaking cycles and generating the circuits in a
topological node order.

For our SynC-LLM, we list the settings below:

e In stage 1, our approach is primarily based
on EDGE (Chen et al., 2023), which is aug-
mented with an additional edge direction and
attribute predictor.

* In stage 2, for the text modality, we utilize
GPT-40-mini to perform the functional anal-
ysis of cone codes. The extracted function
descriptions are then mapped into the text
embedding space using the text-embedding-
ada-002 Openai API. For each of the approx-
imately 10K cone codes, we select the top
20 most similar data samples—determined
by text embedding cosine similarity dis-
tances—as the positive samples, while 200
samples are randomly selected to serve as
negatives. Concurrently, we leverage multi-
ple encoder architectures—including GCN,
GAT, and GraphSAGE—to encode the graph
modality. These encoders are trained using a
triplet loss formulation. We finally adopted
the GraphSAGE to build the retriever. Please
see some ablation studies in Appendix E.

* In stage 3, we employ GPT-40-mini to gener-
ate the detailed cone code for each register.

E Function Retriever Performance

In this section, we evaluate the retrieval perfor-
mance based on the average distance between the
text embeddings of a query and its retrieved en-
tries. Specifically, for each query ¢, the top-K
most similar samples {¢/'} in graph embeddings
space are selected, and the mean distance between
g and {¢]'} in text space is computed.

The Nearest Labels baseline represents the opti-
mal retrieval where, for each data point, the top-K
candidates are selected directly according to text
embedding similarity, yielding the lowest and op-
timal average distance. In contrast, the Random

Top-K average distance |

K=1 R=10 K=20 CCA~!
Random Retrival 0.739 0.739 0.739
Nearest Labels (optimal) 0.1673 0.175 0.179 -
GCN 0.181 0.194 0201 0.975
GAT 0.193 0202 0.208 0.972
GraphSage 0182 0195 0203 0.976
w/o logic level features
GraphSage 0.177 0187 0.189 0.979

w/ logic level features

Table 5: The retriever performance analysis. A lower
Top-K average distance (text embedding distance) and
|CC' A — 1] represent better retrieve quality. The results
indicate that our approach effectively aligns the graph
(skeleton) features with the text details (flesh).

Retrieval baseline is obtained by randomly sam-
pling 1000 candidates, serving as a reference.

Multiple graph-based models, including GCN,
GAT, and GraphSAGE, are examined. The logic
level features are used to initialize each node’s
representation®, thereby helping the encoder to be
more aware of the register positional information in
the skeleton structure. For the GraphSAGE model,
we further remove logic-level features for ablation
study.

Top-K Results: Table 5 presents the perfor-
mance at different values of K (ie., K = 1,
K =10, and K = 20). The ground truth retrieval
using Nearest Labels achieves average distances of
0.1673, 0.175, and 0.179 for K = 1, K = 10, and
K = 20, respectively, which represent the optimal
retrieval outcome. The Random Retrieve baseline
yields a consistent average distance of 0.739 across
different K values. Among the evaluated models,
GraphSAGE with logic level features achieves the
best performance with distances of 0.177, 0.187,
and 0.189, whereas excluding these logic features
leads to inferior performance (0.1823, 0.195, and
0.2033, respectively).

The experimental results indicate that our ap-
proach effectively aligns the graph (skeleton) fea-
tures with the text details. The excellent perfor-
mance of GraphSAGE, especially when enhanced
with logic-level features, demonstrates that incor-
porating node positional information (via shortest
path distances) improves the model’s ability to re-
trieve semantically similar samples. Overall, the
gap between the graph-based retrieval performance
and the optimal is considerably narrowed, validat-
ing the efficacy of our proposed framework.

®The logic features are defined as the shortest path dis-
tances from the source node to the current node.

17361

CCA Evaluation: We also evaluate the relation-
ship between the graph embedding interface and
the text embedding using Canonical Correlation
Analysis (CCA). In CCA, given two sets of ran-
dom variables, X € RP and Y € RY, the aim is
to determine the linear projections a € RP and
b € R? that maximize the correlation between the
projected variables:

-
Yxyb
p = max a =Xy Q)

a,b \/aTZXXa \/bTEyyb7

where Y x x and Yyy denote the covariance ma-
trices of X and Y, respectively, and X xy is the
cross-covariance matrix between X and Y. The
constraints a' X yya = 1land b'Zyyb = 1 are
imposed to normalize the projections.

The resulting CCA of 0.98 shown in Table 5
demonstrates that our learned embeddings are
highly correlated across modalities.

F Detailed Prompt Examples

In this paper, we employ the LLM in two areas:

@ Cone Function Analysis: We utilize LLMs to
analyze functions associated with cone structures,
which allows us to generate comprehensive index
datasets capturing their key properties.

Note that we only use the following prompt
format. It allows for a focused examination of spe-
cific functionalities without delving into trivial ex-
planations, catering to an audience with advanced
knowledge in HDL.

For the first example Cone code 1, it implements
the basic logic selection and assignment functions,
commonly found in the input stage of large cir-
cuits. These functionalities allow for the selection
of specific input values and the execution of sim-
ple AND/OR operations, which are essential for
processing various input conditions effectively.

For another example Cone code 2, it implements
complex logic for managing control signals and
data flow related to memory operations in a proces-
sor, focusing on program counter (PC) handling for
branches, jumps, and instructions. It computes the
next program counter value by evaluating various
control signals, ensuring the correct PC is deter-
mined while checking for alignment and exception
states. Additionally, it calculates the branch target
based on the current PC and the type of instruc-
tion, accommodating compressed instructions and
adjusting for immediate values. The code also in-
cludes error handling to check for misalignment,

| am a seasoned Verilog code expert, and you are
my assistant.

I will provide you with a snippet of Verilog code.
The code is{...}

Please analyze it and describe the specific
functional logic itimplements.

You may infer additional details based on your
expert knowledge if necessary.

Since | am also an expert, please avoid explaining
trivial or self-evident details.

Try to be concise. Qutput your explanation
between the markers:

###funcH##

... (your functional description)...

###endfunc###
\ J

Cone Code 1

e 05749;

sign 05749 = mem reg valid | mem reg replay;
mem pc valid;

assign mem pc_valid = 05749 |

mem reg xcpt interrupt;

wire [39:0] 00094;

assign 00094 = mem pc valid ? mem reg pc :
_coreMonitorBundle pc_T;

reg [39:0] 7coreMonitorBundleipciT;
always @ (posedge clock)
_coreMonitorBundle pc T <= 00094;

Response

###funcH##

The provided Verilog code snippet implements a logic for
determining the validity of a program counter (PC) based
on several signals.

Signal Definitions:_05749_ is a wire that combines
mem_reg_valid and mem_reg_replay using a logical OR
operation. mem_pc_valid is another wire that is set to
true if either _05749_ is true or if an interrupt exception
(mem_reg_xcpt_interrupt) occurs.

PC Selection: 00094 _is a 40-bit wire that selects
between mem_reg_pc and _coreMonitorBundle_pc_T
based on the value of mem_pc_valid. If mem_pc_valid is
true, _00094_ takes the value of mem_reg_pc; otherwise,
it takes the value of _coreMonitorBundle_pc_T.

Register Update:_coreMonitorBundle_pc_T is a register
that is updated on the rising edge of the clock. It takes
the value of _00094_, thereby synchronizing the selected
PC value with the clock.

In summary, this code evaluates and selects a valid
program counter based on several input conditions,
updating a register with this value on each clock cycle.
#it#rendfuncH###

¢ J

ensuring execution integrity. It determines the data
to be written back to memory, contingent on valid
instruction conditions, and integrates with control
and status registers (CSRs) to capture exception-
related values. This logic typically resides in the
middle portion of a large circuit, positioned be-
tween the completion of input data processing and
the generation of output data, serving as a criti-
cal decision-making hub that ensures the overall
functionality and efficiency of the digital system.

® Cone Generation: By examining input-output

17362

Cone Code 2

vire _00209 ;
ign 00209 = take pc mem T & mem ctrl fp;
wire 00274 ;
assign _00274_ = $signed(_mem npc_a T[63:39]) =
$signed (25'h1ffffff);
wire 00273 ;
assign _00273 = $signed(_mem npc_a T[63:39])==
$signed (25'h0000000) ;
assign _00158_ = _take pc mem T & 05874 ;
wire [63:0] mem int wdata;
assign mem int wdata = 00158 2 {
mem br target[39], mem br target[39],
mem _br_ target[39], mem br target[39],
mem br target[39], mem br target[39],
mem br target[39], mem br target[39],
mem br target[39], mem br target[39],
mem br target[39], mem br target[39],
mem _br target[39], mem br target[39],
mem br target[39], mem br target[39],
mem br target[39], mem br target[39],
mem _br_ target[39], mem br target[39],
mem br target[39], mem br target[39],
mem br target[39], mem br target[39],
mem br target } : mem npc a T;
wire 00210 ;
ign _00210_ = _00209_ & mem ctrl wxd;
wire 05749 ;
assign _05749_ = mem reg valid|mem reg_replay;
wire mem pc valid;
assign mem pc valid = 05749 |
mem reg xcpt interrupt;
wire [63:0] _05824 ;
assign 05824 = 00210_ ? io_fpu toint data :
mem_int wdata;
wire [63:0] _00098_ ;
assign 00098 = mem pc valid ? 05824 :
_csr_io_tval a T;
reg [63:0] _csr_io_tval a T;
always @ (posedge clock)
k7csriioitvalia7T <= _00098_;)

###funcH##

The provided Verilog code implements logic for managing
control signals and data flow associated with memory
operations in a processor, specifically related to program
counter (PC) handling for branches, jumps, and
instructions.

PC Management: The code computes mem_npc, which is
the next program counter value based on various control
signals (mem_ctrl_jal, mem_ctrl_jalr, etc.).

Branch Target Calculation: There are mechanisms to
derive mem_br_target, which is calculated based on the
current PC and the type of branch

Error Handling: Conditions such as mem_npc_misaligned
indicate if the next PC is misaligned, which is a critical
check for ensuring program execution integrity.

Data Writeback: The code determines mem_int_wdata,
which is the data written back to memory based on the
calculated branch target and the validity of the memory
operation.

CSR Handling: There is a register _csr_io_tval_a_T that
captures values related to exceptions or invalid operations
indicating integration

Overall, this snippet encapsulates complex decision-
making logic for next instruction address computation,
ensuring proper handling of control flow in a pipelined
architecture.

k###e ndfunc###

(I/0) relationships and existing functions, LLMs
facilitate the creation of new cone codes, enhancing
the complexity and scale of the hardware code.

In Figure 4, we illustrate one example of cone
code generation, showcasing how the LLM lever-
ages specified functional requirements and con-

straints to generate a more structured output. This
example highlights the iterative process of refining
the generated code by analyzing the dependencies
and relationships within the design, ultimately lead-
ing to a more sophisticated representation of the in-
tended hardware functionality. The layer-by-layer
generation approach not only improves the logical
depth of the code but also ensures that timing char-
acteristics are accurately captured, thereby aligning
the generated output more closely with the needs
of complex circuit designs.

G Downstream Al-based IC tasks

We evaluate our synthetic RTL circuits on three
different RTL-stage design quality prediction tasks:
design-level TNS and area prediction, and register-
level slack prediction. We use three represen-
tative ML models (Fang et al., 2023, 2024; Xu
et al., 2022), covering both word-level and bit-
level RTL representations. All models are imple-
mented strictly following their respective reference
papers (Fang et al., 2023, 2024; Xu et al., 2022):

e Model 1: SNS (Xu et al., 2022), is a
transformer-based model designed for word-
level RTL analysis. It takes tokenized RTL
circuit paths as input sequences and uses
a two-layer transformer with two attention
heads (around 1.4M parameters in total). The
model produces path-level predictions, which
are then aggregated using an MLP to esti-
mate design-level TNS and area. The model
is trained using a regression objective with
MAPE loss, following the original implemen-
tation in SNS.

* Model 2: MasterRTL (Fang et al., 2023), is
a tree-based regression model that operates
on bit-level RTL designs represented as Sim-
ple Operator Graphs (SOGs), which capture
low-level Boolean operations. (1) For TNS
prediction, it uses a two-stage pipeline. The
first stage predicts path-level delays using a
Random Forest model with 80 trees and a max-
imum depth of 20, utilizing features such as
gate type, fanout count, and accumulated de-
lay. The second stage refines these predictions
using a design-level XGBoost regressor (45
trees, max depth 8), incorporating both SOG
graph features and the outputs from stage one.
(2) For area prediction, an XGBoost model

17363

(45 trees, max depth 12) is trained using fea-
tures including SOG operator count, opera-
tor types, and cell area information extracted
from liberty files. Both tasks are trained with
a standard squared error regression loss.

Model 3: RTL-Timer (Fang et al., 2024), fo-
cuses on fine-grained timing slack estimation
at the register level. For each register, it con-
structs its input cone and extracts hierarchical
features from the design, cone, and path levels.
To improve timing diversity, two representa-
tive paths, one the slowest and one randomly
selected, are sampled per cone. The model
uses an XGBoost regressor with 100 trees and
a maximum depth of 45 to predict the slack
delay for each register. Training is performed
using regression with squared error loss.

H Synthetic Circuit Visualization

We present the visualization results of our gener-
ated circuits at different implementation stages. We
first synthesize the generated circuits using Synop-
sys Design Compiler (DC) to produce gate-level
netlists. Due to the large scale of the circuits, Fig-
ures 7 and 8 only show representative portions of
the netlists. In these diagrams, arrows indicate
the data flow directions, while rectangular blocks
represent the standard cells in the netlist.

We further conducted Place & Route (P&R)
for more rigorous comparison using the Innovus
tool. Figures 9 and 10 display the layout diagrams
of two synthesized circuits. To facilitate visual
comparison and demonstrate that our synthetic cir-
cuits closely resemble real-world designs, we also
provide the layout diagrams of realistic circuits
(aes_core, Tinyrocket) as references in Figures 11
and 12.

From the figures, our generated circuits show
minimal visual differences compared to the real-
istic reference circuits. Both EDA flows (DC and
P&R) require standard cell libraries for implemen-
tation, for which we have adopted the open-source
Nangate45 library.

add_1_root_add_0_roor_add_3975_U6
XO®2 XT

AND2_XT

add_0_roor_add_0_root_add_3973_U1_1
FA XT

‘‘‘‘
o g
+

N —

Figure 8: Partial gate-level netlist (Example 2).

Figure 9: Layout view of our synthesized Example 1
after P&R.

17364

Figure 10: Layout view of our synthesized Example 2
after P&R.

Figure 11: Layout of a realistic circuit (aes_core) for
visual comparison with our synthetic designs.

Figure 12: Layout of a realistic circuit (Tinyrocket) for
visual comparison with our synthetic designs.

17365

