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Abstract

While recent efforts have begun integrating
large language models (LLMs) into English
education, they often rely on traditional ap-
proaches to learning tasks without fully em-
bracing educational methodologies, thus lack-
ing adaptability to language learning. To ad-
dress this gap, we argue that LLMs have the
potential to serve as effective tutors in En-
glish Education. Specifically, LLMs can play
three critical roles: (1) as data enhancers, im-
proving the creation of learning materials or
serving as student simulations; (2) as task pre-
dictors, serving as learner assessment or op-
timizing learning pathway; and (3) as agents,
enabling personalized and inclusive education.
We encourage interdisciplinary research to ex-
plore these roles, fostering innovation while
addressing challenges and risks, ultimately ad-
vancing English Education through the thought-
ful integration of LLMs.

1 Introduction

English Education has long been a cornerstone of
global education and a critical component of K-12
curricula, equipping students with the linguistic
and cultural competencies necessary for an inter-
connected world (Alhusaiyan, 2025; Katinskaia,
2025). However, traditional English teaching meth-
ods often fall short in addressing the diverse needs
of learners (Hou, 2020). Challenges such as limited
personalization, scalability constraints, and the lack
of real-time feedback are particularly pronounced
in large classroom settings (Ehrenberg et al., 2001).
Addressing these shortcomings requires innovative
approaches that not only enhance the quality of
instruction but also adapt to the unique learning
trajectories of students (Eaton, 2010).

Recently, LLMs have opened new possibilities
for transforming English Education (Caines et al.,
2023). LLMs exhibit remarkable natural language
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Figure 1: Involved disciplines of LLM for English Edu.

understanding and generation capabilities, mak-
ing them promising candidates for roles tradition-
ally filled by human tutors. Leveraging LLMs as
Al tutors can overcome the inherent limitations
of conventional teaching methods, offering scal-
able, interactive, and personalized learning experi-
ences (Chen et al., 2024; Schmucker et al., 2024).
Therefore, this position paper argues that LLMs
can be effective tutors in English education, com-
plementing human expertise and addressing key
limitations of traditional methods.

As shown in Figure 1, English Education in-
tersects with multiple disciplines, each of which
underscores the potential of LLMs to revolutionize
this domain. From the perspective of (1) computer
science, advancements in machine learning and
NLP have enabled LLMs to process and generate
human-like language at an unprecedented scale;
(2) linguistics (Radford et al., 2009) contributes a
deeper understanding of grammar, phonetics, and
semantics, allowing LLMs to generate accurate
and understandable language outputs; (3) educa-
tion provides the foundation for designing effective
pedagogical strategies, ensuring that LLMs can de-
liver personalized, engaging, and developmentally
appropriate learning experiences; and finally, (4)
psycholinguistics (Steinberg and Sciarini, 2013)
bridges the gap between language acquisition and
cognitive processes, enabling LLMs to optimize
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Figure 2: Overview of three roles of LLMs in English education. An overview of related literature is provided in

Appendix A.

learner interactions by adapting to individual needs
and fostering meaningful engagement. Together,
these disciplines position LLMs as uniquely capa-
ble of addressing the multifaceted challenges of
English education.

Moreover, English Education encompasses four
core skills: listening, speaking, reading, and writ-
ing, each of which can be significantly enhanced
by LLMs. For listening, LLMs can generate di-
verse audio materials (Ghosal et al., 2023) and fa-
cilitate interactive voice-based exercises, helping
learners improve their ability to discern pronun-
ciation, intonation, and contextual meaning. In
speaking, LLMs can simulate realistic conversa-
tions (Siyan et al., 2024), provide pronunciation
feedback, and scaffold learners’ oral communica-
tion skills through iterative practice. For reading,
LLMs can curate leveled texts, generate compre-
hension questions (Samuel et al., 2024), and en-
gage learners in discussions that deepen their un-
derstanding of written content. Finally, in writing,
LLMs can offer real-time grammar, syntax, and
style feedback while assisting with idea generation
and iterative revisions (Stahl et al., 2024a). By ad-
dressing these core skills holistically, LLMs have
the potential to deliver a comprehensive and adap-
tive learning experience.

Despite these opportunities, the deployment of

LLMs in English Education must be approached
carefully, ensuring that their integration comple-
ments rather than replaces human tutors (Jeon and
Lee, 2023). As illustrated in Figure 2, this paper
explores three critical roles of LLMs in this con-
text: their function as data enhancers (Section 4)
to optimize learning materials, their capacity as
task predictors (Section 5) to tailor educational
solutions, and their potential as agents (Section
6) that deliver interactive and adaptive language
instruction. By examining these roles, we aim to
demonstrate how LLMs can address the limitations
of traditional English teaching methods while ad-
vancing our understanding of intelligent tutoring
systems. Additionally, we discuss potential chal-
lenges (Section 7) and future directions (Appendix
B) for integrating LLMs into English Education,
offering a technical guideline for researchers and
educators to harness their transformative potential.
We also describe the paradigm shift of leveraging
Al for English Education, starting from the last
century, as one of our contributions in Section 3.

2 Background

2.1 English Education

Traditional English Education methods often em-
phasize grammar rules, vocabulary memorization,
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and repetitive practice, supplemented by limited
opportunities for real-world application (Watzke,
2003). Such approaches are often constrained by
the availability of skilled teachers, the diversity
of learners’ needs, and the lack of personalized
feedback (Williams et al., 2004). Recently, many
technologies for English Education have been pro-
posed (Alhusaiyan, 2024), focusing on solving spe-
cific tasks instead of describing the whole picture of
English tutoring. While intelligent language tutor-
ing systems have the potential to create adaptive en-
vironments, attention to this field is relatively less
compared to other subjects like science (Shao et al.,
2025) and mathematics (Ahn et al., 2024). One key
reason lies in the inherent complexity of language
as an ill-defined domain (Schmidt and Strasser,
2022), posing a great challenge in establishing a
valid automatic analysis of learner languages due to
the vast variability and unpredictability of human
language.

2.2 Large Language Models for Education

The potential of LLMs in education (Alhafni et al.,
2024), particularly in English Education (Gao et al.,
2024; Karatas et al., 2024; Cherednichenko et al.,
2024), is immense. Benefiting from large-scale pre-
training on extensive corpora, LLMs have demon-
strated emergent abilities including (1) in-context
learning (Dong et al., 2022), which allows the
model to adapt to new tasks and provide contextu-
ally relevant responses based on a few examples
provided during the interaction; (2) instruction
following (Zeng et al., 2024), which enables the
model to process and execute complex user instruc-
tions with high accuracy; and (3) reasoning and
planning (Huang et al., 2024b), which allows the
model to generate coherent, structured, and context-
aware outputs, even for tasks that require multi-step
thinking. However, these fundamental capabilities,
while impressive, are insufficient to fully meet the
unique demands of English Education. Teaching
English requires more than generating grammati-
cally correct sentences or providing accurate trans-
lations; it demands a nuanced understanding of
pedagogy, learner psychology, and cultural con-
text. Maurya et al. (2024) propose an evaluation
taxonomy that identifies eight critical dimensions
for assessing Al tutors. These dimensions can be
broadly categorized into two groups. (1) Problem-
solving abilities assess the technical capabilities of
LLMs to perform tasks relevant to English Educa-
tion. (2) Pedagogical alignment abilities evaluate

how well the LLM aligns with effective teaching
and learning principles. Pedagogical alignment in-
cludes the model’s ability to adapt to the learner’s
proficiency level, provide scaffolded feedback, fos-
ter engagement, and maintain motivation. While
LLMs can give direct answers, their ability to repli-
cate these nuanced teaching strategies remains a
challenge (Wang et al., 2024a).

3 Paradigm Shift

The development of Al models for English Educa-
tion can be broadly categorized into four successive
generations as shown in Figure 3: (1) rule-based
models, (2) statistical models, (3) neural models,
and (4) large language models.

Stage 1: Rule-based Models (1960s—1990s).
Early solutions relied on handcrafted linguistic
rules to process language in tightly constrained sce-
narios (Grosan et al., 2011; C Angelides and Gar-
cia, 1993). Classical platforms like PLATO (Hart,
1981) and Systran (Toma, 1977) operated effec-
tively for highly structured tasks (e.g., gram-
mar drills) but struggled with complex, context-
dependent interactions.

Stage 2: Statistical Models (1990s-2010s).
With the increased availability of digitized cor-
pora, methods such as the early version of Google
Translate (Och, 2006) and Dragon NaturallySpeak-
ing (Blair, 1997) pioneered statistical pattern min-
ing. These approaches leveraged large datasets
to infer linguistic rules and conduct specific tasks
probabilistically, improving scalability yet still
lacking deeper semantic understanding.

Stage 3: Neural Models (2010s-2020s). The ad-
vent of deep learning architectures (e.g., RNNs (Yu
et al., 2019) and Transformers (Vaswani, 2017))
enabled more robust context modeling, sparking
transformative applications like Grammarly (Fitria,
2021) and Duolingo (Vesselinov and Grego, 2012).
These systems offered enhanced personalization
and feedback, significantly augmenting learners’
writing and reading comprehension.

Stage 4: Large Language Models (2020s—
Present). Nowadays, various LLMs (e.g., Chat-
GPT (Achiam et al., 2023)) combine massive pre-
training with instruction tuning, achieving impres-
sive results in multi-turn dialogue, individualized
scaffolding, and multimodal integration. Tools
such as Khanmigo (Anand, 2023) demonstrate
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LLMs’ potential for real-time conversational prac-
tice, dynamic content creation, and inclusive edu-
cational support at scale.

e D

Our position. We foresee next-generation
LLMs with deeper alignment to pedagogical
principles and stronger guardrails to mitigate
misinformation and bias. Future models may in-
tegrate multimodal data (e.g., text, image, video,
speech) to adapt to diverse learner profiles in real
time. These improvements will reinforce the po-
sition that LLLMs can evolve into more effective
tutors for English Education.

4 LLMs as Data Enhancers

Education is a high-stake area where any halluci-
nation could cause devastating harm to humans’
cognition activities (Ho et al., 2024). One of the
hallucination causes is from data (Huang et al.,
2023). Therefore, high-quality and diverse data
resources (Long et al., 2024) are critical to ensur-
ing the reliability of incorporating LL.Ms into En-
glish Education. The 1) creation, 2) reformation,
and 3) annotation of educational materials are cru-
cial to delivering effective and engaging teaching.
Traditional resource development methods often
lack the scalability, adaptability, and personaliza-
tion necessary to meet the diverse needs of learn-
ers (Feng et al., 2021; Shorten et al., 2021). In con-
trast, LLMs emerge as transformative tools capable
of enhancing these processes (Wang et al., 2024c;
Liu et al., 2024c). This section explores how LLMs
serve as data enhancers in English Education.

4.1 Data Creation

Creating pedagogically sound and learner-specific
data is a cornerstone of personalized learning. How-
ever, manually creating such resources is time-
consuming and often fails to address the wide range
of learner needs (Cochran et al., 2022). LLMs can
revolutionize this process by generating tailored
and diverse educational content or responses on
demand (Zha et al., 2023; Cochran et al., 2023).

Educational Materials Generation. A primary
use of LLMs in data creation is the generation of
educational questions aligned with specific learn-
ing objectives. Due to their superior contextual
understanding, classic rule-based approaches have
largely been eclipsed by neural network-based tech-
niques (Kurdi et al., 2020; Rathod et al., 2022;

Mulla and Gharpure, 2023). LLMs can produce
answer-aware (whose target answer is known) or
answer-agnostic (whose answer is open) (Zhang
et al., 2021), resulting in more nuanced exercises
and assessments (Xiao et al., 2023).

Student Simulation. Simulating the learner’s
perspective is crucial for designing adaptive in-
structional materials. Traditional surveys and stan-
dardized tests often fail to capture the complexity
of dynamic learner behaviors (Kiser and Alexan-
dron, 2024). In contrast, LLM-based approaches
enable high-fidelity, context-aware student simula-
tions (Liu et al., 2024d; Yue et al., 2024), gener-
ating synthetic learners who exhibit realistic mas-
tery levels and evolving behaviors. For instance,
Generative Students (Lu and Wang, 2024) create
simulated learners with various competency levels,
while EduAgent (Xu et al., 2024) integrates cogni-
tive priors to model complex learning trajectories
and behaviors better.

Discussion. While LLMs excel at generating ed-
ucational content, current approaches mainly focus
on question creation, leaving many areas of English
Education underexplored. Essential tasks like gen-
erating culturally rich reading materials, context-
dependent writing prompts, or dynamic compre-
hension exercises still lack diversity and depth. Ad-
ditionally, the student simulations created by LLMs
often fail to reflect long-term learning trajectories
or the intricacies of individual learning progress.

4.2 Data Reformation

In addition to creating new content, LLMs can
adapt existing materials to better align with current
needs. This process, commonly referred to as data
reformation, involves (1) changing data types or
modalities, (2) paraphrasing materials to match
learner proficiency, and (3) enriching raw data with
auxiliary signals or contextual content.

Teaching Material Transformation. Transform-
ing existing materials into different forms can
yield more comprehensive and immersive learn-
ing experiences. For example, Book2Dial(Wang
et al., 2024b) generates teacher-student dialogues
grounded in textbooks, keeping the content both
relevant and informative. Their approach includes
multi-turn question generation and answering(Kim
et al., 2022), dialogue inpainting (Dai et al., 2022),
and role-playing. Likewise, Slide2Lecture (Zhang-
Li et al., 2024) automatically converts lecture slides
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Figure 3: Roadmap of English Education.

into structured teaching agendas, enabling interac-
tive follow-up and deeper learner engagement.

Simplification and Paraphrasing. Another vital
application is simplifying or paraphrasing complex
texts to specified readability levels (Huang et al.,
2024a) without losing key concepts (Al-Thanyyan
and Azmi, 2021). This is particularly beneficial in
English Education settings, where language begin-
ners often face advanced vocabulary and complex
structures (Day et al., 2025). Recent advancements
in controllable generation (Zhang et al., 2023) lever-
age model fine-tuning on curated datasets (Zeng
et al., 2023) or decoding-time interventions (Liang
et al., 2024), thereby allowing educators to specify
text complexity, style, or tone.

Cultural Context Adaptation. Beyond linguis-
tic correctness, cultural nuance is another crucial
factor in English Education (Byram, 1989, 2008).
LLMs can facilitate this process by recontextualiz-
ing existing materials to reflect the cultural and so-
cial norms of different areas (Liu et al., 2024a; Adi-
lazuarda et al., 2024; Kharchenko et al., 2024). For
instance, a short story originally set in an English-
speaking environment may be adapted for Japanese
students by adjusting the characters’ names, id-
iomatic expressions, or social customs, while pre-
serving core instructional goals. This cultural adap-
tation not only enhances learner engagement but
also strengthens cross-cultural competencies.

Discussion. While LLM-based data reformation
can significantly enhance English Education, sev-
eral gaps warrant attention. Most current studies
prioritize textual forms or single-modal approaches,
which may overlook valuable multimodal resources

such as interactive video and audio-based con-
tent (Ghosal et al., 2023). Furthermore, cultural
adaptation, although promising, remains underex-
plored in practical classroom scenarios, particularly
for underrepresented persons and culturally sensi-
tive topics. AlKhamissi et al. (2024) demonstrate
how cultural misalignment can increase bias. How-
ever, robust empirical evaluations are still limited
across diverse learners and linguistic backgrounds.

4.3 Data Annotation

While Data Creation focuses on generating learner-
specific data, it often prioritizes diversity and adapt-
ability over precision. The approach is particularly
useful for tasks with large label spaces (Ding et al.,
2024). In contrast, Data Annotation emphasizes
producing high-quality, meticulously labeled data
that is essential for tasks requiring accuracy and
consistency. Unlike data creation, annotated data
often undergoes rigorous validation to ensure its
accuracy and relevancy (Artemova et al., 2024).

Annotation Generation. LLMs can be central to
generating a variety of annotations, including cat-
egorical labels, rationales, pedagogical feedback,
and linguistic features such as discourse relations.
Recent prompt engineering and fine-tuning tech-
niques have further expanded LLMs’ annotation
capabilities. For instance, Ye et al. (2024) leverage
GPT-4 to annotate structured explanations for Chi-
nese grammatical error correction, while Samuel
et al. (2024) examine GPT-4 as a surrogate for
human annotators in low-resource reading compre-
hension tasks. Likewise, Siyan et al. (2024) de-
ploy GPT-4-Turbo for audio transcript annotations.
However, inconsistencies across LLMs (T6rnberg,
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2024) remain a serious challenge, posing risks to
educational reliability.

Annotation Assessment. Although LLM-based
annotation is efficient, it also raises critical issues
of bias, calibration, and validity, particularly in
low-resource language contexts (Bhat and Varma,
2023; Jadhav et al., 2024). Automated or semi-
automated evaluation strategies have emerged to ad-
dress these quality concerns. For example, LL.Ms-
as-Judges (Li et al., 2024a,b; Gu et al., 2024) re-
duce human overhead by automating evaluation,
an approach increasingly explored in education-
focused applications (Chiang et al., 2024; Zhou
et al., 2024). However, purely automated frame-
works can still propagate errors or bias.

Discussion. Although LLMs provide efficient
data annotation, the inconsistency across different
models remains a critical concern, affecting the
quality and reliability of annotated educational ma-
terials. These discrepancies hinder the creation of
universally reliable educational content, especially
in diverse linguistic and cultural contexts. Addition-
ally, automated annotations often lack the nuance
needed for pedagogical applications, making it es-
sential to involve human oversight in critical cases
to mitigate errors or biases.

7~

Our position. We acknowledge the current limi-|
tations in LLM-based data creation, reformation,
and annotation for English Education. However,
we believe that with continued interdisciplinary
collaboration, these challenges can be addressed.
Future advancements should focus on enhancing
the accuracy and diversity of generated content,
improving multi-modal and culturally sensitive
learning materials, and integrating more robust
systems for human-LLM collaboration (Li et al.,
2023; Wang et al., 2024e) in data annotation.
This will ensure that LLMs can fully realize their
potential as effective tutors in English Education.

\

5 LLMs as Task Predictors

Task-Based Language Learning (TBLL) (Nunan,
1989; Willis, 2021) as a methodological approach
is one of the effective English Education methods.
LLMs have demonstrated remarkable capabilities
in understanding and generating human language,
making them well-suited for addressing numerous
tasks in English Education. These tasks can be
broadly categorized into three types based on their

nature and the role of LLMs: 1) Discriminative, 2)
Generative, and 3) Mixed of the above two roles.

5.1 Discriminative Task Predictors

Discriminative tasks in English Education primar-
ily involve classifying learner inputs or grading
their future performance. Below are some applica-
tions that are still calling for improvements:

Automated Assessment. The task aims to au-
tomatically grade students’ assignments, includ-
ing essay scoring (SeBler et al., 2024; Li and Liu,
2024; Syamkumar et al., 2024), short answer grad-
ing (Schneider et al., 2023; Henkel et al., 2024),
and spoken language evaluation (Gao et al., 2023;
Fu et al., 2024). LLMs can process learners’ sub-
missions to judge grammar, lexical diversity, coher-
ence, and even spoken fluency, providing instant
feedback. This scalability is particularly appealing
for large classes, where human evaluators are often
overwhelmed and unable to provide timely, person-
alized critique (Mizumoto and Eguchi, 2023).

Knowledge Tracing. Given sequences of learn-
ing interactions in online learning systems, Knowl-
edge Tracing identifies and tracks students’ evolv-
ing mastery of target skills (Shen et al., 2024b; Xu
et al., 2023). LLM-based methods of Knowledge
Tracing have been explored in cold-start scenar-
ios (Zhan et al., 2024; Jung et al., 2024), offer-
ing strong generalization by inferring latent learner
states from limited data. These approaches can
support adaptive learning pathways, giving person-
alized recommendations based on predicted perfor-
mance and knowledge gaps.

Discussion. Despite their promise in automating
and personalizing these discriminative tasks, LLMs
still grapple with notable limitations that hinder
their utility as robust tutoring tools. First, misalign-
ment of assessment with expert instructors poses
risks: machine-generated scores may deviate from
established rubrics or neglect qualitative nuances,
leading to potential discrepancies in grading qual-
ity (Kundu and Barbosa, 2024). Second, the lack of
empathy compounds this issue, as assessments de-
void of human judgment risk discouraging learners
or overlooking subtle motivational factors (Sharma
et al., 2024). Knowledge tracing approaches, while
promising in cold-start scenarios, struggle with cap-
turing the complexity of long-term learning trajec-
tories and deeper cognitive processes (Cho et al.,
2024). These concerns point to the need for more
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transparent and human-centered methods in utiliz-
ing LLMs for assessment.

5.2 Generative Task Predictors

Generative tasks involve producing new content or
responses. LLLMs are known to be adept at these
tasks due to their generation capabilities.

Grammatical Error Correction and Explana-
tion. In English writing, errors often reveal learn-
ers’ gaps in grammar and vocabulary (Hyland and
Hyland, 2006). LLMs can detect and correct these
errors (Bryant et al., 2023; Ye et al., 2023), offering
concise explanations (Ye et al., 2024) that reinforce
language rules. By streamlining error detection and
corrections, learners deepen their linguistic under-
standing.

Feedback Generation. Quizzes and exercises re-
main vital in English Education for practice and
targeted remediation (Rashov, 2024). LLMs en-
hance this process by delivering prompt, person-
alized feedback that pinpoints strengths and ad-
dresses weaknesses (Borges et al., 2024). This
scalability enables learners to self-regulate and re-
fine their skills without relying solely on human
graders (Stamper et al., 2024).

Socratic Dialogue. Moving beyond straightfor-
ward Q&A, Socratic questioning promotes critical
thinking and self-reflection (Paul and Elder, 2007).
SocraticLM (Liu et al., 2024b), for example, aligns
an LLM with open-ended, inquiry-based teaching
principles, guiding learners through iterative explo-
ration rather than prescriptive correction. In theory,
this fosters deeper conceptual understanding and
active learner engagement.

Discussion. Despite the promise of LLM-based
generation in English Education, multiple uncer-
tainties persist. Determining how to provide auto-
matic feedback that genuinely maximizes learning
outcomes is an ongoing challenge (Stamper et al.,
2024), particularly given education’s risk-averse
culture and high accountability standards (Xiao
et al., 2024). Moreover, while LLMs like So-
craticLM have demonstrated success in domains
like mathematics, their applicability to English
Education contexts has not been thoroughly val-
idated (Liu et al., 2024b). As such, the design of
strategies and follow-up queries remains an open
question in ensuring these systems track and re-
spond to learners’ cognitive states.

5.3 Mixed Task Predictors

Mixed tasks integrate discriminative and genera-
tive elements, requiring LLMs to evaluate learner
inputs and generate meaningful feedback or sug-
gestions. These tasks are particularly valuable in
fostering an interactive and adaptive learning expe-
rience, as they bridge the gap between evaluation
and instruction.

Automated Assessment with Feedback. While
discriminative systems for automated essay scoring
and speech evaluation primarily focus on assigning
grades, LLMs extend these capabilities by simul-
taneously generating formative feedback (Katuka
et al., 2024; Stahl et al., 2024b). For example,
an LLM can evaluate the coherence and lexical
diversity of a written essay, then offer specific re-
vision strategies. In speaking practice, it can mea-
sure fluency and pronunciation accuracy while sug-
gesting drills to refine intonation or stress patterns.
Through this combination of scoring and tailored
advice, learners gain a deeper understanding of
their strengths and areas for improvement.

Error Analysis. Error Analysis systematically
uncovers and categorizes learners’ missteps, from
syntactic lapses in writing to flawed pronunciations
in speaking (James, 2013; Erdogan, 2005). LLMs
functioning in a mixed capacity can classify these
errors and generate corrective guidance, provid-
ing revised sentences, clarifications of grammat-
ical rules, or remediation exercises for identified
weaknesses (Myles, 2002; Mashoor and Abdul-
lah, 2020). Such insight facilitates targeted inter-
ventions that enhance language proficiency across
modalities, including reading and listening.

Discussion. Mixed-task systems hold promise by
combining assessment and feedback generation,
but they face notable challenges. One major is-
sue is the weak alignment between scoring mecha-
nisms and the quality of feedback provided (Stahl
et al., 2024b). For example, while essay scoring
systems may deliver comprehensive evaluations,
the feedback often lacks specificity, limiting its
instructional value. Additionally, although error
analysis has potential, the absence of standardized
pedagogical benchmarks, especially in oral tasks,
hampers the reliability and comparability of LLM-
based tools (Leu Jr, 1982).
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[ Our position. While LLMs offer scalable solu-|
tions for task prediction in English Education,
their current limitations—such as misalignment
with expert assessments, lack of empathy, and
weak alignment between assessment and feed-
back—require ongoing refinement. Future re-
search should focus on improving model trans-
parency, enhancing the cultural and emotional
sensitivity of LLMs, and refining task predictors
to better reflect long-term learning trajectories
and learner motivation. Additionally, developing
standardized pedagogical benchmarks for error
analysis will help ensure the consistency and
reliability of LLM-generated feedback.

6 LLM-empowered Agent

In this section, we delve into the potential of LLMs
as intelligent tutoring agents in English Education.
LLMs can act as catalysts for personalized learning,
addressing the long-standing scalability, adaptabil-
ity, and inclusivity challenges in traditional teach-
ing paradigms.

6.1 Fundamental Abilities

This section highlights five key abilities of LLM-
empowered agents that enable them to function as
adaptive tutors.

Knowledge Integration. LLMs excel at merg-
ing structured educational knowledge graphs (Abu-
Rasheed et al., 2024; Hu and Wang, 2024) with
unstructured textual data (Li et al., 2024c; Mod-
ran et al., 2024), providing rich, contextualized
information on linguistic constructs and cultural
nuances. Their ability to perform real-time knowl-
edge editing (Wang et al., 2024d; Zhang et al.,
2024a) ensures learners receive content aligned
with evolving language usage, addressing the in-
herent limitations of static materials.

Pedagogical Alignment. LLMs require embed-
ding with pedagogical principles to facilitate gen-
uine learning experiences (Carroll, 1965; Taneja,
1995). Recent work incorporates theoretical frame-
works, such as Bloom’s taxonomy (Bloom et al.,
1956), to guide LLMs in systematically addressing
different cognitive levels (Jiang et al., 2024b). Ap-
proaches like Pedagogical Chain of Thought (Jiang
et al., 2024b) and preference learning (Sonkar
et al., 2024; Rafailov et al., 2024) focus on aligning
model responses with educational objectives.

Planning. By assisting in crafting teaching ob-
jectives and lesson designs, LLMs can handle com-
plex tasks such as differentiated instruction (Hu
et al., 2024). LessonPlanner (Fan et al., 2024) has
been proposed to assist novice teachers in prepar-
ing lesson plans, with expert interviews confirm-
ing its effectiveness. Zheng et al. (2024) propose
a three-stage process to produce customized les-
son plans, using Retrieval-Augmented Generation
(RAG), self-critique, and subsequent refinement.

Memory. Effective tutoring systems track learner
histories and tailor subsequent interactions accord-
ingly (Jiang et al., 2024a; Chen et al., 2024). When
serving as memory-augmented agents, LLMs can
retain individualized data—such as repeated gram-
mar mistakes or overlooked vocabulary—thereby
improving continuity and enabling consistent scaf-
folding of future learning tasks.

Tool Using. Beyond textual interactions, LLM-
based agents can integrate specialized tools to
streamline the educational ecosystem, from cog-
nitive diagnosis modules (Ma and Guo, 2019) to
report generators (Zhou et al., 2025). By orchestrat-
ing these resources, LLMs seamlessly unify diverse
utilities under a single interface, enhancing learner
experience and instructional efficiency.

6.2 Applications

Although still in its early stages, LLM-empowered
agents have already started to show promising ap-
plications in English Education.

Classroom Simulation. Classroom simulation
leverages LLM-empowered agents to recreate com-
plex, interactive learning settings without the
logistical hurdles of organizing physical class-
rooms (Zhang et al., 2024b). By simulating virtual
students and tutors, researchers can study pedagogi-
cal strategies at scale, generate diverse learner inter-
actions, and refine teaching techniques. Moreover,
this virtual data can be used to fine-tune LLMs
for specific educational contexts and learner pro-
files (Liu et al., 2024b), offering a cost-effective
and adaptable approach to language instruction.

Intelligent Tutoring System (ITS). LLM-based
agents have demonstrated the capacity to provide
dynamic, personalized tutoring experiences (Wang
et al., 2025; Kwon et al., 2024), effectively identi-
fying learner weaknesses through large-scale lin-
guistic analysis (Caines et al., 2023). This makes
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them promising for delivering individualized in-
struction at scale. Although current ITS applica-
tions in mathematics (Pal Chowdhury et al., 2024)
and science (Stamper et al., 2024) have shown suc-
cess, the extension to English Education requires
nuanced handling of cultural and contextual ele-
ments, as well as the unpredictability of human
language usage.

Discussion. Despite the promise of these appli-
cations, critical challenges remain. Existing class-
room simulation frameworks often lack standard-
ized benchmarks for English Education, making it
difficult to assess the efficacy and generalizability
of developed systems (Zhang et al., 2024b). In ad-
dition, evaluating language-specific tutoring strate-
gies, including real-time conversational practice
and holistic skill integration, remains an underex-
plored frontier. Addressing these gaps requires
new datasets and metrics centered on holistic skill
development and interdisciplinary collaboration.

~

Our position. We argue that future research
should focus on integrating multimodal learn-
ing tasks (Sonlu et al., 2024) and developing
standardized frameworks for evaluating English
Education simulations. Moreover, LLMs should
evolve beyond text-based capabilities to provide
real-time, context-sensitive feedback, particu-
larly in speaking and listening. Interdisciplinary
collaboration and the creation of new datasets
tailored to English Education are crucial for refin-
ing these systems and ensuring their scalability
and inclusivity in language instruction.

\

7 Challenges

While we posit that LLMs have the potential to rev-
olutionize English Education, realizing their full
promise requires addressing key challenges. This
section offers a concise overview of these chal-
lenges, followed by directions that could guide fu-
ture research and deployment.

Ensuring Reliability and Mitigating Hallucina-
tions. LLMs may produce hallucinations (Huang
et al., 2023) that can mislead learners and under-
mine pedagogical goals. This risk intensifies in
high-stakes educational environments, where trust
and correctness are paramount. Future directions
include enhancing data quality and diversity for
training (Long et al., 2024), developing techniques
to integrate LLM outputs with structured domain

knowledge and pedagogical rules, and employing
rigorous automated and human-in-the-loop vali-
dation mechanisms to minimize such detrimental
outcomes and improve the factual grounding of
LLM-generated educational content.

Addressing Bias and Ethical Considerations.
As LLMs inherit biases from their training data,
these systems may produce culturally insensitive,
stereotypical, or unfair responses, potentially harm-
ing students from diverse linguistic and sociocul-
tural backgrounds. Moreover, significant privacy
concerns emerge when collecting and using learner
data to personalize instruction, particularly for K-
12 students. Future research must focus on devel-
oping robust governance frameworks, transparent
documentation of data sources and model behav-
iors, and advanced bias detection and mitigation
strategies (Borah and Mihalcea, 2024; He and Li,
2024) to ensure that LLM-based tools for English
Education are equitable, fair, and uphold stringent
data protection standards.

Aligning With Pedagogical Principles. LLMs
excel at generating fluent language but often lack
deep pedagogical alignment, particularly for tasks
requiring developmental sensitivity, learner motiva-
tion strategies, or differentiated instruction tailored
to individual learning needs. Their general-purpose
nature means they do not inherently account for
established language acquisition theories or spe-
cific curricular standards (Razafinirina et al., 2024).
A crucial future direction is the development of
methodologies to better imbue LLMs with peda-
gogical intelligence. This includes co-designing
LLM applications with educators, fine-tuning mod-
els on high-quality pedagogical interaction data,
and creating architectures that can dynamically
adapt to learners’ cognitive states and developmen-
tal needs in English language learning.

8 Conclusion

This paper emphasizes the transformative poten-
tial of LLMs in English Education, positioning
them as valuable tutors to complement traditional
teaching methods. Through their roles as data en-
hancers, task predictors, and agents, LLMs can
provide adaptive learning experiences across the
core skills of listening, speaking, reading, and writ-
ing. This paper encourages continuing dialogue
and interdisciplinary collaboration to responsibly
integrate LLMs into educational ecosystems.
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Limitations

Emphasis on potential over practical implemen-
tation barriers. This paper primarily focuses on
the potential of LLMs to serve as effective tutors
in English Education, outlining beneficial roles as
data enhancers, task predictors, and agents. While
we acknowledge the existence of challenges (to
be discussed in Appendix 7), a limitation of this
position is that the main arguments may not fully
capture the considerable practical, socio-economic,
and infrastructural hurdles that could impede the
equitable and effective implementation of these
LLM roles across diverse global educational con-
texts and resource settings.

Generalizability and contextual adaptation of
proposed roles. We propose three broad roles
for LLMs in English Education. However, this
paper does not provide an exhaustive analysis of
how the efficacy and suitability of LLMs in these
roles might vary significantly across different target
languages (especially low-resource languages), spe-
cific learner demographics (e.g., preschoolers vs.
K-12 vs. adult learners, learners with disabilities),
diverse cultural contexts, or varying pedagogical
philosophies. The general framework presented
may require substantial adaptation and further re-
search to be effectively applied in specific English
Education scenarios.

Nuances of human-LLM pedagogical interac-
tion. While advocating for LLMs as tutors that
can complement human expertise, this position pa-
per does not delve deeply into the complex dy-
namics of the pedagogical interactions between
learners, LLLM-based tutors, human educators, and
parents. Critical aspects such as optimizing the
collaborative model, designing effective training
for educators to leverage LLMs, mitigating risks of
learner over-reliance, and ensuring that LLM inter-
actions foster deep learning rather than superficial
engagement are multifaceted issues that warrant
more extensive investigation than afforded by the
scope of this paper.
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A Literature Review

We provide an overview of LLM-centric research
of English Education presented in Figure 4.

B Future Directions

Establishing Robust Evaluation Frameworks.
A significant challenge in leveraging LLMs for
English Education is the current lack of widely ac-
cepted and easily implementable evaluation frame-
works to assess the quality of LLM-based teach-
ing interactions and outcomes. Existing metrics
often focus on linguistic correctness or task com-
pletion (Tan et al., 2024; Macina et al., 2025)
rather than pedagogical efficacy or impact on learn-
ing (Chiang et al., 2024). Future work should pri-
oritize the development of standardized evaluation
methodologies, including comprehensive bench-
marks and nuanced metrics that capture both the
accuracy of linguistic information and the peda-
gogical value of LLM interventions. This will be
essential for comparing different systems and guid-
ing iterative improvements.

Integrating with Modern Standardized Edu-
cational Frameworks. English language learn-
ing is often governed by established standards
and frameworks, such as the Common European
Framework of Reference for Languages (CEFR)!
or Common Core State Standards (CCSS)2. For
LLM-based tools to be truly effective and gain
acceptance, their outputs and interaction patterns
should align with these existing frameworks. Fu-
ture technical development should focus on en-
abling LLMs to reference, interpret, and operate
consistently within these standards (Nicholls et al.,
2024; Imperial et al., 2024). This includes generat-
ing proficiency-level-appropriate content, provid-
ing feedback that corresponds to specific frame-
work descriptors, and assisting learners in achiev-
ing standardized learning objectives, thereby en-
hancing usability, conformity, and trustworthiness
among educators and learners.

Fostering Human-AI Collaboration in Pedagogy.
While LLMs offer transformative potential, it is un-
likely they will completely replace human teachers

"https://www.coe.int/en/web/portal/home
https://corestandards.org/

in English Education in the foreseeable future. In-
stead, the most promising path involves developing
sophisticated human-AlI collaborative educational
technologies (KIM et al., 2025). Future research
should explore how LLMs can best function as
assistive tools that augment, rather than supplant,
the capabilities of human educators (Shojaei et al.,
2025). This includes designing intuitive interfaces
for teachers to guide, customize, and oversee LLM-
driven activities, investigating teachers’ perspec-
tives on integrating LL.Ms into their practice, and
defining technical benchmarks for when an LLM
possesses sufficient acquired skills to reliably as-
sist teachers. The focus must be on a synergistic
model where LLMs handle scalable tasks while
human teachers provide the crucial elements of em-
pathy, nuanced understanding, and holistic student
development.

C Alternative Views

While this paper supports the use of LLMs in En-
glish Education, it is essential to consider alter-
native perspectives. Below, we discuss two key
opposing views and provide counterarguments.

C.1 Task-Specific or Language-Specific
Models as Better Alternatives

Some argue that specialized or language-specific
models, including classical ML systems with care-
fully engineered features, can outperform general-
purpose LLMs in narrowly defined tasks (e.g., pho-
netics or grammar drills (Fang et al., 2023)). By
focusing on limited objectives, such models avoid
the computational overhead and potential inaccura-
cies of LLMs, which aim to handle a broader range
of inputs and contexts (Shen et al., 2024a).

Counterargument. While specialized models
may excel in isolated tasks, they lack the flex-
ibility required for comprehensive English Edu-
cation, which involves cultural nuances, conver-
sations, and evolving learner needs. In contrast,
LLMs can be fine-tuned for specific goals while
still offering broader linguistic competence (Song
et al., 2024a). Additionally, relying on multiple spe-
cialized models can be resource-intensive, whereas
a well-configured LLM provides a unified frame-
work that balances specialization and scalability.

C.2 Concerns About Over-Reliance on LLMs

Critics warn that over-reliance on LLMs may lead
to problems such as generating misleading out-
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Figure 4: An overview of LLM-centric research of FLE.

puts (Nahar et al., 2024), reducing human inter-
action, and over-standardizing teaching methods.
These issues could undermine the interpersonal and
motivational aspects of language learning.

Counterargument. These risks highlight the
need for balanced integration rather than the re-
placement of human tutors. LLMs can complement
educators by automating repetitive tasks, allowing
teachers to focus on individualized support and mo-
tivation. Advances in Al safety, such as feedback
loops (Tong et al., 2024) and human-in-the-loop
systems (Wu et al., 2022), can help minimize inac-
curacies (Ho et al., 2024). Additionally, the fine-
tuning capabilities of LLMs ensure adaptability,
supporting diverse and inclusive learning experi-
ences (Lee et al., 2024b).

1

7535



