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Abstract
Deep neural networks have emerged as a power-
ful technique for learning representations from
user-item interaction data in collaborative fil-
tering (CF) for recommender systems. How-
ever, many existing methods heavily rely on
unique user and item IDs, which restricts their
performance in zero-shot learning scenarios.
Inspired by the success of language models
(LMs) and their robust generalization capabili-
ties, we pose the question: How can we lever-
age language models to enhance recommender
systems? We propose EasyRec, an effec-
tive approach that integrates text-based seman-
tic understanding with collaborative signals.
EasyRec employs a text-behavior alignment
framework that combines contrastive learn-
ing with collaborative language model tuning.
This ensures strong alignment between text-
enhanced semantic representations and collab-
orative behavior information. Extensive eval-
uations across diverse datasets show EasyRec
significantly outperforms state-of-the-art mod-
els, particularly in text-based zero-shot recom-
mendation. EasyRec functions as a plug-and-
play component that integrates seamlessly into
collaborative filtering frameworks. This em-
powers existing systems with improved per-
formance and adaptability to user preferences.
Implementation codes are publicly available at:
https://github.com/HKUDS/EasyRec.

1 Introduction

Deep learning has established itself as a highly
promising solution for capturing user preferences
in online recommender systems (Zhang et al., 2019;
Yang et al., 2022; Zhang et al., 2022). This ap-
proach harnesses deep neural networks to learn rich
user and item representations by analyzing com-
plex user-item interaction patterns. Consequently,
recommendation algorithms can accurately infer
user preferences and deliver personalized recom-
mendations (Xu et al., 2023; Sun et al., 2021).

*Chao Huang is the Corresponding Author.

Recent advancements in enhancing recom-
mender systems through neural network-powered
collaborative filtering frameworks, particularly
graph neural networks (GNNs) (Wang et al., 2019;
He et al., 2020; Xia et al., 2022), have leveraged
the inherent graph structure in data to capture high-
order relationships among users and items. Notable
GNN-based approaches, such as NGCF (Wang
et al., 2019) and LightGCN (He et al., 2020),
demonstrate impressive performance via recur-
sive message passing mechanisms. However, data
scarcity remains a significant challenge, hinder-
ing deep collaborative filtering models from ac-
curately learning user/item representations, espe-
cially with sparse interaction data (Lin et al., 2021;
Wei et al., 2021; Hao et al., 2021). To address
this, recent studies have explored self-supervised
learning for effective data augmentation. For in-
stance, contrastive methods like SGL (Wu et al.,
2021) and NCL (Lin et al., 2022) utilize graph con-
trastive learning, while generative approaches like
AutoCF (Xia et al., 2023) employ masked autoen-
coding to reconstruct interaction structures.

Recent advances in self-supervised learning
show promise in alleviating data scarcity in col-
laborative filtering models. However, these meth-
ods encounter a significant limitation (Yuan et al.,
2023). They rely heavily on unique identities (IDs)
to represent users and items. This reliance presents
major challenges for practical recommenders that
must handle data from diverse domains or time peri-
ods effectively. Existing ID-based models struggle
to adapt to changes in user and item identity to-
kens. This problem becomes particularly severe in
zero-shot recommendation scenarios (Ding et al.,
2021; Hou et al., 2022). In these cases, training
data lacks overlap with deployment data regarding
users and items. This limitation hinders their abil-
ity to generalize effectively towards foundational
recommender systems. Cross-domain recommen-
dation methods (Xie et al., 2022; Cao et al., 2022)
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attempt to leverage knowledge across multiple do-
mains. However, they often make restrictive as-
sumptions about user overlap. These approaches
assume that users from different domains belong to
the same set (Dacrema et al., 2012; Xie et al., 2022).
This assumption significantly limits their flexibil-
ity and generalization capabilities. Consequently,
existing methods struggle to provide accurate rec-
ommendations to diverse user populations. They
face particular challenges when operating across
varying domains and contexts.

Language Models as Zero-Shot Recommenders.
The challenges discussed earlier highlight a critical
need in recommendation systems. This study aims
to introduce a recommender system that functions
as a zero-shot learner. The system should pos-
sess robust generalization capabilities and adapt
to new recommendation data seamlessly. To ac-
complish this objective, we propose integrating lan-
guage models with collaborative relation modeling.
This integration forms an effective text embedder-
EasyRec that is both lightweight and effective. Our
approach seamlessly combines text-based seman-
tic encoding with high-order collaborative signals.
This combination results in a recommender system
with strong generalization ability. The system lever-
ages rich semantic understanding while capturing
collaborative patterns from user-item interactions.

Recent research has explored leveraging large
language models (LLMs) to enhance recommender
systems. Existing approaches broadly fall into two
categories. The first category uses LLMs for data
augmentation (e.g., RLMRec (Ren et al., 2024),
AlterRec (Li et al., 2024)). These methods encode
textual information to complement collaborative
filtering. While this combines LLM and collabo-
rative strengths, these methods remain ID-based
and struggle to generalize. The second approach
utilizes LLMs to directly generate user-item inter-
action predictions (e.g., LLaRA (Liao et al., 2024),
CoLLM (Zhang et al., 2023)). However, such LLM-
based recommenders suffer from poor efficiency,
requiring approximately one second per prediction.
This renders them impractical for large-scale rec-
ommendation tasks. These challenges highlight
the need for efficient, scalable solutions that inte-
grate semantic understanding with collaborative
strengths for zero-shot recommendation.

Our model demonstrates superior performance
compared to state-of-the-art language models, as
illustrated in Figure 1. This performance advan-
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Figure 1: EasyRec outperforms state-of-the-art lan-
guage models in text-based zero-shot recommendation.

tage is achieved within a cost-efficient parameter
space of 100 to 400 million parameters. The com-
putational cost is approximately 0.01 seconds per
prediction. Notably, our model exhibits the scal-
ing law phenomenon. Performance continually im-
proves as parameter size increases. This contrasts
with existing approaches that suffer from poor effi-
ciency. Our model is designed to be highly scalable
and practical for large-scale recommendation tasks.
The computational efficiency represents significant
advancement over current methods. While existing
LLM-based recommenders require substantial in-
ference time, our approach maintains both accuracy
and speed for real-world deployment. In summary,
this work makes the following contributions:

• Motivation. The primary objective of this study
is to introduce a novel recommender system built
upon language models. This system functions
as a zero-shot learner with exceptional adaptabil-
ity to diverse recommendation data. The new
EasyRec exhibits robust generalization capabili-
ties across different domains and contexts.

• Methodology. We propose a novel contrastive
learning-powered collaborative language model-
ing approach. This method aligns text-based se-
mantic encoding with collaborative signals from
user behavior. The system captures both seman-
tic representations of users and items. It also
learns underlying behavioral patterns and inter-
actions within the recommendation data.

• Zero-Shot Recommendation Capacity. The
EasyRec is extensively evaluated through rigor-
ous experiments as a text-based zero-shot rec-
ommender system. Performance comparisons
reveal consistent and significant advantages over
baseline methods. The model excels in both rec-
ommendation accuracy and generalization capa-
bilities. Furthermore, the study demonstrates
remarkable potential in adapting dynamic user
profiles. These profiles are highly adaptive to
time-evolving user preferences.

• Existing Recommender Enhancement. Our
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Figure 2: The overall framework of our proposed collaborative information-guided language model EasyRec.

proposed EasyRec integrates seamlessly as a
lightweight, plug-and-play component with state-
of-the-art collaborative filtering models. The
lightweight and modular design represents a key
strength of our approach. This design facilitates
adoption of our novel recommendation paradigm
across diverse use cases. The integration en-
hances existing recommendation methods with-
out significant computational overhead.

2 Preliminaries

In recommender systems, we have a set of users
U and items I, along with their interactions (e.g.,
clicks, purchases). For each user u ∈ U , let Nu

be the set of items interacted with. For each item
i ∈ I, let Ni be the set of users who have interacted
with it. These interactions can be represented by an
interaction matrix A|U|×|I|. Here, Au,i is 1 if user
u has interacted with item i, and 0 otherwise. The
goal of recommendation is to predict the preference
score pu,i of future interactions between user u
and item i. This score can be used to generate
recommendations based on individual preferences.

Text-based Zero-Shot Recommendation is cru-
cial in recommender systems. It serves as a path-
way toward foundation models. Textual descrip-
tions, such as product titles and user profiles, pro-
vide valuable information. These descriptions
enable effective recommendations across various
datasets. This approach overcomes the limitations
of traditional collaborative filtering methods. It
offers significant advantage in generalization over
the ID-based paradigm. This capability extends
to scenarios where specific user-item interactions
have not been previously encountered.

Formally, we define Pu and Pi as the generated
text-based profiles of user u and item i, respec-
tively. These profiles are then encoded into repre-
sentations eu and ei using a language model (LM).
This process is shown as:

eu = LM(Pu), ei = LM(Pi). (1)

The preference score pu,i between user u and item
i is calculated as the cosine similarity between their
text embeddings eu and ei. This is expressed as
pu,i = cos(eu, ei). We then recommend the top-
k unclicked items with highest similarity scores,
resulting in a recommendation set.

Ru = top-ki∈I\Nu
cos(eu, ei). (2)

Text-enhanced Collaborative Filtering. Collabo-
rative filtering (CF) is a widely used recommenda-
tion paradigm. It leverages the collaborative rela-
tionships among users and items. This existing CF
paradigm can be enhanced by integrating encoded
semantic representations. Typically, the value pu,i
is calculated based on the interaction data. This is
expressed as pu,i = f(u, i,A), where A represents
the interaction data. Text-enhanced collaborative
filtering builds upon this foundation. It incorpo-
rates textual features e encoded by language mod-
els as supplementary representations. This integra-
tion aims to improve the recommendation perfor-
mance of traditional ID-based frameworks.

pu,i = f(u, i,A, eu, ei). (3)

3 Methodology

In this section, we first discuss how we gather tex-
tual profiles for users and items. Next, we dive into
the specifics of EasyRec and its training approach.
Lastly, we introduce our method for diversifying
user profiles. This method improves the model’s
ability to adapt to various situations.

3.1 Collaborative User and Item Profiling
In real-world recommenders, only raw text data
may be available. This includes item titles and
categories. Privacy concerns limit comprehensive
user information. Directly using this textual data
can overlook essential collaborative relationships.
These relationships are needed for effective user
behavior modeling. To address these issues, we
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propose generating textual profiles using large lan-
guage models. Examples include GPT and LLaMA
series (Ren et al., 2024). These models incorporate
collaborative information.

3.1.1 Item Profiling
Given raw item information, we aim to generate a
comprehensive item profile Pi. This information
includes title hi, categories ci, and description di
(e.g., book summary). The profile captures both
semantic and collaborative aspects. To reflect user-
item interactions, we incorporate textual informa-
tion. This includes user reviews ru,i. The item
profile generation process is:

Pi = LLM(Mi, hi, ci, {ru,i}) ∨ LLM(Mi, hi, di),
(4)

Here, Mi depicts the generation instruction. We
consider two scenarios. One includes a description
in the raw data (right-hand side). The other does
not include a description (left-hand side). In the
latter case, we utilize collaborative reviews to in-
form the profile. Using LLMs, we can generate an
informative item profile Pi.

3.1.2 User Profiling
In practical scenarios, privacy concerns limit gen-
erating user profiles from demographic informa-
tion. Instead, we profile users by leveraging their
collaborative relationships through interacted item
profiles. This approach captures collaborative sig-
nals that reflect user preferences. The user profile
generation process is defined as:

Pu = LLM(Mu, {hi,Pi, ru,i | i ∈ Nu}). (5)

Here, Mu is the instruction for using a LLM to
generate the user profile. We sample interacted
items Nu from the user’s purchase history. We
combine their feedback ru,i with the pre-generated
item profiles Pi. This creates the user’s text de-
scription Pu, capturing their preferences. The in-
corporation of sampled data ensures that LLMs
accurately infer profiles. This includes item meta-
data and user reviews. The profiles authentically
reflect users’ interaction preferences. To enhance
profile quality, we adopt the principles of Chain
of Thought (CoT)(Wei et al., 2022) and Self-
Consistency(Wang et al., 2023). We require LLMs
to generate explanatory rationales alongside the
profiles. It improves inference reliability. It also
establishes an interpretable connection between
collaborative signals and profile generation.

3.1.3 Advantages of Collaborative Profiling
Our collaborative profiling framework offers two
key advantages for real-world recommendation:

• Preservation of Collaborative Information.
Our approach captures the original textual con-
tent. It also captures the semantics of user/item
characteristics and their interaction patterns. We
encode these profiles into a shared feature space.
This uses a recommendation-oriented language
model. The embeddings of interacted users and
items are aligned. This allows recommenders to
better identify relevant matches.

• Rapid Adaptation to Dynamic Scenarios. Our
profiling enables the recommender system to
adapt to evolving user preferences. It also adapts
to changing interaction patterns. With robust lan-
guage models, simple updates to textual user pro-
files can quickly reflect shifts in interests. They
can also reflect shifts in behaviors. This flexibil-
ity makes our approach ideal for environments.
User interests change over time in environments.

3.2 Profile Embedder with Collaborative LM
We have generated rich textual profiles for users
and items, moving beyond conventional ID-based
embeddings. However, directly encoding these
textual profiles into latent embeddings for recom-
mendations has two key limitations:

• Capturing Recommendation-Specific Seman-
tics. While text embeddings are expressive, they
may not optimize for the specific semantics rele-
vant to recommendations. For example, consider
two user profiles: (i) "This user is passionate
about advanced AI techniques, focusing on deep
learning and research." (ii) "With a passion for ad-
vanced AI development, this user enjoys science
fiction and AI-themed novels." Although both
profiles mention AI, their target audiences dif-
fer—one caters to AI scientists, while the other
targets sci-fi readers. Directly encoding these
profiles may overlook recommendation-specific
semantics, necessitating refinement to align em-
beddings with the context of recommendation.

• Overlooking High-Order Collaborative Sig-
nals. While textual profiles provide rich semantic
information, relying solely on them may cause us
to miss valuable high-order collaborative patterns.
These patterns arise from complex user-item in-
teractions (Wang et al., 2019; Xia et al., 2023).
Such signals include transitive associations and
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community-level preferences. They offer addi-
tional insights that enhance preference learning.

To address these limitations, we propose a collab-
orative language modeling paradigm. It integrates
the semantic richness of profiles with valuable col-
laborative signals from complex interactions.

3.2.1 Bidirectional Transformer Embedder
We use a multi-layer bidirectional Transformer en-
coder as the backbone for two key benefits: 1) Ef-
ficient Encoding: The encoder-only architecture
generates effective text representations, allowing
faster inference in recommendation. 2) Flexible
Adaptation: Leveraging pre-trained Transformer
models enables us to optimize the embedder for
specific recommendation tasks effectively.

Let’s consider a user’s profile as a passage of
n words: P = w1, . . . , wn. We start by adding a
special token [CLS] at the beginning of the word
sequence. The tokenization layer Tok(·) then en-
codes the input sequence into initial embeddings,
which serve as the input for the Transformer layers:

{x(0)
[CLS], . . .x

(0)
n } = Tok({w[CLS], . . . , wn}). (6)

Here, x(0) ∈ Rd is the embedding from the embed-
ding table for the tokens, with the (0) superscript
indicating it is the input to the (0)-th layer of the
language model. The tokenization process also
adds positional embeddings. The language model
then encodes a sequence of final embeddings:

{e[CLS], . . . , en} = Enc({x(0)
[CLS], . . .x

(0)
n }), (7)

where Enc(·) refers to the Transformer-based
encoder-only LM. The key operation in the encod-
ing process is the self-attention mechanism:

Attention(Q,K, V ) = softmax(QKT /
√
d)V

w.r.t.Q = XWQ, K = XWK , V = XW V .

(8)

Here, X ∈ Rn×d represents the stack of token em-
beddings, while WQ/K/V are parameter matrices
that map these embeddings into queries, keys, and
values. This self-attention mechanism enables each
token to aggregate information from all others, en-
suring awareness of the entire sequence. We then
select the first embedding e[CLS] as the representa-
tive embedding for the profile. This embedding is
passed through a multi-layer perceptron to obtain
the encoded representation e, as shown in Eq.(1):

e = MLP(e[CLS]) = LM(P). (9)
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Figure 3: Contrastive tuning of the collaborative LM
enables it to learn rich representations. It aligns the text-
based semantic space with global collaborative signals.

With these encoded text embeddings e for each user
and item, we can predict the score of interaction
using cosine similarity and make recommendations
as described in Eq.(2).

3.2.2 Contrastive Collaborative LM Learning
We fine-tune the collaborative LM using contrastive
learning to effectively capture high-order collabo-
rative signals. Traditional recommenders using
Bayesian Personalized Ranking (BPR) (Rendle
et al., 2012) optimize embeddings with only one
negative item per sample. This limits their ability
to capture complex global user-item relationships.

The supervised contrastive loss offers a strong
alternative to traditional methods. By treating
interacted user-item pairs as positives and non-
interacted pairs as negatives, it brings related item
embeddings closer in the feature space. As shown
in Figure 3, contrastive learning uses a batch of
negatives for a comprehensive adjustment of the
encoded space, enabling the model to capture high-
order collaborative relationships. We evaluate this
in Appendix E to assess the impact of different
learning objectives. The learning objective for tun-
ing the language model is expressed as follows:

Lcon = −
∑

log
exp(su,i+/τ)∑

j∈N− exp(su,j/τ)
, (10)

where su,j = cos(eu, ej) denotes the cosine sim-
ilarity between user u and item j, i+ represents
the positive item that user u has interacted with, τ
is a temperature hyperparameter that controls the
degree of learning, and N− is the set of in-batch
negative items. We also build on prior work (Li
et al., 2023; Hou et al., 2024a) by incorporating an
auxiliary masked language modeling (MLM) loss
Lmlm. This technique randomly masks input to-
kens, training the model to predict them, which sta-
bilizes training and enhances generalization. The
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final training objective combines the contrastive
loss and the MLM loss:

L = Lcon + λLmlm. (11)

λ is a hyperparameter that balances contrastive
learning with masked language modeling loss.

3.3 Augmentation with Profile Diversification

To enhance generalization to unseen users/items,
we propose profile diversification. Single profiles
per user or item limit representation diversity and
training quality, hurting performance. Our augmen-
tation creates multiple profiles per entity while pre-
serving semantic meaning—capturing personalized
preferences for users and varied characteristics.

Inspired by self-instruction mechanisms (Wang
et al., 2023; Xu et al., 2024), LLMs can rephrase
user or item profiles while preserving their underly-
ing meaning. This generates multiple semantically
similar yet distinctly worded profiles from single
inputs. Iterative rephrasing creates diverse aug-
mented profiles, substantially expanding available
training data. This technique proves particularly
valuable for limited datasets, as LLM-generated
profiles improve model generalization and robust-
ness. Through LLM-based diversification, we cre-
ate diverse profile sets for each user and item.

{P}u = {Pu; P1
u, P2

u, . . . , Pt
u}, (12)

{P}i = {Pi; P1
i , P2

i , . . . , Pt
i}. (13)

Here, Pu/i represents the original profile, while
P1−t
u/i denotes the LLM-rephrased profiles, with t

indicating the number of diversification steps. Dur-
ing training, we randomly select one profile from
the user’s or item’s profile set for each batch data.

4 Evaluation

We evaluate the EasyRec in addressing the follow-
ing research questions (RQs): RQ1: How effec-
tively does the EasyRec perform in matching un-
seen users and items (zero-shot) within text-based
recommendation? RQ2: How effectively does
EasyRec integrate to enhance recommendations in
text-based collaborative filtering scenarios? RQ3:
How effective is our profile diversification mecha-
nism for augmenting data and improving the rec-
ommendation model’s performance? RQ4: How
well can our proposed text-based EasyRec adapt to
changes in users’ dynamic preferences?

Table 1: Dataset statisics: "Avg. n" is the average in-
teractions per user, and "Inters." stands for interactions.
Datasets with underlines are from different platforms.

Datasets #Users #Items #Inters. Avg. n

Train Data 124,732 67,455 802,869 6.44
-Arts 14,470 8,537 96,328 6.66
-Games 17,397 8,330 120,255 6.91
-Movies 16,994 9,370 134,649 7.92
-Home 22,893 13,070 131,556 5.75
-Electronics 26,837 14,033 165,628 6.17
-Tools 26,141 14,155 154,453 5.91

Test Data 55,877 28,988 615,210 11.01
-Sports 21,476 12,741 132,400 6.17
-Steam 23,310 5,237 316,190 13.56
-Yelp 11,091 11,010 166,620 15.02

Table 2: Model variants of EasyRec differ by parameter
size. "HS" stands for hidden size.

Model Layers HS Heads Params

EasyRec-Small 6 768 12 82M
EasyRec-Base 12 768 12 125M
EasyRec-Large 24 1024 16 355M

4.1 Experimental Settings

4.1.1 Datasets

To assess our proposed model’s capability in en-
coding user/item textual profiles into embeddings
for recommendation, we curated diverse datasets
across various domains and platforms. A portion
was used for training, while the remainder served
as test sets for zero-shot evaluation. The dataset
statistics are shown in Table 1. Due to the page
limit, we place the detail of data resources are de-
scribed in Appendix F.1

4.1.2 Evaluation Protocols

We employ two ranking-based evaluation metrics,
Recall@N and NDCG@N , to assess performance
in both text-based recommendation and collabora-
tive filtering scenarios. Specifically, we compute
these metrics for N values of 10 and 20 (He et al.,
2017, 2020). The evaluation is conducted using
the all-rank protocol (He et al., 2020) with the pre-
dicted preference scores. In the context of text-
based recommendation, particularly for datasets
containing multiple LLM-diversified profiles (as
discussed in Section 3.3), we calculate the met-
rics separately t times based on different profile
pairs (P1,...,t

u ,P1,...,t
i ). Subsequently, we compute

the mean value for each metric to obtain a compre-
hensive assessment. For the training datasets, we
utilize the validation split for evaluation, while for
the test datasets, we employ the test split.
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Table 3: Text-based recommendation performance of various LMs across different datasets. The best performance is
indicated in bold, while the second-best is highlighted with underline. The script ∗ denotes significance (p < 0.05).

Data Sports Steam Yelp

Methods Recall@10 Recall@20 NDCG@10 NDCG@20 Recall@10 Recall@20 NDCG@10 NDCG@20 Recall@10 Recall@20 NDCG@10 NDCG@20

Proprietary Models

OpenAIv3-Small 0.0324 0.0444 0.0198 0.0230 0.0066 0.0119 0.0049 0.0068 0.0028 0.0056 0.0021 0.0031
OpenAIv3-Large 0.0300 0.0436 0.0180 0.0217 0.0070 0.0137 0.0049 0.0073 0.0029 0.0055 0.0023 0.0032

Base Size Models

BERT-Base 0.0015 0.0032 0.0008 0.0013 0.0015 0.0031 0.0011 0.0017 0.0009 0.0018 0.0006 0.0010
RoBERTa-Base 0.0121 0.0206 0.0065 0.0087 0.0041 0.0078 0.0031 0.0043 0.0018 0.0034 0.0014 0.0020

BART-Base 0.0088 0.0143 0.0048 0.0063 0.0033 0.0062 0.0024 0.0035 0.0014 0.0027 0.0012 0.0016
SimCSE-Base 0.0240 0.0341 0.0143 0.0170 0.0048 0.0091 0.0035 0.0050 0.0020 0.0039 0.0015 0.0022
BLaIR-Base 0.0251 0.0352 0.0145 0.0173 0.0041 0.0081 0.0030 0.0044 0.0025 0.0046 0.0019 0.0026
GTR-Base 0.0290 0.0417 0.0172 0.0206 0.0075 0.0136 0.0056 0.0077 0.0025 0.0052 0.0019 0.0029
BGE-Base 0.0315 0.0437 0.0194 0.0227 0.0094 0.0170 0.0069 0.0095 0.0029 0.0053 0.0022 0.0031

Large Size Models

BERT-Large 0.0011 0.0021 0.0006 0.0008 0.0019 0.0040 0.0014 0.0022 0.0008 0.0019 0.0007 0.0010
RoBERTa-Large 0.0039 0.0065 0.0021 0.0028 0.0027 0.0052 0.0021 0.0029 0.0012 0.0023 0.0010 0.0014

BART-Large 0.0114 0.0170 0.0064 0.0080 0.0036 0.0065 0.0026 0.0037 0.0017 0.0033 0.0014 0.0019
SimCSE-Large 0.0232 0.0328 0.0134 0.0160 0.0051 0.0095 0.0037 0.0052 0.0023 0.0044 0.0017 0.0025
BLaIR-Large 0.0227 0.0322 0.0133 0.0159 0.0057 0.0108 0.0041 0.0059 0.0027 0.0047 0.0019 0.0027
GTR-Large 0.0329 0.0446 0.0198 0.0229 0.0095 0.0168 0.0069 0.0094 0.0021 0.0042 0.0018 0.0025
BGE-Large 0.0324 0.0449 0.0196 0.0230 0.0089 0.0153 0.0066 0.0088 0.0025 0.0052 0.0020 0.0029

EasyRec Series

EasyRec-Small 0.0186 0.0286 0.0108 0.0135 0.0097 0.0174 0.0070 0.0097 0.0022 0.0046 0.0017 0.0026
EasyRec-Base 0.0360 0.0518 0.0210 0.0253 0.0114 0.0203 0.0081 0.0112 0.0034 0.0063 0.0026 0.0037
EasyRec-Large 0.0396* 0.0557* 0.0236* 0.0279* 0.0129* 0.0225* 0.0093* 0.0127* 0.0034* 0.0065* 0.0026* 0.0037*

Improve ↑ 20.36% ↑ 24.05% ↑ 19.19% ↑ 21.30% ↑ 35.79% ↑ 32.35% ↑ 39.13% ↑ 33.68% ↑ 17.24% ↑ 16.07% ↑ 13.04% ↑ 15.63%

4.2 Performance Comparision for Text-based
Recommendation (RQ1)

We evaluate the performance of various language
models (LMs) for zero-shot text-based recommen-
dation on the unseen Sports, Steam, and Yelp
datasets. This approach directly leverages the en-
coded embeddings derived from user/item profiles
to make recommendations, without any additional
training on the target datasets.

4.2.1 Baseline Methods and Settings
We have included the following state-of-the-art
language models as text embedders for compar-
ative evaluation: (i) General Language Models:
BERT (Devlin et al., 2018), RoBERTa (Liu et al.,
2019) and BART (Lewis et al., 2019); (ii) Lan-
guage Models for Dense Retrieval: SimCSE (Gao
et al., 2021), GTR (Ni et al., 2021) and BGE (Xiao
et al., 2023); (iii) Pre-trained Language Models
for Recommendation: BLaIR (Hou et al., 2024a).
We also compare with SoTA text embedding mod-
els provided by OpenAI. Details of the baseline
models are described in Appendix G.

4.2.2 Result Analysis
The overall comparison of different models is pre-
sented in Table 3. This evaluation reveals several
observations, which are outlined below:

• Superiority across Diverse Datasets. Our evalu-
ation consistently shows that the EasyRec outper-
forms all other models across the datasets span-
ning different platforms. This provides strong
evidence for the effectiveness of the EasyRec.

We attribute these improvements to two key fac-
tors: i) By injecting collaborative signals into
the LMs, we effectively optimized our EasyRec
using supervised contrastive learning within the
recommendation context. This approach allows
the model to inherently encode user and item text
embeddings that are well-suited for recommen-
dation tasks. ii) By integrating a diverse array of
datasets across multiple categories and utilizing
data augmentation techniques to enrich the text
descriptions for training, our EasyRec exhibits
impressive generalization capabilities, enabling
it to effectively handle unseen data.

• Scaling Law Investigation of EasyRec Model.
Our experiments reveal that as the size of the
EasyRec increases, its performance consistently
improves across all the datasets. This observation
reflects a scaling law, where the model’s perfor-
mance growth is directly correlated with its size.
Furthermore, this finding effectively reinforces
the validity of text-based recommendation sys-
tems. It also validates our approach to training
the LMs, which enables it to learn collaborative
signals from a new perspective.

4.3 Performance of Text-enhanced CF (RQ2)

In addition to our investigation of zero-shot rec-
ommendation, we explore the potential of EasyRec
as an enhancement when integrated with CF mod-
els. To assess the effectiveness of various LMs in
CF, we employ two widely used ID-based meth-
ods as backbone models: GCCF (Chen et al.,
2020) and LightGCN (He et al., 2020), which
were chosen for their proven effectiveness and ef-

17723



Table 4: Recommendation performance in text-
enhanced CF. The experiment was conducted on the
Steam dataset with 5-runs to obtain the mean results.

Metric Recall NDCG
@10 @20 @10 @20

ID-based Methods
GCCF 0.0826 0.1314 0.0665 0.0830
LightGCN 0.0851 0.1349 0.0686 0.0854

Text-enhanced GCCF
BERT 0.0822 0.1313 0.0663 0.0829
RoBERTa 0.0848 0.1351 0.0684 0.0854
BART 0.0874 0.1383 0.0701 0.0874
SimCSE 0.0877 0.1395 0.0706 0.0881
BLaIR 0.0880 0.1392 0.0708 0.0882
GTR 0.0873 0.1387 0.0706 0.0880
BGE 0.0875 0.1393 0.0705 0.0881
EasyRec 0.0881 0.1402 0.0712 0.0888

Text-enhanced LightGCN
BERT 0.0849 0.1347 0.0684 0.0852
RoBERTa 0.0867 0.1374 0.0699 0.0870
BART 0.0887 0.1407 0.0715 0.0891
SimCSE 0.0891 0.1417 0.0719 0.0898
BLaIR 0.0897 0.1418 0.0724 0.0901
GTR 0.0894 0.1417 0.0719 0.0896
BGE 0.0891 0.1407 0.0718 0.0893
EasyRec 0.0908 0.1430 0.0732 0.0908

ficiency. Furthermore, we utilize the advanced
model-agnostic text-enhanced framework RLM-
Rec (Ren et al., 2024) with contrastive alignment
to conduct our investigation. We compare the large
versions of both EasyRec and other open-source
LMs. The findings from the results in Table 4 are:
• Compared to backbones, the integration of the

text-enhanced framework generally improves the
performance for both GCCF and LightGCN. This
observation highlights the significance of incor-
porating text modality (i.e., user/item profiles)
into the recommendation paradigm.

• Among the various LMs, EasyRec consistently
achieves the highest performance in the text-
enhanced recommenders. This outcome not only
illustrates the efficacy of EasyRec for recommen-
dation, but also emphasizes the advantages of in-
corporating collaborative information into LMs.

4.4 Efficacy of Profile Diversification (RQ3)

In this section, we examine the impact of diversify-
ing user and item profiles with large language mod-
els (LLMs) on model performance. As mentioned
in Section 3.3, we perform LLM-based diversifica-
tion three times on the original generated profiles.
This process continuously increases the number of
profiles in the training set. To investigate whether
data augmentation positively affects model perfor-
mance, we conduct experiments with three variants
of the EasyRec under different numbers of diver-
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Figure 4: Performance w.r.t. data size. "Augmentation
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This user used to be a 
basketball fan. But now 
he likes swimming.

This user is a basketball fan 
and likes to play basketball 
and watch NBA games.
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Matched Top Items (Before) Matched Top Items (After)
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Figure 5: Case study on handling user preference shift.

sified profiles. The results are shown in Figure 4,
leading to the following key observations:

• Effectiveness of Profile Diversification. The
increase in the number of diversified profiles en-
hances model performance, particularly for larger
models. This finding underscores the effective-
ness of our augmentation approach using LLMs
for profile diversification, and emphasizes the
significance of increasing training corpus for im-
proved recommendation outcomes.

• Scaling Relationship: The scaling experiments
on both model size and data size reveal a crucial
relationship that influences model performance.
This demonstrates that our approach of training
the LM with collaborative signals follows a scal-
ing law, indicating that model performance bene-
fits from both increased capacity and data volume.
Such findings are vital as they provide insights
into how model capacity and data availability in-
teract, guiding future research and development.

Moreover, we find that profile diversification can
improve recommendation diversity. We conduct
experiments and discussions in Appendix F.5.
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4.5 Fast Adaptation Case Study (RQ4)

As mentioned in Section 3.1.3, a key advantage of
EasyRec is its ability to empower recommender
systems to efficiently adapt to shifts in user prefer-
ences and behavior dynamics over time. To eval-
uate this capability, we create two user profiles
reflecting shifted preferences on the Amazon-Sport
dataset and examine the recommended items from
the EasyRec. As shown in Figure 5, the original
user profile indicates that the user enjoys playing
basketball. However, the user’s preference later
transitions to a preference for swimming.

We visualize all the encoded embeddings using
t-SNE (Van der Maaten and Hinton, 2008), as illus-
trated in Figure 5, which reveals a significant shift
in the user embedding within the feature space.
Correspondingly, recommended items transition
from basketball-related products to swimming gear,
reflecting the user’s changing preferences. Notably,
this adjustment is accomplished solely by modi-
fying the user’s profile, without further training
of the model. This underscores the efficiency and
flexibility in adapting to evolving user preferences.

5 Related Work

LM-Powered Recommender Systems. Recent
recommendation methods increasingly incorpo-
rate text modalities (Yuan et al., 2023; Wu et al.,
2024; Zhang et al., 2023), using LM-derived se-
mantic embeddings to boost CTR prediction and
sequence recommendation (Xi et al., 2023; Geng
et al., 2024; Hou et al., 2022; Sheng et al., 2024).
Some approaches use text-based agents to boost
performance (Zhang et al., 2024a,b), with notable
examples like ZESRec (Ding et al., 2021) and
MoRec (Yuan et al., 2023) leveraging text em-
beddings for inductive performance. RLMRec ap-
plies information-theoretic text augmentation to
ID-based recommenders (Ren et al., 2024). How-
ever, most systems depend on general-purpose en-
coders (e.g., BERT) rather than recommendation-
tailored LMs. Inspired by BLaIR’s use of feed-
back and metadata (Hou et al., 2024a), we train a
recommendation-specific LM on user profiles and
collaborative signals to improve zero-shot and text-
augmented performance.
Cross-Domain Recommendation. Cross-domain
recommendation enhances recommendations in
one domain by leveraging data from another do-
main to combat data sparsity and improve person-
alization (Zang et al., 2022). Techniques like graph

collaborative filtering (Liu et al., 2020) use Graph
Neural Networks (GNNs) to aggregate common
and domain-specific user features. Recent studies
have integrated self-supervised learning, such as
C2DSR (Cao et al., 2022) with contrastive learn-
ing for both single and cross-domain representa-
tions, and CCDR (Xie et al., 2022) with intra- and
inter-domain contrastive learning. SITN (Sun et al.,
2023) utilizes self-attention to represent user se-
quences from source and target domains, followed
by contrastive learning. However, current cross-
domain approaches often rely on correlations be-
tween source and target data, limiting their appli-
cation to zero-shot tasks. In contrast, our proposed
EasyRec employs text-based zero-shot learning,
removing these constraints and enabling effective
transfer across different domains.
Graph Collaborative Filtering for Recommen-
dation. Graph Neural Networks (GNNs) are effec-
tive for recommendation by modeling user–item
interactions and high-order dependencies (Gao
et al., 2023). Representative models include Pin-
Sage (Ying et al., 2018), NGCF (Wang et al., 2019)
and LightGCN (He et al., 2020), which learn node
representations via neighborhood aggregation. To
address data sparsity, recent studies combine self-
supervised learning with collaborative filtering us-
ing graph augmentations; notable examples are
SGL (Wu et al., 2021), SimGCL (Yu et al., 2022)
and HCCF (Xia et al., 2022). These works demon-
strate the promise of self-supervised graph learning
for recommender systems.

6 Conclusion

This paper presents EasyRec which integrates LMs
to enhance recommendation. Our approach is
simple yet effective, excelling in scenarios like
text-based zero-shot recommendations and text-
enhanced CF. Central to EasyRec’s success is its
combination of collaborative LM tuning and con-
trastive learning, which captures nuanced seman-
tics and high-order collaborative signals, leading
to improved recommendations. Extensive experi-
ments demonstrate EasyRec’s superiority over ex-
isting models, showcasing its adaptability to chang-
ing user preferences and real-world applications.
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Limitation

While EasyRec shows promising advancements in
generalization for zero-shot recommendation, it
faces challenges related to data modality diversity.
Currently, our approach relies primarily on textual
data, whereas items can encompass a richer variety
of modalities. The absence of visual inputs, such
as images and videos, limits the contextual infor-
mation we can leverage. These visual elements
have the potential to convey aesthetic preferences,
cultural trends, and emotional responses, capturing
nuances that textual data might overlook. They can
also reveal visual patterns linked to user behavior
and preferences, including color schemes, styles,
and settings, which are essential for effective per-
sonalization. Acknowledging these aspects, future
work could explore the integration of multimodal
data processing techniques, potentially enhancing
predictive accuracy and improving the system’s
ability to generalize recommendations.
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Appendices
A Discussion on EasyRec

A.1 Motivation and Technical Positioning

The motivation behind our proposed EasyRec
stems from the limitations of existing recommenda-
tion algorithms that primarily rely on ID-based rep-
resentations. While ID-based representations can
enhance algorithm performance, they fundamen-
tally restrict the generalization capabilities of rec-
ommendation systems. Specifically, models trained
in this manner cannot be directly transferred to new
datasets in zero-shot recommendation scenarios,
where there is no overlap between users and items.
Recent studies (Ren et al., 2024; Sheng et al., 2024)
have shown a growing interest in incorporating lan-
guage representations (i.e., text embeddings) to
replace or complement ID-based representations.
This approach aims to improve the generalization
and overall performance of these algorithms. How-
ever, the predominant reliance on general-purpose
language models as text encoders has created a
gap in the development of language models specifi-
cally tailored for recommendation scenarios, which
could yield higher-quality user and item embed-
dings. To address this gap, we propose utilizing
user and item profiles as fundamental textual rep-
resentations. By training a language model specif-
ically designed for recommendation algorithms,
based on collaborative filtering signals and pro-
file diversification, we can generate embeddings
that are more suitable for recommendation con-
texts. This approach promises to deliver improved
performance compared to general LMs.

A.2 Relationship between EasyRec and
LLM-CF Methods

The proposed EasyRec constitutes a specialized
class of language models meticulously trained for
recommendation scenarios. Functioning as a tex-
tual encoder, its primary objective lies in transform-
ing descriptive textual profiles of users and items
into discriminative feature representations compat-
ible with collaborative filtering architectures. The
training process employs collaborative filtering sig-
nals as self-supervised signals to guide model op-
timization. The motivation of EasyRec stands dis-
tinct from approaches that combine LLMs with CF
models as end-to-end frameworks (Ren et al., 2024;
Yang et al., 2024). By contrast, EasyRec adopts a
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Table 5: Performance comparison (Steam dataset) be-
tween text-based and ID-based recommenders

Model R@10 R@20 N@10 N@20

LightGCN (ID-based) 0.0851 0.1349 0.0686 0.0854
AlphaRec + EasyRec 0.0863 0.1358 0.0689 0.0857

foundational modeling perspective, aiming to en-
hance existing text-enhanced algorithms through
improved embeddings.

Recently, LLM-CF integration methods predom-
inantly utilize text embeddings as auxiliary fea-
tures. As empirically validated in our experiments
on Text-enhanced Collaborative Filtering (Sec-
tion 4.3), EasyRec shows superior performance
compared to open-source text embedders.

A.3 Can Text-Only Frameworks Outperform
ID-Based Recommendation?

ID-based recommendation systems have long
served as the predominant paradigm in both indus-
trial deployments and academic research. How-
ever, their inherent limitations in cross-domain
generalization have recently propelled text-only
recommendation approaches – the core focus of
EasyRec – to the forefront of research attention.
While text-based methods demonstrate enhanced
generalization capabilities, the performance hierar-
chy between text-based and ID-based approaches
remains empirically underexplored.

To investigate this research question, we inte-
grate EasyRec with the state-of-the-art text-based
framework AlphaRec (Sheng et al., 2024), con-
ducting comparative analyses against the ID-based
LightGCN backbone. To ensure robustness, we
perform multiple runs and report averaged results.
The experimental results detailed in Table 5 indi-
cate that the text-only framework provides superior
performance compared to ID-based methods.

B Implementation and Training Details

We implemented our EasyRec and conducted all
experiments using PyTorch (Paszke et al., 2019).
For the transformer-based encoder backbone, we
adopted the architecture of RoBERTa (Liu et al.,
2019) and utilized its pre-trained parameters as ini-
tialization. We trained three versions of EasyRec
with varying parameter sizes (small, base, and
large), as detailed in Table 2. For the loss func-
tion, we set the hyperparameters τ to 0.05 and λ
to 0.1. The token masking ratio for masked lan-
guage modeling is 0.15, and the learning rate is
set to 5× 10−5. We train the model for 25 epochs.

Table 6: Performance comparison with other zero-shot
frameworks on sports dataset.

Model R@5 R@10 Inference Time

LLMRank 0.6155 0.7822 ∼1 hours
EasyRec 0.6332 0.8078 3-4 minutes

For profile augmentation, we set the diversifica-
tion time t for LLM-based methods to 3. During
training, we evaluate the model every 1000 steps
and use the validation interactions from each train-
ing dataset to select the optimal model parameters,
employing the Recall@20 metric. Detailed imple-
mentation of our model is provided in the code.

C Comparison with Zero-shot
Frameworks

The exploration of zero-shot recommendation has
garnered significant attention, particularly in se-
quential recommendation scenarios (Ding et al.,
2021). In our work, we propose a novel zero-
shot research line for collaborative filtering (CF)
based on semantic profile matching. To demon-
strate its effectiveness, we compare it with another
fundamental zero-shot framework, LLMRank (Hou
et al., 2024b), which leverages LLMs for item rank-
ing. Specifically, we implement LLMRank with
GPT-4o-mini to rank candidate items based on
historical interactions and item titles, while our
method employs user/item profile embeddings for
feature-based ranking. Following the same experi-
mental protocol, for each user in the test set we con-
struct a candidate set containing 19 negative items
and 1 ground-truth item. As shown in Table 6, our
approach demonstrates better recall performance
while achieving higher efficiency.

D Profile Generation with Different
Large Language Models

To explore whether the trained EasyRec can gen-
eralize to different LLMs that under different tok-
enizers, we regenerate alternative user/item profiles
using DeepSeek-V3 (Liu et al., 2024) on the Sports
dataset and performed a performance validation
based on EasyRec-Large. The results on Sports
dataset are shown in Table 7, from which we can
observed that the profiles generated based on GPT-
3.5 and those generated by DeepSeek have a min-
imal impact on performance. This is because the
final profiles are presented in text form. During the
training of EasyRec, we exposed it to a large diver-
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User Profile Diversification

Instruction
You will assist me in revising a user’s profile while maintaining its original meaning. I will
present you with the user’s initial profile.

Instructions:
USER PROFILE: The original user profile.

Requirements:
1. Please provide the revised profile directly begin with "REVISED PROFILE: ".
2. The rephrased profile should minimize duplication with the original text while preserving
its intended meaning.
3. The revised profile should exhibit varied sentence structures while faithfully conveying the
original profile’s essence.

Input Prompt
USER PROFILE: This user is likely to enjoy items related to baking, entertaining, and colorful
table settings. They appreciate convenience, efficiency, and practicality in kitchen appliances.

Response
REVISED PROFILE: An individual who finds pleasure in baking, hosting gatherings, and vibrant table
arrangements. They value kitchen devices that offer convenience, efficiency, and practicality.

Figure 6: An example of large language models-based user profile diversification.

Table 7: Performance comparison with various LLM-
generated profiles on sports dataset.

Profile Generator R@10 R@20 N@10 N@20

GPT-3.5 0.0423 0.0586 0.0250 0.0294
DeepSeek-V3 0.0417 0.0555 0.0253 0.0290

Table 8: Comparison of EasyRec with different learning
objectives (where "Contrast" stands for contrastive).

Objective Sports Yelp
R@10 N@10 R@10 N@10

BPR Loss 0.0381 0.0226 0.0028 0.0021
Contrast Loss 0.0396 0.0236 0.0034 0.0026

sity of recommendation-related texts and utilized
multiple datasets for joint optimization, effectively
avoiding overfitting on specific profile patterns.

E Impact of Training Objectives

To evaluate the impact of different training objec-
tives on the LM’s learning, we also implemented
EasyRec-Large training with BPR loss (i.e., one
negative item per training sample) for comparison
with the contrastive learning results. As shown in
Table 8, the model performance generally outper-
forms that trained with BPR loss, demonstrating
the effectiveness of using contrastive learning to
incorporate collaborative information into the LMs.

F Datasets and User/Item Profiles

In this section, we provide detailed information
on the processes for profile generation and diver-
sification, including instructions, examples, and
associated costs.

F.1 Details of Dataset

We utilize Amazon review data (Ni et al., 2019)
across six categories to form the training data:
Arts, Crafts and Sewing (Arts), Movies and TV
(Movies), Video Games (Games), Home and
Kitchen (Home), Electronics (Electronics), and
Tools and Home Improvement (Tools). For the test
datasets, we use one domain, Sports and Outdoors
(Sports), from the Amazon review data, along with
two cross-platform datasets: Steam and Yelp, for
comprehensive evaluation. For the datasets from
the Amazon platform, we first filter the data to in-
clude only those with a rating score ≥ 3 and apply
a 10-core filtering to densify the dataset. Subse-
quently, for each category, we split the interactions
into training, validation, and test splits in a ratio of
8:1:1. In contrast, for the Steam and Yelp datasets,
we directly use the data processed in RLMRec (Ren
et al., 2024), which maintains a split ratio of 3:1:1.

F.2 Details of Profile Generation

After the data processing described in Section 4.1.1,
each dataset contains a split of training interac-
tions. We use these interactions to generate user
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Item Profile Diversification

Instruction
You will assist me in revising a item’s profile while maintaining its original meaning. I will
present you with the item’s initial profile.

Instructions:
ITEM PROFILE: The original item profile.

Requirements:
1. Please provide the revised profile directly begin with "REVISED PROFILE: ".
2. The rephrased profile should minimize duplication with the original text while preserving
its intended meaning.
3. The revised profile should exhibit varied sentence structures while faithfully conveying the
original profile’s essence.

Input Prompt
ITEM PROFILE: The Innovee Lemon Squeezer is a high-quality stainless steel manual citrus press
that comes with a lemon recipes ebook. Ideal for those who enjoy fresh lemon juice and recipes.

Response
REVISED PROFILE: The Innovee Lemon Squeezer is a stainless steel manual citrus press that
includes a lemon recipes ebook, perfect for individuals who appreciate the taste of freshly
squeezed lemon juice and love trying out new recipes.

Figure 7: An example of large language models-based item profile diversification.

and item profiles according to the paradigm out-
lined in Section 3.1, as this requires user-item in-
teraction information. For the Steam and Yelp
datasets, we directly utilize the profiles generated
by RLMRec (Ren et al., 2024), which follow the
protocol that leverages review information for user
and item profile generation. It is important to note
that the profiles for each dataset are generated ex-
clusively based on the training interactions. This
approach ensures that validation and test interac-
tions are reserved for evaluation purposes, prevent-
ing data leakage and allowing for a more accurate
assessment of the model’s generalization perfor-
mance on unseen recommendation data.

The profiling process adopts an item-to-user
paradigm, where we first generate item profiles
in parallel using multi-thread processing, followed
by the parallel generation of user profiles that in-
corporate collaborative information. The large lan-
guage model employed is GPT-3.5-Turbo from
OpenAI. Specifically, in this work, we process our
own datasets from Amazon review data (Ni et al.,
2019), which include the categories Arts, Movies,
Games, Home, Electronics, Tools, and Sports. For
item profile generation, each item i includes a
title hi and an original description di. We lever-
age these two pieces of information to generate
the profile, as described on the right-hand side of
Eq. 4. Next, for user profile generation, we uni-
formly sample a number of interacted items from

each user’s behavior history as collaborative in-
formation. We then arrange the input prompt for
the large language model according to Eq. 5. All
prompts and instructions for user and item profile
generation are provided in the code.

F.3 Details of Profile Diversification

As described in Section 3.3, we also conduct profile
diversification using large language models (LLMs)
to enhance the diversity of the training and test
datasets, thereby improving and better evaluating
the model’s generalization ability across different
user and item profiles. For each user or item, we
perform t iterations of diversification starting from
the initially generated profile. This means that
we obtain the first diversified profile based on the
original profile and then use this diversified profile
for further diversification with the LLMs.

For reference, examples of user and item pro-
file diversification are provided in Figure 6 and
Figure 7, respectively. As illustrated in the case
of user profile diversification, the profiles for the
same user differ at the word level while still repre-
senting the same preferences. Such diversification
enhances the quality and diversity of textual data
while increasing the overall dataset size.

F.4 Cost of Generation and Diversification

We summarize the total number of tokens and the
costs for utilizing LLMs for profile generation and
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Table 9: Costs for profile generation and diversification,
including three iterations of diversification.

Operation #Data #Tokens #Cost ($)

Generation 7 189M ∼114
Diversification 9 132M ∼97

Table 10: Diversity improvement with profile diversifi-
cation (Higher ILS indicates better diversity)

Model Steam Yelp

ILS@5 ILS@10 ILS@20 ILS@5 ILS@10 ILS@20

w/o Diversification 0.7128 0.7336 0.7573 0.5954 0.6090 0.6248
w/ Diversification 0.7268 0.7487 0.7727 0.6012 0.6136 0.6285

diversification in Table 9. The profiles for the
Steam and Yelp datasets have already been gen-
erated in previous work (Ren et al., 2024); there-
fore, the number of profiled datasets and diversified
datasets differs. The total number of tokens re-
quired to process both profile generation and diver-
sification is approximately 322 million, costing ap-
proximately 200 dollars with the GPT-3.5-Turbo
API, making it a cost-effective choice.

F.5 Improved Recommendation Diversity
with Profile Diversification

To further demonstrate the effecitveness of pro-
file diversification, We also conduct experiments
to explore whether diversification can enhance the
diversity of recommendation results. We calcu-
lated Intra-List Similarity (ILS) (Zhang and Hurley,
2008) for EasyRecLarge with and without profile
diversification on the Steam and Yelp datasets. As
shown in Table 10, our findings indicate that profile
diversification effectively increases the diversity of
the model’s recommendation results.

G Details of Text-based Recommendation

G.1 Baseline Models

In this section, we provide a detailed description of
the language models compared in this work.
(i) General Language Models.

• BERT (Devlin et al., 2018): A prominent trans-
former model known for its strong language un-
derstanding via bidirectional training. We use the
pooled BERT output for text embedding.

• RoBERTa (Liu et al., 2019): An optimized
BERT with dynamic masking and larger datasets.
We use the final [CLS] token embedding.

• BART (Lewis et al., 2019): A denoising autoen-
coder transformer trained on corrupted text re-
construction. We apply mean pooling on the last
hidden state for the text embedding.

Table 11: Details of compared language models.

Model Pre-trained Weights (From Hugging Face)

BERT-Base google-bert/bert-base-uncased
BERT-Large google-bert/bert-large-uncased
BART-Base facebook/bart-base
BART-Base facebook/bart-large
RoBERTa-Base FacebookAI/roberta-base
RoBERTa-Large FacebookAI/roberta-large
SimCSE-Base princeton-nlp/sup-simcse-roberta-base
SimCSE-Large princeton-nlp/sup-simcse-roberta-large
BLaIR-Base hyp1231/blair-roberta-base
BLaIR-Large hyp1231/blair-roberta-large
GTR-Base sentence-transformers/gtr-t5-base
GTR-Large sentence-transformers/gtr-t5-large
BGE-Base BAAI/bge-base-en-v1.5
BGE-Large BAAI/bge-large-en-v1.5

(ii) Language Models for Dense Retrieval.

• SimCSE (Gao et al., 2021): A framework that
leverages contrastive learning to generate high-
quality sentence embeddings, enhancing the
model’s ability to discern semantic similarity be-
tween sentences.

• GTR (Ni et al., 2021): GTR is a generalizable
T5-based dense retriever that improves retrieval
tasks across various domains by overcoming lim-
itations of traditional dual encoders.

• BGE (Xiao et al., 2023): A state-of-the-art fam-
ily of well-trained models for general text em-
beddings, utilizing the English version of BGE.

(iii) Langauge Models for Recommendation.

• BLaIR (Hou et al., 2024a): A series of em-
bedding models for recommendation. BLaIR
learns correlations between item metadata and
user feedback, improving item retrieval and rec-
ommendation.

The pre-trained weights utilized for each base-
line language models are listed in Table 11.
For proprietary embedding models OpenAIv3,
we use the latest text-embedding-3-small and
text-embedding-3-large from OpenAI.

G.2 Detail of Baseline Settings
Given that the experiment was conducted in a zero-
shot setting, where the test data remained unseen
during training for both our EasyRec and the other
baselines, we directly utilized the original released
parameters of these baselines from Hugging Face
for comparison. Besides, for BGE, we added the
recommended retrieval instruction in front of the
user profiles, following the provided guidelines
from the open-source code, as we found it offered
better performance in zero-shot recommendations.
We normalized model outputs and computed cosine
similarity between user and item embeddings.
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