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Abstract

Forecasting weather and climate events is cru-
cial for making appropriate measures to mit-
igate environmental hazards and minimize
losses. However, existing environmental fore-
casting research focuses narrowly on predicting
numerical meteorological variables (e.g., tem-
perature), neglecting the translation of these
variables into actionable textual narratives of
events and their consequences. To bridge this
gap, we proposed Weather and Climate Event
Forecasting (WCEF), a new task that leverages
numerical meteorological raster data and tex-
tual event data to predict weather and climate
events. This task is challenging to accomplish
due to difficulties in aligning multimodal data
and the lack of supervised datasets. To address
these challenges, we present CLLMate, the first
multimodal dataset for WCEF, using 26,156 en-
vironmental news articles aligned with ERA5
reanalysis data. We systematically benchmark
32 existing models on CLLMate, including
closed-source, open-source, and our fine-tuned
models. Our experiments reveal the advantages
and limitations of existing MLLMs and the
value of CLLMate for the training and bench-
marking of the WCEF task. The dataset is
available at https://github.com/hobolee/
CLLMate.

1 Introduction

Weather and climate events, namely discrete
episodes of extreme weather or abnormal climate
conditions (Hurrell, 2013), pose a significant risk
to human society, resulting in potential harm to
property, infrastructure, injuries, and even loss of
life (Stephenson et al., 2008). Such events (e.g.,
heatwaves, floods, droughts) have experienced a
noticeable surge in frequency, intensity, and du-
ration in recent years due to climate change (Ac-
carino et al., 2023). Significant concerns have been
raised among human society. Appropriate mea-
sures and optimal strategies are urgently needed

to forecast these events and mitigate their negative
impacts. Considerable researchers have studied
weather forecasting for years. For example, Kang
et al. (2020) used factors such as temperature, wind,
and pressure data to forecast precipitation. Simi-
larly, Huang et al. (2021) relied on historical radia-
tion data to forecast future radiation.

However, those works only focus on meteoro-
logical variables forecasting, missing forecasting
textual weather and climate events or mapping the
relationship between meteorology and its textual
consequence. In the real world, there exists a wide
array of weather and climate events, also includ-
ing their cascading secondary and tertiary conse-
quences. For example, heavy rainfall can lead to
waterlogging, infrastructure degradation (e.g., road
collapse), traffic disruptions, and human casual-
ties when urban systems lack adaptive resilience
to climate change. A critical challenge lies in the
disparity between heterogeneous numerical mete-
orological data and textual descriptions of such
events and their consequences. The gap hinders the
accurate forecasting of real-world textual events
and their downstream impacts based solely on me-
teorological variables.

To address this critical gap, we propose the
Weather and Climate Event Forecasting (WCEF),
a novel task in environmental forecasting (Fig-
ure 1). Unlike traditional approaches that predict
numerical meteorological variables (e.g., precipita-
tion) (Kang et al., 2020; Yang et al., 2024b), WCEF
pioneers the generation of natural language descrip-
tions to forecast weather and climate events and
their cascading consequences (Figure 1). This rep-
resents a fundamental paradigm shift, as it replaces
the conventional workflow, where domain experts
manually interpret numerical predictions to infer
potential events, a process that is labor-intensive,
subjective, and lacking geographical adaptability,
with an automated, context-aware framework.
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The complexity of WCEF stems from its dual
departure from existing methods: (1) its output re-
quires generating textual event descriptions rather
than numerical sequences, and (2) its input de-
mands multimodal integration of numeric, text, and
image. Prior efforts, which focus solely on single-
modal numerical predictions, fail to address these
challenges (Schultz et al., 2021). They neither au-
tomate the translation of raw climate data into ac-
tionable narratives nor adapt to location-specific
vulnerabilities, leaving critical gaps in forecasting
precision and practical utility.

The emergence of LLMs and multimodal LLMs
(MLLMs) presents significant potential for bench-
marking and addressing the WCEF task. To bench-
mark this task, we collect weather and climate
events from environmental news articles, which
serve as a valuable complement to meteorological
data. These articles provide detailed descriptions
of weather and climate events (Roberts, 2023), in-
cluding temporal and spatial information that can
support precise event prediction. However, the
sheer volume of unstructured environmental news
conceals task-critical information. Additionally,
the scarcity of supervised datasets, exacerbated by
the novelty of the task and the complexity of curat-
ing aligned multimodal pairs (numerical data and
event descriptions), requires significant domain ex-
pertise. The recent advancements in LLMs (Brown
et al., 2020) offer a promising solution. They en-
able the extraction of structured information from
vast amounts of unstructured documents (Dagdelen
et al., 2024; Biswas and Talukdar, 2024). Specifi-
cally, we utilize GPT-4o-mini (OpenAI, 2025) to
process 26,156 news articles, generating structured
event representations (e.g., event A, cause, event
B, location, and date) from unstructured text. To
ensure accuracy, domain experts manually vali-
date the outputs, resulting in the construction of a
high-fidelity, spatiotemporally aligned multimodal
dataset, CLLMate.

To address the WCEF task, bridging the modal-
ity gap between meteorological raster data (high-
dimensional spatiotemporal grids) and textual de-
scriptions remains a significant challenge (Liu et al.,
2023; Jiang et al., 2024). MLLMs, in particular,
offer an opportunity to integrate and align textual
narratives with spatiotemporal data for the WCEF
task (Xu et al., 2023). To evaluate current MLLMs’
capabilities, we conduct extensive experiments on
our constructed dataset using 32 MLLMs. The
results demonstrate that while these models show

potential, they remain constrained in their perfor-
mance on the WCEF task. The experiment results
reveal that current models have the advantage but
are limited in the WCEF task. It underscores the
need for further work to achieve accurate weather
and climate event forecasting.

In summary, the contributions can be outlined:
• We propose the WCEF task to forecast textual

events based on numerical meteorological raster
data, which differs from traditional meteorologi-
cal data forecasting.

• We leverage domain knowledge extracted from
the news corpus to establish the first multimodal
dataset to connect events and meteorology.

• We conduct extensive experiments to evaluate
existing MLLMs and our fine-tuned models on
the WCEF task, benchmarking their capability in
forecasting textual weather and climate events.

2 Related Work

Weather and climate forecasting has long been a
research problem in the field of the environment.
In this paper, we proposed a more challenging task
to predict textual events using MLLMs.

2.1 Weather and Climate Events Forecasting

In the era preceding modern weather prediction,
human experience connects diverse natural signs,
such as cloud patterns and animal behavior, with
weather and their subsequent effects (Risiro et al.,
2012). The start of modern weather forecasting was
marked with the first modern weather chart (Allaby,
2009; Young and Grahame, 2022). In contempo-
rary studies, a shift towards efficiency has occurred
by consolidating various numerical variables into
a unified numerical framework. Two primary nu-
merical methodologies are commonly employed:
numerical weather prediction, which utilizes nu-
merical simulation methods (Bauer et al., 2015;
Lynch, 2008), and AI-based forecasting, which
leverages data-driven approaches (Bi et al., 2023;
Hewage et al., 2021). Soichiro et al. explored mod-
els designed to generate textual comments for four
specific weather conditions: sunny, rainy, cloudy,
and snowy (Murakami et al., 2021). However, their
work is limited by the restricted range of weather
conditions and the subjective nature of the com-
ments. In contrast, our study represents the first
attempt to address the WCEF task. We construct
a valuable dataset containing the numerical meteo-
rology and its corresponding events, aimed at the
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Dataset Meteorological Variables Textual Events
Not Records Records

SEVIR (Veillette et al., 2020) Satellite × ×
Mesogeos (Kondylatos et al., 2024) ERA5 × ×

Digital Typhoon (Kitamoto et al., 2024) Satellite × ×
Vaid et al.’s work (Vaid et al., 2022) × × Social Media

NeuralNERE (Mishra and Mittal, 2021) × × News
ClimateIQA (Chen et al., 2024a) ERA5 QA generated by LLM ×

WeatherQA (Ma et al., 2024) ERA5 Expert’s pre-analysis ×
CLLMate ERA5 × News, verified by experts

Table 1: Comparison between CLLMate and existing datasets. CLLMate uniquely integrates ERA5 reanalysis data
with expert-verified textual events, addressing the scarcity of aligned multimodal datasets for weather and climate
event forecasting. (ERA5: the fifth generation ECMWF atmospheric reanalysis dataset of the global climate.)

relationship between numerical meteorology and
its consequential events.

2.2 Multimodal LLM

With the advancement of LLMs, there’s been a
surge of research on building multimodal LLMs.
Their studies (Wu et al., 2023; Zhan et al., 2024)
try to incorporate multiple types of data beyond
just natural language, such as images, audio, and
video. BLIP-2 (Li et al., 2023) has developed
a large-scale image captioning dataset, combin-
ing a language model with a vision encoder to
create a multimodal model. Building on this,
LLaVA (Liu et al., 2023) introduces a more cost-
effective method for training multimodal models
through visual instruction tuning. The following
multimodal LLMs, including QwenVL2 (Wang
et al., 2024a), CogVLM (Wang et al., 2023a),
deepseek-vl (Lu et al., 2024), Intern-vl (Chen et al.,
2024b; Dong et al., 2024), etc., all follow a sim-
ilar architecture of LLaVA. Thanks to the strong
ability of multimodal LLMs, an increasing number
of works start to seek the assistance of multimodal
LLMs (Wang et al., 2025; Sun et al., 2024; Yang
et al., 2024a; Chen et al., 2025b). Following them,
our work focuses on meteorology.

2.3 Existing Similar Datasets

Prior efforts to model meteorological events fall
into three categories (Table 1):

Single-Modality Physical Datasets. Works like
SEVIR (storm imagery) (Veillette et al., 2020),
Mesogeos (wildfire-related variables) (Kondylatos
et al., 2024), and Digital Typhoon (typhoon trajec-
tories) (Kitamoto et al., 2024) focus on meteorolog-
ical measurements but lack textual event narratives.
While valuable for physical modeling, they omit
explicit linkages to real-world impacts.

Text-centric datasets. Text-centric datasets

such as Vaid et al.’s work (social media
events) (Vaid et al., 2022) and NeuralNERE (news-
derived knowledge graphs) (Mishra and Mittal,
2021) catalog climate-related events but fail to link
them to corresponding meteorological data. This
disconnect leaves the causal chain between weather
patterns (e.g., extreme rainfall) and societal conse-
quences (e.g., floods) unquantified.

Multimodal Approaches with Limitations.
Several other meteorological multimodal dataset
construction efforts were conducted around the
same time as CLLMate. However, they remain
limited by data quality and scope. ClimateIQA
(Chen et al., 2024a) pairs ERA5 data with LLM-
generated QA pairs but lacks verified event records
and impact descriptions. WeatherQA (Ma et al.,
2024) aligns ERA5 with expert pre-analysis texts,
yet it focuses on meteorological forecasts rather
than post-event records and excludes societal im-
pacts. Both datasets prioritize meteorological phe-
nomena over downstream consequences and rely
on synthetic or non-verified textual data, limiting
their utility for impact-driven research.

CLLMate bridges these gaps by integrating
expert-verified post-event records from authorita-
tive news sources with spatiotemporally matched
meteorological raster data. Unlike prior works,
CLLMate (1) captures both meteorological phe-
nomena (e.g., rainfall) and their downstream con-
sequences (e.g., flooding, infrastructure damage),
(2) establishes explicit cross-modal mappings be-
tween textual event descriptions (including time
and location) and meteorological variables, and
(3) ensures reliability through domain expert val-
idation of event reports. CLLMate provides the
first high-quality, multimodal corpus for modeling
the interplay between weather conditions and real-
world impacts, enabling robust analysis of climate-
society interactions.
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Figure 1: The CLLMate framework is designed to ex-
tract textual weather and climate events and align them
with meteorological raster data for the WCEF task. The
output of the LLLM is the events extracted from news
articles, and the input is the corresponding meteorologi-
cal raster data.

3 Problem Formulation

In this section, we provide an introduction to the
data type in our dataset, CLLMate, and outline the
formulation of the WCEF task (Figure 1).

3.1 Spatio-Temporal Data

Two types of spatio-temporal data are utilized: me-
teorological raster data and event data.

3.1.1 Meteorological Raster Data
Meteorological raster data is commonly employed
in the environmental domain to depict meteoro-
logical variables. For instance, one global mete-
orological variable can be represented as a three-
dimensional tensor R ∈ RT×Λ×Φ, where T de-
notes the time dimension, and Λ and Φ represent
the longitude and latitude dimensions, respectively.
Each element rt,λ,ϕ corresponds to the variable
value at a specific time t and location (λ, ϕ).

3.1.2 Event Data
On the other hand, event data E are occurrences of
interest at specific points in space and time with the
shape of T × Λ× Φ. For example, a single event
can be represented using textual information et,λ,ϕ,
indicating the occurrence at a particular time t and
location (λ, ϕ).

Two distinctions exist between raster and event
data. First, raster data is numerical, while event
data is textual. Next, raster data is dense, whereas
event data is sparse, featuring specific instances at
discrete locations and times.

3.2 WCEF Task

The existing weather forecasting task involves pre-
dicting the future target meteorology variable using
either the same or more variables. This task can be

Figure 2: Spatial distribution of extracted events. Each
rectangle represents an extracted event. The events span
most global regions.

formulated as follows:

RC+1:C+F = f(RC−H+1:C) (1)

where f(·) is the forecasting model, RC denotes
the numerical meteorological variables at the cur-
rent time, F represents the length of the forecasting
data, and H is the length of historical data used.

In contrast, the objective of the proposed WCEF
task is to predict textual events using numerical
data (Figure 1). These events can be defined based
on meteorological characteristics, such as heat-
waves and the subsequent consequences they en-
tail. The scope of events encompasses primary
occurrences like heatwaves and droughts, as well
as secondary and tertiary events (consequences)
like landslides and human casualties that arise as a
result of the primary events. These examples illus-
trate the complexity of deriving such events solely
from numerical data. It highlights the significance
of the historical events and the valuable knowledge
they offer. The WCEF task can be formulated:

EC:C+F−1 = fϕ(RC−H+1:C , Instruction) (2)

where fϕ(·) denotes the LLM model, EC is the tex-
tual events happening at the current time, and the
instruction is the text prompt. It is worth emphasiz-
ing that, unlike existing forecasting tasks utilizing
the same source data, we employ C in both the
forecasting and historical data. This is because EC

and RC hold distinct meanings.

4 Dataset Construction Process

In this section, we introduce the meteorological
raster dataset and environmental news dataset we
used to construct the multimodal instruction dataset
for the WCEF task. Then, we explain the pipeline
to create the multimodal dataset (appendix A.1).
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Figure 3: Temporal distribution of extracted events. The
events span a long time period, from 2015 to 2023. A
notable outlier in the number of events occurred due to
the catastrophic flooding in Zhengzhou in July 2021.

4.1 Datasets Used to Construct CLLMate

Meteorological Raster Dataset. We use the open
and free ERA5 reanalysis dataset (Hersbach et al.,
2020) to obtain the meteorology data (Copernicus
License). Its usage in climate research has been
widely acknowledged for its quality (Sun et al.,
2022). Four variables, namely “2m temperature,”
“10m u-component of wind,” “10m v-component
of wind,” and “total precipitation,” were selected to
forecast the following textual weather and climate
events. The dataset consists of hourly data span-
ning from July 2015 to July 2023, with a spatial
resolution of 27.75 km× 27.75 km.
Environmental News Dataset. We acquired en-
vironmental news from Wisers (Wisers, 2024)
through a procurement process, which consisted
of highly environment-related news articles from
news publishers. The dataset spans from July 2015
to June 2023. Each news article contains the title,
content, character statistics, date, publisher, and
media type. The media types encompass both web
and publication resources while excluding internet-
based media sources primarily reliant on aggregat-
ing news reports from official news agencies.

4.2 The Multimodal Dataset

We construct the first multimodal dataset for the
WCEF task through three steps.

4.2.1 Event Extraction
Weather and climate events exist within a vast
amount of news articles. Research has demon-
strated the efficacy of utilizing LLMs for extracting
structured information from text (Dagdelen et al.,
2024). The initial step of our pipeline is to identify
and extract these events and their relationships from
each news document. First, we employed GPT-4o-
mini to analyze 26,156 environmental news arti-

cles, extracting weather and climate event knowl-
edge in structured triples with spatiotemporal meta-
data (e.g., high temperature causes heatwave, Hong
Kong, 2022-08-16). The details of the prompt for
extracting events can be found in appendix B.1.

Initial automated labeling identified 6,352 news
containing potential event relationships. These
articles, along with their extracted triples, loca-
tions, and dates, underwent rigorous manual val-
idation by three meteorological domain experts.
Events, which are not meteorological events, or
lack clear spatial information, or temporal details,
were excluded. Following verification, 2,575 news
were confirmed to contain accurate event knowl-
edge, yielding a final curated dataset of 7,747 spa-
tiotemporally grounded events. The inter-annotator
agreement (IAA) score, measured by the pairwise
agreement proportion, was 81.83%, and Fleiss’s
κ (Fleiss, 1971) was calculated to be 0.63. Please
refer to appendix B.2 for more details on the anno-
tation and the agreement metric.

Specifically, as for the spatial aspect, there are
1,049 distinct regions in the dataset. To derive
geospatial bounds for these locations, we con-
tinue to employ GPT-4o-mini to generate latitude-
longitude coordinates, which are subsequently val-
idated by humans to ensure alignment with real-
world geographical boundaries by visualizing them
on the map. Additionally, we expand the geograph-
ical range, with a minimum of 5 degrees, to incor-
porate surrounding meteorological conditions.
Spatial Distribution. The dataset exhibits a broad
geographical representation, covering most global
regions (Figure 2). Events are notably concentrated
in East Asia, North America, and Europe. The
spatial distribution is decided by the database’s
distribution since we didn’t apply filters, avoiding
introducing biases.
Temporal Distribution. The temporal coverage
spans July 2015 to July 2023, with marked seasonal
patterns: event frequency peaks during summer
and winter months (Figure 3). The data reveals a
temporal trend, with event frequency increasing in
more recent years. A significant outlier occurred
in July 2021, coinciding with catastrophic flooding
since extreme rainfall in Zhengzhou, China, which
caused hundreds of fatalities and widespread infras-
tructure damage. This event garnered exceptional
media attention.

4.2.2 Event Categorization
To simplify the evaluation of MLLMs in the WCEF
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task, shifting from directly generating meteoro-
logical events (experiments can refer to subsec-
tion D.1), we collaborated with domain experts to
develop the predefined hierarchical categorization
of weather and climate events (appendix A.2). This
approach aligns with practices in both the NLP
domain (Hendrycks et al., 2020; Yue et al., 2024)
and meteorology (Ma et al., 2024). By provid-
ing this hierarchical categorization for MLLMs to
reference, we enhance their ability to forecast ex-
treme weather events more reliably and with greater
practical relevance. The categorization combines a
bottom-up approach to clustering (using semantic
similarity) with a top-down approach (using the
taxonomy in the environmental domain) (Gaiteri
et al., 2015). Events are classified into two primary
categories: meteorological phenomena (3979/7747
events, Figure 4 in Appendix) and their cascad-
ing consequences (3768/7747 events, Figure 5 in
Appendix). Each category is further divided into
fine-grained subclasses, which serve as candidate
options for model selection. In the benchmarking,
MLLMs are required to select the most probable
predefined fine-grained subclass. For more infor-
mation about the category distribution, please refer
to appendix A.3.

4.2.3 Event-Meteorology Alignment
Multimodal dataset construction relies on precise
spatiotemporal alignment between events and their
meteorological conditions (Figure 1). For each
event (appendix A.1), we integrate: (1) textual
event, (2) meteorological raster data for the event’s
specific date and region, and (3) regional statistical
context (e.g., max) from the same spatiotemporal
origin. Meteorological inputs are preprocessed into
RGB-like grids (normalized to [0, 1]):
• Channel 1: 2m temperature.
• Channel 2: 10m wind speed (u- and v-

components combined via magnitude norm).
• Channel 3: total precipitation.
This representation enables MLLMs to process spa-
tial climate patterns as visual inputs.

5 Benchmarking Results

5.1 Benchmarked Models

The dataset is partitioned chronologically into train-
ing (90%) and testing (10%) sets. We conducted
extensive experiments with 32 multimodal models
and traditional AI models (after removing multi-
modal inputs) on the test set, encompassing closed-

source, open-source, and our fine-tuned models:

5.1.1 Closed-Source Models
• GPT Series (OpenAI, 2025): OpenAI’s flagship

MLLM with integrated vision capabilities. We
evaluated three variants of OpenAI’s GPT ar-
chitecture optimized for multimodal reasoning:
GPT-4o, GPT-4o-mini, and GPT-o1.

• Gemini (Team et al., 2023): Google’s MLLM
with enhanced context window and optimized for
high-speed processing of text-image inputs. We
evaluated Gemini-1.5-pro and Gemini-2.0-flash.

• Claude-3.5/3.7-Sonnet (Anthropic, 2025): An-
thropic’s MLLM with improved analytical capa-
bilities, supporting text and image inputs.

5.1.2 Open-Source Models
• Deepseek-Janus-Pro-7B (Chen et al., 2025a):

Deepseek’s MLLM with both multimodal under-
standing and text-to-image capabilities.

• InternVL-8B/38B/78B (Chen et al., 2024b): A
vision-language foundation model with capabili-
ties in handling complex multimodal data.

• Cambrian-1-8B (Tong et al., 2024): A fully
open multimodal LLM designed with a vision-
centric approach.

• LLaVA-1.5/1.6 (Liu et al., 2023, 2024): Ver-
sions of the widely adopted open-source MLLM
framework: LLaVA-1.5-7B/13B: MLLMs with
standard vision-language alignment. LLaVA-1.6-
7B/13B/34B: Enhanced variants MLLMs for fine-
grained visual grounding.

• Qwen2/2.5 (Wang et al., 2024b) utilize dynamic
resolution and frame rate training for video un-
derstanding. We evaluate Qwen2-VL-7B and
Qwen2.5-VL-7/72B.

5.1.3 Fine-tuned Models
To evaluate the performance of conventional vi-
sual models, we fine-tuned traditional AI models
that rely solely on meteorological images. These
models include ResNet50 (He et al., 2016) (IMA-
GENET1K_V2) and ViT (Dosovitskiy et al., 2020)
(vit-base-patch16-224-in21k).

Additionally, we evaluated the performance of
CLIP (Radford et al., 2021) as a classifier. For this,
we computed image embeddings using meteorolog-
ical images and text embeddings based on all event
descriptions and their contextual information. The
event with the highest correspondence to the image
was selected as the prediction.

Moreover, we fine-tuned a series of LLaVA mod-
els using the training set of the CLLMate to eval-
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Models
Primary

Category of
Phenomena

Subordinate
Category of
Phenomena

Primary
Category of

Consequence

Subordinate
Category of

Consequence
Expert (100 cases) 78.00% 54.00% 62.00% 46.00%
Random guess 33.33% 12.50% 20.00% 5.56%
Majority guess 40.12% 26.07% 40.11% 4.90%

cl
os

ed
-s

ou
rc

e

GPT-4o-mini (OpenAI, 2025) 30.28% 13.62% 34.63% 14.13%
GPT-4o (OpenAI, 2025) 32.11% 15.65% 39.22% 12.01%
GPT-o1 (OpenAI, 2025) 32.93% 10.97% 17.67% 10.60%
GPT-o3 (OpenAI, 2025) 30.89% 10.57% 17.67% 2.83%
GPT-o4-mini (OpenAI, 2025) 30.28% 10.16% 20.49% 2.47%
Gemini-1.5-pro (Team et al., 2023) 20.12% 8.74% 28.98% 10.25%
Gemini-2.0-flash (Team et al., 2023) 37.80% 19.72% 30.39% 13.43%
Claude-3.5-Sonnet (Anthropic, 2025) 37.60% 19.72% 40.28% 15.90%
Claude-3.7-Sonnet (Anthropic, 2025) 40.04% 20.93% 42.05% 15.55%

op
en

-s
ou

rc
e

Janus-Pro-7B (Chen et al., 2025a) 31.31% 2.64% 21.20% 2.83%
InternVL2-8B (Chen et al., 2024b) 29.27% 10.37% 21.91% 5.30%
InternVL3-8B (Chen et al., 2024b) 29.67% 13.62% 20.49% 6.00%
InternVL3-38B (Chen et al., 2024b) 39.63% 19.51% 33.22% 12.70%
InternVL3-78B (Chen et al., 2024b) 36.79% 18.09% 42.05% 17.31%
Cambrian-1-8B (Tong et al., 2024) 31.10% 9.56% 31.80% 4.59%
LLaVA-1.5-7B (Liu et al., 2023) 31.30% 14.02% 20.85% 3.89%
LLaVA-1.6-vicuna-7B (Liu et al., 2024) 31.30% 13.82% 20.85% 3.89%
LLaVA-1.6-mistral-7B (Liu et al., 2024) 32.93% 17.28% 39.22% 12.01%
LLaVA-1.5-13B (Liu et al., 2023) 31.32% 15.04% 28.27% 7.77%
LLaVA-1.6-vicuna-13B (Liu et al., 2024) 29.47% 14.63% 21.91% 7.42%
LLaVA-1.6-vicuna-34B (Liu et al., 2024) 42.28% 15.45% 17.67% 3.89%
Qwen2-VL-7B (Wang et al., 2024b) 32.72% 11.38% 25.80% 5.30%
Qwen2.5-VL-7B (QwenTeam, 2025) 42.27% 17.48% 21.91% 7.78%
Qwen2.5-VL-72B (QwenTeam, 2025) 40.85% 20.73% 39.58% 16.25%

fin
e-

tu
ne

d

Fine-tuned-ResNet50 (He et al., 2016) 38.01% 24.34% 19.08% 6.36%
Fine-tuned-ViT (Dosovitskiy et al., 2020) 39.43% 23.46% 20.14% 6.48%
Fine-tuned-Clip (Radford et al., 2021) 42.89% 19.11% 36.40% 6.00%
Fine-tuned-LLaVA-1.5-7B 45.93% 23.37% 43.46% 9.89%
Fine-tuned-LLaVA-1.6-vicuna-7B 44.91% 29.67% 44.17% 8.48%
Fine-tuned-LLaVA-1.6-mistral-7B 45.53% 25.61% 43.82% 8.13%
Fine-tuned-LLaVA-1.5-13B 44.92% 23.78% 43.46% 6.36%
Fine-tuned-LLaVA-1.6-vicuna-13B 45.54% 27.03% 42.40% 9.19%

Table 2: The accuracy of benchmarked MLLMs across two granularity levels: primary category classification and
subordinate category identification for both meteorological phenomena and their cascading consequence.

uate the value of the dataset and the efficiency of
MLLMs in solving the WCEF task. The fine-tuned
models include LLaVA-1.5-7B/13B and LLaVA-
1.6-vicuna-7B/13B. They are trained on 8 A800
GPUs for one epoch. Please refer to appendix C
for more details.

5.2 Prompt Design

We designed specialized prompts for MLLMs
to forecast meteorological phenomena and their
consequences. The prompts consist of “System
Prompt,” “Location Information,” “Meteorological
Parameters,” “Meteorological Image,” “Options,”
and “Zero-Shot CoT (Kojima et al., 2022).” As
for the Zero-Shot CoT, we used (1) analysis of
statistical data, (2) analysis of spatial patterns in
the image, and (3) synthesis of findings to select
the most probable fine-grained category. Refer to
appendix B.3 and appendix B.4 for more details.

5.3 Evaluation Metric

For the benchmarking of multi-choice questions,
we employ accuracy as the metric, following the
previous research, such as Ge et al.’s work (Ge
et al., 2022). Accuracy is a straightforward metric
that measures the proportion of correct answers out
of the total number of questions.

5.4 Heuristic Baselines

We implement two heuristic baselines:
• Random Guess: Answers are selected uniformly

at random from all valid options, reflecting
chance-level performance.

• Majority Guess: The most frequent category in
the training set is chosen for all test instances.

5.5 Expert Experiment

We conducted the expert experiment to evaluate the
task difficulty. We employed two postdocs in the
environmental domain to perform the task. They
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have access to the meteorology data and the contex-
tual information. However, they were not allowed
to conduct any online search. Based on the given
information and their domain knowledge, they se-
lected the most likely event category. A total of 50
meteorological phenomena and 50 consequences
were randomly selected from the test dataset.

5.6 Main Results

Table 2 summarizes the performance of bench-
marked MLLMs across two granularity levels: pri-
mary category (coarse-grained) and subordinate
category (fine-grained) for meteorological phenom-
ena and their consequences. The results are also
shown in Figure 8 and Figure 9.

5.6.1 Meteorological Phenomena Forecasting

Primary Category: Most closed-source and
open-source models perform near random guess
(30.28–37.80%), with the exception of LLaVA-
1.6-vicuna-34B and Qwen2.5 (40.85%-42.28%),
which exceed the majority guess baseline (40.12%).
Fine-tuned models achieve substantial gains, with
Fine-tuned-LLaVA-1.5-7B attaining the highest ac-
curacy (45.93%).

Subordinate Category: While most existing
models surpass random guessing, none exceed the
majority guess baseline (26.07%). Fine-tuning
yields significant improvements (e.g., Fine-tuned-
LLaVA-1.6-vicuna-7B: 29.67% vs. 13.82% for its
untrained counterpart).

5.6.2 Consequence Forecasting

Primary Category: Claude-3.5-Sonnet leads
among untrained models (40.28%), while fine-
tuned variants dominate, notably Fine-tuned-
LLaVA-1.6-vicuna-7B (44.17%), surpassing the
random guess (20.00%) and majority guess base-
line (40.11%). This demonstrates the learnability
of meteorology-to-impact mappings when models
are task-adapted.

Subordinate Category: QWen2.5-VL-72B
achieves the highest accuracy (16.25%), marginally
exceeding the heuristic baselines (5.56%/4.90%),
while fine-tuned models show limited gains.

6 Performance Analysis

We show some findings of the benchmarking. For
more analysis, such as case study, ablation study,
and scale analysis, please refer to appendix D.

6.1 Expert Performance
From the experiment results, we found that experts
perform better than existing LLMs, such as (78.0%
vs 45.93% in phenomena forecasting). The rela-
tively low performance of the LLMs is likely due
to their limitations. There are a few possible rea-
sons behind this: 1) current MLLMs lack domain-
specific knowledge and are not fine-tuned for this
task; 2) additionally, their alignment mechanisms
may not be well-suited for handling meteorolog-
ical data. These findings highlight the value of
our dataset, which provides events with detailed
temporal and spatial information. This extensibil-
ity allows for integrating additional meteorologi-
cal data, exploring alternative alignment methods,
and benchmarking against more advanced SOTA
MLLMs in the future.

6.2 MLLMs vs. Heuristic Baselines
While MLLMs outperform the random guessing
baseline, some of them often fall short of the major-
ity guess baseline, a pattern attributable to an inher-
ent class imbalance in the dataset. The imbalance
provides a competitive advantage for naive reliance
on prior knowledge of the category distribution.
However, fine-tuned models such as Fine-tuned-
LLaVA-1.5-7B surpass the majority guess baseline
in phenomena prediction (45.93% vs.40.12%) and
in consequence forecasting (43.46% vs. 40.11%).
Critically, this demonstrates that MLLMs can learn
meteorology-to-event mappings, achieving gains
through pattern recognition.

6.3 MLLMs vs. Simpler Models
Even after training, traditional models like ResNet
perform significantly worse than many zero-shot
MLLMs, not to mention fine-tuned MLLMs. This
highlights the necessity of MLLMs for effectively
bridging the gap between numerical meteorological
data and their corresponding events.

6.4 Closed-Source and Open-Source Models
Among closed-source models, Claude-3.5-Sonnet
achieves the highest forecasting accuracy. Surpris-
ingly, GPT-o1’s performance is lower than that of
other models. Open-source models exhibit signif-
icant performance fragmentation. While LLaVA-
1.6-34B achieves competitive primary phenomena
accuracy (42.28%), its consequence forecasting de-
creases to 17.67%, worse than random guessing
(20%). Qwen2.5-VL-72B shows an advantage in
consequence forecasting (39.58%/16.25%). The
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performance of the best closed-source model is
comparable to that of the best open-source model.

6.5 Effectiveness of Task-Specific Fine-tuning

Fine-tuning on CLLMate yields dramatic im-
provements: Fine-tuned-LLaVA-1.5-7B surpasses
Claude-3.5-Sonnet in primary phenomena accuracy
(45.93% vs. 37.60%) and consequences (43.46%
vs. 40.28%). Subordinate category performance
improves by 9–15 percentage points for phenom-
ena (e.g., 23.37% vs. 14.02% in LLaVA-1.5-7B),
though subordinate consequence forecasting re-
mains challenging (<10% accuracy). This demon-
strates that while MLLMs lack inherent weather
reasoning capabilities, task-specific adaptation en-
ables competitive forecasting, demonstrating the
dataset’s value for climate-aware MLLM adapta-
tion. This underscores the necessity of task-specific
alignment for bridging numerical meteorology and
textual narratives.

6.6 Limited Performance

While existing or fine-tuned MLLMs outperform
the heuristic baselines, they have relatively low ac-
curacy compared to the expert experiment, suggest-
ing current models have the advantage, however,
limited, in distinguishing different coarse-grained
event types (e.g., Precipitation vs. Wind) and fine-
grained event types (e.g., General wind vs. Ty-
phoon). It highlights the need for future work to
forecast meteorological events more accurately.

7 Conclusion

We propose the WCEF task, which forecasts
weather and climate events using meteorological
raster data. To support this task, we present CLL-
Mate, the first supervised multimodal dataset that
aligns spatiotemporally grounded event descrip-
tions and their consequences with corresponding
meteorological numerical data. We conducted ex-
tensive experiments for benchmarking the WCEF
task. The results show that while the MLLMs’ per-
formance can outperform the heuristic baselines,
demonstrating the dataset’s value for climate-aware
MLLM adaptation.

Limitation

We identify some limitations in this study and fu-
ture research directions in this emerging field:

First, the inclusion of additional modalities or
other domains’ data, such as altitude and topogra-

phy, to offer supplementary insights for forecasting
is essential. While this study initially delves into
modalities encompassing numerical spatiotemporal
data and text, there exist other meteorological data
modalities like satellite imagery and time series
data (Jin et al., 2023) from global meteorological
stations that could contribute to longer-term, more
precise forecasting. These data can be easily in-
tegrated into the events in CLLMate according to
the spatiotemporal information. Further research is
warranted to enrich the forecasting capabilities.

Second, since we extracted a large number of
triples (event A causes event B), the incorpora-
tion of the knowledge graph necessitates addi-
tional exploration. Employing more sophisticated
techniques to equip the MLLM with prior world
knowledge (Do et al., 2024; Wang et al., 2024c)
of weather and climate for the events understand-
ing (Wang et al., 2022, 2023b), could potentially
enhance the performance.

Last, the events are concentrated in East Asia,
North America, and Europe (Figure 2). It re-
flects socioeconomic disparities in environmental
reporting infrastructure and media coverage biases,
which is an interesting topic for future research.
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A Dataset Release and License

A.1 CLLMate License and Availability.

The CLLMate dataset is available at https://github.com/hobolee/CLLMate and uses the CC BY 4.0
license. The data format is:

{
...
"6973": {

"caused by": "None",
"cause": "6970",
"news_id": "5838681",
"event": "high temperature",
"category_name": "phenomena.atmospheric.high temperature",
"category_index": "A.A.A",
"time": "2022/07/25",
"location": "Guangzhou City",
"coordinate": "[20.69, 110.88, 25.69, 115.88]",
"image_path": "./ image/6973.png",
"temperature": {

"max": "302.75", "min": "302.00", "mean": "302.50"},
"wind speed": {

"max": "6.56", "min": "4.09", "mean": "5.51"},
"precipitation": {

"max": "0.00", "min": "0.00", "mean": "0.00"}
},
"6974": {

"caused by": "None",
"cause": "None",
"news_id": "5677320",
"event": "increased wildfire severity",
"category_name": "consequence.disaster.fire",
"category_index": "B.A.D",
"time": "2022/07/25",
"location": "California State",
"coordinate": "[32.5288, -124.4096, 42.0095, -114.1312]",
"image_path": "./ image/6974.png",
"temperature": {

"max": "312.50", "min": "295.00", "mean": "306.00"},
"wind speed": {

"max": "12.07", "min": "0.00", "mean": "4.01"},
"precipitation": {

"max": "0.00", "min": "0.00", "mean": "0.00"}
},
...

}
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A.2 Category

Weather and
Climate Events

Consequence

Transportation
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Impacted resource
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Vehicle Damage
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Infrastructure Damage

Organisms Impact

Impacted Plant
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Pollution

Fire

Earthquake &
Landslide
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Meteorological
Phenomena

Wind

Tornado

Typhoon

General Wind

Precipitation
Solid Precipitation

Liquid Precipitation

Atmospheric

Low Visibility

Low Temperature

High Temperature
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A.3 Category Distribution

The dataset is partitioned chronologically into train-
ing (90%) and test (10%) sets. The category distri-
butions of the entire dataset are displayed in Fig-
ure 5 and Figure 4. There are imbalances in the cat-
egory distribution, such as for the primary category
of meteorological phenomena, there are 43.7%
events are atmospheric-related, 40.5% events are
precipitation-related, and only 15.8% events are
wind-related. That is because all events are ex-
tracted from the news and follow the distribution
of the recording of events. We also present the cat-
egory distribution of training (Figure 6) and testing
(Figure 7) sets.

25.7%

12.1%

5.9%
31.3%

9.2%

2.8%
15.8%

11.9%
1.1%

43.7%

40.5%

Atmospheric
High Temperature
Low Temperature

Liquid Precipitation
Solid Precipitation

Low Visibility

General Wind
Typhoon
Tornado

Precipitation

Wind

Categories

Figure 4: Distribution of categories within the meteoro-
logical phenomena category (3,979/7747 events). The
distribution is imbalanced, reflecting the nature of event
reporting in the news.
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Figure 5: Distribution of categories within the conse-
quences category (3,768/7747 events). The distribution
is imbalanced, reflecting the nature of event reporting
in the news.

A.4 Generalizability of CLLMate

While the CLLMate benchmark is structured for hi-
erarchical categorization via multiple-choice evalu-
ation, its design inherently supports other discrimi-
native or generative tasks, such as open-ended gen-
eration tasks. The inclusion of raw textual event

descriptions (subsection A.1) alongside aligned me-
teorological data enables applications beyond con-
strained categorization. For example:
• Free-form event narrative generation: Training or

evaluating MLLMs to produce human-readable
weather/climate event summaries from numerical
inputs.

• Causal reasoning exploration: Probing model ca-
pabilities to infer and articulate chains of causal-
ity between meteorological drivers and societal
impacts.

• Automated report drafting: Generating local-
ized risk assessments or mitigation advisories
grounded in spatio-temporal climate patterns.

• Open for integrating additional meteorological
data (e.g., more meteorological variables) and
more modalities (e.g., satellite images). For each
event, we provide the location and date, making
it easy to align future data.
The generalizability of CLLMate ensures com-

patibility with both discriminative and generative
evaluation paradigms, broadening its utility for re-
search in meteorology-informed language model-
ing and operational forecasting systems.

A.5 ERA5 Reanalysis Dataset

The link to the ERA5 dataset is https:
//cds.climate.copernicus.eu/datasets/
reanalysis-era5-single-levels?tab=
overview. The ERA5 dataset uses a license of
Copernicus products. This license permits access
to Copernicus Products for any lawful purpose.
Authorized uses include, but are not limited to,
reproduction, distribution, public dissemination,
adaptation, modification, and integration with
other data and information.

The meteorological variables of ERA5 used in
CLLMate are:

ERA5 Varaibles

• 2m temperature: This parameter is the
temperature of air at 2m above the sur-
face of land, sea or inland waters. 2m
temperature is calculated by interpolat-
ing between the lowest model level and
the Earth’s surface, taking account of the
atmospheric conditions. This parameter
has units of kelvin (K). Temperature mea-
sured in kelvin can be converted to de-
grees Celsius (°C) by subtracting 273.15.
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Figure 6: Distribution of categories of the training set. A: meteorological phenomena categories (3487/7747 events).
B: consequences categories (3485/7747 events).
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Figure 7: Distribution of categories of the testing set. A: meteorological phenomena categories (492/7747 events).
B: consequences categories (283/7747 events).

• 10m u-component of wind: This parame-
ter is the eastward component of the 10m
wind. It is the horizontal speed of air mov-
ing towards the east, at a height of ten
metres above the surface of the Earth, in
metres per second. This parameter can be
combined with the V component of 10m
wind to give the speed and direction of
the horizontal 10m wind. This parameter
has units of metre per second (m/s).

• 10m v-component of wind: This param-
eter is the northward component of the
10m wind. It is the horizontal speed of air
moving towards the north, at a height of
ten metres above the surface of the Earth,
in metres per second. This parameter can
be combined with the U component of
10m wind to give the speed and direction
of the horizontal 10m wind. his parameter
has units of metre per second (m/s).

• Total precipitation: This parameter is
the accumulated liquid and frozen water,
comprising rain and snow, that falls to
the Earth’s surface. It is the sum of large-
scale precipitation and convective precipi-
tation. Large-scale precipitation is gener-

ated by the cloud scheme in the ECMWF
Integrated Forecasting System (IFS). This
parameter has units of meter (m).

A.6 The environmental news dataset.

The environmental news dataset used to extract
meteorological events was acquired through a pro-
curement process from Wisers (Wisers, 2024).

B Prompt and Annotation

B.1 Prompt for Extracting Events

System Prompt

You are an AI assistant with expertise in ex-
tracting environmental events. Your task is
to analyze the given news article and iden-
tify environmental events (and their conse-
quences) and their corresponding locations
and time that have actually occurred and
are explicitly mentioned in the text. Only
extract triples if they pertain to environmen-
tal events and actual events. Do not make
inferences.
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Output Definition

In the extracted triples, the first element
should represent the subject, the second ele-
ment should be the constrained verb ’cause,’
and the third element should represent the
object. Both the subject and object should
relate to environmental events or risks. If
the geographic location is not provided, in-
dicate ’no’. If the date is provided, output
YYYY/MM/DD. If the date is not provided,
indicate ’no’.

Zero-Shot CoT

Initially, evaluate if the news article dis-
cusses environmental events. Next, deter-
mine if the associated geographic location
and time are specified. If both conditions
are met, output the list [subject, cause, ob-
ject, location, time]. The output should be
in English.

Few-shot

If the news is <news article containing en-
vironmental events>, the output should be
<correct events with location and time>. If
the news is <news article containing no en-
vironmental events>, the output should be
“No”. Now, the news is: <news to be ana-
lyzed>

B.2 Annotation Details

We presented the original news articles along with
the extracted events to three domain experts for an-
notation. The experts are postdocs and PhD candi-
dates in the domain. There are no ethical concerns,
as the experts involved do not experience any harm.
Furthermore, they were fairly compensated at a rate
of 20 USD per hour for their contributions. Each
expert assessed the extracted events based on the
corresponding news article, assigning a label of 1
(accurate) or 0 (inaccurate). The final annotation
for each event was determined by majority vote.
Out of 6,352 news articles, the extracted events
from 2,575 articles (40.54%) were deemed accu-
rate. The inter-annotator agreement (IAA) score,
measured by the pairwise agreement proportion,
was 81.83%, and Fleiss’s κ (Fleiss, 1971) was cal-
culated to be 0.63.

B.3 Prompt for Phenomena Forecasting

System Prompt

You are an AI assistant with expertise in
weather analysis. Your task is to interpret
meteorological data and figures, analyze
weather variables, and provide accurate in-
sights into weather conditions.

Location Information

The provided figure corresponds to
<city_name> city, covering the geographic
area defined by:Latitude: [<lat_min>,
<lat_max>], Longitude: [<lon_min>,
<lon_max>].

Meteorological Parameters

The daily mean meteorological parameters
I provided are as follows:
The 2m temperature: the temperature of air
at 2m above the surface of land, sea or in-
land waters. This parameter has units of
kelvin (K). Average daily mean tempera-
ture of that area: <t_mean> K. Max daily
mean temperature of that area: <t_max> K.
Min daily mean temperature of that area:
<t_min> K.
The 10m wind: the speed of air moving
towards the north, at a height of ten metres
above the surface of the Earth, in metres
per second. Average daily mean wind speed
of that area: <w_mean> m/s. Max daily
mean wind speed of that area: <w_max>
m/s. Min daily mean wind speed of that
area: <w_min> m/s.
Precipitation: the accumulated liquid and
frozen water, comprising rain and snow, that
falls to the Earth’s surface. The units of
this parameter are depth in metres of water
equivalent. Average daily mean precipita-
tion of that area: <p_mean> m. Max daily
mean precipitation of that area: <p_max> m.
Min daily mean precipitation of that area:
<p_min> m.

Meteorological Image

The figure provided is an RGB image de-
rived from spatiotemporal meteorological
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data for the region. Each channel represents:
channel 1: Temperature. channel 2: Wind
Speed. channel 3: Precipitation.

Options (The order is random for different
instances.)

The possible answers are structured into
main categories with sub-options:
• A: Atmospheric

– A.1: High Temperature
– A.2: Low Temperature
– A.3: Low Visibility

• B: Wind
– B.1: General Wind
– B.2: Tornado
– B.3: Typhoon

• C: Precipitation
– C.1: Solid Precipitation
– C.2: Liquid Precipitation

Zero-Shot CoT

To determine the most likely meteorolog-
ical scenario, follow these steps: 1. Ana-
lyze Statistical Data: Evaluate the statistical
information (mean, max, and min values)
for temperature, wind speed, and precipita-
tion. Identify any conditions that suggest
extreme weather or notable patterns. 2. An-
alyze Spatial Patterns in the Image: Exam-
ine the RGB image for regional variations in
temperature, wind, and precipitation. Con-
sider the spatial distribution of these vari-
ables to identify meteorological phenomena.
3. Synthesize Findings: Combine insights
from the statistical data and image analy-
sis. Choose the only most appropriate sub-
option from the given categories based on
your analysis. You must output the serial
number of the option.

B.4 Prompt for Consequences Forecasting
For the prompt for the consequences forecasting,
we will change the “System Prompt” and “Options”
sections by using the corresponding categories.

System Prompt

You are an AI assistant with expertise in
weather analysis. Your task is to interpret

meteorological data and figures, analyze
weather variables, and provide accurate in-
sights into meteorological consequences.

Options (The order is random for different
instances.)

The possible answers are structured into
main categories with sub-options:
• A: Disaster

– A.1: Flood
– A.2: Drought
– A.3: Earthquake & Landslide
– A.4: Fire
– A.5: Pollution, including Air Pollution,

Water Pollution, Solid Pollution
• B: Organisms Impact

– B.1: Impacted Human, including Trap,
Injury, Death

– B.2: Impacted Animal
– B.3: Impacted Plant

• C: Damage
– C.1: Infrastructure Damage
– C.2: Building Damage
– C.3: Vehicle Damage
– C.4: Equipment Damage

• Society Impact
– D.1: Impacted resource, including

Food Shortage, Power Shortage
– D.2: Impacted activity, including Work

Activity, School Activity
• Transportation Impact

– E.1: Impacted Flight
– E.2: Impacted Train
– E.3: Impacted Road Traffic
– E.4: Impacted Maritime

C Visual Instruction Tuning Models

We fine-tuned the LLaVA models on the train-
ing set of CLLMate. The fine-tuned models in-
clude LLaVA-1.5-7B/13B and LLaVA-1.6-vicuna-
7B/13B.

C.1 Vision Encoder and Adapter

We maintain consistency with LLaVA on the vision
encoder and adapter. For the vision encoder, we
utilized CLIP ViT-L/14 (Radford et al., 2021) to
extract the spatial patterns of meteorological im-
ages. For the vision-language adapter, we used the
two-layer MLP vision-language adapter provided
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by LLaVA. The vision encoder and the adapter are
frozen during the fine-tuning.

C.2 Training Configuration

In terms of MLLMs, we fine-tuned LLaVA-7B and
13B models for one epoch using DeepSpeed ZeRO-
3 on 8×A800 GPUs, with a learning rate of 2e-5
and batch size of 16. Training required 1 hour
(7B) and 2 hours (13B) for one epoch. For the
traditional AI models, the training parameters are:
epochs: 50, batch Size: 32, optimizer: AdamW,
learning Rate: 3e-4, loss Function: Cross Entropy.
As for traditional AI models, we trained them using
1x4090 GPUs. The total API cost for closed-source
models amounts to approximately $200.

D More Evaluation

D.1 Generation Study

We conducted experiments to directly generate me-
teorological events without providing predefined
categories. To evaluate performance, domain ex-
perts manually compared the generated events with
the labeled ones. The results (Table 3) indicate
that MLLMs currently lack the ability to directly
predict extreme weather events. This underscores
the necessity of providing comprehensive event
categories as a reference for MLLMs.

D.2 Category-wise Performance

To further complement our analysis, we calculated
class-wise recall scores, as false negatives are par-
ticularly critical in high-stakes prediction tasks. We
analyzed the performance of three representative
LLMs for the primary category of meteorological
phenomena (Table 6) and the primary category of
meteorological consequence (Table 7) prediction
(one closed-source, one open-source, and one fine-
tuned model). The results show that LLMs perform
poorly on transportation forecasting (significantly
worse than other categories) and perform better
on tasks like disaster forecasting. This discrepancy
may be caused by the stronger relationship between
meteorology and disasters. In contrast, the relation-
ship between meteorology and transportation (e.g.,
flight delay) is more complex and likely influenced
by human decisions based on meteorology and so-
cial factors.

D.3 Precision/Recall Results

In addition to the accuracy, we also present the
recall (Table 4) and precision (Table 5) scores of

the selected models.

D.4 Case Study
To illustrate the model’s capabilities on the WCEF
task, we analyze the representative examples (event
6973 and event 6974 in subsection A.1) with the
original news article and MLLMs’ output.

D.4.1 Case 1: Phenomena Forecasting (Event
6973)

We present some typical MLLMs’s output in sub-
section A.1, with correct analyses highlighted in
blue and incorrect ones in red, as assessed by a
domain expert.

Current MLLMs all provide structured, human-
aligned rationales and identify meteorological
thresholds (e.g., 29.35°C). All models correctly ex-
cluded precipitation (C.1/C.2) and wind extremes
(B.2/B.3); however, only Claude-3.5-Sonnet ex-
plicitly justified these exclusions using statistical
ranges. The fine-tuned model, Fine-Tuned-LLaVA-
1.6-vicuna-7B, provided direct answers without of-
fering reasoning.

Regarding multimodal data, these models
demonstrated accurate analysis of meteorological
images. For instance, QWen2.5-VL-72B uniquely
interpreted the meaning of colors, while LLaVA-
34B concentrated on analyzing spatial uniformity.

Case 1: Event 6973 (shown in subsection
A.1)

The news article:
Guangzhou issued its first high temperature
red warning this year. Guangzhou will
continue to be sunny and hot in the next
three days.
Southern Metropolis Daily
Original Report | July 25, 2022, 16:24

Guangzhou has issued its first red high-
temperature warning of the year. As of
4 p.m., seven districts in Guangzhou, ex-
cluding Conghua, Zengcheng, Nansha, and
Panyu, have issued red warnings for high
temperatures. The highest temperatures in
these districts are expected to reach around
39°C today and tomorrow. According to the
provincial government’s defense guidelines,
outdoor activities should be minimized dur-
ing the daytime, and outdoor work in open
areas should be suspended, except for spe-
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Models Phenomena Consequence

Gemini-2.0-flash (Team et al., 2023) 1.42% 1.77%
LLaVA-1.6-mistral-7B (Liu et al., 2024) 1.02% 4.59%

Table 3: The accuracy of MLLMs in directly forecasting meteorological events without providing predefined
categories.

Models Primary
Category of
Phenomena

Subordinate
Category of
Phenomena

Primary
Category of

Consequence

Subordinate
Category of

Consequence
Claude-3.7-Sonnet (Anthropic, 2025) 40.04% 20.93% 42.05% 15.55%
Qwen2.5-VL-72B (QwenTeam, 2025) 40.04% 20.93% 42.05% 15.55%
Fine-tuned-LLaVA-1.6-vicuna-13B 45.53% 27.03% 42.40% 9.19%

Table 4: The recall of benchmarked MLLMs across two granularity levels: primary category classification and
subordinate category identification for both meteorological phenomena and their cascading consequence.

Models Primary
Category of
Phenomena

Subordinate
Category of
Phenomena

Primary
Category of

Consequence

Subordinate
Category of

Consequence
Claude-3.7-Sonnet (Anthropic, 2025) 40.40% 21.15% 42.32% 17.71%
Qwen2.5-VL-72B (QwenTeam, 2025) 40.58% 21.13% 39.98% 18.34%
Fine-tuned-LLaVA-1.6-vicuna-13B 45.22% 26.21% 42.99% 9.08%

Table 5: The precision of benchmarked MLLMs across two granularity levels: primary category classification and
subordinate category identification for both meteorological phenomena and their cascading consequence.

Models Atmospheric Precipitation Wind
Claude-3.7-Sonnet (Anthropic, 2025) 43.51% 37.18% 39.56%
Qwen2.5-VL-72B (QwenTeam, 2025) 39.61% 32.69% 48.90%
Fine-tuned-LLaVA-1.6-vicuna-13B 41.56% 33.33% 59.34%

Table 6: The category-wise recall scores of benchmarked MLLMs across the primary category of meteorological
phenomena.

Models Disaster Organisms Impact Damage Society Impact Transportation
Claude-3.7-Sonnet (Anthropic, 2025) 49.15% 41.18% 45.61% 50.00% 26.56%
Qwen2.5-VL-72B (QwenTeam, 2025) 42.37% 41.18% 42.11% 44.23% 29.69%
Fine-tuned-LLaVA-1.6-vicuna-13B 44.07% 39.22% 43.86% 48.08% 37.50%

Table 7: The category-wise recall scores of benchmarked MLLMs across the primary category of meteorological
consequence.

cial industries.
Under the influence of a strong subtrop-
ical high-pressure system, Guangzhou
is expected to experience widespread
sunny and hot weather with high tem-
peratures over the next three days.

Ground Truth: A.1: High
Temperature (option in the
question)
Event: high temperature
Category_name: phe-
nomena.atmospheric.high
temperature
Category_index: A.A.A
Time: 2022/07/25
Location: Guangzhou City
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GPT-4o’s output:
• 1. Analyze Statistical Data:

– Temperature: Average daily mean
temperature is 302.50 K, with a max
of 302.75 K and a min of 302.00 K.
These values suggest relatively high
temperatures.

– Wind Speed: Average daily mean
wind speed is 5.51 m/s, with a max
of 6.56 m/s and a min of 4.09 m/s.
These figures suggest moderate wind
speeds.

– Precipitation: All values show 0.00
m, indicating no precipitation.

• 2. Analyze Spatial Patterns in the Image:
The image predominantly shows a strong
red hue, indicating high temperatures.
There is also a noticeable green compo-
nent, indicating the presence of notable
wind speeds.

• 3. Synthesize Findings:
The data indicates high temperatures with-
out any precipitation and moderate winds.

Conclusion: The most appropriate option
based on the analysis is: A.1: High Temper-
ature.

Claude-3.5-Sonnet’s output:

Let me analyze the meteorological data and
image systematically:
• 1. Statistical Data Analysis:

– Temperature: 302.5K (29.35°C)
with small variation (0.75K range)

– Wind speed: Average 5.51 m/s with
moderate variation (2.47 m/s range)

– Precipitation: 0.00m (no precipita-
tion)

• 2. Image Analysis: The image shows a
predominantly yellow/orange color. High
intensity in the red channel (tempera-
ture). Moderate intensity in green channel
(wind). No visible blue component (con-
firming zero precipitation).

• 3. Synthesis: The high temperature
(302.5K/29.35°C) and uniform yellow/o-
range coloring indicates hot conditions.
Wind speeds are moderate but not ex-
treme. No precipitation is present. The

spatial pattern shows consistent high tem-
perature across the region. Based on these
observations: The dominant feature is
the high temperature. No extreme wind
events (ruling out B options). No precipi-
tation (ruling out C options). The uniform
high temperature pattern best matches
A.1.

Therefore, I select option A.1 (High Temper-
ature) as the most appropriate classification
for these conditions. Answer: A.1

LLaVA-1.6-vicuna-34B’s output:

Based on the provided meteorological data
and the RGB image, the most likely me-
teorological scenario for the region is: A:
Atmospheric. A.1: High Temperature. The
average daily mean temperature of 302.50
K (29.50°C) is relatively high, and the max-
imum daily mean temperature of 302.75 K
(29.75°C) is even higher. The image shows
a uniform distribution of high temperatures
across the region, with no significant varia-
tions in temperature. The wind speed and
precipitation are relatively low and do not
show any extreme patterns. The high tem-
peratures suggest a warm and sunny climate,
which is consistent with the image’s depic-
tion of high temperatures.

Qwen2.5-VL-72B’s output:

A.1. Analysis:

• Step 1: Analyze Statistical Data
– Temperature: Average daily mean

temperature: 302.50 K (approxi-
mately 29.35°C). Max daily mean
temperature: 302.75 K (approxi-
mately 29.60°C). Min daily mean
temperature: 302.00 K (approxi-
mately 28.85°C). These tempera-
tures indicate relatively high and
consistent warmth across the region,
suggesting a hot day.

– Wind Speed: Average daily mean
wind speed: 5.51 m/s. Max daily
mean wind speed: 6.56 m/s. Min
daily mean wind speed: 4.09 m/s.
The wind speeds are moderate but
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not indicative of extreme weather
like tornadoes or typhoons.

– Precipitation: Average daily mean
precipitation: 0.00 m. Max daily
mean precipitation: 0.00 m. Min
daily mean precipitation: 0.00 m.
There is no recorded precipitation,
indicating dry conditions.

• Step 2: Analyze Spatial Patterns in the
Image. The image is uniformly yellow,
which suggests a consistent pattern across
the region. Given the color coding: Red
(Temperature): The yellow hue indicates
a high temperature since red is associated
with temperature. Green (Wind Speed):
The lack of green suggests moderate wind
speeds, consistent with the statistical data.
Blue (Precipitation): The absence of blue
confirms the lack of precipitation.

• Step 3: Synthesize Findings. Combin-
ing the statistical data and the spatial pat-
terns observed in the image, it is clear
that the region experienced high tempera-
tures with no significant precipitation and
moderate wind speeds.

Therefore, the most appropriate sub-option
is A.1: High Temperature.

Fine-Tuned-LLaVA-1.6-vicuna-7B’s out-

put:
A.1: High Temperature

D.4.2 Case 2: Consequence Forecasting
(Event 6974)

We present some typical MLLMs’s output in sub-
section A.1, with correct analyses highlighted in
blue and incorrect ones in red, as assessed by a
domain expert.

This case demonstrates critical disparities in mul-
timodal causal reasoning for fire risk prediction.
While GPT-4o and Claude-3.5-Sonnet identified
fire-prone conditions (high temperatures, moderate
winds (should be strong wind), and zero precip-
itation), both erroneously selected A.4: Drought
rather than A.5: Fire. In contrast, Qwen2.5-VL-
72B successfully synthesized all variables, espe-
cially interpreting wind spikes as fire accelerants,
to correctly predict A.5: Fire.

Case 2: Event 6974 (shown in subsection
A.1)

The news article:
Wildfire spreads near Yosemite National
Park in the United States

On July 25 local time, the spread of a wild-
fire near Yosemite National Park in Cali-
fornia slowed down, the containment rate
increased, and firefighting efforts showed
signs of progress.
The California Department of Forestry and
Fire Protection (Cal Fire) stated on the
evening of the 25th that it was a "successful
day" for firefighting efforts. From morning
to evening, strong winds caused the burned
area to expand from 16,791 acres (approx-
imately 68 square kilometers) to 17,241
acres (approximately 70 square kilometers),
while the containment rate rose from 10%
to 16%. The agency reported that the fire
had destroyed 55 structures. As firefighting
efforts advanced, evacuation orders in some
areas were downgraded to evacuation warn-
ings, and certain roads were reopened for
local residents.
On the 25th, a China News Service reporter
observed at the fire site that firefighters had
cleared a large number of firebreaks through
the forested areas. In areas near major roads,
the fire was no longer severe, but thick
smoke continued to rise from the hillsides
and mountain tops. Several aircraft took
turns dropping water or fire retardants onto
larger hotspots, while fire trucks were dis-
persed across various locations to respond
to potential flare-ups. On the charred land,
small groups of firefighters were extinguish-
ing smaller fires.
According to Cal Fire, as of the evening
of the 25th, nearly 3,000 firefighters, 24
helicopters, 302 fire engines, and 68 water
trucks had been deployed to the fire site. On
that day alone, helicopters dropped 300,000
gallons (approximately 1.136 million liters)
of water onto the fire.
With climate change causing increasingly
hotter and drier conditions in the west-
ern United States, wildfires in California
have become more severe. This wildfire
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near Yosemite National Park started in the
Midpines area of Mariposa County and
spread rapidly due to strong winds, be-
coming California’s largest wildfire so far
this year. U.S. media have reported that
this wildfire is likely the beginning of an-
other severe wildfire season in California.

Ground Truth: A.5: Fire
(option in the question)
Event: increased wildfire
severity
Category_name:consequence.disaster.fire
Category_index: B.A.D
Time: 2022/07/25
Location: California State

GPT-4o’s output: To determine the most
likely meteorological scenario, let’s analyze
the provided data and image:
• 1. Analyze Statistical Data:

– Temperature: The average daily
mean temperature is 306.00 K, with
a max of 312.50 K. This indicates
high temperatures, potentially in-
dicative of heat waves.

– Wind Speed: The average daily
mean wind speed is 4.01 m/s with
peaks at 12.07 m/s. This suggests
mild to moderate winds, with occa-
sional stronger gusts.

– Precipitation: There is no precipi-
tation recorded (0.00 m), indicating
very dry conditions.

• 2. Analyze Spatial Patterns in the Im-
age: The image is predominantly yellow
with reddish tones, indicating high tem-
peratures (red channel is for temperature).
This suggests a uniform region of warm
temperatures. The lack of blue and green
tones indicates negligible precipitation
and moderate to minimal wind activity.

• 3. Synthesize Findings: Temperature and
Precipitation: The very high temperature
coupled with the lack of precipitation sug-
gests a dry heat scenario. Impact Analy-
sis: The conditions are suggestive of po-
tential drought and fire risks due to high

temperatures and no rainfall. Considering
the provided categories: Drought (A.4):
Prolonged high temperatures and no pre-
cipitation are indicative of drought condi-
tions, impacting water availability, agri-
culture, and potentially leading to wild-
fires.

Given this analysis, the most appropriate
sub-option based on the scenario is: A.4:
Drought.

Claude-3.5-Sonnet’s output:

Let me analyze the meteorological data and
image systematically:
• 1. Statistical Data Analysis:

– Mean: 306.00 K (32.85°C). Max:
312.50 K (39.35°C). Min: 295.00 K
(21.85°C). These are very high tem-
peratures, indicating extreme heat
conditions.

– Wind: Mean: 4.01 m/s. Max: 12.07
m/s. Min: 0.00 m/s. Moderate to
high wind speeds present.

– Precipitation: All values at 0.00 m.
Indicating completely dry conditions
with no rainfall.

• 2. Image Analysis: Dominant yellow-
orange coloring indicates high tempera-
tures. Some variations in green suggest-
ing wind speed variations. No blue tinting,
confirming zero precipitation.

• 3. Synthesis: The combination of: Ex-
tremely high temperatures (approaching
40°C). Complete absence of precipitation.
Presence of wind. Geographic location
(California). These conditions strongly
indicate a severe drought situation with
high fire risk. The complete lack of pre-
cipitation, combined with high tempera-
tures and wind, creates perfect conditions
for drought conditions.

Based on the given options and this analysis,
the most appropriate classification would be:
A.4 (Drought). The conditions present clear
indicators of drought conditions, which can
lead to water shortages and increased fire
risk. This is supported by both the statis-
tical data showing zero precipitation and
very high temperatures, as well as the im-
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age showing warm conditions across the
region.

LLaVA-1.6-vicuna-34B’s output:
Based on the provided meteorological data
and the RGB image, I will analyze the situ-
ation and provide the most appropriate sub-
option from the given categories.

• 1. Analyze Statistical Data: The av-
erage daily mean temperature of the
area is 306.00 K, which is equivalent to
32.83 degrees Celsius. The max daily
mean temperature is 312.50 K (34.38
degrees Celsius), and the min daily
mean temperature is 295.00 K (27.27
degrees Celsius). The average daily
mean wind speed is 4.01 m/s, with a
max daily mean wind speed of 12.07
m/s and a min daily mean wind speed
of 0.00 m/s. The average daily mean
precipitation is 0.00 m, with a max
daily mean precipitation of 0.00 m and
a min daily mean precipitation of 0.00
m. From the statistical data, we can
observe that the area experiences rela-
tively high temperatures, with a range
of 7.56 degrees Celsius between the
max and min daily mean temperatures.
The wind speeds are relatively low,
with a range of 12.07 m/s between the
max and min daily mean wind speeds.
The precipitation levels are very low,
with no precipitation recorded.

• 2. Analyze Spatial Patterns in the Im-
age: The RGB image shows variations
in temperature, wind speed, and pre-
cipitation across the region. The red
channel (temperature) shows a gradi-
ent of temperature, with warmer areas
in the south and cooler areas in the
north. The green channel (wind speed)
shows a gradient of wind speed, with
higher wind speeds in the south and
lower wind speeds in the north. The
blue channel (precipitation) shows no
precipitation across the region. From
the image analysis, we can observe
that the region experiences a gradient

of temperature and wind speed, with
warmer and windier conditions in the
south and cooler and calmer conditions
in the north. However, there is no pre-
cipitation recorded in the image.

• 3. Synthesize Findings: Based on the
statistical data and image analysis, the
most appropriate sub-option from the
given categories is: D: Organisms Im-
pact D.1: Impacted Plant. The reason
for this choice is that the region expe-
riences high temperatures and low pre-
cipitation, which can lead to drought
conditions. Drought can have a sig-
nificant impact on plant life, as it can
cause stress, wilting, and even death.
The lack of precipitation in the image
further supports this conclusion.

Therefore, the serial number of the most
appropriate sub-option is: D.1.

Qwen2.5-VL-72B’s output:

Based on the provided meteorological data
and the analysis of the RGB image:

• Step 1: Analyze Statistical Data
– Temperature: Average daily mean

temperature: 306.00 K (approxi-
mately 32.85°C). Maximum daily
mean temperature: 312.50 K (ap-
proximately 39.35°C). Minimum
daily mean temperature: 295.00 K
(approximately 21.85°C). These tem-
peratures indicate relatively warm
conditions, with some areas experi-
encing high temperatures.

– Wind Speed: Average daily mean
wind speed: 4.01 m/s. Maximum
daily mean wind speed: 12.07 m/s.
Minimum daily mean wind speed:
0.00 m/s. The average wind speed
is moderate, but there are areas with
higher wind speeds, which could be
significant.

– Precipitation: Average daily mean
precipitation: 0.00 m. Maximum
daily mean precipitation: 0.00 m.
Minimum daily mean precipitation:
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0.00 m. There is no recorded precip-
itation, indicating dry conditions.

• Step 2: Analyze Spatial Patterns in the
Image. Temperature (Red Channel): The
red color dominates the image, suggest-
ing widespread high temperatures across
the region. Wind Speed (Green Channel):
The green color is present but less dom-
inant compared to red, indicating vari-
able wind speeds with some areas experi-
encing higher wind speeds. Precipitation
(Blue Channel): The absence of blue sug-
gests no precipitation across the region.

• Step 3: Synthesize Findings. Given the
high temperatures, lack of precipitation,
and variable wind speeds, the most likely
meteorological scenario is one associated
with dry and hot conditions. The combi-
nation of high temperatures and wind can
lead to increased risk of wildfires.

Conclusion: The most appropriate sub-
option based on the analysis is: A.5: Fire.

Fine-Tuned-LLaVA-1.6-vicuna-7B’s out-

put:
A.2: Earthquake & Landslide

D.5 Ablation Study

To quantify the contribution of multimodal inputs,
we conducted an ablation study with Gemini-2.0-
flash (closed-source) and LLaVA-1.6-mistral-7B
(open-source) for their good performance (e.g.,
LLaVA-1.6-mistral-7B has the best performance
among 7/8B open-source MLLMs). We ablated
three components: meteorological images, statisti-
cal summaries, and Zero-Shot CoT prompting. The
results are displayed in Table 8.

D.5.1 Closed-Source Models
(Gemini-2.0-Flash)

Image Removal: Eliminating meteorological
raster data catastrophically degrades phenom-
ena forecasting (37.80% → 25.81%, 19.72% →
14.63%), but marginally improves consequence
subordinate accuracy (30.39% → 30.74%, 13.43%
→ 14.84%). This suggests Gemini-2.0-flash relies
heavily on spatial patterns for phenomena forecast-
ing.
Statistics Removal: Removing statistics surpris-
ingly does not significantly impact performance,

improving overall accuracy from 30.39% to 38.87%
of primary consequence forecasting. This indicates
a redundancy between statistical summaries and
raster data for Gemini-2.0-flash.
Zero-Shot CoT Removal: Disabling Zero-Shot
CoT harms event forecasting, especially for conse-
quence forecasting for Gemini-2.0-flash, underscor-
ing its necessity for causal event differentiation.

D.5.2 Open-Source Models
(LLaVA-1.6-Mistral-7B)

Image Removal: Degrades performance univer-
sally and largely, with catastrophic drops in conse-
quence forecasting (39.22% → 13.78%). Unlike
Gemini-2.0-flash, LLaVA-1.6-mistral-7B cannot
compensate for missing spatial data via text-based
statistics.
Statistics Removal: Improves primary conse-
quence accuracy (39.22% → 44.52%) while harm-
ing phenomena prediction (32.93% → 26.22%),
suggesting statistical summaries introduce noise
for impact forecasting but aid event detection for
LLaVA-1.6-mistral-7B.
Zero-Shot CoT Removal: Erases Zero-Shot CoT,
reducing the performance of LLaVA-1.6-mistral-
7B with the exception of primary phenomena fore-
casting.

D.5.3 Key Insights
Modality Asymmetry: MLLMs exhibit flexible
modality compensation (e.g., statistics → images)
in part of tasks but fail to compensate for all tasks.
For example, LLaVA-1.6-mistral-7B has a perfor-
mance drop for primary phenomena forecasting
but not for consequence forecasting when ablating
statistics.
Reasoning Bottleneck: Zero-Shot CoT prompting
provides gains, especially in subordinate accuracy,
proving essential for parsing causal meteorology-
event relationships.

D.6 Impact of Model Scale
We conducted the scale study on the open-source
models, the results are shown in Figure 8 and Fig-
ure 9.

D.6.1 Scale
Contrary to expectations, increasing the model
scale does not guarantee improved performance:

LLaVA-1.6-34B achieves state-of-the-art pri-
mary phenomena accuracy (42.28%) but catas-
trophically fails at primary consequence forecast-
ing (17.67% vs. 20.85% for its 7B variant), sug-
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Models Primary
Category of
Phenomena

Subordinate
Category of
Phenomena

Primary
Category of

Consequence

Subordinate
Category of

Consequence

Gemini-2.0-flash (Team et al., 2023) 37.80% 19.72% 30.39% 13.43%
w/o image 25.81% 14.63% 30.74% 14.84%
w/o statistics 37.80% 17.48% 38.87% 13.43%
w/o Zero-Shot CoT 33.94% 11.99% 17.67% 3.89%

LLaVA-1.6-mistral-7B (Liu et al., 2024) 32.93% 17.28% 39.22% 12.01%
w/o image 27.64% 13.41% 13.78% 4.95%
w/o statistics 26.22% 15.45% 44.52% 7.77%
w/o Zero-Shot CoT 33.33% 10.77% 20.49% 3.89%

Table 8: The results of the ablation study show the accuracy of benchmarked MLLMs across two granularity levels:
primary category classification (coarse-grained) and subordinate category identification (fine-grained) for both
meteorological phenomena and their cascading consequences. w/o image: remove the meteorological image from
the prompt. w/o: remove the statistics of meteorological variables from the prompt. w/o: remove the Zero-Shot CoT
from the prompt.

Figure 8: The line chart of the accuracy of open-sourced MLLMs. Left: Primary category of phenomena forecasting.
Right: Subordinate category of phenomena forecasting. The x-axis is in the log scale.

Figure 9: The line chart of the accuracy of open-sourced MLLMs. Left: Primary category of consequence
forecasting. Right: Subordinate category of consequence forecasting. The x-axis is in the log scale.

gesting larger models overfit to meteorological pat-
terns while losing causal reasoning capabilities of

consequence.

The Qwen2.5-VL and InternVL3 series demon-
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strate scale-dependent tradeoffs. For example, Scal-
ing from 7B to 72B, Qwen2.5-VL improves sub-
ordinate consequence accuracy by 17.67% in pri-
mary consequence forecasting (21.91% → 39.58%)
and 8.47% in subordinate consequence forecasting
(7.78% → 16.25%) but reduces primary phenom-
ena forecasting (42.27% → 40.85%).

D.6.2 Architectural Refinements
Architectural improvements (LLaVA-1.5 → 1.6,
Qwen2 → Qwen2.5) yield significant gains.
The LLaVA-1.6-Mistral-7B variant outperforms
LLaVA-1.5-7B in all tasks. The Qwen2.5-VL-7B
outperforms the Qwen2-VL-7B except for the pri-
mary consequence forecasting.

D.6.3 Fine-Tuning as a Scaling Alternative
Task-specific adaptation eclipses scale advantages:
Smaller fine-tuned models consistently outperform
larger untrained counterparts (13B/34B), with Fine-
tuned-LLaVA-1.6-vicuna-7B surpassing the 34B
untrained variant by 26.50% in primary conse-
quence forecasting (44.17% vs. 17.67%). Fine-
tuned-LLaVA-1.6-vicuna-7B also achieves 29.67%
subordinate phenomena accuracy vs. 15.45% for
LLaVA-1.6-vicuna-34B. Fine-tuned 7B models out-
perform larger untrained counterparts, proving task
alignment outweighs raw scale for meteorology-to-
text translation.
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