
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 17776–17792
November 4-9, 2025 ©2025 Association for Computational Linguistics

Alignment for Efficient Tool Calling of Large Language Models
Hongshen Xu1,4* Zihan Wang1,4* Zichen Zhu1,4 Lei Pan3

Xingyu Chen1,4 Shuai Fan3,4 Lu Chen1,2,4,5† Kai Yu1,4,5†

1X-LANCE Lab, MoE Key Lab of Artificial Intelligence, AI Institute
School of Computer Science, Shanghai Jiao Tong University, Shanghai, China

2Shanghai Innovation Institution, Shanghai, China
3AISpeech Co., Ltd., Suzhou, China

4Jiangsu Key Lab of Language Computing, Suzhou, China
5 Suzhou Laboratory, Suzhou, China

{xuhongshen, kai.yu}@sjtu.edu.cn

Abstract
Recent advancements in tool learning have en-
abled large language models (LLMs) to in-
tegrate external tools, enhancing their task
performance by expanding their knowledge
boundaries. However, relying on tools of-
ten introduces trade-offs between performance,
speed, and cost, with LLMs sometimes ex-
hibiting overreliance and overconfidence in
tool usage. This paper addresses the chal-
lenge of aligning LLMs with their knowl-
edge boundaries to make more intelligent de-
cisions about tool invocation. We propose a
multi-objective alignment framework that com-
bines probabilistic knowledge boundary estima-
tion with dynamic decision-making, allowing
LLMs to better assess when to invoke tools
based on their confidence. Our framework
includes two methods for knowledge bound-
ary estimation—consistency-based and abso-
lute estimation—and two training strategies
for integrating these estimates into the model’s
decision-making process. Experimental results
on various tool invocation scenarios demon-
strate the effectiveness of our framework, show-
ing significant improvements in tool efficiency
by reducing unnecessary tool usage.

1 Introduction

The objective of tool learning is to enable large
language models (LLMs; Gemini Team, 2023;
Achiam et al., 2023; Dubey et al., 2024) to ac-
quire the capability to effectively utilize external
tools, thereby enhancing their performance across
various downstream tasks (Schick et al., 2023; Hao
et al., 2023; Hsieh et al., 2023; Tang et al., 2023).
Tools can be regarded as extensions of an LLM’s
knowledge or capability boundaries. By invoking
tools, models can accomplish tasks beyond their
knowledge boundaries and even access information
from different modalities (Zeng et al., 2022).

*Equal contributions.
†The corresponding authors are Lu Chen and Kai Yu.

Ans: 29

Find the greatest common divisor of 957 and 1537.

The answer is 87.

math tool

Fast & Inaccurate

Slow & Accurate

Our Method

I’m not sure. I will
use math tools ...

Sure, I’m confident
that the answer is ...

Find the …

math
tools

search
tools

reasoning
tools

0

25

50

O
ve

r-
to

ol
-r

el
ia

nc
e

(%
)

math
tools

search
tools

reasoning
tools

0

20

40

O
ve

rc
on

fi
de

nc
e

(%
)

Auto Tool Our Method

Figure 1: Our method effectively enables LLMs to
switch between answering independently and calling
tools (upper part), thereby reducing the model’s over-
reliance and overconfidence in tools (lower part).

While tools can enhance LLM’s task perfor-
mance, it is important to note that solving tasks
through tool invocation often requires more steps,
longer completion times, and additional tool-
calling costs. For example, in question-answering
scenarios involving search tools, the model must
first generate a query for the retrieval tool, wait
for the search results, and then process these re-
sults to produce a final answer. In contrast, direct
answering involves simply generating a response.
This introduces a trade-off problem between per-
formance and speed. Unfortunately, recent studies
have shown that O1-like LLMs struggle to strike
a balance between these two aspects: exhibit over-
thinking (Chen et al., 2024) in simple reasoning
tasks and underthinking (Wang et al., 2025) in
more difficult ones. Similarly, we observe that the
same issue arises in tool usage scenarios. Current
LLMs exhibit over-tool-reliance, invoking tools
even when tasks could be completed independently,
while also exhibiting overconfidence by refusing to

17776

use tools when necessary. This inconsistency mir-
rors the challenges faced by O1-like models, under-
mining the model’s tool intelligence and increasing
task completion costs in real-world scenarios.

In this work, we aim to improve how LLMs de-
cide when and how to use external tools for task
completion. The main challenge is aligning the
model’s behavior with its knowledge boundaries,
allowing it to determine when a tool is needed
based on its confidence. Instead of treating the
model’s knowledge as simply "known" or "un-
known" (Yang et al., 2023c), we propose a more
nuanced approach that accounts for uncertainty.
This approach recognizes an "uncertain region"
where the model assigns probabilistic estimates
to its knowledge, enabling better decision-making
that balances task success and tool usage costs.

We introduce an alignment framework for effi-
cient tool calling that combines probabilistic knowl-
edge boundary estimation with dynamic decision-
making. Our approach has two main components:
1) Knowledge Boundary Estimation: we pro-
pose two methods to assess the model’s knowledge:
consistency-based estimation based on agreement
and using external ground truth to evaluate the av-
erage accuracy of multiple model samplings. 2)
Knowledge Boundary Modeling: we construct
different data to exhibit implicit modeling, where
the model makes decisions based on predefined
thresholds of knowledge certainty, and explicit
modeling, where the model outputs both an an-
swer and a confidence score. This framework helps
the model use tools more efficiently, invoking them
only when necessary, thus improving performance
while reducing costs. Our approach is evaluated
across multiple tool-use scenarios, demonstrating a
significant reduction in unnecessary tool invocation
and an improvement in overall tool efficiency. Our
contributions can be summarized as follows:

• We propose a multi-objective alignment
framework for efficient tool invocation, along
with corresponding evaluation metrics.

• We propose the tool alignment algorithms and
corresponding data generation methods.

• We conduct extensive experiments across mul-
tiple tool invocation scenarios, demonstrating
the effectiveness of our approach.

2 Related Work

2.1 LLM Alignment

LLM alignment seeks to train language models to
act in accordance with the user’s intent, utilizing
methods such as supervised fine-tuning (Wei et al.,
2022; Chung et al., 2022; Zhang et al., 2023), di-
rect preference optimization (DPO) (Rafailov et al.,
2024), or reinforcement learning from human feed-
back (RLHF) (Stiennon et al., 2020; Ouyang et al.,
2022; Glaese et al., 2022). Most works focus
on enhancing the instruction-following capabili-
ties (Sanh et al., 2021; Wei et al., 2022), helpful-
ness (Ding et al., 2023; Xu et al., 2023), harmless-
ness (Solaiman and Dennison, 2021; Bender et al.,
2021), and honesty (Cui et al., 2023; Yang et al.,
2023b) of LLMs. In addition, some works pro-
posed aligning models with their knowledge bound-
aries (Xu et al., 2024b; Yang et al., 2023c), specif-
ically by training LLMs to reject unknown ques-
tions. However, these approaches assume a binary
view of the model’s knowledge boundary—either
the model knows the answer or it does not. In con-
trast, our work posits that knowledge boundaries
are more nuanced and exist within a gray area. We
propose dynamically determining the model’s be-
havior within this ambiguous region, depending on
the specific application scenario.

2.2 Tool Learning

Recent advancements in tool learning have en-
abled LLMs to effectively integrate external tools,
enhancing real-time knowledge retrieval, multi-
modal functionalities, and domain-specific exper-
tise (Yang et al., 2023a; Gupta and Kembhavi,
2023; Jin et al., 2024). Methods range from lever-
aging in-context learning for tool descriptions and
demonstrations (Hsieh et al., 2023) to explicit train-
ing on tool-enriched datasets (Patil et al., 2023;
Tang et al., 2023; Qin et al., 2023). Some works
have also investigated how to accomplish tasks
within a limited number of tool invocations (Zheng
et al., 2024; Huang et al., 2023) and how to call
tools more reliably (Xu et al., 2024a; Gui et al.,
2024; Zhang et al., 2024). However, previous re-
search on tool invocation has largely overlooked
the correlation between tool usage and the model’s
knowledge boundaries. Additionally, there has
been no unified evaluation metric proposed for as-
sessing efficient tool invocation.

17777

3 Problem Formulation

3.1 LLM Alignment
With the rapid development LLMs, ensuring
their alignment with human instructions, prefer-
ences, and values has become a crucial research
area (Wang et al., 2024). Alignment approaches
are designed to optimize model responses based
on predefined objectives such as helpfulness, truth-
fulness, and safety. Specifically, given an input
prompt x and an alignment goal helpfulness, we
employ the following scoring principle to represent
the alignment objective:

s(x, yh) > s(x, yu), (1)

where yh and yu represent a helpful response and
an unhelpful response, respectively. The preference
order can be determined through human annota-
tion (Ouyang et al., 2022) or a scoring model (Gao
et al., 2023a) trained with human preference data.
The collected preference data can be further lever-
aged to train reward models or fine-tune LLM poli-
cies, thereby improving alignment with human ex-
pectations.

3.2 Multi-Objective Alignment for Efficient
Tool Calling

While alignment with helpfulness is essential, effi-
cient tool calling introduces additional alignment
challenges. A well-aligned LLM should not only
provide helpful responses but also minimize un-
necessary tool usage, as excessive tool calls in-
crease inference latency and computational costs.
Therefore, we propose a multi-objective alignment
framework that balances helpfulness and tool cost.

First, we define alignment objectives separately
for helpfulness and tool cost. The helpfulness align-
ment objective follows:

s(x, yc) > s(x, yw), (2)

where yc represents a correct response, and yw rep-
resents an incorrect response. Simultaneously, for
tool cost, we define:

s(x, yn) > s(x, yt), (3)

where yn represents a response without tool usage,
and yt represents a response with tool usage. Com-
bining these two objectives, our final alignment
formulation becomes:

s(x, ync) > s(x, ytc) > s(x, ynw) > s(x, ytw),
(4)

where ync, ytc, ynw, ytw represent correct re-
sponses without tool usage, correct responses with
tool usage, incorrect responses without tool usage,
and incorrect responses with tool usage, respec-
tively. This ordering reflects the principle that an
ideal LLM should solve problems independently
whenever possible, resorting to tool usage only
when necessary, while also avoiding incorrect an-
swers and unnecessary tool calls.

3.3 Evaluation Methodology
To quantify the tradeoff between helpfulness and
tool cost, we define a benefit-cost utility function
as follows:

u(y) = 1helpfulness(y)− α · 1cost(y), (5)

where 1helpfulness(y), 1tool(y) equal to 1 when
the response y is correct or contains tool calling,
respectively. α represents the cost associated with
tool usage. The overall utility of a model on a
dataset with N samples is then computed as:

Utility =
1

N

N∑

i=1

u(yi) = Acc − α · TR, (6)

where Acc and TR represent the overall accuracy
and tool usage ratio on the dataset, respectively.

The parameter α is crucial, as it determines the
relative penalty of tool usage. A larger α indicates
a higher sensitivity to cost or a greater penalty for
invoking tools. If α is too high, the model may
completely avoid tool usage, even when necessary.
Conversely, if α is too low, the model may overuse
tools. Therefore, selecting a moderate α ensures
a balanced tradeoff between efficiency and effec-
tiveness. Furthermore, the cost of tool usage varies
across different tasks and tools. To account for
these differences, α can be set dynamically based
on the specific tool being used. Empirically, in our
study, we assign α values of 0.2, 0.4, and 0.6 to
calculators, search engines, and external LLM rea-
soning, respectively. The different α values reflect
the increasing computational cost and inference
latency associated with these tools.

4 Methodology

4.1 Framework for Efficient Tool Learning
The key to enabling efficient tool calling lies in
aligning LLMs with their own knowledge bound-
aries. Unlike a binary classification of knowl-
edge into "known" and "unknown," human cog-
nition—and by extension, LLMs—operates within

17778

Helpfulness

Efficiency

A B>
Tool
Call

Objective Kn-Bound Estimation Kn-Bound Modeling

>Direct
Answer

Direct
Answer Tool Call𝜶𝜶

Cost Sensitivity

87

Find the greatest
common divisor of

957 and 1537. …

87
5/10

3/10

Groundtruth: 29

7/10

29
3/10

29

87 …

Econs Find the …

Eabs

Consistency

Absolute

Implicit (Auto)

Explicit (Manual)

E

E>e

E<e

Find the …

Train
Inference

87
Find the greatest

common divisor of
957 and 1537. …

29

87

I’m not sure about the
answer. So, I will use

mathematical tools...

Sure, I’m confident
that the answer is 29.

(,)
(,)

(, ,)

The answer is 29.

My confidence
estimation is 60%.

Epred>e

Epred<e

29

math tool

E

E

Epred

Train Data

Train Data

Known UnknownUncertain

Figure 2: The overall pipeline of knowledge boundary modeling methods.

a spectrum. As shown in the left part of Figure 2,
there exists a large "uncertain region" where the
model can only assign a probabilistic estimate to
its knowledge. Previous works that enforce a strict
binary classification fail to capture this nuanced
understanding, leading to inaccurate estimations
and suboptimal tool invocation strategies.

To achieve effective tool use, the model must
first develop an awareness of its knowledge bound-
aries and then leverage this understanding to ad-
just its decision-making process. This perspective
aligns with the efficiency objective discussed in
prior sections: a model that perceives knowledge
in binary terms will struggle to adjust its behavior
under varying cost considerations (represented by
α). If a model simply categorizes knowledge as
either "known" or "unknown," it will either always
invoke a tool for uncertain cases or always answer
directly, ignoring cost-sensitive optimization.

We propose a solution where the model learns
to estimate its knowledge uncertainty probabilis-
tically rather than making binary classifications.
This allows for greater flexibility in tool invocation.
Depending on different values of α (which repre-
sent different real-world tool costs), we can train
the model to dynamically adjust its behavior. This
can be implemented implicitly through controlled
training data distributions or explicitly by having
the model output confidence estimates that can be
thresholded at inference time to determine whether
a tool should be invoked.

4.2 Estimating Knowledge Boundaries
We propose two methods for knowledge boundary
estimation as shown in the middle part of Figure 2:

Consistency-Based Estimation This method re-
lies on self-consistency. We assume that if a model
produces highly consistent outputs across multiple
samples for a given question, it possesses a stronger
grasp of the underlying knowledge. To operational-
ize this, we measure the variance in the model’s
sampled responses and use it as an indicator of
knowledge certainty. Higher consistency implies
greater confidence in the model’s knowledge.

Absolute Estimation via Ground Truth While
consistency-based estimation is useful, it does not
directly leverage external validation. To address
this, we introduce an absolute estimation method
based on ground truth correctness. We repeatedly
sample model responses for the same question and
compute the average accuracy using ground truth.
This provides an externally validated measure of
the model’s knowledge, correcting for potential
biases in self-estimation.

4.3 Training Approaches
To integrate knowledge boundary estimation into
the model’s behavior, we employ two SFT strate-
gies as shown in the right part of Figure 2: implicit
modeling and explicit modeling.

Implicit Modeling In this approach, the model is
trained to directly output actions (either answering
directly or invoking a tool) based on pre-defined
decision rules. Specifically, we sort all training
samples based on their estimated knowledge scores

17779

and set a threshold: samples above this threshold
are labeled for direct answering, while those below
it are labeled for tool invocation. Since different
values of α correspond to different tool usage pref-
erences, we train separate SFT models with vary-
ing thresholds to adapt to different scenarios. This
method is efficient during inference, as the model
only needs to generate a single response per query.
However, it requires multiple rounds of training for
different values of α.

Explicit Modeling Unlike implicit modeling, ex-
plicit modeling trains the model to output both an
answer and an associated knowledge confidence
score. This allows dynamic adjustment of tool invo-
cation decisions at inference time without requiring
separate SFT models for different α values. Dur-
ing inference, we set a threshold on the confidence
score: if the score is above the threshold, the model
answers directly; otherwise, it invokes a tool. This
approach eliminates the need for retraining but in-
troduces additional inference latency, as each query
requires both an answer and an uncertainty estima-
tion before deciding whether to use a tool.

Each method has its advantages and drawbacks.
Implicit Modeling has Faster inference (single re-
sponse generation) but requires multiple training
runs for different α values. Explicit Modeling is
more flexible at inference time (threshold tuning
without retraining) but slower due to the two-step
generation process. In our experiments, we evalu-
ate both approaches to determine the most effective
strategy for efficient tool calling.

5 Experiments

5.1 Experiment Setup

5.1.1 Task Scenarios
We evaluate our approach across three scenarios,
each requiring a specific external tool: symbolic
computation via a calculator, factual retrieval us-
ing a retrieval-augmented generation (Gao et al.,
2023b) system, and complex reasoning with a
strong reasoning model. See Appendix D for more
detailed experimental setup.
Arithmetic Computation (Calculator). To evalu-
ate mathematical computation capabilities, we con-
struct an arithmetic dataset following Liu and Low
(2023). Input numbers are sampled on a logarith-
mic scale to ensure diverse magnitudes with mini-
mal duplication. To enhance linguistic diversity, we
use hundreds of instruction templates generated by

ChatGPT. Computation is performed using a sym-
bolic calculator as a tool, implemented via code
execution for precise mathematical evaluation.
Knowledge-based QA (Retrieval-Augmented
Generation). To evaluate factual knowledge re-
trieval, we use TriviaQA (Joshi et al., 2017), a
widely used question-answering dataset. We sam-
ple 10,000 instances for training and use the 11,313
instance development set for evaluation, as the offi-
cial test set ground truth is unavailable. To enhance
factual accuracy, we integrate a retrieval system,
leveraging Pyserini (Lin et al., 2021)—a Python
toolkit designed for reproducible information re-
trieval with sparse and dense representations.
Complex Reasoning (Reasoning Model). To eval-
uate multi-step reasoning tasks, we use the MATH
dataset (Hendrycks et al., 2021) with its original
train-test split. Given the inherent complexity of
mathematical reasoning, we employ DeepSeek-
R1 (DeepSeek-AI et al., 2025) as a tool for rea-
soning, leveraging its strong problem-solving capa-
bilities. However, this comes at a trade-off: higher
computational cost and slower inference speed.

5.1.2 Baselines
The baseline methods are categorized into two ma-
jor groups: Prompt-based and Uncertainty-based.
All prompts used are listed in Appendix F.

Prompt-based Prompt-based methods govern
how the model interacts with external tools and
determines its tool usage behavior. The Baseline
(w/o tool) approach has the model answer queries
entirely on its own, relying only on internal knowl-
edge. The Baseline (all tool) forces the model to
always invoke a tool. The Auto tool method allows
the model to decide when to use a tool based on its
estimated confidence. ICL tool (10-shot) provides
the model with 10 example interactions (5 correct,
5 incorrect) to better guide its decision on whether
to answer directly or use a tool. These baselines are
newly designed to reflect intuitive tool-use strate-
gies under varying assumptions of tool accessibility
and cost (see Appendix A for details).

Uncertainty-based. Uncertainty-based methods
estimate the confidence of model-generated an-
swers, which we leverage to determine the optimal
utility by searching for the best confidence thresh-
old. We explore four approaches: Raw logits (Lyu
et al., 2024), P(True) (Kadavath et al., 2022), Ver-
balized Confidence (Tian et al., 2023), and Agree-
ment (Self-Consistency) (Lyu et al., 2024), each

17780

providing a different way to assess model confi-
dence (see Appendix B for details).

5.1.3 Training Details
We use two baseline models: LLAMA-3.1-
8B-INSTRUCT and QWEN-2.5-7B-INSTRUCT.To
align with our experimental setup, we customize
the DeepSpeed-Chat (Yao et al., 2023) framework.
The training process adopts a learning rate of
5× 10−5 and a batch size of 128. All other train-
ing parameters are set to the default parameters
in DeepSpeed-Chat. By default, 10,000 samples
are used for Supervised Fine-Tuning. All models
undergo training for 2 epochs on A800 GPUs (see
Appendix C for more details).

5.2 Main Results

Table 1 compares the performance of all evalu-
ated methods. Our approach achieves the highest
utility scores across three scenarios, demonstrat-
ing its effectiveness in balancing task success and
tool efficiency. Among our methods, Absolute-
based knowledge boundary estimation outperforms
Consistency-based estimation, as external supervi-
sion via ground truth labels enables more accurate
boundary estimation and better tool invocation de-
cisions. Our approach maintains accuracy compa-
rable to the best methods while reducing tool usage
by nearly 50% compared to fully automatic base-
lines. It also matches the Baseline (All Tools) in
accuracy while significantly lowering reliance on
external tools, reducing computational costs. Our
training-based method further enhances efficiency
compared to Auto Tool, achieving better perfor-
mance while reducing tool usage. This validates the
effectiveness of refining tool invocation alignment
with the model’s internal knowledge boundary.

5.3 Overconfidence and Over-tool-reliance

We analyze how implicit modeling shape model be-
havior by adjusting the SFT data ratio, which rep-
resents the proportion of training samples with tool
invocation. As this ratio increases, the model’s con-
fidence estimation and reliance on external tools
shift. Figure 3 illustrates how the SFT data ra-
tio influences both overconfidence and over-tool-
reliance. A higher SFT data ratio increases reliance
on tools, leading to more tool invocation while
reducing the model’s overconfidence in its knowl-
edge. Conversely, a lower SFT data ratio decreases
tool reliance but increases overconfidence. Each
dataset exhibits an optimal SFT data ratio, where

0.0 0.5 1.0
0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

Optimal: 0.4

Arithmetic + Calculator

0.0 0.5 1.0
0

20

40

60

80

100

Optimal: 0.3

TriviaQA + RAG

0.0 0.5 1.0
SFT Data Ratio

0

20

40

60

80

100

Optimal: 0.3

Math + Reasoner

Overconfidence

Over-tool-reliance

Total issues

Figure 3: Trade-off between overconfidence and over-
tool-reliance with different SFT data ratios.

this combined proportion is minimized, balancing
model confidence and tool dependency. This turn-
ing point in Figure 3 serves as a guideline for op-
timal model selection. At this ratio, the model
maintains a well-calibrated knowledge boundary
while minimizing unnecessary tool usage.

5.4 Inference Time
Since tool invocation adds computational overhead,
we assess inference cost by measuring actual exe-
cution time. Using VLLM (Kwon et al., 2023) on
NVIDIA A800 GPUs (see Appendix E for detailed
experimental setup), we compute per-sample infer-
ence time and aggregate the total runtime across the
dataset. Figure 4 illustrates the trade-off between
inference time and performance, where methods
positioned towards the upper-left corner achieve a
more favorable balance. Our approach consistently
demonstrates superior efficiency, attaining either
higher performance at the same inference time or
reduce latency while maintaining accuracy. By
optimizing tool usage, our method reduces compu-
tational cost while maintaining comparable perfor-
mance, ensuring efficient real-world deployment
and making it well-suited for practical applications.

5.5 Ablation Study
5.5.1 Implict Modeling Methods
To understand how implicit modeling affects our
utility, we perform an ablation study to see how
different Supervised Fine-Tuning (SFT) data ra-
tios impact the model’s behavior. The data ratio

17781

Type Method
Arithmetic + Calculator TriviaQA + RAG Math + Reasoner

Acc ↑ Tool Rate ↓ Utility(0.2) ↑ Acc ↑ Tool Rate ↓ Utility(0.4) ↑ Acc ↑ Tool Rate ↓ Utility(0.6) ↑
Llama3.1 8B

Prompt-based

Baseline (w/o tool) 63.0 0.0 63.0 62.5 0.0 62.5 51.4 0.0 51.4
Baseline (all tool) 99.0 100.0 79.0 95.8 100.0 55.8 96.2 100.0 36.2
Auto tool 90.3 75.0 75.3 89.5 78.0 58.3 73.1 50.1 43.0
ICL tool (10-shot) 91.6 62.6 79.2 85.6 69.5 57.8 53.2 4.9 50.3

Uncertainty-based

Raw logits 90.7 54.6 79.8 74.3 16.9 67.5 59.0 9.9 53.1
P(True) 90.4 65.1 77.4 87.4 59.2 63.7 84.4 61.6 47.4
verb. 1S top-1 65.5 7.8 63.9 77.4 32.8 64.3 64.1 16.3 54.3
verb. 2S top-1 69.1 16.1 65.9 74.8 20.9 66.3 62.0 16.7 52.0
agreement(consistency) 77.3 22.4 72.8 87.3 45.7 69.0 71.7 28.5 54.6

Training-based

IMPLICIT-LOGITS 80.0 33.7 73.3 74.5 24.6 64.7 85.5 56.7 51.5
EXPLICIT-LOGITS 89.5 65.5 76.4 75.8 26.8 65.1 84.9 47.5 56.4
IMPLICIT-CONSISTENCY 80.1 30.9 73.9 77.0 25.1 67.0 84.4 51.6 53.6
IMPLICIT-ABSOLUTE 96.7 45.2 87.7 91.1 42.3 74.2 93.1 55.5 59.8
EXPLICIT-CONSISTENCY 90.7 61.7 78.4 76.9 25.9 66.5 84.1 45.7 56.7
EXPLICIT-ABSOLUTE 93.3 33.8 86.5 82.9 29.7 71.0 79.5 35.6 58.1

Qwen2.5 7B

Prompt-based

Baseline (w/o tool) 67.0 0.0 67.0 51.1 0.0 51.1 74.9 0.0 74.9
Baseline (all tool) 99.0 100.0 79.0 94.7 100.0 54.7 96.2 100.0 36.2
Auto tool 95.7 83.4 79.0 90.4 89.6 54.6 77.1 24.5 62.4
ICL tool (10-shot) 91.2 32.9 84.6 74.5 33.8 61.0 75.1 1.8 74.0

Uncertainty-based

Raw logits 95.1 47.8 85.5 86.6 61.7 61.9 86.9 34.1 66.4
P(True) 94.2 63.4 81.5 79.1 53.1 57.9 86.0 30.7 67.6
verb. 1S top-1 68.9 4.9 67.9 81.2 55.9 58.8 75.6 6.9 71.5
verb. 2S top-1 78.9 22.4 74.4 79.5 51.5 58.9 83.9 20.2 71.8
agreement(consistency) 91.6 22.4 87.1 86.2 47.9 67.0 97.8 38.6 74.6

Training-based

IMPLICIT-LOGITS 83.9 22.8 79.3 81.3 56.1 58.9 91.9 52.9 60.2
EXPLICIT-LOGITS 84.2 27.2 78.8 83.2 60.1 59.2 92.9 53.9 60.6
IMPLICIT-CONSISTENCY 82.7 17.2 79.3 84.2 58.1 61.0 96.9 54.9 64.0
IMPLICIT-ABSOLUTE 97.6 37.9 90.1 90.7 59.1 67.1 93.9 29.0 76.5
EXPLICIT-CONSISTENCY 90.7 61.7 78.4 72.9 23.9 63.3 89.9 22.3 76.5
EXPLICIT-ABSOLUTE 97.3 28.8 91.5 80.3 30.3 68.2 90.1 21.2 77.4

Table 1: Performance comparison on three tool calling scenarios. The utility is the overall evaluation metric of
accuracy and tool rate. A larger α indicates a higher cost sensitivity and a greater penalty for invoking tools.

Figure 4: Performance vs. inference time (seconds).

means the percentage of training examples where
the model uses a tool to get the answer instead of
answering on its own. We keep the total dataset
size the same but change this ratio to see how it
affects the model’s preference for using tools or an-
swering directly. This helps us find the best balance
based on cost. When using a tool is cheap, a higher
ratio makes the model use tools more often, which
improves accuracy by using external resources. On
the other hand, if tool usage is expensive, a lower

ratio makes the model answer questions indepen-
dently, reducing costs. The key is to find the right
balance so the model efficiently decides when to
use tools based on the situation. Figure 5 shows
how the data ratio affects the model’s utility. At
first, utility increases as the ratio goes up, reaching
a peak before dropping. The best ratio is different
for each dataset and depends on how much the tool
costs. If tool costs are high, the optimal ratio is
lower. This shows that our implicit modeling ap-
proach helps the model make smart choices based
on task costs, balancing accuracy and efficiency.

5.5.2 Explicit Modeling Methods

Unlike implicit approaches, explicit modeling al-
lows the model to directly output confidence scores
alongside its predictions, enabling threshold-based
decision-making for tool invocation. To further
evaluate its effectiveness, we compare explicit mod-
eling with uncertainty-based baselines, as both
methods fundamentally rely on confidence esti-
mation to determine knowledge boundaries. To
ensure a fair comparison, we adjust the confidence
threshold to control the tool invocation ratio, sys-
tematically varying the threshold to assess model
performance at different levels of tool usage. As
shown in Figure 6 illustrates the relationship be-
tween tool invocation rate and model performance
across various confidence thresholds. Explicit mod-

17782

0.0 0.2 0.4 0.6 0.8 1.0
SFT Data Ratio

30

40

50

60

70

80

90
U

ti
lit

y
Arithmetic + Calculator

0.0 0.2 0.4 0.6 0.8 1.0
SFT Data Ratio

30

40

50

60

70

80

90

U
ti

lit
y

TriviaQA + RAG

0.0 0.2 0.4 0.6 0.8 1.0
SFT Data Ratio

30

40

50

60

70

80

90

U
ti

lit
y

Math + Reasoner

Figure 5: Effect of SFT Data Ratio on Utility. The ratio represents the proportion of training samples in which the
model invokes a tool rather than answering directly.

0.00 0.25 0.50 0.75 1.00
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

A
cc

ur
ac

y

Arithmetic + Calculator

0.00 0.25 0.50 0.75 1.00
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00 TriviaQA + RAG

0.00 0.25 0.50 0.75 1.00
Tool Usage Ratio

0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00 Math + Reasoner

agreement(consistency)
P(True)
Raw Logits
verb. 1S top-1
verb. 2S top-1
EXPLICIT-ABSOLUTE

Figure 6: Comparison of tool invocation strategies: ex-
plicit modeling vs. uncertainty-based baselines.

eling consistently outperforms uncertainty-based
baselines at all invocation ratios, demonstrating
its ability to provide a more reliable estimation of
knowledge boundaries. The performance gap re-
mains stable, highlighting the robustness of explicit
confidence modeling. By leveraging these confi-
dence scores, our approach enables finer control
over tool invocation, optimizing task success while
reducing unnecessary computational overhead.

5.6 Knowledge Boundary Alignment

To examine whether the model learns about knowl-
edge boundary, we compare our method with
auto_tool in terms of tool invocation distribution.
Figure 7 presents tool usage across different ac-
curacy levels. Higher accuracy reflects a better
understanding of the problem. An ideal model
should rely on tools for challenging cases while
minimizing tool use for confidently answered ques-
tions. However, auto_tool exhibits a nearly uni-
form tool invocation pattern, suggesting it lacks
awareness of its knowledge boundaries. In contrast,

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100

T
oo

l U
sa

ge
 (%

)

Arithmetic + Calculator

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100
TriviaQA + RAG

0.0 0.2 0.4 0.6 0.8 1.0
Average Accuracy

0

20

40

60

80

100
Math + Reasoner

auto_tool (Tool Usage)
auto_tool (Over-tool-reliance)
IMPLICIT-ABSOLUTE (Tool Usage)
IMPLICIT-ABSOLUTE (Over-tool-reliance)

Figure 7: Comparison of tool usage and over-tool-
reliance across different accuracy levels.

our method shows a gradual decline in tool usage
as accuracy increases, indicating adaptive tool in-
vocation based on knowledge confidence. We also
analyze over-tool-reliance, where the model uses
tools unnecessarily despite being capable of an-
swering correctly. Figure 7 shows that the baseline
exhibits increasing over-tool-reliance with accu-
racy, leading to unnecessary computational over-
head. Conversely, our method reduces over-tool-
reliance, enabling more intelligent invocations.

6 Conclusion

In this work, we introduced a novel approach to
improve LLMs’ decision-making regarding when
and how to use external tools. By incorporating the
concept of an "uncertain region" and probabilistic
knowledge boundary estimation, our framework
enables more informed and efficient tool usage.
Through extensive experiments, we demonstrated
that our approach reduces unnecessary tool calls,
improving performance and cost-effectiveness. By
combining implicit and explicit modeling tech-

17783

niques, we provide the model with greater flexi-
bility in real-time decisions. Our work advances
LLMs’ tool intelligence, ensuring more judicious
and efficient tool invocation. Future work can ex-
plore further refinements and broader applications.

Acknowledgments

This work is funded by the China NSFC Projects
(62120106006, 92370206, and U23B2057) and
Shanghai Municipal Science and Technology
Projects (2021SHZDZX0102 and 25X010202846).

Limitations

This work primarily proposes an alignment frame-
work for efficient tool invocation, evaluated
through experiments on three datasets. On the one
hand, the number of tools used in these experiments
is limited, with a selection of three representative
tools: a mathematical calculator, a search engine,
and an external large model. This choice is moti-
vated by the fact that most tools possess highly spe-
cific knowledge. For example, tools that retrieve
weather information for a particular day contain
knowledge that does not overlap with that of the
model, requiring the model to invoke the tool to
complete the task. On the other hand, different
models and knowledge sources can also be framed
as tools, meaning that the discussion in this work
on modeling knowledge boundaries remains highly
valuable. In addition, the experiments in this work
were conducted on only two open-source models,
as obtaining baseline data for closed-source models
presents significant challenges. For instance, meth-
ods such as uncertainty estimation often require
access to specific token logits, which are difficult
to obtain for proprietary models. This limitation
affects the generalizability of the experimental re-
sults, as the performance of closed-source models
may differ in ways that cannot be captured without
direct access to their internals.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Emily M Bender, Timnit Gebru, Angelina McMillan-
Major, and Shmargaret Shmitchell. 2021. On the
dangers of stochastic parrots: Can language models

be too big? In Proceedings of the 2021 ACM confer-
ence on fairness, accountability, and transparency,
pages 610–623.

Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He,
Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi Liu,
Mengfei Zhou, Zhuosheng Zhang, et al. 2024. Do
not think that much for 2+ 3=? on the overthinking
of o1-like llms. arXiv preprint arXiv:2412.21187.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al.
2022. Scaling instruction-finetuned language models.
arXiv preprint arXiv:2210.11416.

Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao,
Wei Zhu, Yuan Ni, Guotong Xie, Zhiyuan Liu, and
Maosong Sun. 2023. Ultrafeedback: Boosting lan-
guage models with high-quality feedback. arXiv
preprint arXiv:2310.01377.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang,
Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang,
Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong
Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue,
Bingxuan Wang, Bochao Wu, Bei Feng, Chengda Lu,
Chenggang Zhao, Chengqi Deng, Chenyu Zhang,
Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji,
Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo,
Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang,
Han Bao, Hanwei Xu, Haocheng Wang, Honghui
Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li,
Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L.
Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai
Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai
Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong
Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan
Zhang, Minghua Zhang, Minghui Tang, Meng Li,
Miaojun Wang, Mingming Li, Ning Tian, Panpan
Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen,
Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan,
Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen,
Shanghao Lu, Shangyan Zhou, Shanhuang Chen,
Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng
Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing
Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun,
T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu,
Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao
Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan
Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin
Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li,
Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin,
Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxi-
ang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang,
Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang
Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng
Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi,
Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang,
Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo,
Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yu-
jia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You,
Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong Xu,

17784

Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu,
Yunxian Ma, Ying Tang, Yukun Zha, Yuting Yan,
Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean
Xu, Zhenda Xie, Zhengyan Zhang, Zhewen Hao,
Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zi-
jia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song,
Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu
Zhang, and Zhen Zhang. 2025. Deepseek-r1: Incen-
tivizing reasoning capability in llms via reinforce-
ment learning. Preprint, arXiv:2501.12948.

Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin, Zhi
Zheng, Shengding Hu, Zhiyuan Liu, Maosong Sun,
and Bowen Zhou. 2023. Enhancing Chat Language
Models by Scaling High-quality Instructional Con-
versations. ArXiv preprint, abs/2305.14233.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Leo Gao, John Schulman, and Jacob Hilton. 2023a.
Scaling laws for reward model overoptimization.
In International Conference on Machine Learning,
pages 10835–10866. PMLR.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia,
Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, and Haofen
Wang. 2023b. Retrieval-augmented generation for
large language models: A survey. arXiv preprint
arXiv:2312.10997.

Gemini Team. 2023. Gemini: A Family of
Highly Capable Multimodal Models. Preprint,
arXiv:2312.11805.

Amelia Glaese, Nat McAleese, Maja Trebacz, John
Aslanides, Vlad Firoiu, Timo Ewalds, Maribeth Rauh,
Laura Weidinger, Martin Chadwick, Phoebe Thacker,
et al. 2022. Improving alignment of dialogue agents
via targeted human judgements. arXiv preprint
arXiv:2209.14375.

Anchun Gui, Jian Li, Yong Dai, Nan Du, and Han Xiao.
2024. Look before you leap: Towards decision-aware
and generalizable tool-usage for large language mod-
els. arXiv preprint arXiv:2402.16696.

Tanmay Gupta and Aniruddha Kembhavi. 2023. Vi-
sual programming: Compositional visual reasoning
without training. In In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition (CVPR 2023), pages 14953–14962.

Shibo Hao, Tianyang Liu, Zhen Wang, and Zhiting Hu.
2023. ToolkenGPT: Augmenting Frozen Language
Models with Massive Tools via Tool Embeddings.
ArXiv preprint, abs/2305.11554.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021. Measuring mathematical
problem solving with the math dataset. NeurIPS.

Cheng-Yu Hsieh, Si-An Chen, Chun-Liang Li, Yasuhisa
Fujii, Alexander Ratner, Chen-Yu Lee, Ranjay Kr-
ishna, and Tomas Pfister. 2023. Tool documenta-
tion enables zero-shot tool-usage with large language
models. ArXiv preprint, abs/2308.00675.

Yue Huang, Jiawen Shi, Yuan Li, Chenrui Fan, Siyuan
Wu, Qihui Zhang, Yixin Liu, Pan Zhou, Yao Wan,
Neil Zhenqiang Gong, et al. 2023. Metatool bench-
mark for large language models: Deciding whether
to use tools and which to use. arXiv preprint
arXiv:2310.03128.

Qiao Jin, Yifan Yang, Qingyu Chen, and Zhiyong Lu.
2024. GeneGPT: augmenting large language models
with domain tools for improved access to biomedical
information. Bioinformatics, 40(2):btae075.

Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke
Zettlemoyer. 2017. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehen-
sion. arXiv preprint arXiv:1705.03551.

Saurav Kadavath, Tom Conerly, Amanda Askell, Tom
Henighan, Dawn Drain, Ethan Perez, Nicholas
Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli
Tran-Johnson, et al. 2022. Language models
(mostly) know what they know. arXiv preprint
arXiv:2207.05221.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi-
cient memory management for large language model
serving with pagedattention. In Proceedings of the
ACM SIGOPS 29th Symposium on Operating Systems
Principles.

Jimmy Lin, Xueguang Ma, Sheng-Chieh Lin, Jheng-
Hong Yang, Ronak Pradeep, and Rodrigo Nogueira.
2021. Pyserini: A python toolkit for reproducible
information retrieval research with sparse and dense
representations. In Proceedings of the 44th Inter-
national ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 2356–
2362.

Tiedong Liu and Bryan Kian Hsiang Low. 2023. Goat:
Fine-tuned llama outperforms gpt-4 on arithmetic
tasks. arXiv preprint arXiv:2305.14201.

Qing Lyu, Kumar Shridhar, Chaitanya Malaviya,
Li Zhang, Yanai Elazar, Niket Tandon, Mari-
anna Apidianaki, Mrinmaya Sachan, and Chris
Callison-Burch. 2024. Calibrating large language
models with sample consistency. arXiv preprint
arXiv:2402.13904.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in Neural
Information Processing Systems, 35:27730–27744.

17785

https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2305.14233
https://arxiv.org/abs/2305.14233
https://arxiv.org/abs/2305.14233
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2305.11554
https://arxiv.org/abs/2305.11554
https://arxiv.org/abs/2308.00675
https://arxiv.org/abs/2308.00675
https://arxiv.org/abs/2308.00675
https://doi.org/10.1093/bioinformatics/btae075
https://doi.org/10.1093/bioinformatics/btae075
https://doi.org/10.1093/bioinformatics/btae075

Shishir G. Patil, Tianjun Zhang, Xin Wang, and
Joseph E. Gonzalez. 2023. Gorilla: Large Lan-
guage Model Connected with Massive APIs. ArXiv
preprint, abs/2305.15334.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, Sihan Zhao, Runchu Tian, Ruobing Xie,
Jie Zhou, Mark Gerstein, Dahai Li, Zhiyuan Liu,
and Maosong Sun. 2023. ToolLLM: Facilitating
Large Language Models to Master 16000+ Real-
world APIs. Preprint, arXiv:2307.16789.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn.
2024. Direct preference optimization: Your language
model is secretly a reward model. Advances in Neu-
ral Information Processing Systems, 36.

Victor Sanh, Albert Webson, Colin Raffel, Stephen H
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Teven Le Scao, Arun
Raja, et al. 2021. Multitask prompted training en-
ables zero-shot task generalization. arXiv preprint
arXiv:2110.08207.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta
Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola
Cancedda, and Thomas Scialom. 2023. Toolformer:
Language Models Can Teach Themselves to Use
Tools. ArXiv preprint, abs/2302.04761.

Irene Solaiman and Christy Dennison. 2021. Process
for adapting language models to society (palms) with
values-targeted datasets. Advances in Neural Infor-
mation Processing Systems, 34:5861–5873.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel
Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. 2020. Learn-
ing to summarize with human feedback. Advances
in Neural Information Processing Systems, 33:3008–
3021.

Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei Han,
Qiao Liang, and Le Sun. 2023. ToolAlpaca: General-
ized Tool Learning for Language Models with 3000
Simulated Cases. Preprint, arXiv:2306.05301.

Katherine Tian, Eric Mitchell, Allan Zhou, Archit
Sharma, Rafael Rafailov, Huaxiu Yao, Chelsea Finn,
and Christopher D Manning. 2023. Just ask for cali-
bration: Strategies for eliciting calibrated confidence
scores from language models fine-tuned with human
feedback. arXiv preprint arXiv:2305.14975.

Xinpeng Wang, Shitong Duan, Xiaoyuan Yi, Jing Yao,
Shanlin Zhou, Zhihua Wei, Peng Zhang, Dongkuan
Xu, Maosong Sun, and Xing Xie. 2024. On the
essence and prospect: An investigation of align-
ment approaches for big models. arXiv preprint
arXiv:2403.04204.

Yue Wang, Qiuzhi Liu, Jiahao Xu, Tian Liang, Xingyu
Chen, Zhiwei He, Linfeng Song, Dian Yu, Juntao
Li, Zhuosheng Zhang, et al. 2025. Thoughts are all

over the place: On the underthinking of o1-like llms.
arXiv preprint arXiv:2501.18585.

Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M. Dai, and Quoc V. Le. 2022. Finetuned
Language Models are Zero-Shot Learners. In The
Tenth International Conference on Learning Repre-
sentations, ICLR 2022, Virtual Event, April 25-29,
2022. OpenReview.net.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,
Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin
Jiang. 2023. WizardLM: Empowering Large Lan-
guage Models to Follow Complex Instructions.
Preprint, arXiv:2304.12244.

Hongshen Xu, Su Zhu, Zihan Wang, Hang Zheng,
Da Ma, Ruisheng Cao, Shuai Fan, Lu Chen, and Kai
Yu. 2024a. Reducing tool hallucination via reliability
alignment. arXiv preprint arXiv:2412.04141.

Hongshen Xu, Zichen Zhu, Da Ma, Situo Zhang, Shuai
Fan, Lu Chen, and Kai Yu. 2024b. Rejection im-
proves reliability: Training llms to refuse unknown
questions using rl from knowledge feedback. arXiv
preprint arXiv:2403.18349.

Linyao Yang, Hongyang Chen, Zhao Li, Xiao Ding,
and Xindong Wu. 2023a. ChatGPT is not Enough:
Enhancing Large Language Models with Knowledge
Graphs for Fact-aware Language Modeling. ArXiv
preprint, abs/2306.11489.

Yuchen Yang, Houqiang Li, Yanfeng Wang, and
Yu Wang. 2023b. Improving the reliability of large
language models by leveraging uncertainty-aware in-
context learning. arXiv preprint arXiv:2310.04782.

Yuqing Yang, Ethan Chern, Xipeng Qiu, Graham Neu-
big, and Pengfei Liu. 2023c. Alignment for honesty.
arXiv preprint arXiv:2312.07000.

Zhewei Yao, Reza Yazdani Aminabadi, Olatunji
Ruwase, Samyam Rajbhandari, Xiaoxia Wu, Am-
mar Ahmad Awan, Jeff Rasley, Minjia Zhang, Cong-
long Li, Connor Holmes, et al. 2023. Deepspeed-
chat: Easy, fast and affordable rlhf training of
chatgpt-like models at all scales. arXiv preprint
arXiv:2308.01320.

Andy Zeng, Maria Attarian, Brian Ichter, Krzysztof
Choromanski, Adrian Wong, Stefan Welker, Fed-
erico Tombari, Aveek Purohit, Michael Ryoo, Vikas
Sindhwani, et al. 2022. Socratic models: Compos-
ing zero-shot multimodal reasoning with language.
arXiv preprint arXiv:2204.00598.

Shengyu Zhang, Linfeng Dong, Xiaoya Li, Sen Zhang,
Xiaofei Sun, Shuhe Wang, Jiwei Li, Runyi Hu, Tian-
wei Zhang, Fei Wu, et al. 2023. Instruction tuning
for large language models: A survey. arXiv preprint
arXiv:2308.10792.

17786

https://arxiv.org/abs/2305.15334
https://arxiv.org/abs/2305.15334
https://arxiv.org/abs/2307.16789
https://arxiv.org/abs/2307.16789
https://arxiv.org/abs/2307.16789
https://arxiv.org/abs/2302.04761
https://arxiv.org/abs/2302.04761
https://arxiv.org/abs/2302.04761
https://arxiv.org/abs/2306.05301
https://arxiv.org/abs/2306.05301
https://arxiv.org/abs/2306.05301
https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=gEZrGCozdqR
https://arxiv.org/abs/2304.12244
https://arxiv.org/abs/2304.12244
https://arxiv.org/abs/2306.11489
https://arxiv.org/abs/2306.11489
https://arxiv.org/abs/2306.11489

Yuxiang Zhang, Jing Chen, Junjie Wang, Yaxin Liu,
Cheng Yang, Chufan Shi, Xinyu Zhu, Zihao Lin,
Hanwen Wan, Yujiu Yang, et al. 2024. Toolbehonest:
A multi-level hallucination diagnostic benchmark
for tool-augmented large language models. arXiv
preprint arXiv:2406.20015.

Yuanhang Zheng, Peng Li, Ming Yan, Ji Zhang, Fei
Huang, and Yang Liu. 2024. Budget-constrained
tool learning with planning. arXiv preprint
arXiv:2402.15960.

A Prompt-based Methods

We implement four prompt-based baseline meth-
ods to facilitate a fair and interpretable comparison
across varying tool-use strategies. These baselines
are designed to represent intuitive and commonly
used decision patterns along the spectrum of tool
accessibility and reliance. Below, we provide de-
tailed descriptions and the design rationale for each
baseline.

Baseline (w/o tool) In this setting, the model is
instructed to answer each question using only its
internal parametric knowledge, without access to
any external tool. This baseline serves to evaluate
the model’s raw performance without any form
of external assistance. It provides a lower bound
for performance, isolating the contribution of the
model’s internal memory. Moreover, it allows us
to quantify the incremental benefits gained from
tool usage and to identify scenarios where tools are
essential for accurate responses.

Baseline (all tool) The model is required to al-
ways utilize external tool outputs—such as re-
trieved documents or calculator results—when gen-
erating an answer, irrespective of its confidence
level. This baseline simulates an over-reliance
on tools, representing a naïve strategy where the
model defaults to tool usage regardless of necessity.
It approximates an upper bound on task perfor-
mance under the assumption that tool outputs are
generally helpful. At the same time, it highlights
the trade-off between performance and tool usage
cost, particularly in settings sensitive to latency or
resource constraints.

Auto Tool (Zero-Shot) The model is prompted to
make a binary decision on whether to invoke a tool,
based solely on its internal confidence, without any
fine-tuning or in-context examples. This baseline
evaluates the model’s zero-shot uncertainty esti-
mation capability and its ability to make tool-use

decisions guided purely by prompt instructions. It
offers a natural and competitive baseline for com-
parison with approaches that incorporate explicit
confidence training or reinforcement.

ICL Tool (10-Shot In-Context Learning) This
method extends the Auto Tool baseline by prepend-
ing 10 in-context examples (5 correct answers with-
out tools, and 5 correct answers with tools) that
demonstrate when to use or avoid tool invocation.
The goal of this baseline is to assess whether the
model can learn a tool-use decision policy implic-
itly from in-context demonstrations. By provid-
ing examples of both high-confidence (tool-free)
and low-confidence (tool-required) responses, the
model is expected to generalize and apply similar
decision criteria to new inputs.

B Uncertainty Estimation Methods

This section provides a comprehensive overview of
the uncertainty estimation techniques employed in
our study. These methods aim to quantify model
confidence in its predictions, helping regulate tool
invocation and decision-making.

Raw Logits. This approach estimates confidence
using the model’s logit values, specifically by com-
puting the exponential of the average log probabil-
ity of the generated tokens. This metric is mathe-
matically equivalent to the reciprocal of perplexity,
where lower perplexity indicates higher confidence,
effectively capturing how certain the model is in its
prediction.

Agreement (Consistency-based). In this
method, confidence is determined by measuring
the proportion of generated responses that align
with the most frequently predicted answer. A
higher agreement percentage suggests greater
internal consistency in the model’s responses,
thereby indicating a stronger level of confidence in
its generated output.

P(True). This method involves prompting the
model to explicitly assess the correctness of its
own response. The confidence score is derived
from the normalized probability assigned to the
‘True’ token, reflecting the model’s self-evaluated
likelihood that its answer is correct.

Verbalized Confidence: 1-Stage Top-k (Verb. 1S
Top-k). In this one-stage approach, the model
generates the top k candidate answers along with
their respective probabilities in a single pass. The

17787

highest-ranked answer and its assigned probability
serve as an indicator of confidence, offering a direct
estimation of the model’s certainty in its response.

Verbalized Confidence: 2-Stage Top-k (Verb. 2S
Top-k). Unlike the single-stage method, this two-
stage approach first prompts the model to gener-
ate multiple candidate answers and then separately
assigns probabilities to each of them in a second
inference step. The final confidence score is com-
puted based on these probabilities, allowing for a
refined estimation that accounts for potential self-
correction.

These uncertainty estimation techniques play a
crucial role in calibrating tool invocation decisions,
ensuring that external tools are utilized effectively
based on the model’s confidence in its own predic-
tions. To optimize utility, we sort all confidence
scores across responses and use each unique score
as a potential threshold, systematically evaluating
its impact on tool invocation.

C Training Details

We use two baseline models: LLAMA-3.1-
8B-INSTRUCT and QWEN-2.5-7B-INSTRUCT.To
align with our experimental setup, we customize
the DeepSpeed-Chat (Yao et al., 2023) framework.
The training process adopts a learning rate of
5× 10−5 and a batch size of 128. All other train-
ing parameters are set to the default parameters
in DeepSpeed-Chat. By default, 10,000 samples
are used for Supervised Fine-Tuning. All models
undergo training for 2 epochs on A800 GPUs.

We train our models by leveraging the confi-
dence scores estimated from the aforementioned
methods. Specifically, the model is trained us-
ing these different confidence estimation strate-
gies—LOGITS, CONSISTENCY, and ABSO-
LUTE—as supervisory signals to guide and cal-
ibrate its learning process.

LOGITS This approach estimates confidence us-
ing the model’s logit values, specifically by comput-
ing the exponential of the average log probability
of the generated tokens. This metric is mathemat-
ically equivalent to the reciprocal of perplexity,
where lower perplexity indicates higher confidence,
effectively capturing how certain the model is in its
prediction.

CONSISTENCY In this method, confidence is
determined by measuring the proportion of gener-
ated responses that align with the most frequently

predicted answer. A higher agreement percentage
suggests greater internal consistency in the model’s
responses, thereby indicating a stronger level of
confidence in its generated output.

ABSOLUTE This method estimates the model’s
confidence by measuring the proportion of gener-
ated responses that align with external supervision
(i.e., the ground-truth labels). It uses external sig-
nals to calibrate the model’s confidence.

D Experimental Setup

Arithmetic Computation. For arithmetic tasks,
we use a dataset consisting of 10,000 training sam-
ples and 1,000 test samples. To ensure the quality
of generated arithmetic expressions, we filter out
any syntactically incorrect or malformed expres-
sions that do not conform to standard arithmetic
formats. Symbolic computation is performed us-
ing the SymPy library, which provides a robust
framework for symbolic mathematics and equation
evaluation.

Knowledge-based QA (TriviaQA). For
knowledge-based question answering, we ran-
domly select 10,000 training instances from the
full TriviaQA training set. The retrieval system
is employed only during inference and does
not participate in training. During training, the
model is only exposed to the tool invocation
format, but actual retrieval is not performed.
We follow the Pyserini setup for TriviaQA and
utilize a sparse retriever to retrieve the top 100
highest-scoring passages. To improve retrieval
accuracy, we further filter passages that contain
the correct answer and refine the selection using
ChatGPT, eliminating irrelevant noisy passages.
This ensures that the retrieved information is
reliable, preventing erroneous tool invocation from
negatively impacting final performance.

Complex Reasoning (MATH). For mathemati-
cal problem-solving, we process the MATH dataset
following its original settings. We utilize a total
of 7500 training samples and 5000 test samples,
adhering strictly to the dataset’s official evaluation
protocol to ensure consistency and comparability
with prior work. We employ DeepSeek-R1 (671B)
as the external reasoning model, deploying it lo-
cally using VLLM on a cluster of 32 NVIDIA A800
GPU. The model operates in a zero-shot setting. To
mitigate excessive inference latency, we instruct the

17788

model to generate concise responses while main-
taining reasoning completeness. Despite this con-
straint, DeepSeek-R1 still significantly surpasses
our primary models in response time.

E Inference Time Experimental Setup

For inference time evaluation, we employ the
VLLM framework and conduct experiments on
two NVIDIA A800 GPUs. To obtain a precise
measurement of raw inference latency, we process
input samples sequentially, without applying any
parallelization techniques such as batching. We
measure only the pure inference time, excluding
any overhead from data loading. All other parame-
ters remain at their default settings, and the model
is loaded in bfloat16 format to optimize memory
usage while preserving numerical precision.

F Prompts Used in Experiments

F.1 Prompts Used in Different Prompt-based
Methods

The prompts used for different datasets are pre-
sented in the following sections. Table 2 shows
the prompts for the MATH dataset, Table 3 con-
tains the prompts for the Arithmetic dataset, and
Table 4 presents the prompts for the TriviaQA
dataset.

F.1.1 Prompts for MATH Dataset
Table 2 lists the prompts used for different methods
when evaluating the MATH dataset.

F.1.2 Prompts for Arithmetic Dataset
Table 3 lists the prompts used for different methods
when evaluating the Arithmetic dataset.

F.1.3 Prompts for TriviaQA Dataset
Table 4 lists the prompts used for different methods
when evaluating the TriviaQA dataset.

F.2 Prompts Used in Different
Uncertainty-based Methods

The prompts are shown in Table 5.

F.3 Question Templates
The examples of arithmetic question templates are
shown in 6.

17789

Baseline (w/o tool) - MATH

Given the following problem, break it down into steps and reason through each part before arriving at a final conclusion.
Your final answer MUST be enclosed in \boxed{}.
Problem: {question}

Baseline (all tool) - MATH

Given the following problem, break it down into steps and reason through each part before arriving at a final conclusion.
Your final answer MUST be enclosed in \boxed{}.
Problem: {question}

Auto Tool - MATH

Given the following problem. If you can solve it directly with confidence, your final answer must be in \boxed{} format.
If you cannot solve it directly, call the tool immediately without reasoning, using this format:
{{

"tool_name": "math_solver"
}}
Problem: {question}

ICL Tool (10-shot) - MATH

Given the following problem. If you can solve it directly with confidence, your final answer must be in \boxed{} format.
If you cannot solve it directly, call the tool immediately without reasoning, using this format:
{{

"tool_name": "math_solver"
}}
Examples: {example}
Problem: {question}

Table 2: Prompts Used in Different Methods for MATH Dataset.

Baseline (w/o tool) - Arithmetic

Given the following problem, provide the final answer directly.
Problem: {question}
Your response should only be "The final answer is [answer]" where [answer] is the response to the problem.

Baseline (all tool) - Arithmetic

Use a calculator to solve the question. Format your output as a JSON object in the following structure:
{{

"calculator": "<expression>"
}}
Problem: {question}

Auto Tool - Arithmetic

If you are confident in your answer, output the final answer directly. If unsure, use the calculator tool and respond with a
JSON object formatted as:

{{
"tool_name": "calculator"

}}
Problem: {question}

ICL Tool (10-shot) - Arithmetic

If you are confident in your answer, output the final answer directly. If unsure, use the calculator tool and respond with a
JSON object formatted as:

{{
"tool_name": "calculator"

}}

Examples: {example}
Problem: {question}

Table 3: Prompts Used in Different Methods for Arithmetic Dataset.

17790

Baseline (w/o tool) - TriviaQA

Answer the following question. Your response should only be "The final answer is [answer]" where [answer] is the
response to the problem.
Problem: {question}

Baseline (all tool) - TriviaQA

{documents}
Based on the information in this document, answer the following question accurately.
Problem: {question}

Auto Tool - TriviaQA

Answer the following question directly if you are confident in your knowledge. If you are uncertain or need to retrieve
information, respond with a JSON object in the following format:
{{

"tool_name": "search_info"
}}
Problem: {question}

ICL Tool (10-shot) - TriviaQA

Answer the following question directly if you are confident in your knowledge. If you are uncertain or need to retrieve
information, respond with a JSON object in the following format:
{{

"tool_name": "search_info"
}}
Examples: {example}
Problem: {question}

Table 4: Prompts Used in Different Methods for TriviaQA Dataset.

Logits-based Prompt

You are a helpful assistant.
Answer the following question as accurately as possible.
Question: {question}

P(true) Prompt

You are a helpful assistant. You should judge whether the answer to the given question is True or False. Please only reply
with a simple word "True" or "False".
Answer the following questions as accurately as possible.
Question: {question}
Answer: {answer}
Is the above answer correct? (True / False)

Consistency Prompt

You are a helpful assistant.
Answer the following question as accurately as possible. Provide ONLY the direct answer without any explanation.
Question: {question}

Verb. 1S top1 Prompt

You are a helpful assistant, and you are always completely honest and DIRECT in your responses.
Provide a brief, concise answer along with an explicit confidence percentage (0-100%) about the correctness of your
response.
Question: {question}

Verb. 2S top1 Prompt

You are a helpful assistant, always completely honest and direct in your responses. You are also transparent about your
confidence level and can honestly share how certain you are about the answer.
Question: {question}
Answer: {previous_answer}
How confident are you in the above answer (0-100%)?

Table 5: Prompts Used in Uncertainy-Based Estimation Methods.

17791

Arithmetic Question Templates

• Compute the result of {input}.
◦ Answer the following question: {input}
• Determine {input}
◦ Can you solve for {input}?
• Calculate {input}.
◦ Help me determine the value of {input}.
• Please calculate {input}
◦ Can you solve and provide the value of {input}?
• What does {input} yield?
◦ Assist me in calculating {input}.
• Evaluate {input} and let me know the computed value.
◦ Can you compute the value of {input}?
• Compute this: {input}.
◦ Determine the numeric value resulting from {input}.
• Can you provide a stepwise solution for evaluating {input}?
◦ Solve this math problem: {input}
• Compute the mathematical expression {input} and yield the result.
◦ Solve this problem: {input}
• What is the value of {input}?
◦ Can you tell me the result of {input}?

...

Table 6: Examples of arithmetic question templates generated by ChatGPT, where {input} is substituted with
arithmetic questions using two randomly selected integers.

17792

