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Abstract

Large Language Models (LLMs) have demon-
strated robust performance in Semantic Parsing
(SP) for well-defined queries with unambigu-
ous intent and answerable responses. However,
practical user questions frequently deviate from
these ideal conditions, challenging the appli-
cability of existing benchmarks. To address
this issue, we introduce SQUAB, an automatic
dataset generator of Ambiguous and Unanswer-
able questions. SQUAB generates complex,
annotated SP tests using a blend of SQL and
LLM capabilities. Results show that SQUAB
reduces test generation costs by up to 99% com-
pared to human-based solutions while align-
ing with real-world question patterns. Further-
more, these tests challenge LLM performance
while revealing disparities between public and
proprietary datasets. This highlights the need
for a dynamic, automatic dataset generator as
SQUAB. The code is designed for user exten-
sion to accommodate new ambiguous and unan-
swerable patterns and is available at https:
//github.com/spapicchio/squab.

1 Introduction

Models reveal vulnerabilities when user interac-
tions introduce linguistic ambiguity and unanswer-
able questions. Ambiguity, in forms like vague
references or unclear scope, leads to multiple valid
query interpretations in Semantic Parsing (SP), also
known as Text2SQL (Saparina and Lapata, 2024;
Bhaskar et al., 2023). Unanswerable queries arise
when required information is missing or out-of-
scope (Wang et al., 2023). These complexities
hinder model effectiveness in real-world deploy-
ments, where proprietary data and unpredictable
inputs diverge from controlled benchmarks.

The gap between benchmark performance and
real-world applicability calls for realistic model
evaluation. Our solution automatically generates
comprehensive tests, including NL questions and

their corresponding SQL queries. Unlike recent ap-
proaches that rely on manually crafted tests (Sapa-
rina and Lapata, 2024), our method requires only
a dataset from the end-user. The framework au-
tonomously creates diverse tests - such as ambigu-
ous columns and out-of-scope functions - covering
real-world complexities. As data, language, and
models evolve, end-users can employ these tests to
determine the best solution with minimal cost.

Our framework, SQUAB1, supports six ambigu-
ity and unanswerability categories for SP, as shown
in Table 1. For example, for Column ambiguity, our
solution generates a question asking for the ”field
goal” of a player, potentially referring to FG% or
3FG%. For unanswerability, it might ask for a
player’s “number of fouls” when this attribute is
absent from the schema.

SQUAB enables users to input enterprise data to
autonomously generate both ambiguous and unan-
swerable annotated tests. By combining query gen-
eration with LLM-driven steps, SQUAB produces
realistic, challenging tests at minimal cost. These
tests are then processed by a target LLM, allow-
ing SQUAB to assess its robustness to ambiguity
and unanswerable questions. This fully automated
process streamlines complex test creation while
providing detailed LLM performance assessments.

The six categories covered by SQUAB extend
beyond those explored in prior SP benchmarks,
as shown in Table 2. Previous works face limita-
tions: ambiguity tests often rely on predefined tem-
plates (Wang et al., 2023; Papicchio et al., 2024) or
hand-crafted examples (Saparina and Lapata, 2024;
Bhaskar et al., 2023). They typically focus on col-
umn vagueness or a limited ambiguity types, over-
looking unanswerable queries. Moreover, most
benchmarks do not differentiate between propri-
etary and general-purpose datasets, ignoring their
performance differences. SQUAB bridges the gaps

1SQL Unanswerable and Ambiguous Benchmarking
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Category Definition Examples

Column
Ambiguity

Question mentions an entity that refers
to multiple table attributes.

Question: List the field goals percentages of each player.
Explanation: field goals may refer to either FG% or 3FG%

Scope
The question has a dual interpretation
of quantifiers, specifically in their
collective versus distributive readings.

Question: List the player that every team supports.
Explanation: The question can mean either ‘the player sup-
ported by all teams’ or ‘for each team, the supported player’

Attachment
In the question, it is unclear how a
modifier or phrase is attached to the rest
of the sentence

Question: List players and teams with 3FG% above 50%
Explanation: It is unclear whether the constraint above 50%
must be enforced on all the players of a team or each player
separately

Column
Unanswerable

The question mentions an entity that
cannot be referred to any of the
attributes in the table.

Question: What is the number of Fouls for LeBron James?
Explanation: The attribute Fouls is not present in the table
schema.

Calculation
Unanswerable

The question contains an undefined
UDF executable in SQL but not defined
in the DBMS.

Question: What is the efficiency score of LeBron James?
Explanation: The efficiency score can be calculated in SQL, but
it is not defined.

Out Of
Scope

The question requires the execution of a
function outside the scope of SQL.

Question: What will be the final score of the Chicago Bulls’
upcoming game?
Explanation: Forecasting functionalities are not supported by
the standard SQL language.

Table 1: Example of ambiguous and unanswerable questions. The examples are based on the table Players(Player,
Team, FG%, 3FG%) where FG% and 3FG% respectively indicate the 2-Point and 3-point Field Goal percentages.

Column
Amb. Attach Scope Column

Unans.
Calculation

Unans.

Out
Of

Scope

Damber ✓ ✗ ✗ ✗ ✗ ✗
AmbiQT ✓ ✗ ✗ ✗ ✗ ✗
Ambrosia ✓ ✓ ✓ ✗ ✗ ✗
NoisySP ✓ ✗ ✗ ✓ ✳ ✳

ArcherFish ✳ ✗ ✗ ✳ ✳ ✳

SQUAB ✓ ✓ ✓ ✓ ✓ ✓

Table 2: Works about Ambiguity and Unanswerable
questions: ✓ denotes defined and included in the dataset;
✳ denotes defined but not included; ✗ denotes missing.

in previous work by exploring three research ques-
tions: How effectively do generated tests mimic
real-world ambiguous query patterns compared to
human-crafted datasets? Can SQUAB balance cost
and quality relative to manual test generation? To
what extent do these query patterns challenge LLM
performance, and how do results differ between
public benchmarks and proprietary datasets, which
often reveal significant performance gaps?

Our experiments provide comprehensive an-
swers to these questions. SQUAB effectively aligns
with human-crafted datasets. By generating syn-
thetic tests with up to 99% cost savings over manu-
ally crafted tests, SQUAB achieves close evaluation
results across four LLMs, particularly in Scope and
Attachment ambiguities. This confirms that SQUAB

captures real-world question complexities, acting
as an effective proxy for expensive human-curated
evaluations. SQUAB’s tests reveal notable LLM
performance discrepancies between open bench-

marks and proprietary data, emphasizing the need
for tailored evaluations. It provides robust, adapt-
able assessments, advancing LLM robustness and
adaptability to real-world applications.

2 Preliminaries

Semantic Parsing. Let D be a database, with
schema DS , consisting of the relational tables T1,
T2, . . ., T|D|, Q={q1,q2,. . .,qN} be the set of non-
equivalent2 SQL queries that can be formulated
on D, P(Q) be the power set of Q, and nl a nat-
ural language question. The goal of the Semantic
Parsing task is to leverage a Language Model to
learn a deterministic mapping f : nl → P(Q) To
this end, the LM is fed with the tables’ schema
and, optionally, the instances in D (Floratou et al.,
2024). With not ambiguous and answerable ques-
tions, the cardinality of f is 1.

Ambiguous Questions. A question is ambiguous
if it can be mapped to two or more non-equivalent
SQL queries i.e. |f(nl)| > 1. We refer to these
queries as SQL interpretations.

We focus on existing definitions of ambiguity as
summarized in Table 2, and propose a method for
generating ambiguity for each T in D.
Column ambiguity occurs when the nl has multiple
correct interpretations based on different attributes
in T , e.g., field goals can refer to FG% or 3FG%.
Scope ambiguity occurs when it is unclear which

2Non-equivalent queries produce different results.
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elements a quantifier, such as each, every, or all,
refers to (Kiss, 2006). In the example in Table 1,
the quantifier every may be interpreted widely (all
the players), or narrowly (each player separately).
Attachment ambiguity is when it is unclear how
a phrase is attached to the rest of the sen-
tence (Resnik, 1993), leading to multiple interpreta-
tions. In Table 1, the phrase above 50% may apply
to all team players or each player individually.

Unanswerable questions. A question is unanswer-
able if f(nl) = ∅, i.e., there is no valid mapping
between the nl and P (Q). SQUAB automatically
generates unanswerable questions that align with
existing definitions (Wang et al., 2023).
Column unanswerable is when an attribute in nl
has no relationship with any attribute in T . In
Table 1, attribute Foul does not exist in the table.
Calculation unanswerable is when nl references
an aggregated value that depends on a user-defined
function (UDF) not defined in D, e.g., the efficiency
score in Table 1.
Out-of-scope is when nl references a UDF that is
out of the scope of standard SQL, e.g., the forecast-
ing request in Table 1.

3 Methodology

SQUAB consists of three key steps, as shown in Fig-
ure 1. While a single call to an LLM could generate
the questions, our experimental results indicate that
SQUAB’s design maximizes the variability of the
questions while reducing inference costs and align-
ing more closely with human-crafted datasets. For
the six categories, we instantiated the three steps
in our pipeline by defining the logic programmati-
cally. This operation has to be done once for each
category and enables test generation at scale for
every new, unseen input table.

To illustrate our approach, we use an example in
Table 3. Starting from table Limits3 , we want to
obtain Column Ambiguity questions and the corre-
sponding SQL interpretations.

(i) Pattern Identification (PI) Let T ∈ D be a
table with attributes A = {an | n ∈ [1, N ]}, where
each attribute includes its corresponding values.
This step identifies patterns P ⊆ A that could lead

3We focus on single-table scenarios in our framework. This
approach allows a clear evaluation of LLMs’ ability to handle
the linguistic ambiguities without the confounding factor of
complex multi-table joins. We show experimentally that the
challenges posed by ambiguity and unanswerability types is
effectively surfaced in a single-table context.

Column Ambiguity

Table: Limits(Airlines, BagWeight, BagPieces, Date)
PI: Semantically Close Attributes: [BagWeight, BagPieces]
RM: hypernym: baggage limit
SQL interpretations:
- SELECT Airlines, MAX("BagWeight") FROM Limits

GROUP BY Airlines;
- SELECT Airlines, MAX("BagPieces") FROM Limits

GROUP BY Airlines;

Question: What is the maximum baggage limit for each
airline?

Table 3: SQUAB generation for Column ambiguity.

to ambiguous or unanswerable questions, where
each pattern p ∈ P consists of a subset of table
attributes, denoted as {ak | k ∈ [1,K], ak ∈ A} -
the same attribute may appear in multiple patterns.
In our example, generation begins by identifying
semantically similar attributes, as these are the ones
most likely to lead to an ambiguous question. In
the example p = {BagWeight,BagPieces}. As
another example, for the Scope category, the PI
step identifies columns related by a many to many
relationships in the data.

(ii) Relational Metadata (RM) one approach
would be to pass p to an LLM with a prompt to
generate the ⟨nli, answeri⟩ pair, hereafter defined
test. However, this method produces results with
less variability and simpler questions.

To better steer the generation, before generating
the NL question, we enrich the pattern with infor-
mation for the category at hand. In the example, to
construct a question like ”What are the total bag-
gage limits for each airline?”, we enrich p with the
ambiguous entity baggage limits, which may refer
to BagWeight or BagPieces.

We therefore use this second step to obtain Re-
lational Metadata, which (i) is derived from an
underlying relationship among the attributes in ev-
ery p and (ii) it enriches the pattern. In our example,
this relationship the generalization of the attribute
labels with a hypernym, i.e., a word that encom-
passes the meaning of a group of related words. As
another example, for a Column Unanswerable test,
this step generates the label of a relevant attribute
that is not in the input table, e.g., LiquidsLimit.

Given a pattern p, this step produces an enriched
representation p∗ = φ(p), where φ is a function
that generates the RM. In SQUAB, φ can be defined
through an LLM call or with heuristics. If the un-
derlying relationship does not exist, the generation
process from p terminates at this step. This process
is repeated for every p ∈ P .
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Pattern
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Metadata
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Ambiguous Entity 
Many-to-Many
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Entity-Component
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Test
Generation
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(values) Metadata

Similar Columns
Many-to-Many
Relationship
Many-to-Many
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Many-to-Many
Relationship

Query Generation

Question Generation

- Ambiguous Tests
- Unanswerable Tests

Figure 1: Given a table, SQUAB executes a pipeline based on Pattern Identification, Metadata Generation, and Test
Generation to produce SP tests. denotes the use of LLM and the use of scripts.

(iii) Test Generation (TG) At this step, we have
the components to generate the NL question (nl)
and its answer, i.e., the set of SQL interpretations
of the ambiguous nl.

Again, we do not pass p∗ directly to an LLM
to generate a test because we require finer control
over query generation to introduce ambiguity or
unanswerability in specific parts of the nl. For
instance, in our example, the ambiguity arises in an
SQL aggregation function such as ‘SUM‘, allowing
for greater variability and more granular test cases.

To enforce a precise control over the SQL con-
structs and the complexity of the test, we pivot
our generation process on the queries for two rea-
sons. First, they can be easily generated starting
from the table with templates at no cost (Papic-
chio et al., 2023). Second, they precisely guide the
text generation process as they provide declarative
specifications. Therefore, SQUAB first generates
(unambiguous, answerable) SQL queries based on
the attributes in the enriched pattern, then builds on
top of those to generate the final nl with an LLM.

For each extended pattern p∗, this step generates
a set of ambiguous or unanswerable SP tests. A test
is a pair ⟨nli, labeli⟩, where nli is a NL question,
and labeli consists of the SQL interpretations of
the ambiguous nli or of a placeholder indicating
its unanswerability. The process of generating nli
consists of three steps.
1. SQL Query Generation. Let Qa ⊆ Q be the set
of non-equivalent queries over D that contain one
randomly selected attribute a ∈ p. This step em-
ploys a function τ : (T, a) → Qa which generates
all SQL queries involving a in T . These queries
are generated with templates and serve as the foun-
dation for generating the ambiguous/unanswerable
queries next. Notably, a may appear alongside
other attributes and in various SQL clauses, includ-
ing ‘GROUP BY‘, ‘HAVING‘, ‘MIN‘, etc. In our
example, this step produces the query u:
SELECT Airlines, MAX("BagWeight")
FROM Limits GROUP BY Airlines

where attribute a is BagWeight.

2. Query Transformation. Each query in Qa

acts as a seed for an ambiguous or unanswerable
query. Given a query q̂ ∈ Qa, this step applies a
transformation function ω using p∗ with its RM:
ω : (q̂, p∗) → Q̂ where Q̂ represents the trans-
formed version(s) of q̂. For ambiguous tests, Q̂
comprises possible SQL interpretations. For exam-
ple, given the query u above, we use the attribute
in the pattern to obtain a second query u′:
SELECT Airlines, MAX("BagPieces")
FROM Limits GROUP BY Airlines

In case of unanswerable tests, Q̂ corresponds to
one unsolvable SQL query, for example:
SELECT Airlines, MAX("LiquidsLimit")
FROM Limits GROUP BY Airlines

3. Question Generation. The question nl is gener-
ated based on the queries in Q̂, the extended pattern
p∗, and the schema DS of D:

nl = L(prompt, P ∗, Q̂,DS)

where L is a large language model (LLM) and
prompt refers to predefined prompts for generat-
ing ambiguous and unanswerable questions. The
prompts used in SQUAB are provided in Ap-
pendix E.

3.1 Generation of Ambiguous Tests

We outline the generation of ambiguous tests with
SQUAB. The final TG step follows the general pro-
cedure for all categories. For Column ambiguity,
we automatically generate template queries Qa (Pa-
picchio et al., 2023), and for Scope and Attachment
ambiguity, we use established templates (Saparina
and Lapata, 2024). The tests with empty SQL in-
terpretations are discarded.

Column Ambiguity. As we discussed this category
in our example, we only add details here. In PI,
each pattern p is a cluster of attributes based on
the cosine similarity of the labels’ embeddings4.
For each pattern p, we prompt the LLM to obtain a
hypernym (Manning and Schütze, 2001).

4We use text-embedding-3-large with threshold θ = 0.7
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Scope

Table: Players(Player, Team, FG%, 3FG%)
PI: Many-to-Many relationship: Player, Team
RM: Entity: Team; Component: Player
SQL Interpretations:
- SELECT DISTINCT "Player", "Team" FROM Players;
- SELECT "Player" FROM Players GROUP BY "Player"

HAVING COUNT(DISTINCT "Team")= (SELECT
COUNT(DISTINCT "Team") FROM Players);

Question: List the Player every Team support.

Table 4: Generation process for Scope ambiguity.

Attachment

Table: Accommodations(Name, Location Type:: Hotels, Pods,
Price:: 200)
PI: Distinct value in Type have same value in Price
RM Hotels and Pods implicitly represent Name.
SQL interpretations
- SELECT Name FROM Accommodations WHERE Type =

"Hotels" OR Type = "Pods" AND Price = "200";
- SELECT Name FROM Accommodations WHERE (Type =

"Hotels" OR Type = "Pods") AND Price = "200";

Question: List hotels and pods priced at 200.

Table 5: Generation process for Attachment ambiguity.

Scope. Scope ambiguity arises from the dual inter-
pretation of quantifiers, Table 4 provides an exam-
ple of its generation. The PI step programmatically
identifies attribute pairs with a many-to-many rela-
tionship, as quantifiers cannot be used otherwise.
In the RM step, an LLM checks the presence of an
entity-component relationship, e.g., Team is classi-
fied as entity and Player as component. This iden-
tifies a Scope ambiguity since the interpretations
are: (i) whether the question refers to components
collectively with their entity (the list of players
along with their team), (ii) or individually across
all entities (the player supported by all teams).

Attachment. Attachment ambiguity arises when
syntactic structures make it unclear what the sub-
ject of a modifier is. In the generated question in
Table 5, it is not clear if the modifier 200 refers to
pods or both hotels and pods. The subjects and the
modifier are attribute values derived from two at-
tributes. The PI step identifies attribute pairs where
different values (representing potential subjects)
share the same value (the quantifier) for another
attribute, as AccommodationType and Price in our
example. To build the nl, the quantifier’s subject
values must implicitly match the projected attribute.
For example, Hotels and Pods implicitly refer to
the Name attribute in our example. We detect this
relationship using a simple heuristic: the projec-
tion attribute must include a canonical entity label
like ’Name’, and the quantifier attribute must be

Column Unanswerable

Table: Customers(id, Name, Age, Region)
PI: Table Schema: id, Name, Region
RM: New Attribute: customer segment, Type: categorical
SQL query:
SELECT Region, COUNT("customer_segment")
FROM Customers GROUP BY Region;

Question: How many customer segments exist per region?

Table 6: Generation process for Column Unanswerable.

Calculation Unanswerable

Table: Credits(id, Age, Income, Credit score)
PI: Table Schema: id, Age, Income, Credit score.
RM: UDF: interest rate(‘Age‘, ‘Income‘, ‘Credit score‘),
UDF output type: ”numerical”,
UDF python code: (balance ∗ 0.05) + (credit score ∗
0.02)− (loan history ∗ 0.01)
SQL Query:
SELECT AVG("interest_rate(‘Age‘, ‘Income‘,

‘Credit_score‘)") FROM Credits;

Question: Calculate the average interest rate.

Table 7: Generation process for Calcul. Unanswerable.

categorical.

3.2 Generation of Unanswerable Tests

To our knowledge, SQUAB is the first framework
to create unanswerable nl automatically. We use
a simplified approach that excludes multi-attribute
cases, using the table schema as the PI pattern. In
the TG step, template queries Qa are generated
from templates and transformed via the RM into Q̂.
Queries in Q̂ that are executable in D are discarded
to ensure generated questions are unanswerable.

Column Unanswerable. This category occurs
when a question refers to an attribute that does
not have an association with any attribute in D, as
in the example in Table 6. In the RM step, the LLM
uses the table schema to generate a non-existing
attribute label that aligns with the table context and
its type. For instance, the LLM might generate
the categorical attribute customer segment. Subse-
quently, the column type is employed in the TG
step to appropriately integrate the new attribute
label into the SQL query, e.g., ensuring that a cate-
gorical column is not used in an AVG operation.

Calculation Unanswerable. This category arises
when a question includes a SQL-executable UDF
whose internal procedure is unspecified (Table 7).
In the RM step, an LLM generates not only
the UDF call in the SQL query, such as ‘inter-
est rate(‘Age’, ‘Income’, ‘Credit score’)‘, but also
the UDF’s output type and its corresponding code.
Like in Column Unanswerable, the output type is
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Out Of Scope

Table: Credits(id, Age, Income, Credit score)
PI: Table Schema: id, Age, Income, Credit score
RM: UDF: predict interest rate(‘Age‘, ‘Credit score‘),
UDF output type: ”numerical”
SQL Query:
SELECT Income FROM Credits GROUP BY Age HAVING

predict_interest_rate(‘Age‘,‘Credit_score‘)>5;

Question: What is the income for age groups with a pre-
dicted interest rate over 5?

Table 8: Generation process for Out-Of-Scope as fore-
casting is beyond the SQL standard.

used to transform the SQL templates correctly. The
UDF code enables the verification of the SQL ex-
ecutability: without the UDF defined for D, the
transformed query Q̂ must fail.

Out-Of-Scope. In this case the UDF is outside the
scope of SQL, such as ”making a prediction” in the
example in Table 8. In the RM step, the LLM is
prompted to generate the UDF call and its output
type for the SQL query, but not the code.

4 Experiments

Datasets. We evaluate SQUAB on Ambrosia (Sapa-
rina and Lapata, 2024) and Beaver (Chen et al.,
2024). Ambrosia is a benchmark with databases
that are designed to incorporate ambiguities,
whereas Beaver is an enterprise database with 99 ta-
bles. To balance costs with statistical significance,
we sample 33% of Beaver’s tables. For unanswer-
able tests, we select the top 33 Ambrosia tables by
decreasing arity. More details in Appendix A.

Test Generation Baselines. We compare SQUAB

to two baseline methods for ambiguous test gener-
ation: Ambrosia and All-LLM. For unanswerable
tests, we compare only with All-LLM, since, to
our knowledge, no dataset covers all three unan-
swerable categories. We generate all tests using
gpt-4o-2024-11-20 for SQUAB and All-LLM. Am-
brosia includes human-crafted tests for all ambigu-
ity types, which we use to compare against SQUAB

generated tests. We restrict Ambrosia tests to
single-table queries for Column and Attachment
ambiguities. For Scope ambiguity, we compare
Ambrosia’s multi-table tests with our single-table
versions generated from the denormalized Scope
database. All-LLM prompts the LLM with table
context, a category description, and three examples,
without SQUAB’s structured generation pipeline.
More details on the prompt used and variability
of the generated questions are in Appendix E and

Appendix D, respectively.

SP LLMs. We test the ambiguous and unan-
swerable tests with the following LLMs: propri-
etary GPT-4o-mini (gpt-4o-mini-2024-07-18) and
Gemini-1.5-pro models, and open-source 8B and
70B versions of Llama 3.1 Instruct model. For am-
biguous queries, we follow the prompting format of
Ambrosia (Saparina and Lapata, 2024). For unan-
swerable queries, models are instructed to return
‘NOT ANSWERABLE’. All evaluations provide
models with database schema and content. Beaver
rows per table (cardinality) are limited to 10 rows
for efficiency; Ambrosia tables are used fully.

Evaluation Metrics. For ambiguous tests, we re-
port the F1-score calculated between the SQL in-
terpretations and the predicted queries matched by
execution accuracy (Li et al., 2024a), following
previous work (Saparina and Lapata, 2024). For
unanswerable tests, we measure accuracy as the
percentage of correctly identified “NOT ANSWER-
ABLE” responses.

Generation Cost Calculation. The generation
cost is measured in dollars. For Ambrosia, we de-
rive the cost from its appendix. For SQUAB and
All-LLM, we calculate the cost based on the num-
ber of input and output tokens used in each LLM
call, multiplied by the respective model’s pricing.
The total cost is the sum of costs incurred across
all generated tests.

4.1 Results and Discussion

Hereafter we present the main results by separately
addressing our main research questions.

Can synthetic tests mimic human-crafted am-
biguous query patterns? Table 9 compares
human-generated (Ambrosia), SQUAB-generated,
and All-LLM-generated ambiguous tests on cost,
test counts, LLM F1-scores, and Kendall’s τ for
LLM ranking correlation.

The automatically generated tests achieve F1-
Scores comparable to those of human-curated ones,
but at a significantly lower inference cost (up to
99% cost reduction, e.g., SQUAB $4 vs. Am-
brosia $1105). The SQUAB rankings are mostly
in agreement with those of Ambrosia (τ>0.6 for
all ambiguity categories). Conversely, All-LLM
and Ambrosia exhibit a weaker correlation because
the LLM-based approach fails to capture the nu-
anced query structures and variations inherent in
ambiguous data. Overall, the results confirm the
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Test $ Cost (↓) # tests % F1-score (↑) Kendall τ
Type Human SQUAB All-LLM Human SQUAB All-LLM Models Human SQUAB All-LLM SQUAB All-LLM

Scope $769 $2.30 $3.05 485 442 411

Gpt4o-mini 0.17 0.38 0.35

1.0 0.66llama3.1-8b 0.03 0.17 0.17
llama3.1-70b 0.38 0.43 0.57
Gemini 1.5 pro 0.23 0.39 1.00

Attach $153 $0.67 $0.90 97 153 152

Gpt4o-mini 0.15 0.25 0.21

0.92 0.33llama3.1-8b 0.13 0.23 0.17
llama3.1-70b 0.12 0.23 0.31
Gemini 1.5 pro 0.55 0.59 0.48

Column
Ambiguity $183 $0.30 $0.42 109 110 112

Gpt4o-mini 0.35 0.22 0.27
0.67 0.67llama3.1-8b 0.30 0.26 0.34

llama3.1-70b 0.46 0.36 0.40
Gemini 1.5 pro 0.41 0.30 0.36

Total $1105 $4.53 $4.35 698 713 675 Average 0.27 0.32 0.39 0.75 0.55

Table 9: Comparing human-generated (Ambrosia), SQUAB-generated, and All-LLM-generated tests assesses how
synthetic tests mirror human-based ones. Annotation costs for Ambrosia derived from its appendix. The Kendall τ
is calculated between the ranking of LLMs by F1-score on Ambrosia tests and that on synthetic tests (by SQUAB
and All-LLM, respectively) for each ambiguity type.

SQUAB’s effectiveness in serving as a proxy for
more expensive, human-curated evaluations.

Test
Type

$ Cost # tests

Models

%F1-score

SQUAB
all

SQUAB
all

SQUAB
all

LLM LLM LLM

Scope $0.53 $9.63 32 14

Gpt4o-mini 0.16 0.34
llama 3.1 8b 0.01 0.30
llama 3.1 70b 0.04 0.26
Gemini 1.5 0.07 0.31

Attach $0.55 $6.60 34 57

Gpt4o-mini 0.11 0.09
llama 3.1 8b 0.15 0.14
llama 3.1 70b 0.12 0.21
Gemini 1.5 0.17 0.18

Column
Ambig. $4.07 $9.44 253 88

Gpt4o-mini 0.19 0.14
llama 3.1 8b 0.10 0.14
llama 3.1 70b 0.15 0.19
Gemini 1.5 0.21 0.21

Total $5.15 $25.67 319 164 Average 0.12 0.21

Table 10: Comparison of SQUAB-generated and All-
LLM-generated ambiguous tests for Beaver tables.

How Effectively Do LLMs Address Ambiguous
Queries on Enterprise Data? Table 10 compares
SQUAB and All-LLM on the Beaver dataset. By
limiting hallucination effects and reducing the num-
ber of not executable queries, SQUAB generates
twice the All-LLM valid tests at a fifth of the cost.
Comparing the results with the tests on the Am-
brosia tables (Table 9), Table 10 also reveals a drop
in performance for all LLMs. For Scope and Col-
umn ambiguity, such reduction leads to a change in
the best-performing LLM (Gemini 1.5 outperforms
LLama-70b). This underscores that real-world per-
formance differs significantly from public results.

Figure 2: Comparison between ambiguous queries and
not across categories. Results for Gemini 1.5 Pro on
Beaver tables.

To isolate the impact of ambiguity on Beaver,
we compared ambiguous vs. unambiguous Col-
umn ambiguity tests using Gemini 1.5 Pro (Fig-
ure 2). While unambiguous queries consistently
score higher, ambiguity causes significant F1-score
drops across SQL categories, most dramatically for
PROJECT queries (0.95 to 0.06). This confirms
ambiguity is a primary factor in performance degra-
dation on enterprise data, underscoring SQUAB’s
value for benchmarking.

How do models perform on unanswerable ques-
tions? SQUAB offers significant advantages over
All-LLM in scalability, generating a larger num-
ber of tests, with higher level of complexity, at
a fraction of the cost. As shown in Tables 11
and 12, SQUAB consistently produces more tests
(e.g., 513 vs. 458 for Beaver) while maintaining
significantly lower costs (e.g., $7.67 vs. $39.08
for Beaver). SQUAB-generated tests are more chal-
lenging, as reflected by lower accuracy scores: All-
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Test
Type

$Cost #tests
Models

Accuracy

SQUAB
all

SQUAB
all

SQUAB
all

LLM LLM LLM

Ambrosia

Miss.
Col. $1.07 $0.76 213 162

Gpt4o-mini 0.66 0.92
llama3.1 8b 0.00 0.01
llama3.1 70b 0.29 0.76
Gemini1.5 pro 0.55 0.90

Calc.
Unans. $0.88 $0.68 160 148

Gpt4o-mini 0.43 1.00
llama3.1 8b 0.00 0.00
llama3.1 70b 0.07 0.31
Gemini1.5 pro 0.29 0.99

Out
of

Scope
$0.45 $0.75 123 144

Gpt4o-mini 0.91 0.99
llama3.1 8b 0.00 0.04
llama3.1 70b 0.35 0.38
Gemini1.5 pro 0.90 0.99

Total $2.40 $2.19 496 454 Average 0.37 0.61

Table 11: Comparison between SQUAB and All-LLM
tests for Ambrosia tables.

Test
Type

$Cost #tests
Models

Accuracy

SQUAB
all

SQUAB
all

SQUAB
all

LLM LLM LLM

Beaver

Miss.
Col. $3.30 $13.26 222 164

Gpt4o-mini 0.41 0.87
llama3.1 8b 0.00 0.01
llama3.1 70b 0.00 0.00
Gemini1.5 pro 0.28 0.75

Calc.
Unans. $1.67 $12.99 89 159

Gpt4o-mini 0.45 0.99
llama3.1 8b 0.00 0.00
llama3.1 70b 0.00 0.00
Gemini1.5 pro 0.24 0.94

Out
of

Scope
$2.70 $12.83 202 135

Gpt4o-mini 0.78 0.99
llama3.1 8b 0.00 0.00
llama3.1 70b 0.00 0.02
Gemini1.5 pro 0.71 0.97

Total $7.67 $39.08 513 458 Average 0.24 0.46

Table 12: Comparison between SQUAB and All-LLM
tests generated for Beaver tables.

LLM achieves an average accuracy of 0.61 on Am-
brosia tables, compared to 0.37 for SQUAB.

Error patterns differ by test category. For Miss-
ing Column tests, models often attempt to predict
the missing entity, leading to invalid queries. For
Calculation Unanswerable and Out-of-Scope tests,
models frequently attempt to infer answers despite
the unanswerable nature of the queries. Of these,
Out-of-Scope tests are the least challenging, as mod-
els easily recognize when a question exceeds the
SQL context. The most impacted model family is
Llama 3.1, especially in enterprise settings.

How Effective is the Test Generation? To as-
sess SQUAB’s current effectiveness in an enterprise
context, we conducted an annotation study with a
company. One domain expert evaluated the quality
of SQUAB’g generated tests across three of their
enterprise tables. We used three metrics: (i) Nat-
uralness: how natural and human-like the gener-
ated question appears. (ii) Alignment: whether the
query accurately translates the question’s intent.
(iii) Correctness: whether the test adheres to its
category definition. Each metric was evaluated on
a three-level scale: Low, Medium, and High. We
uniformly sampled eight tests per category, yield-
ing 24 tests. The annotation study (reported in Ap-
pendix B) demonstrates that SQUAB produces high-
quality tests across ambiguity and unanswerable
categories, with 88% of all evaluations for both
types falling into the High category.
Is SQUAB Extensible to New Ambiguity Types?
To assess the effort required to integrate a new am-
biguity type into SQUAB, we simulate this process.

We select an ambiguity not currently covered: the
type-token ambiguity, where a term can refer to a
general category (type) or a specific instance (to-
ken), e.g., in ”I paid for the same car,” ”car” could
mean the same model or the exact same physical
vehicle (Li et al., 2024b). One author, acting as a
user extending the framework, implemented this
new ambiguity type. The process, from defining
the ambiguity and designing examples to coding
the necessary pattern identification, metadata, and
test generation logic took roughly 3 hours and re-
sulted in less than 100 lines of Python code. This
experiment demonstrates SQUAB’s design facili-
tates extension for new ambiguity patterns. Details
are given in Appendix C. Note that SQUAB is read-
ily extensible to multi-table patterns. In this study,
SQUAB deliberately focuses on single-table pat-
terns to isolate the model’s ability to handle ambi-
guity/unanswerability from the confounding effects
of join complexity; extending the framework with
multi-table patterns is left to future work.

5 Related Work

Converting NL questions to formal queries is chal-
lenged by ambiguity and unanswerability (Mu
et al., 2024; Chen et al, 2021; Stengel-Eskin et al.,
2024). Several Semantic Parsing benchmarks
address this (Table 2). NoisySP (Wang et al.,
2023) and Pythia (Veltri et al., 2023) generate am-
biguous questions via table modifications (Wik-
iSQL (Zhong et al., 2017), WTQ (Shi et al., 2020))
or templates. Damber (Papicchio et al., 2024)
also uses templates for Column ambiguity. Am-
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biQT (Bhaskar et al., 2023) uses LLMs to create
broader ambiguities (e.g., joins, aggregates) on
Spider (Yu et al., 2018), while Ambrosia (Sapa-
rina and Lapata, 2024) adds scope and attachment
types. ArcherFish (Floratou et al., 2024) focuses on
domain-specific customization. Unanswerability
has also been explored in conversational AI (Dong
et al., 2024; Yu et al., 2019), distinct from static SP.
Most prior benchmarks use predefined templates
or manual crafting, limiting ambiguity coverage.
Crucially, unlike SQUAB and apart from Damber,
they often do not differentiate proprietary from
general-purpose data, despite known performance
gaps (Papicchio et al., 2023; Chen et al., 2024).

6 Conclusion and Future directions

We presented SQUAB, an automatic framework for
generating ambiguous and unanswerable queries
for Semantic Parsing (Text2SQL). Our experiments
show that SQUAB reduces test-generation costs
by up to 99% compared with human-crafted tests,
while better capturing real-world question com-
plexity than a GPT-4o baseline. SQUAB enables
rigorous robustness evaluation of LLMs and high-
lights the need for dynamic, tailored benchmarks
that reflect enterprise use cases.

Future work could extend SQUAB beyond SP to
fact-checking (Nakov et al., 2021; Guo et al., 2022),
data analysis (He et al., 2024), and knowledge-
graph querying (Feng et al., 2024). Another di-
rection involves analyzing enterprise query work-
loads (Agrawal et al., 2000) to derive tests cap-
turing domain-specific ambiguities and unanswer-
ability. Given the encouraging results of synthetic
training data for NLP tasks (Bussotti et al., 2024),
we also envision positioning SQUAB as a generator
of training data for SP models that need large, high-
quality annotated datasets to be effective (Muen-
nighoff et al., 2025; Papicchio et al., 2025).

Limitations

While SQUAB demonstrates significant advantages
in generating challenging and cost-effective tests
for semantic parsing, the current work has several
limitations:

Scope of Task and Language Coverage:
SQUAB’s current implementation and evaluation
are focused on semantic parsing (NL-to-SQL) and
primarily on English language queries. Its direct
applicability and performance on other tasks, such
as fact-checking or general data analysis, or its ef-

ficacy for generating tests in languages other than
English, have not yet been assessed. Extending
the framework to these areas would require further
research and adaptation of the generation pipeline.

Coverage of Ambiguity Types and Extensibility
Framework: SQUAB currently ships with imple-
mentations for six specific categories of ambigu-
ity and unanswerability. While our experiments
demonstrate that the framework can be extended to
new ambiguity types (such as type-token ambigu-
ity) with modest effort, the generation of tests for
any ambiguity type not yet implemented requires
user-driven development. This involves defining
the ambiguity’s characteristics, designing the logic
for pattern identification and test generation within
the pipeline, and coding these components. Sys-
tematically discovering and automatically imple-
menting entirely novel or highly nuanced domain-
specific ambiguities from enterprise query work-
loads, without prior definition by a user, remains
beyond the current automated capabilities.

Out-of-Scope UDF Verification: For the ”Out-
Of-Scope” unanswerable category, while SQUAB
generates questions involving User-Defined Func-
tions (UDFs) intended to be outside SQL’s scope
(e.g., forecasting), the current system does not
programmatically verify that a generated UDF is
definitively non-existent or inexpressible in stan-
dard SQL. This verification is currently a manual
assessment or deferred.

Test Generation Process and User Input:
SQUAB automates test generation based on an in-
put database schema and content. However, the cur-
rent pipeline is largely autonomous post-initiation.
More interactive mechanisms, allowing users to
guide or refine the test generation process actively,
or to provide feedback on intermediate generations,
are not yet implemented.

Complexity of Generated SQL: While SQUAB
aims to generate challenging tests, the complex-
ity of the SQL queries is guided by the templates
used for each category. The system does not cur-
rently have a dynamic mechanism to control or pro-
gressively increase SQL complexity beyond these
initial template designs.

Generation Cost Estimates: AMBROSIA lacks
per-question costs and effort varies by ambiguity
type, we estimate per-item cost as total annotation
time divided by the number of ambiguous ques-
tions, applying this mean to the subset in Table 9.
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Appendices

A Main dataset characteristics

We evaluate SQUAB on two benchmarks:
Ambrosia (Saparina and Lapata, 2024) and
Beaver(Chen et al., 2024). Ambrosia is a synthetic
benchmark specifically designed to capture various
forms of ambiguity in natural language queries
over relational databases. In contrast, Beaver is
a large-scale enterprise database containing 99
real-world tables. To manage inference costs while
maintaining statistical robustness, we uniformly
sample 33% of Beaver’s tables for our evaluation.
See Table 13 for a summary of the database
statistics.

For Ambrosia, we leverage all available tests
for vagueness and attachment, restricting to single-
table settings except for scope ambiguity, which in
Ambrosia is present only with multi-table patterns.
In this case, we construct a denormalized variant
of Ambrosia’s schema to ensure compatibility with
our generation pipeline. For unanswerable query
evaluation, we select the top 33 Ambrosia tables
sorted by decreasing arity to align with Beaver’s
complexity.

B SQUAB with enterprise data

To assess SQUAB’s current effectiveness in a prac-
tical enterprise context, we conducted an annota-
tion study with a company. One domain expert
evaluated the quality of SQUAB generated tests
across three of their enterprise tables. We used
three metrics: (i) Naturalness: how natural and
human-like the generated question appears. (ii)
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#Databases #Tables #Attributes #Tuples

Ambrosia
Vague 71 5.57 4.72 3.57
Attach. 97 4.54 4.44 4.36
Scope 243 1.74 7.12 7.43

Enterprise
Beaver 1 33 12.09 9.47×103

Table 13: Database statistics. Scope refers to the de-
normalized version. Beaver refers to the sampled ver-
sion.

Alignment: whether the query accurately translates
the question’s intent. (iii) Correctness: whether the
test adheres to its category definition. Each metric
was evaluated on a three-level scale: Low, Medium,
and High. To streamline the process, we uniformly
sampled eight tests per category, yielding 24 an-
notated tests. However, for Scope and Attachment
ambiguities, SQUAB generated fewer than eight
tests per table due to their imposed constraints in
table patterns.

The results in Table 14 of the annotation study
demonstrates that SQUAB produces high-quality
tests across ambiguity and unanswerable cate-
gories, with 88% of all evaluations for both test
types falling into the High category, showcasing
SQUAB’s strong ability to generate natural, aligned,
and category-correct tests.

C Type-Token Ambiguity

This section describes the new ambiguity type as
a study of the usability of SQUAB. The type-token
ambiguity arises when a term in a natural language
question can plausibly refer either to a general cat-
egory (type) or to individual instances (tokens) of
that category (Li et al., 2024b). For example, in the
query ”How many cars did we sell in 2024?”, the
term ”cars” may refer to the number of individual
vehicles sold (token-level interpretation, typically
mapped to COUNT(*) and the predicted query), or
to the number of distinct car models sold (type-
level interpretation, mapped to COUNT(DISTINCT

Model). Disambiguating such queries is challeng-
ing, especially when schema context is limited or
when models lack fine-grained understanding of
semantic roles.

In Table 15, we illustrate the generation process
for the type-token ambiguity. The first step, Pat-
tern Identification, detects columns that represent
categories or types used to classify records. In
this example, the CarSales table contains a column

Test
Category Metrics Low Medium High # Tests

Ambiguity

Scope
Naturalness - 1 13

14Alignment - 2 12
Correctness - - 14

Attach
Naturalness 1 2 13

16Alignment - - 16
Correctness - - 16

Colum
Ambig.

Naturalness - 4 20
24Alignment 3 6 15

Correctness - 2 22

% Total 2% 10% 88% 54

Unanswerable

Missing Col.
Naturalness - 3 21

24Alignment - - 24
Correctness - - 24

Calc. Unans.
Naturalness 3 3 18

24Alignment - - 24
Correctness 9 - 15

OOS Unans.
Naturalness - 6 18

24Alignment - 3 21
Correctness - - 24

% Total 5% 7% 88% 72

Table 14: Manual Annotations

Type-Token

Table: CarSales(CarId, Model, SellDate)
PI: Replacement Attribute: Model
RM: Ambiguous Term: Car,
SQL Interpretations:
- SELECT COUNT(*)FROM CarSales WHERE SellDate =

2024

- SELECT COUNT(DISTINCT(Model))FROM CarSales

WHERE SellDate = 2024

Question: How many cars did we sell in 2024?

Table 15: Generation process for Type-Token ambiguity.

named Model, which denotes the type of car. In
the second step, the Relational Metadata Genera-
tor produces the ambiguous term car, which can
semantically refer either to a specific instance (to-
ken) or a general category (type). Finally, a natural
language question — “How many cars did we sell
in 2024?” — is generated based on SQL templates
reflecting both interpretations. Each step in the
pipeline is executed via a single LLM call.

The overall crafting process took approximately
three hours, including the design of ambiguity
patterns and implementation. The most challeng-
ing component was the Pattern Identification step,
where the engineer must define a schema pattern
capable of producing a type-token ambiguous term.
However, since SQUAB is designed modularly, new
patterns can be easily integrated or existing ones
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Figure 3: The variability of the generated questions
for different SQL tags is highlighted in various colors.
Visible clusters are formed based on questions generated
from the same database.

reused, facilitating rapid development and extensi-
bility.

D Variability of synthetically generated
questions

In this section, we conduct a small study to assess
the variability of questions generated by SQUAB.
We focus on the Column Ambiguity subset from
the Ambrosia database and analyze how questions
differ across SQL clause tags. Each question is
encoded with all-MiniLM-L6-v25, a compact fine-
tuned variant of MiniLM-L12-H384 (Wang et al.,
2020).

Fig. 3 visualizes the resulting embeddings us-
ing t-SNE (Maaten and Hinton, 2008), with points
colored by SQL tag. Questions sharing the same
tag do not form coherent clusters; instead, clusters
align with the source database used to construct the
questions. This indicates that SQUAB generated
questions are highly variable with respect to SQL
tags—if tag semantics dominated, clusters would
form by tag rather than by database.

E Prompting Details

This section provides the detailed prompts used in
both the SQUAB and all-LLM settings for generat-
ing ambiguous and unanswerable questions.

E.1 SQUAB prompting
This section contains the prompts used in the
SQUAB setting for both ambiguity and unanswer-

5https://huggingface.co/
sentence-transformers/all-MiniLM-L6-v2

able test generation. SQUAB is composed of three
main steps: Pattern Identification, Relational Meta-
data Generation, and Test Generation.

We use a single base prompt for the Test Genera-
tion one for ambiguity generation Fig. 6 and one for
unanswerable generation Fig. 7. The placeholders
{ambig definition}, {ambig example},
{queries}, {metadata}, and {database}
are replaced with the ambiguity definition, an ex-
ample of the ambiguity, the SQL queries that an-
swer the question following the ambiguity rules,
the metadata generated in the previous step, and
the database content, respectively. The prompt for
unanswerable generation is similar, with the only
difference being that it contains the unanswerabil-
ity definition and examples instead of ambiguity
ones. For the relational metadata generation, we
use a different prompt for each ambiguity ( Fig. 8
and Fig. 9 ) and unanswerable category ( Fig. 10,
Fig. 11, and Fig. 12 ). As an example, Fig. 8 shows
the prompt used to generate the ambiguous term
for the Column Ambiguity category.

E.2 All-LLM prompting
This section contains the system prompts used in
the all-LLM setting for both ambiguity (Fig. 5)
and unanswerable (Fig. 4) test generation. The
placeholders {definition} and {examples}
are replaced with the unanswerability/ambiguity
definition and generation examples, respectively.
The user prompt is the same for both ambiguity and
unanswerable generation, and contains the table
schema.

17938

https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2


Your task is to generate a list of
question-answer pairs for the given table
based on the unanswerability definition.
The answer is an unanswerable query that
match the question.
The query is unanswerable because it
cannot be answered from the given
database (e.g., requires information or
functionality outside standard SQL
## Ambiguity Definition
{definition}
## Question–Answer pair examples
{examples}
## Output format
Given the table as input, generate a list of
question–answer pairs in JSON format as
follows:
[
{

”nl question”: ”the ambiguous question
that follows the definition”,

”target”: [”the list of different SQL
interpretations of the ambiguous
question”]

}
]

Figure 4: All-LLM synthetic data generation system
prompt for unanswerable questions. The placeholders
{definition} and {examples} are replaced with
the unanswerability definition and generation examples,
respectively.

Your task is to generate a list of
question-answer pairs for the given table
based on the ambiguity definition.
## Ambiguous Definition
{definition}
## Question-Answers pairs examples
{examples}
## Output format
Given the table as input, generate a list of
question–answer pairs in JSON format as
follows:
[
{

”nl question”: ”the ambiguous question
that follows the definition”,

”target”: [”the list of different SQL
interpretations of the ambiguous
question”]

}
]

Figure 5: All-LLM synthetic data generation system
prompt for ambiguous questions. The placeholders
{definition} and {examples} are replaced with
the ambiguity definition and generation examples, re-
spectively.
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You are a helpful assistant who writes a natural language (NL) question. You are provided with a
definition of ambiguity, the SQL queries that answer the question following the ambiguity rules,
and a database containing the answers. You may also receive metadata helping you in generating
the question. Your task is to write the NL question following these guidelines:
- All unformatted table and column names must be replaced with plain words, preferably
synonyms.
- Make the question as short as possible, but do not miss any part of the question like order-by
(e.g., remove unnecessary words or paraphrase). Yet, you must check the relevant tables to
ensure that the question and its interpretations express the same request as the queries and would
yield the same answer. Example: You can modify ”fitness training program” into ”training
program” and omit the unnecessary word “fitness” only if ”training program” cannot be
confused with other columns in different tables.
- You must maintain ambiguity when writing the question and reading each interpretation.
- If the projected column name can be inferred, remove it from the final output
# Output Format
Provide the answer in JSON format as follows
‘‘‘json
{

”question”: ”the generated question”,
}
‘‘‘

## Ambiguity Definition
ambig definition
## Ambiguity Example
ambig example
## queries
queries
## Metadata
metadata
## Database
database

Figure 6: SQUAB synthetic data generation prompt for ambiguous questions. In blue there are the placeholders
substituted based on each test category generation.
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You are a helpful assistant who writes a natural language (NL) question from SQL query.
You are provided with the SQL query that answers the question, a database where to run the
query, and some metadata.
Your task is to write the NL question following these guidelines:
- All unformatted table and column names must be replaced with plain words, preferably
synonyms.
- Make the question as short as possible (e.g., remove unnecessary words or paraphrase). Still,
you must check the relevant tables to ensure that the question is the same request as the query
and will yield the same answer. Example: You can modify ”fitness training program” into
”training program” and omit the unnecessary word “fitness” only if ”training program” cannot be
confused with other columns in different tables.
- If the projected column name can be inferred, remove it from the final output
# Output Format
Provide the answer in JSON format as follows
‘‘‘json
{

”question”: ”the generated question”,
}
‘‘‘

## Examples
examples
## queries
queries
## Metadata
metadata
## Database
database

Figure 7: SQUAB synthetic data generation prompt for unanswerable questions. In blue there are the placeholders
substituted based on each test category generation.
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Generate an ambiguous label for a group of column names, given the table name and database
name, such that the label can substitute all the names in the group in natural language questions.
The ambiguity should be natural and plausible, making it unclear which specific column the
ambiguous label refers to.
Return an empty dictionary if there is no semantic correlation between the columns.
# Steps
1. **Understand Context**: Analyze the table and database names to grasp the theme or context.
2. **Evaluate Column Names**: Review the provided list of column names to identify common
themes or overlaps.
3. **Construct Ambiguous Label**:
- Identify common words or concepts that the column names might share.
- Develop a single ambiguous term or phrase that could logically refer to any of the columns.
- Ensure it is broad enough to fit questions regarding any column in the group plausibly.
# Output Format
Provide a list of ambiguous labels, such as a single phrase or a few words. Do not include
additional explanations, and keep the format concise.
# Examples
**Input**:
Num to generate: 2
Database Name: ”UniversityRecords”,
Table Name: ”StudentPerformance”,
Columns: [”MathScore”, ”PhysicsScore”, ”BiologyScore”]
**Output**:
[”subject score”, ”grade”]

**Output**:
[”personal identifier”]

# Notes
- Ensure that the ambiguous label remains a plausible term that might be used in everyday queries
or conversations about the topic.
- Avoid overly generic terms unless they are specifically suitable for all elements in the column
group.

Figure 8: SQUAB relational metadata prompt for Column Ambiguity test generation.
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Identify the semantic relationship between two provided names and determine if one is an Entity
and the other is a Component. Note that a component can also be an element present in the
entities.
# Steps
1. Analyze the first name to determine if it can be categorized as an Entity or a Component.
2. Analyze the second name to determine if it can be categorized as a Component or an Entity.
3. Evaluate if the selected component is a meaningful part or attribute of the selected entity.
# Output Format
Return the answer as JSON enclosed in “‘json “‘ with two keys: entity and component.
‘‘‘json
{
”entity”: ”the name that represents the entity”,
”component”: ”the name that represents the component.”
}
‘‘‘

# Examples
**Example 1:**
− Input: ”Engine”, ”Car”
− Output:

‘‘‘json
{

”entity”: ”Car”,
”component”: ”Engine”

}
‘‘‘

**Example 2:**
− Input: ”Brand name”, ”Store name”
− Output:

‘‘‘json
{

”entity”: ”Store name”,
”component”: ”Brand name”

}
‘‘‘

**Example 3:**
− Input: ”Hospital”, ”Amenities”
− Output:
‘‘‘json
{

”entity”: ”Hospital”,
”component”: ”Amenities”

}
‘‘‘

Figure 9: SQUAB relational metadata prompt for Scope test generation.
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Generate suggestions for new columns to add to a database table, including the type of column
(categorical or numerical) and sample data for each column based on the given table name,
database name, and existing column names.
# Steps
1. **Analyze Provided Information**: Review the table name, database name, and existing
column names to determine the context and purpose of the table.
2. **Infer Potential Data Gaps**: Consider common or useful additional columns that could
complement or enhance the data in the table.
3. **Suggest New Columns**:
- Determine if each suggested column should be categorical or numerical based on the inferred
data gap.
- Provide a rationale for why each new column would be a beneficial addition.
4. **Generate Sample Data**: For each suggested column, provide sample data that fits the
column type.
# Output Format
Provide the output in a structured JSON format:
‘‘‘json
{”suggested columns”: [

{
”column name”: ”[suggested column name]”,
”column type”: ”[categorical/numerical]”,
”description”: ”the description of the column”,
”sample data”: [”[sample value1]”, ”[sample value2]”, ...]

}, ... ]}
‘‘‘

Ensure the suggestions are relevant to the context implied by the existing column names.
# Examples
### Input
Num to generate: 2
Table Name: Customers
Database Name: SalesDB
Table Schema: [”customer id”, ”name”, ”email”, ”purchase history”]

### Output
‘‘‘json
{”suggested columns”: [

{”column name”: ”customer segment”,
”column type”: ”categorical”,
”description”: ”The customer segment for the sales”,
”sample data”: [”Regular”, ”VIP”, ”New”]},
{”column name”: ”average spending”,
”column type”: ”numerical”,
”description”: ”the average spending of the customer”,
”sample data”: [100.0, 250.5, 300.3]}

]}
‘‘‘

# Notes
- Consider the context provided by the existing columns to ensure the suggestions add value.
- For databases associated with specific industries (e.g., finance, healthcare, retail), leverage
common industry practices for enhancing data tables.

Figure 10: SQUAB relational metadata prompt for Missing Column test generation.
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Create a User-Defined Function (UDF) executable in SQL using the given table schema.
The output should be structured in JSON format. The UDF must not be as obvious as the
percentage.
The UDF name must be different from existing columns to avoid any confusion with column
names and should
not contain any overlapping names or prefixes with the column names.
The semantic of the UDF must be different from the semantic of each column.
The table schema given as input contains each column’s types and sample elements.
The ”udf name” contains the call of the user-defined function with the column names separated
by commas.
# Steps
1. **Analyze the Table Schema**: Understand the provided table schema.
2. **Design the UDF**: Create a hypothesis for the function using some of the columns
available in the schema.
3. **Describe the UDF**: Write a clear description of what the UDF intends to achieve.
# Output Format
The output should be a JSON object with the following structure:
- **udf name**: A descriptive and relevant name for the User-Defined Function with the called
columns. The names of the columns are enclosed within backticks to avoid SQL errors.
- **udf description**: A detailed explanation of the function’s intended operations.
- **udf output type**: the output data type of the UDF. It can be ”categorical” or ”numerical”.
The output must also contain the Python code that executes the logic of the UDF. The python
code is enclosed in “‘python “‘ after the JSON.
Generate at most the num of examples given as input, each separated by ”# New UDF”
Example:
# New UDF
‘‘‘json
{

”udf name”: ”calculate interest rate(‘Age‘, ‘Income‘, ‘Credit score‘)”,
”udf description”: ”This UDF attempts to calculate a score based on the ’age’, ’income’, and ’

credit score’ columns.”,
”udf output type”: ”numerical”

}
‘‘‘
‘‘‘python
def calculate interest rate(account id, customer id, balance, credit score, loan history):

interest rate = (balance * 0.05) + (credit score * 0.02) − (loan history * 0.01)
return interest rate

‘‘‘

# Notes
- Ensure the python syntax is precise and executable for valid hypothetical values.
- As input you will also get the number of UDF to generate

Figure 11: SQUAB relational metadata prompt for Calculation Unanswerable test generation.
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Create a User-Defined Function (UDF) that is executable but unanswerable using only the
specified table schema.
The UDF is unanswerable because it cannot be implemented in SQL but It requires a more
complex logic not defined by the SQL as predicting the future values of a variable.
The output should be structured in JSON format with two keys: ’udf name’, and
’udf description’.
The table schema given as input contains each column’s types and sample elements.
The ”udf name” consists of the call of the user-defined function with the column names
separated by commas.
Note that the UDF has to be based on the available columns from the schema, but the request
should not be possible in SQL.
Generate at most the num of examples given as input.
# Steps
1. **Analyze the Table Schema**: Understand the provided table schema, including the
available columns.
2. **Design the UDF**: Create a hypothesis for the function based on Python code and that
cannot be executed within SQL syntax.
3. **Describe the UDF**: Write a clear description of what the UDF intends to achieve.
# Output Format
The output should be a JSON object containing a list of ”suggested udfs” with the following
structure:
- **udf name**: A descriptive and relevant name for the User-Defined Function with the called
columns. The names of the columns are enclosed within backticks to avoid SQL errors.
- **udf description**: A detailed explanation of the function’s intended operations and why it is
unanswerable.
- **udf output type**: the output data type of the UDF. It can be ”categorical” or ”numerical”.
Example:
Provide the output in a structured JSON format:
‘‘‘json
{
”suggested udfs”: [

{
”udf name”: ”predict interest rate(‘Age‘, ‘Income‘, ‘Credit score‘)”,
”udf description”: ”This UDF attempts to predict the interest rate based on Age, Income, and

credit score.”
”udf output type”: ”numerical”

},
...
]

}
‘‘‘

# Notes
- Remember, the goal is to ensure the UDF is based on existing columns but logically requires a
different execution that is not available in SQL.
- As input you will also get the number of UDF to generate

Figure 12: SQUAB relational metadata prompt for Out-Of-Scope test generation.
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