
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 17947–17969
November 4-9, 2025 ©2025 Association for Computational Linguistics

Reliable Evaluation and Benchmarks for Statement Autoformalization

Auguste Poiroux Gail Weiss
Viktor Kunčak Antoine Bosselut

School of Computer and Communication Sciences
EPFL, Switzerland

{auguste.poiroux, gail.weiss, viktor.kuncak, antoine.bosselut}@epfl.ch

Abstract

Evaluating statement autoformalization, trans-
lating natural language mathematics into for-
mal languages like Lean 4, remains a signifi-
cant challenge, with few metrics, datasets, and
standards to robustly measure progress. In this
work, we present a comprehensive approach
combining improved metrics, robust bench-
marks, and systematic evaluation, to fill this
gap. First, we introduce BEq+, an automated
metric that correlates strongly with human judg-
ment, along with ProofNetVerif, a new dataset
for assessing the quality of evaluation metrics,
containing 3,752 annotated examples. Sec-
ond, we develop two new autoformalization
benchmarks: ProofNet#, a corrected version of
ProofNet, and RLM25, with 619 new pairs of
research-level mathematics from six formaliza-
tion projects. Through systematic experimen-
tation across these benchmarks, we find that
current techniques can achieve up to 45.1% ac-
curacy on undergraduate mathematics but strug-
gle with research-level content without proper
context. Our work establishes a reliable founda-
tion for evaluating and advancing autoformal-
ization systems.

1 Introduction

Automatic verification of logical reasoning holds
promise for formal verification of mathematical
proofs, software verification, and artificial intelli-
gence. Proof assistants allow users to rigorously
express mathematical statements and mechanically
check their proofs (Mahboubi and Tassi, 2022;
Paulson, 2023; Avigad, 2024), but require inputs
to be formalized: translated from informally stated
mathematical statements into a formal language,
such as Lean 4. New research explores methods
that automate this process, a task referred to as aut-
oformalization (Szegedy, 2020; Wang et al., 2020),
but there exists few reliable resources for evaluat-
ing statement autoformalization methods (Liu et al.,
2024; Lu et al., 2024b).

To enable scalable experimentation and robust
evaluation, we propose new metrics, benchmarks,
and standards for evaluating statement autoformal-
ization methods. First, we introduce BEq+, a
reference-based metric inspired by BEq (Liu et al.,
2024). BEq+ is deterministic, runs efficiently on
CPU alone, and does not require a 20B LLM prover.
We measure its strong correlation with human judg-
ments, demonstrating its utility as a metric for
comparing autoformalization models. Recogniz-
ing that progress in autoformalization will require
continued improvements in metrics, we also re-
lease ProofNetVerif, a new benchmark of 3752
formal-informal pairs with human-annotated bi-
nary semantic equivalence labels that can be used
to benchmark the faithfulness of new metrics.

Next, we propose two benchmarks as evaluation
testbeds of statement autoformalization methods.
First, we identify numerous formalization errors
in existing Lean 4 ports (31.8% of the entries),
and present ProofNet#, a meticulously corrected
version of the leading ProofNet benchmark (Azer-
bayev et al., 2023a). At the same time, we ob-
serve that ProofNet focuses on undergraduate-level
and self-contained statement formalization. To as-
sess autoformalization in more realistic, context-
dependent, research-oriented scenarios, we cu-
rate RLM25, a novel benchmark comprising 619
pairs from real-world, research-level formalization
projects, the first of its kind, to our knowledge.

Finally, we set new standards for evaluating
autoformalization. Current state-of-the-art meth-
ods, whether based on large language models (Wu
et al., 2022; Azerbayev et al., 2023a), distilled back-
translation (Jiang et al., 2023; Azerbayev et al.,
2023a), or retrieval augmented generation (Azer-
bayev et al., 2023a; Liu et al., 2024), show limited
success, with reported accuracies typically below
20% on benchmarks such as ProofNet (Azerbayev
et al., 2023a; Liu et al., 2024). A common failure
of these methods is the inability to generate for-

17947

https://github.com/augustepoiroux/LeanInteract/blob/8cd9835e3aa87700886eaac2ff3e67409f544d87/examples/beq_plus.py
https://huggingface.co/datasets/PAug/ProofNetVerif
https://huggingface.co/datasets/PAug/ProofNetSharp
https://github.com/augustepoiroux/RLMEval

malizations that type-check in Lean 4 (Moura and
Ullrich, 2021), a crucial precursor to correctness.
Our results show that sampling multiple formaliza-
tions and discarding the ones that do not type-check
already substantially increases downstream correct-
ness.

Given that statement autoformalization is more
likely to be applied in limited data contexts (i.e.,
mathematics), increasing test-time compute is a
promising factor. Consequently, we propose that
autoformalization studies should explore a variety
of inference-time compute budgets to broadly test
method capabilities. While prior work explored
sampling multiple formalizations (up to n = 20)
(Li et al., 2024b; Agrawal et al., 2022), we system-
atically study how performance scales with a signif-
icantly larger number of samples (up to n = 1000).
We also investigate various strategies for filtering
ill-typed samples and selecting the final prediction.

Our experiments demonstrate that scaling test-
time compute by increasing candidate sampling,
combined with type-check filtering and selection
heuristics, can substantially improve autoformaliza-
tion accuracy. Notably, the performance of GPT-4o
on ProofNet# improves from 31.0% (single gen-
eration) to 45.1% (using 50 samples and a selec-
tion heuristic). These findings, alongside our con-
tributions in metrics and benchmarks, establish a
more reliable foundation for evaluating and advanc-
ing statement autoformalization systems, particu-
larly for complex undergraduate and research-level
mathematics.
We summarize our contributions as follows:

• We develop BEq+, a reference-based metric for
statement autoformalization based on determin-
istic symbolic computation and running exclu-
sively on a CPU. We demonstrate that BEq+
correlates strongly with human annotations
at the benchmark level, making it reliable to
compare different autoformalization models.

• We release ProofNetVerif, a benchmark of
3 752 formal-informal pairs annotated with bi-
nary semantic equivalence labels to evaluate
statement autoformalization metrics.

• We curate ProofNet#, a revised version of
ProofNet with many corrections.

• We release RLM25, a new statement aut-
oformalization benchmark based on several
research-level natural language-aligned formal-
ization projects. To the best of our knowledge,
this is the first autoformalization benchmark on
research-level mathematical topics.

• Using BEq+ and manual evaluation, we study
the statement autoformalization performance of
various leading models.

We release BEq+, ProofNetVerif, and
ProofNet# with an MIT license. RLM25 is
released under an Apache 2.0 license, similar to
the license of the underlying projects.

2 Related Work

Interactive Theorem Proving. Autoformaliza-
tion in mathematics depends on formal systems,
such as Coq (Castéran and Bertot, 2004), Lean
(Moura and Ullrich, 2021), Isabelle (Nipkow et al.,
2002), and their math libraries. In this work, we fo-
cus on Lean (specifically, its current version, Lean
4): a powerful interactive theorem prover with a
growing formal library of definitions and proven
statements known as Mathlib (mathlib Community,
2020). de Moura et al. (2015) and Moura and Ull-
rich (2021) provide insights into the inner workings
of Lean type-checking.
Autoformalization. Classical programmatic tools
can be used to translate constrained natural lan-
guage statements into formal systems (Pathak,
2024). In contrast, we are interested in translat-
ing unconstrained natural language statements. In
Wu et al. (2022), the authors find LLMs to be a
promising approach, capable of autoformalization
through the use of in-context learning. In Azer-
bayev et al. (2023a) and Jiang et al. (2023), the au-
thors demonstrate that distilled back-translation im-
proves performance of some base models. Agrawal
et al. (2022) use an advanced post-processing step
to automatically fix type errors in LLM predic-
tions. They find that, for a given problem, keeping
only well-typed predictions when generating sev-
eral formalization attempts is a strong filter. In
a more recent work, (Li et al., 2024b) proposes
a self-consistency approach specifically designed
for autoformalization. Their method clusters log-
ically equivalent formalizations using automated
theorem-proving techniques. They evaluate this
approach up to n = 10 samples per problem.
Metrics. Evaluating the accuracy of models on the
statement autoformalization task is a non-trivial
problem. In previous works (Wu et al., 2022;
Agrawal et al., 2022; Azerbayev et al., 2023a; Jiang
et al., 2023), manual evaluation is the standard prac-
tice to report statement autoformalization perfor-
mance. Manual evaluation, though comprehensive
and methodical, is a bottleneck for evaluation, mo-

17948

https://github.com/augustepoiroux/LeanInteract/blob/8cd9835e3aa87700886eaac2ff3e67409f544d87/examples/beq_plus.py
https://huggingface.co/datasets/PAug/ProofNetVerif
https://huggingface.co/datasets/PAug/ProofNetSharp
https://github.com/augustepoiroux/RLMEval

tivating automatic metrics as a proxy for manual
accuracy, such as BLEU (Wu et al., 2022; Azer-
bayev et al., 2023a; Ying et al., 2024b). However,
prior work (Azerbayev et al., 2023a) showed that
the correlation between BLEU and formalization
accuracy is low. Other works have also proposed
type-check rate (Azerbayev et al., 2023a; Agrawal
et al., 2022) and symbolic equivalence metrics (Liu
et al., 2024; Li et al., 2024b) as proxies for auto-
formalization accuracy. In our work, we further
discuss shortcomings of these metrics, and propose
new metrics to overcome them.
Benchmarks. ProofNet (Azerbayev et al., 2023a)
is a benchmark specifically designed for autofor-
malization. It consists of 371 undergraduate math-
ematical exercises, making it an essential bench-
mark for evaluating the performance of autofor-
malization models. In a recent work on neural
theorem proving (Hu et al., 2024), the authors eval-
uated their automated theorem prover method on
research-level formal projects. Similarly, in Liu
et al. (2024), the authors evaluate their method on
Con-NF (Wilshaw, 2025) using LLM-generated
natural language statements.
LLM sampling-based methods. For our evalu-
ation, we study a method using self-consistency
algorithms such as majority voting (Wang et al.,
2023) and Self-BLEU (Zhu et al., 2018). Such
methods have empirically proven to be effective
across a wide range of NLP tasks (Li et al., 2024a).
In particular, Lewkowycz et al. (2022) demon-
strated the effectiveness of the combination of sam-
pling and majority voting on the MATH benchmark
(Hendrycks et al., 2021). Further works in this
direction improve over majority voting by using
trained verifiers (Hosseini et al., 2024).

3 Manual and Symbolic Metrics

Currently, the most reliable evaluation for autofor-
malization is a manual evaluation by persons with
sufficient understanding of the formal proof assis-
tant and its library. As in prior work, we define a
formalization as correct if it is semantically equiv-
alent to the provided natural language statement.
Throughout this paper, accuracy exclusively refers
to the proportion of statements evaluated as correct
by manual annotation.
Symbolic Computation Metrics BEqL and
BEq+. However, as manual evaluation is time-
consuming, we propose novel automatic evalua-
tion metrics BEqL and BEq+ that compare a can-

didate formalization to a reference formalization
by checking equivalence between two formulas
using symbolic algorithms inside the proof assis-
tant. We invoke proof scripts in Lean that try to
prove each formula from the other. These metrics
are motivated by the prior BEq metric (Liu et al.,
2024) which leverages a 20B LLM trained on the
theorem proving task to check equivalence. In-
stead of an LLM, our metrics employ two purely
symbolic, CPU-only equivalence checks that are
not only more computationally efficient and inter-
pretable, but also eliminate the need for specialized
hardware, allowing us to scale our experiments to
n = 1000 samples per query.
BEqL. This metric is based on proving formula
equivalence using the exact? tactic (tactics can be
seen as proof steps). As noted by the authors (Liu
et al., 2024), this tactic can prove equivalence for
a wide variety of syntactic variations of equiva-
lent formal statements. exact? can, in general, use
other theorems from the libraries to prove the cur-
rent formalization, resulting in a situation where
unrelated true theorems are considered equivalent.
We therefore restrict the exact? tactic to only use
the candidate equivalent formula. Even though
this metric has a relatively high false negative rate,
its simplicity makes it easier to reproduce results
across works.
BEq+. To improve recall compared to BEqL, we
introduce a new symbolic metric: BEq+. BEq+ ex-
plores several alternative proof strategies for each
direction of the implication, as summarized in Al-
gorithm 1. A description of the tactics used can be
found in subsection A.1. We apply this algorithm
once for each of the two implication directions.

3.1 ProofNetVerif: Benchmarking Metrics
When proposing new automated metrics (section 3),
we must validate whether these metrics are accu-
rate enough to approximate human evaluation. In
related work (Liu et al., 2024), the authors conduct
a study on 200 sampled formalization attempts and
show that BEq is accurate at the instance level, but
with a relatively high amount of false negatives.

Using manual annotations from this paper, we
curate a new benchmark: ProofNetVerif. Achiev-
ing high performance on this benchmark serves two
key purposes: (1) establishing robust evaluation
metrics for autoformalization, and (2) improving
selection strategies by filtering out incorrect for-
malizations, thereby narrowing the search space in
sampling-based methods.

17949

Algorithm 1 BEq+ - Unidirectional
Input: Theorem formalizations t1 and t2
Output: Whether t2 can be derived from t1
1. Run BEqL

if exact? closes proof by using t1 then
return TRUE

2. Leverage conclusion matching
if apply t_1 or convert t_1 succeeds then

Proving t1 assumptions can be derived from t2
if repeated applications of tauto, simp_all_arith!,
noncomm_ring, or exact? close proof then

return TRUE
3. Attempt direct assumption of t1
if have : goal(t_1) := by apply_rules [t_1] suc-
ceeds then

if repeated applications of tauto, simp_all_arith!,
noncomm_ring, or exact? close the subproof introduced
by have then

if repeated applications of tauto, simp_all_arith!,
or exact? using this close the main proof then

return TRUE
return FALSE

ProofNetVerif contains aligned examples of a
natural language statement, reference formaliza-
tion, predicted formalization, and a boolean label
indicating semantic equivalence between the pre-
dicted formalization and the natural language state-
ment, making it suitable to evaluate both reference-
free and reference-based metrics. The benchmark
contains 3752 examples, with 1142 entries of pre-
dicted formalizations equivalent to a natural lan-
guage input (the remainder being non-equivalent).
With this scale, ProofNetVerif provides a challeng-
ing benchmark for designing automated metrics to
evaluate autoformalization mistakes.

We report the results of our new metrics on
ProofNetVerif in Table 1. In particular, we find that
BEq+ largely improves over BEqL and captures
non-trivial semantical equivalence. We measured
the performance of BEq+ and BEqL only once on
this benchmark and did not tune their design to fit
this specific dataset. Additional details and discus-
sions can be found in subsection A.5.

Table 1: Binary performance, in percentage, of BEqL

and BEq+ metrics on ProofNetVerif.

Metric BEqL BEq+
Precision 100.0 98.0
Recall 30.9 48.3
F1 Score 47.2 64.7

3.2 Benchmark-Level Agreement
ProofNetVerif measures instance-level agreement
between human evaluation and automated metrics.

Table 2: Correlation between human-reported accuracy
and different automated metrics on ProofNet# using
data from all models evaluated in this paper.

Metric Pearson Kendall
Type-Check 0.655 0.560
BEqL 0.966 0.846
BEq+ 0.974 0.872

However, current metrics still show relatively low
recall relative to near-perfect precision, underesti-
mating true autoformalization accuracy of models.

To complement this instance-level view, we also
study benchmark-level agreement, where we no
longer look at whether a single formalization at-
tempt is correct, but rather whether aggregated
scores across an entire benchmark (i.e., across all
problems solved by a given model under a given
method) align with human judgments (i.e., accu-
racy). We show that BEq+ has strong correlation
with accuracy: leveraging all our manual annota-
tions on ProofNet# conducted for this work, we
measure the correlation of symbolic metrics and
human evaluation at the benchmark level, amount-
ing to 65 data points (different models and method
choices, see subsection A.17), and report the results
in Table 2. Correlation factors between BEq+ and
human evaluation are fairly high, with a Kendall
coefficient of 0.872. While symbolic metrics are
conservative in comparison to human-measured
accuracy, this high Kendall correlation coefficient
shows that BEq+ can be reliably used to compare
model performance for autoformalization.

We also find that the type-check rate correlation
with human evaluation is relatively low, experimen-
tally confirming that this metric can not be used as a
substitute for human evaluation. However, our em-
pirical results in Figure 3 suggest that type-check
rates can probably be used to approximate accu-
racy when comparing different experiments for a
single model. This can be particularly useful in
reference-free setups outside of benchmarks where
no reference formalizations are available.

4 New Benchmarks

In addition to metrics, we contribute several
new benchmarks for autoformalizationm, incuding
RLM25, a new benchmark for research-Level math-
ematics, and ProofNet#, a manual re-annotation of
ProofNet that identifies and corrects a large per-
centage of mislabeled pairs.

17950

Table 3: Lean Blueprint projects used to build RLM25

Project #Thms Lean First Commit

Carleson 111 4.14.0-rc2 20 Oct 2023
FLT 56 4.14.0-rc2 19 Nov 2023

FLT3 84 4.7.0-rc2 22 Mar 2024
PFR 145 4.14.0-rc3 13 Nov 2023

PrimeNumberTheoremAnd 99 4.14.0-rc2 9 Jan 2024
testing-lower-bounds 124 4.13.0-rc3 22 Feb 2024

4.1 RLM25: Research-Level Mathematics

To better evaluate the use of autoformalization for
formalizing new mathematical results, we intro-
duce a new benchmark, RLM25, comprised of 619
pairs natural language statement and their Lean
formalizations with context1 from six formaliza-
tion projects (Table 3) that use the Lean blueprint
framework (Massot, 2025). Because these projects
contain natural language-aligned formalizations of
research-level mathematics, they are suitable for
evaluating statement autoformalization methods.
We believe RLM25 is more representative of the
intended use of autoformalization in mathematics
research. To the best of our knowledge, we are the
first to conduct such a study on real formalization
projects. With 619 pairs, RLM25 is slightly larger
than existing benchmarks MiniF2F (488 pairs) and
ProofNet (371 pairs).

Curating this benchmark required notable en-
gineering and analysis efforts. We use plasTeX
(plasTeX Development Team, 2024) to extract nat-
ural language statements from blueprint latex files
along with the Lean labels. We then use LeanDojo
(Yang et al., 2023) to extract formal statements
along with their context from the Lean files. Fi-
nally, we align the natural language statements with
their formal counterparts using the Lean labels in
the latex files. For evaluation, we use Lean REPL
(Morrison, 2023), which we backported to previous
Lean versions to make the latest features and bug
fixes available for all the projects in RLM25.

The projects included in RLM25 have been se-
lected as follows: from 11 Lean blueprint project
candidates available at the time of our study, we se-
lected 6 projects that (1) began after October 2023
to avoid data contamination, (2) contained at least
50 extractable formal-informal pairs, and (3) for
which we got use agreement from their primary
authors to conduct evaluations of AI systems.

1We obtained agreement from the primary authors of these
projects to evaluate our models on them.

4.2 ProofNet#: A Corrected Lean 4 ProofNet

Past autoformalization approaches (Azerbayev
et al., 2023a; Jiang et al., 2023; Liu et al., 2024) of-
ten use the ProofNet benchmark (Azerbayev et al.,
2023a) for evaluation, containing 371 pairs (185
validation, 186 test) of informal statements in un-
dergraduate mathematics and corresponding for-
malizations in Lean 3. As we focus on Lean 4,
we start from two Lean 4 ports of ProofNet (Vish-
wakarma, 2024; Xin et al., 2024). However, our
analysis revealed that these ports, direct transla-
tions from Lean 3 to Lean 4, contained 118 en-
tries with formalization errors (31.8% of the to-
tal entries), biasing downstream evaluation. We
corrected these errors, leading to a new dataset,
ProofNet# (see subsection A.2), that is compatible
and well-typed for Lean versions between 4.7.0
to 4.16.0-rc2. ProofNet# remains very close to
ProofNet, as only the reference formalizations are
updated. Hence, the results reported in other works
using reference-free metrics (e.g., human evalua-
tion and type-check rate) remain the same.

5 Autoformalization Methods

In this section, we describe the leading autoformal-
ization approaches evaluated using our new metrics
and benchmarks.

5.1 Adaptation Methods

In-context learning. On ProofNet#, we use the 12-
shot prompt from Azerbayev et al. (2023a) updated
to Lean 4, which we share in subsection A.15. On
research-level formalization projects, similar to Hu
et al. (2024) for neural theorem proving, we also
consider in-file context, i.e., the content preceding
the official formalizations in the project files.
Fine-tuning on MMA. Empirically, it has been
shown that LLMs are better at informalization, i.e.,
translating formal statements to informal mathemat-
ical statements, than autoformalization (Wu et al.,
2022; Azerbayev et al., 2023a). Using this fact,
Jiang et al. (2023) informalized the Lean 4 Math-
lib library with GPT-4 (OpenAI et al., 2024a) to
create a dataset, MMA, of formal-informal pairs
that is often used for finetuning autoformalization
methods.
Fine-tuning on Lean Workbook. In a recent work
(Ying et al., 2024a), the authors release a syntheti-
cally generated training set for statement autofor-
malization. They train a model on MiniF2F and
ProofNet benchmarks, and then, through active

17951

https://github.com/fpvandoorn/carleson/tree/ec175b9008144d009269ce427b9ad43dbd70d0a5
https://github.com/imperialcollegelondon/FLT/tree/fed5e57b05e232f3bfe24d24098111e9dcd7bcd1
https://github.com/pitmonticone/FLT3/tree/a199fa0467f86504a9d2f6164b0456608e586821
https://github.com/teorth/pfr/tree/f6bdcac2365623d3667d3ff8fd8ddb7f95ce2313
https://github.com/alexkontorovich/PrimeNumberTheoremAnd/tree/6101a4b1f0cd4096b0c41cc90c7ba89f7593ef77
https://github.com/remydegenne/testing-lower-bounds/tree/0f09ff100a06a5e4542181514bfff74213ae126b

learning, they curate a train set of ∼ 57K formal-
informal pairs. Because of this training on the
benchmarks, we only evaluate models fine-tuned
on this dataset on the RLM25 benchmark.

5.2 Sampling-Based Methods

We consider sampling methods designed as a plug-
and-play improvement that can be seamlessly in-
tegrated with existing techniques to enhance their
performance.
Sampling. In our experiments, unless otherwise
stated, we employ temperature sampling with T =
0.7 and generate n = 50 autoformalization at-
tempts per informal statement.
Filtering. We use Lean REPL (Morrison, 2023)
to implement our filtering step, which assesses if
provided statements are well-typed. de Moura et al.
(2015) and Moura and Ullrich (2021) provide de-
tailed insights into the inner workings of the Lean
type system and type-checking.
Selection. In our selection process, we employ
and compare four distinct heuristics to refine and
choose the best outputs generated by the models:
random selection, majority voting (Wang et al.,
2023), Self-BLEU (Zhu et al., 2018), and the sym-
bolic equivalence method presented in Li et al.
(2024b). A more detailed description of each com-
ponent is presented in subsection A.3.

6 Experiments

We evaluate statement autoformalization across
models and methods using BEq+ and human an-
notations. Our experiments test (i) optimal tem-
perature, (ii) various selection methods, (iii) how
performance scales with the number of attempts,
and (iv) the effect of contextual information on
research-level tasks.

6.1 Models Used in Experimental Setup

Llemma-7B & 34B (Azerbayev et al., 2023b).
These open models are based on CodeLlama 7B
and 34B (Rozière et al., 2024) and have been fur-
ther pre-trained on the ProofPile-2 collection of
mathematical data (explicitly excluding ProofNet),
which was introduced along with these models.
Due to their training data, these math models are
particularly suited for formal-related tasks.
Llama3-8B-Instruct (Grattafiori et al., 2024).
This is a state-of-the art open 8B model from the
Llama3 family.

0.3 0.5 0.7 0.9 1.1
0

5

10

15

20

25

Temperature (T)

Sc
or

e
(%

)

n = 1 n = 2 n = 5
n = 10 n = 20 n = 50

0.3 0.5 0.7 0.9 1.1

Temperature (T)

BEqL BEq+

Figure 1: Evolution of BEq+ and BEqL pass@n
scores for different temperatures on top of type-
check filtering. We evaluate Llemma 7B on ProofNet#
validation split.

GPT-4o (OpenAI et al., 2024b). This is a state-
of-the-art general LLM. We use version gpt-4o

-2024-05-13 for reproducibility.
To address data contamination concerns, Table 3
includes the first commit date of each project in the
RLM25 benchmark.2 For all these projects, this
commit date comes after the announced knowledge
cut-off date of the models used in this work: Octo-
ber 2023 for GPT-4o, March 2023 for Llama3 8B,
and August 2023 as the release date of Llemma 7B.

6.2 Analysis of Sampling-Based Methods

In this section, we conduct an ablation study of var-
ious parameters involved in sampling-based meth-
ods. By default, we use a temperature of T = 0.7,
n = 50 samples, and 12-shot prompting in our
experiments. All the results in this section are con-
ducted on the validation split of the ProofNet#
benchmark.

Optimal temperature In Figure 1, we report
the evolution of BEq+ pass@n metric3 using the
Llemma 7B model. We find that the optimal tem-
perature for balancing exploration and coherent out-
puts depends on the number of samples, and that
this optimal temperature increases with the number
of samples. For the rest of this study, we continue
with the value of T = 0.7 for our sampling-based
experiments.

2The authors of the projects confirmed that the first com-
mit dates correspond to the first public appearance of these
projects.

3pass@n measures the percentage of tasks where at least
one of the n outputs is correct, as measured by BEq+ here.

17952

1 10 100 1 000
0

5

10

15

20

25

n

B
E

q+
(%

)

Optimal (= pass@n) Random
Majority Voting Self-BLEU

Symbolic Equivalence

1 10 100 1 000
0

10

20

30

40

n
1 10 100 1 000

0

10

20

30

40

50

n

Llama3 8B Llemma 7B Llemma 34B

Figure 2: Evolution of BEq+ metric for different se-
lection methods on top of type-check filtering. We
evaluate Llama3 8B, Llemma 7B, and Llemma 34B on
ProofNet# validation split with a number of candidate
samples up to n = 1000. Given its quadratic scaling
with n and high computational cost, the symbolic equiv-
alence method is limited to n ≤ 50 candidate samples.

Optimal selection method In Figure 2, we re-
port BEq+ scores of the different selection methods,
along with the optimal score that can be achieved
with a perfect selection method, which is repre-
sented by pass@n. First, BEq+ pass@n scores
steadily increase with the number of samples, go-
ing, for example, from 4.11% at n = 1, to 40.54%
at n = 1000 for Llemma 7B, meaning that there is
great potential in enhancing autoformalization per-
formance through sampling. Additional studies on
BEq+ pass@n can be found in subsection A.7. Sec-
ond, we find that the studied self-consistency meth-
ods performance monotonically increases with the
number of samples. We confirm these findings with
more models and manual evaluation in Figure 3. Fi-
nally, we find that the symbolic equivalence method
does not yield better empirical results for selection
compared to simpler and less compute-intensive
methods such as Self-BLEU or majority voting.
We therefore continue with Self-BLEU and major-
ity voting in subsequent experiments.

Type-Check Filtering In Figure 4, we empiri-
cally study the contribution of the filtering compo-
nent in sampling-based methods by evaluating with
and without filtering, as well as with different selec-
tion heuristics. While majority voting (No filter +
Majority voting) and Self-BLEU selection (No filter
+ Self-BLEU) generally improve the accuracy of
random sampling, both struggle to increase the per-
formance of random sampling beyond that of the

1 5 20 50
0

20

40

60

80

100

n

Sc
or

e
(%

)

1 5 20 50
0

10

20

30

40

50

n

Llama3 8B Llemma 7B
Llemma 34B GPT-4o

Type-Check Accuracy

Figure 3: Type-Check rate and Accuracy scaling
trends with respect to the number of samples on
ProofNet# validation split using 12-shot prompting
and a sampling-based method (type-check filter + Self-
BLEU). The number of samples varies from n = 1 to
50 (where Llemma 34B has top type-check rate and
GPT-4o top accuracy). Numbers are in Table 15.

greedy decoding baseline. Meanwhile, adding type-
check filtering substantially outperforms the greedy
decoding baseline even without any final selection
heuristic (Filter + Random selection). We conclude
that the type-check filter is a critical component in
sampling-based methods and that it should be ap-
plied before selection.

6.3 Empirical Analysis on RLM25

Table 4: Results, in percentage, on RLM25 for different
methods and models using only the natural language
statement as input (i.e., no in-file context is provided).

Model Method Type-Check BEqL BEq+

Llama3 8B 12-shot 2.80 0.20 0.40
MMA 3.18 0.00 0.54

Llemma 7B
12-shot 5.06 2.78 2.78
MMA 8.65 0.79 1.16
Lean Workbook 23.06 0.17 1.13

Llemma 34B 12-shot 4.94 0.79 0.79

GPT-4o 12-shot 10.55 0.57 1.50

To further confirm our findings and evaluate cur-
rent autoformalization methods in more realistic
settings, we conduct studies on RLM25 in this sec-
tion. We start by conducting an initial study using
the current approach in the literature for statement
autoformalization: only the natural language state-
ment is provided as input to the methods. We report
our results in Table 4. These results are very sim-
ilar to the ones presented in Liu et al. (2024) on

17953

Llam
a3

8B

Llem
ma 7B

Llem
ma 34

B

GPT-4
o

0

10

20

30

40

50
A

cc
ur

ac
y

(%
)

Greedy baseline No filter + Random selection

No filter + Majority voting No filter + Self-BLEU

Filter + Random selection Filter + Self-BLEU

Figure 4: Type-Check Filtering Ablation Study. Ac-
curacy scores are reported on ProofNet# validation split
for various ablations of sampling-based methods. More
details and exact numbers are reported in Table 14.

their semi-synthetic Con-NF benchmark, with BEq
results close to 0% for all methods.

A manual analysis of the predictions quickly
reveals a key issue: without in-file context, auto-
formalization methods lack access to crucial infor-
mation. While some missing information from a
Lean file, such as local definitions, can be tack-
led through current retrieval-based methods, others,
such as opened namespaces and local variables are
still missing. To assess the importance of different
file components, we conducted an ablation study to
identify which contextual elements help LLMs gen-
erate accurate formalizations. As shown in Table 5,
the best performance across models is achieved
when proofs are removed while retaining all other
contextual elements. In contrast, removing both
proofs and theorems significantly degrades perfor-
mance, particularly for less capable models.

Table 5: Ablation study on prompt content using
various models on RLM25. We report BEq+ (%) per-
formance. In the prompt column, ’-’ represents removal
from the context.

Prompt Llama3 8B Llemma 7B Llemma 34B GPT-4o

12-shot 0.40 2.78 0.79 1.50
Full file context 18.67 22.15 25.99 20.64
- theorems & proofs 6.60 13.82 15.63 17.20
- proofs 20.29 24.16 30.33 24.56

In Table 5, we find that in-file context prompt-
ing substantially improves performance across all
methods and models compared to Table 4. Fur-
thermore, fine-tuning on existing autoformaliza-
tion datasets does not yield improvement over base
models on RLM25, suggesting that context-aware

formalization datasets are needed for tackling auto-
formalization for research-level projects.

6.4 Final Results
We conducted a detailed baseline study along with
human evaluation of the different autoformaliza-
tion methods on ProofNet#, which we report in the
appendix in Table 8. Confirming results from prior
works (Jiang et al., 2023; Azerbayev et al., 2023a),
we note the large proportion of errors for all meth-
ods due to type-check failures. In Table 6, we re-
port side-by-side final performance results between
classical greedy decoding and a sampling-based
method using Self-BLEU on both ProofNet# and
RLM25. These results confirm the consistent per-
formance improvement of sampling for all tested
models on the two benchmarks, ProofNet# and
RLM25. We also report the effect of sampling
on MMA and Lean Workbook fine-tuned models
in Table 9. However, we find that applying the
sampling strategy on base models with few-shot
learning achieves better absolute accuracy. We re-
port additional results on other benchmarks such as
PDA (Lu et al., 2024a) and MiniF2F (Zheng et al.,
2022) in subsection A.11.

Table 6: Performance comparison between greedy de-
coding and a sampling-based method on ProofNet#
and the new RLM25 benchmark. 12-shot is used for
ProofNet#, and in-file context with proofs removed is
used for RLM25. Sampled with T = 0.7 and n = 50.

Model Method ProofNet# RLM25

Accuracy BEq+ BEq+

Llama3 8B Greedy 3.3 3.3 20.3
Filter + Self-BLEU 12.0 9.2 23.9

Llemma 7B Greedy 10.9 6.5 24.2
Filter + Self-BLEU 29.3 17.9 28.8

Llemma 34B Greedy 12.5 7.1 30.3
Filter + Self-BLEU 28.3 14.7 33.4

GPT-4o Greedy 31.0 18.5 24.6
Filter + Self-BLEU 45.1 23.4 31.6

7 Conclusion

Our work advances and standardizes the evalu-
ation of statement autoformalization. We intro-
duced several key resources: BEq+, an auto-
mated equivalence-checking metric demonstrating
a strong correlation with human judgments, and
ProofNetVerif, a dataset of 3752 annotated exam-
ples to validate new metrics. Alongside these, we
published ProofNet#, a corrected version of the

17954

popular ProofNet benchmark, and RLM25, the
first benchmark for research-level mathematics for-
malization across six projects. Our experiments
using these new resources reveal critical insights.
Sampling strategies, combined with incorporating
type-checking and selection heuristics, substan-
tially boost performance, achieving up to 45.1% ac-
curacy on undergraduate mathematics (ProofNet#),
suggesting autoformalization evaluations should
integrate test-time compute budgets and simple
heuristic correctors for recording more realistic
performance measures. These benchmarks and our
metric provide the community with more reliable
tools to measure progress. We believe these contri-
butions will foster the development of more capable
and practical autoformalization systems.

Limitations

We identify key limitations of our work. First, our
newly introduced RLM25 benchmark is focused on
statement autoformalization, while the underlying
projects from which we construct the benchmark
would support extension to proof autoformaliza-
tion, which is not tackled in our work. Second, we
observe that BEq+ and BEqL face challenges in
proving equivalence for long formal statements (as
shown in subsection A.5). The recall performance
of BEq+ drops significantly from 62.5% on short
statements to 29.6% on long statements, indicat-
ing that it over-penalizes longer formal expressions.
These metrics also require accurate ground truth
formalizations, which are not available when for-
malizing completely new mathematics.
Data contamination. Our in-depth study in sub-
section A.16 suggests that data contamination is
unlikely among the models we evaluated.

Acknowledgements

We thank the Lean community for their support
and feedback, in particular the authors of the Lean
blueprint projects included in RLM25. We thank
Simon Sorg for finding and sharing an exploit of
the BEq+ metric we address in subsection A.6.
We also gratefully acknowledge the support of
the IC school of computer and communication sci-
ences, the Swiss National Science Foundation (No.
215390), Innosuisse (PFFS-21-29), the EPFL Cen-
ter for Imaging, Sony Group Corporation, and a
Meta LLM Evaluation Research Grant.

References
Ayush Agrawal, Siddhartha Gadgil, Navin Goyal,

Ashvni Narayanan, and Anand Tadipatri. 2022.
Towards a Mathematics Formalisation Assistant
using Large Language Models. arXiv preprint.
ArXiv:2211.07524 [cs].

Jeremy Avigad. 2024. Automated reasoning for mathe-
matics. In IJCAR (1), volume 14739 of Lecture Notes
in Computer Science, pages 3–20. Springer.

Zhangir Azerbayev, Bartosz Piotrowski, Hailey
Schoelkopf, Edward W. Ayers, Dragomir Radev, and
Jeremy Avigad. 2023a. ProofNet: Autoformalizing
and Formally Proving Undergraduate-Level Mathe-
matics. arXiv preprint. ArXiv:2302.12433 [cs].

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster,
Marco Dos Santos, Stephen McAleer, Albert Q.
Jiang, Jia Deng, Stella Biderman, and Sean Welleck.
2023b. Llemma: An Open Language Model For
Mathematics. arXiv preprint. ArXiv:2310.10631
[cs].

Pierre Castéran and Yves Bertot. 2004. Interactive theo-
rem proving and program development. Coq’Art: The
Calculus of inductive constructions. Texts in Theoret-
ical Computer Science. Springer Verlag. Traduction
en chinois parue en 2010. Tsinghua University Press.
ISBN 9787302208136.

Leonardo de Moura, Soonho Kong, Jeremy Avigad,
Floris van Doorn, and Jakob von Raumer. 2015. The
lean theorem prover (system description). In Auto-
mated Deduction - CADE-25, pages 378–388, Cham.
Springer International Publishing.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schel-
ten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh
Goyal, Anthony Hartshorn, Aobo Yang, Archi Mi-
tra, Archie Sravankumar, Artem Korenev, Arthur
Hinsvark, and 542 others. 2024. The Llama 3 Herd
of Models. arXiv preprint. ArXiv:2407.21783 [cs].

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021. Measuring Mathematical
Problem Solving With the MATH Dataset. arXiv
preprint. ArXiv:2103.03874 [cs].

Arian Hosseini, Xingdi Yuan, Nikolay Malkin, Aaron
Courville, Alessandro Sordoni, and Rishabh Agarwal.
2024. V-STaR: Training Verifiers for Self-Taught
Reasoners. arXiv preprint. ArXiv:2402.06457 [cs].

Jiewen Hu, Thomas Zhu, and Sean Welleck. 2024.
miniCTX: Neural Theorem Proving with (Long-
)Contexts. arXiv preprint. ArXiv:2408.03350 [cs].

Albert Q. Jiang, Wenda Li, and Mateja Jamnik. 2023.
Multilingual Mathematical Autoformalization. arXiv
preprint. ArXiv:2311.03755 [cs].

17955

https://doi.org/10.48550/arXiv.2211.07524
https://doi.org/10.48550/arXiv.2211.07524
https://doi.org/10.48550/arXiv.2302.12433
https://doi.org/10.48550/arXiv.2302.12433
https://doi.org/10.48550/arXiv.2302.12433
https://doi.org/10.48550/arXiv.2310.10631
https://doi.org/10.48550/arXiv.2310.10631
https://hal.science/hal-00344237
https://hal.science/hal-00344237
https://hal.science/hal-00344237
https://doi.org/10.48550/arXiv.2407.21783
https://doi.org/10.48550/arXiv.2407.21783
https://doi.org/10.48550/arXiv.2103.03874
https://doi.org/10.48550/arXiv.2103.03874
http://arxiv.org/abs/2402.06457
http://arxiv.org/abs/2402.06457
https://doi.org/10.48550/arXiv.2408.03350
https://doi.org/10.48550/arXiv.2408.03350
https://doi.org/10.48550/arXiv.2311.03755

Ashvini Jindal. 2023. Arithmo-mistral-7b: Mathemati-
cal reasoning model. Hugging Face.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Ef-
ficient memory management for large language
model serving with pagedattention. Preprint,
arXiv:2309.06180.

Aitor Lewkowycz, Anders Johan Andreassen,
David Dohan, Ethan Dyer, Henryk Michalewski,
Vinay Venkatesh Ramasesh, Ambrose Slone, Cem
Anil, Imanol Schlag, Theo Gutman-Solo, Yuhuai Wu,
Behnam Neyshabur, Guy Gur-Ari, and Vedant Misra.
2022. Solving Quantitative Reasoning Problems
with Language Models. In NeurIPS.

Junyou Li, Qin Zhang, Yangbin Yu, Qiang Fu, and
Deheng Ye. 2024a. More agents is all you need.
Preprint, arXiv:2402.05120.

Zenan Li, Yifan Wu, Zhaoyu Li, Xinming Wei, Xian
Zhang, Fan Yang, and Xiaoxing Ma. 2024b. Autofor-
malize Mathematical Statements by Symbolic Equiv-
alence and Semantic Consistency. arXiv preprint.
ArXiv:2410.20936.

Qi Liu, Xinhao Zheng, Xudong Lu, Qinxiang Cao, and
Junchi Yan. 2024. Rethinking and Improving Auto-
formalization: Towards a Faithful Metric and a De-
pendency Retrieval-based Approach.

Jianqiao Lu, Zhengying Liu, Yingjia Wan, Yinya Huang,
Haiming Wang, Zhicheng Yang, Jing Tang, and Zhi-
jiang Guo. 2024a. Process-Driven Autoformalization
in Lean 4. arXiv preprint. ArXiv:2406.01940 [cs].

Jianqiao Lu, Yingjia Wan, Yinya Huang, Jing Xiong,
Zhengying Liu, and Zhijiang Guo. 2024b. For-
malAlign: Automated Alignment Evaluation for Aut-
oformalization. arXiv preprint. ArXiv:2410.10135
[cs].

Assia Mahboubi and Enrico Tassi. 2022. Mathematical
Components. Zenodo.

Patrick Massot. 2025. leanblueprint.

The mathlib Community. 2020. The lean mathematical
library. In Proceedings of the 9th ACM SIGPLAN
International Conference on Certified Programs and
Proofs (CPP). ACM.

Kim Morrison. 2023. leanprover-community/repl.
Original-date: 2023-03-30T23:12:19Z.

Leonardo de Moura and Sebastian Ullrich. 2021. The
lean 4 theorem prover and programming language.
In Automated Deduction – CADE 28, pages 625–635,
Cham. Springer International Publishing.

Tobias Nipkow, Lawrence C. Paulson, and Markus Wen-
zel. 2002. Isabelle/Hol a Proof Assistant for Higher-
Order Logic. Springer, Berlin and New York.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal,
Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Alt-
man, Shyamal Anadkat, Red Avila, Igor Babuschkin,
Suchir Balaji, Valerie Balcom, Paul Baltescu, Haim-
ing Bao, Mohammad Bavarian, Jeff Belgum, and
262 others. 2024a. Gpt-4 technical report. Preprint,
arXiv:2303.08774.

OpenAI, Aaron Hurst, Adam Lerer, Adam P. Goucher,
Adam Perelman, Aditya Ramesh, Aidan Clark, A. J.
Ostrow, Akila Welihinda, Alan Hayes, Alec Radford,
Aleksander Mądry, Alex Baker-Whitcomb, Alex Beu-
tel, Alex Borzunov, Alex Carney, Alex Chow, Alex
Kirillov, Alex Nichol, and 400 others. 2024b. GPT-
4o System Card. arXiv preprint. ArXiv:2410.21276
[cs].

Shashank Pathak. 2024. Gflean: An autoformal-
isation framework for lean via gf. Preprint,
arXiv:2404.01234.

Lawrence C. Paulson. 2023. Large-scale formal proof
for the working mathematician - lessons learnt from
the ALEXANDRIA project. In CICM, volume 14101
of Lecture Notes in Computer Science, pages 3–15.
Springer.

plasTeX Development Team. 2024. plastex/plastex.
Original-date: 2014-03-06T16:10:23Z.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy
Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna
Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron
Grattafiori, Wenhan Xiong, Alexandre Défossez, and
7 others. 2024. Code llama: Open foundation models
for code. Preprint, arXiv:2308.12950.

Christian Szegedy. 2020. A Promising Path Towards
Autoformalization and General Artificial Intelligence.
In Intelligent Computer Mathematics, volume 12236,
pages 3–20, Cham. Springer International Publishing.

Rahul Vishwakarma. 2024. rahul3613/ProofNet-lean4.
Original-date: 2024-03-04T14:12:29Z.

Qingxiang Wang, Chad Brown, Cezary Kaliszyk, and
Josef Urban. 2020. Exploration of Neural Machine
Translation in Autoformalization of Mathematics in
Mizar. In Proceedings of the 9th ACM SIGPLAN
International Conference on Certified Programs and
Proofs, pages 85–98. ArXiv:1912.02636 [cs].

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. 2023. Self-consistency improves chain
of thought reasoning in language models. Preprint,
arXiv:2203.11171.

Sky Wilshaw. 2025. leanprover-community/con-nf.
Original-date: 2022-03-31T05:04:06Z.

17956

https://huggingface.co/akjindal53244/Arithmo-Mistral-7B
https://huggingface.co/akjindal53244/Arithmo-Mistral-7B
https://arxiv.org/abs/2309.06180
https://arxiv.org/abs/2309.06180
https://arxiv.org/abs/2309.06180
https://openreview.net/forum?id=IFXTZERXdM7
https://openreview.net/forum?id=IFXTZERXdM7
https://arxiv.org/abs/2402.05120
https://doi.org/10.48550/arXiv.2410.20936
https://doi.org/10.48550/arXiv.2410.20936
https://doi.org/10.48550/arXiv.2410.20936
https://openreview.net/forum?id=hUb2At2DsQ
https://openreview.net/forum?id=hUb2At2DsQ
https://openreview.net/forum?id=hUb2At2DsQ
https://doi.org/10.48550/arXiv.2406.01940
https://doi.org/10.48550/arXiv.2406.01940
https://doi.org/10.48550/arXiv.2410.10135
https://doi.org/10.48550/arXiv.2410.10135
https://doi.org/10.48550/arXiv.2410.10135
https://doi.org/10.5281/zenodo.7118596
https://doi.org/10.5281/zenodo.7118596
https://github.com/PatrickMassot/leanblueprint
https://doi.org/10.1145/3372885.3373824
https://doi.org/10.1145/3372885.3373824
https://github.com/leanprover-community/repl
https://arxiv.org/abs/2303.08774
https://doi.org/10.48550/arXiv.2410.21276
https://doi.org/10.48550/arXiv.2410.21276
https://arxiv.org/abs/2404.01234
https://arxiv.org/abs/2404.01234
https://github.com/plastex/plastex
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2308.12950
https://doi.org/10.1007/978-3-030-53518-6_1
https://doi.org/10.1007/978-3-030-53518-6_1
https://github.com/rahul3613/ProofNet-lean4
https://doi.org/10.1145/3372885.3373827
https://doi.org/10.1145/3372885.3373827
https://doi.org/10.1145/3372885.3373827
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2203.11171
https://github.com/leanprover-community/con-nf

Yuhuai Wu, Albert Q. Jiang, Wenda Li, Markus N.
Rabe, Charles Staats, Mateja Jamnik, and Christian
Szegedy. 2022. Autoformalization with Large Lan-
guage Models. arXiv preprint. ArXiv:2205.12615
[cs].

Huajian Xin, Z. Z. Ren, Junxiao Song, Zhihong Shao,
Wanjia Zhao, Haocheng Wang, Bo Liu, Liyue Zhang,
Xuan Lu, Qiushi Du, Wenjun Gao, Qihao Zhu, Dejian
Yang, Zhibin Gou, Z. F. Wu, Fuli Luo, and Chong
Ruan. 2024. DeepSeek-Prover-V1.5: Harnessing
Proof Assistant Feedback for Reinforcement Learn-
ing and Monte-Carlo Tree Search. arXiv preprint.
ArXiv:2408.08152 [cs].

Kaiyu Yang, Aidan M. Swope, Alex Gu, Rahul Chala-
mala, Peiyang Song, Shixing Yu, Saad Godil, Ryan
Prenger, and Anima Anandkumar. 2023. LeanDojo:
Theorem Proving with Retrieval-Augmented Lan-
guage Models. arXiv preprint. ArXiv:2306.15626
[cs, stat].

Huaiyuan Ying, Zijian Wu, Yihan Geng, Jiayu Wang,
Dahua Lin, and Kai Chen. 2024a. Lean Workbook:
A large-scale Lean problem set formalized from
natural language math problems. arXiv preprint.
ArXiv:2406.03847 [cs].

Huaiyuan Ying, Shuo Zhang, Linyang Li, Zhejian Zhou,
Yunfan Shao, Zhaoye Fei, Yichuan Ma, Jiawei Hong,
Kuikun Liu, Ziyi Wang, Yudong Wang, Zijian Wu,
Shuaibin Li, Fengzhe Zhou, Hongwei Liu, Songyang
Zhang, Wenwei Zhang, Hang Yan, Xipeng Qiu,
and 3 others. 2024b. InternLM-Math: Open Math
Large Language Models Toward Verifiable Reason-
ing. arXiv preprint. ArXiv:2402.06332 [cs].

Kunhao Zheng, Jesse Michael Han, and Stanislas Polu.
2022. MiniF2F: a cross-system benchmark for for-
mal Olympiad-level mathematics. arXiv preprint.
ArXiv:2109.00110 [cs] version: 2.

Yaoming Zhu, Sidi Lu, Lei Zheng, Jiaxian Guo, Weinan
Zhang, Jun Wang, and Yong Yu. 2018. Texygen: A
benchmarking platform for text generation models.
Preprint, arXiv:1802.01886.

A Appendix

A.1 Tactics used in BEq+
To develop BEq+, we checked existing tactics
in Lean and Mathlib using the list provided
at https://github.com/haruhisa-enomoto/mathlib4-
all-tactics/blob/main/all-tactics.md. We provide a
brief description of the tactics we ended up using
in BEq+ using the official Mathlib documentation
(mathlib Community, 2020):

• exact?: Searches environment for definitions
or theorems that can solve the goal using ex-
act with conditions resolved by solve_by_elim.
While we are not directly interested in search-
ing the library, this tactic is also capable of

handling a few transformations on the conclu-
sion, but also variable/hypothesis assignment.
For both BEqL and BEq+, if exact? succeeds
we check that it is using the other formalization
to close the goal. Otherwise it could lead to
false positives.

• apply e tries to match the current goal against
the conclusion of e’s type. If it succeeds, then
the tactic returns as many subgoals as the num-
ber of premises that have not been fixed by type
inference or type class resolution.

• convert: The exact e and refine e tactics re-
quire a term e whose type is definitionally equal
to the goal. convert e is similar to refine e, but
the type of e is not required to exactly match
the goal. Instead, new goals are created for
differences between the type of e and the goal
using the same strategies as the congr! tactic.
We use this tactic to try partial matching with
the conclusion of the other theorem. In particu-
lar we use the convert using n variation, where
n determines the matching depth. We vary n

between 0 and 5.
• tauto breaks down assumptions of the form _ ∧

_, _ ∨ _, _ ↔ _ and ∃ _, _ and splits a goal of
the form _ ∧ _, _ ↔ _ or ∃ _, _ until it can be
discharged using reflexivity or solve_by_elim.

• simp_all_arith!: simplifies multiple times tar-
get and all (propositional) hypotheses using the
other hypotheses. Additionally, it uses normal-
ization by linear arithmetic.

• noncomm_ring: A tactic for simplifying identi-
ties in not-necessarily-commutative rings. It is
pretty general and works on all types having a
ring structure.

• have : t := . . . adds the hypothesis this : t to
the current goal.

• apply_rules [l1, l2, . . .] tries to solve the main
goal by iteratively applying the list of lemmas
[l1, l2, . . .] or by applying a local hypothesis.
If apply generates new goals, apply_rules iter-
atively tries to solve those goals. apply_rules

will also use rfl, trivial, congrFun and congrArg

.

A.2 Annotation process
For all the evaluations presented in this paper, along
with the curation of ProofNetVerif and ProofNet#,
we adopted the following systematic annotation
process for each formalized statement to determine
its validity:

• Ill-typed statements and statements with

17957

https://doi.org/10.48550/arXiv.2205.12615
https://doi.org/10.48550/arXiv.2205.12615
https://doi.org/10.48550/arXiv.2408.08152
https://doi.org/10.48550/arXiv.2408.08152
https://doi.org/10.48550/arXiv.2408.08152
https://doi.org/10.48550/arXiv.2306.15626
https://doi.org/10.48550/arXiv.2306.15626
https://doi.org/10.48550/arXiv.2306.15626
https://doi.org/10.48550/arXiv.2406.03847
https://doi.org/10.48550/arXiv.2406.03847
https://doi.org/10.48550/arXiv.2406.03847
http://arxiv.org/abs/2402.06332
http://arxiv.org/abs/2402.06332
http://arxiv.org/abs/2402.06332
https://doi.org/10.48550/arXiv.2109.00110
https://doi.org/10.48550/arXiv.2109.00110
https://arxiv.org/abs/1802.01886
https://arxiv.org/abs/1802.01886
https://github.com/haruhisa-enomoto/mathlib4-all-tactics/blob/main/all-tactics.md
https://github.com/haruhisa-enomoto/mathlib4-all-tactics/blob/main/all-tactics.md

counter-examples found by plausible /
slim_check were immediately marked as
invalid.

• Manual pass through all the statements. Hy-
potheses and conclusions were carefully in-
spected for completeness and semantic correct-
ness, correct handling of default Lean types,
correct use of definitions/instances, ... A non-
exhaustive list of issues that were looked for
includes:
– Missing/extra invalid hypotheses
– Invalid implicit types (ex: 3/2 = 1 in Lean

because 3 and 2 are natural numbers by de-
fault)

– Natural numbers (they start at 0 in Lean)
– Parentheses, especially in quantified propo-

sitional formulas
– Instances/definitions used: they must have

the same semantic meaning as the ones in
the informal statement to formalize

– Semantically invalid hypotheses
– Stronger / more restrictive hypotheses
– In case of doubts, the prediction was marked

as invalid
• (ProofNet# only) Running DeepSeek-Prover-

V1.5 (Xin et al., 2024) to find proofs on the
current iteration of ProofNet. We then manually
analyze these proofs to check if flaws in the
formalizations not detected by the manual pass
have been exploited. This step helped finding a
total of 2 additional formalization mistakes.

To reduce annotation mistakes and biases:
• All predictions were anonymized with respect

to the model and method that produced them.
This way, the annotator was not biased in favor
of some models.

• All predictions related to a specific input prob-
lem were evaluated together, meaning that the
annotator was annotating a few dozen predic-
tions at the same time, giving them a good
overview and leading to a more objective evalu-
ation.

• Each sample has been annotated twice
for model evaluations and the curation of
ProofNetVerif, and three times for ProofNet#.

• ProofNet# and ProofNetVerif have been pub-
licly shared with the Lean community several
months before the reviewing process, including
a website to explore ProofNet#. No errors have
been reported during this period.

This annotation process was conducted by a sin-

gle annotator and required a total of ∼ 200 human-
hours for the results and datasets presented in this
paper.

When curating ProofNet#, this annotation pro-
cess led to the discovery of mistakes in 118 entries
out of the 371 of the initial ProofNet benchmark.

A.3 Sampling-Based Method

The method is composed of three steps: (1) sam-
pling, (2) type-check filtering, and then (3) select-
ing. We present them in this section.

A.3.1 Sampling
In our experiments, unless otherwise stated, we
employ temperature sampling with T = 0.7 and
generate n = 50 autoformalization attempts per
informal statement. Depending on the models, we
use the vLLM library (Kwon et al., 2023) or the
OpenAI API to generate predictions.

Cleaning: Certain models often try to provide
proofs after generating formal statements. Further-
more, we find that generated names for theorems
sometimes clash with names in the Mathlib library.
To avoid being considered invalid by the Lean type-
checker, we trim proofs, substitute theorem names
for dummy identifiers, and normalize whitespace
when parsing the generated theorems. Additionally,
the Lean proof assistant requires theorems to be ac-
companied by proofs. To address this, we append
a safe dummy sorry proof to each theorem (which
indicates to Lean that the proof will be provided
later).

A.3.2 Filtering
We use Lean REPL (Morrison, 2023) to implement
our filtering step. For any formal statement, if the
statement is valid, REPL will return declaration

uses `sorry', which means that the statement is
well-typed and that we should provide an actual
proof instead of sorry. Otherwise, the tool will
return error messages explaining why the formal
statement is ill-formed, which we use as an indi-
cator to filter out such statements. de Moura et al.
(2015) and Moura and Ullrich (2021) provide de-
tailed insights into the inner workings of the Lean
type system and type-checking.

A.3.3 Selection
In our selection process, we employ and compare
four distinct heuristics to refine and choose the best
outputs generated by the models: random selection,
majority voting (Wang et al., 2023), Self-BLEU

17958

(Zhu et al., 2018), and the symbolic equivalence
method presented in Li et al. (2024b).
Random:. As a baseline strategy, we randomly
choose an output from the set of generated candi-
dates.
Majority voting. (Wang et al., 2023): We aggre-
gate multiple outputs and select the most frequently
occurring candidate as the final choice, relying on
consensus to mitigate the impact of any single er-
roneous output. Our cleaning process after the
sampling step normalize the generated outputs, in-
creasing the chance of exact string match between
the predictions.
Self-BLEU. (Zhu et al., 2018): We evaluate the
similarity of the generated outputs by calculating
the BLEU score between all pairs of candidates.
We then select the generated candidate with the
highest aggregated BLEU score.
Symbolic Equivalence. (Li et al., 2024b): the
core idea of this method is to compute equivalence
classes of the generated predictions, using logical
equivalence. A prediction from the largest equiva-
lence class is then selected as final prediction. As
the original work has been conducted in the Is-
abelle formal language (Nipkow et al., 2002), no
implementation of this method is available in Lean.
We therefore implemented a Lean version relying
on our BEq+ method to compute the equivalence
between statements.

A.4 Compute usage & cost
All experiments were run on 1xH100 for 7-8B
models and 2xH100 for Llemma-34B. The most
compute-intensive experiments, i.e., generating
1000 candidates per problem in ProofNet#, re-
quired less than 10 hours (wall-clock time). For
cost reasons, we did not sample n = 1000 candi-
dates with GPT-4o, and the largest GPT-4o results
in the paper use n = 50, costing ∼ $25 per evalua-
tion on ProofNet#.

A.5 BEqL & BEq+ Performance on
ProofNetVerif

In Table 7, we report the performance of our met-
rics at the instance level using binary metrics.
While BEq+ outperforms BEqL, we find that over-
all both struggle with a low recall. Empirically,
we find that both BEq implementations show bet-
ter recall on short statements than on long state-
ments. Intuitively, long statements involve more
logical clauses, generally making equivalence prov-
ing harder.

These results are not directly comparable to the
ones presented in Liu et al. (2024) as we do not
use the same samples to evaluate. For instance,
regarding their results without LLM use, which
correspond to BEqL, they get a recall of 67.14%
on their 200 sampled predictions, vs 30.9% on
ProofNetVerif in our case. However, given the
large improvement of BEq+ over BEqL showcased
in Table 7, it is very likely that BEq+ outperforms
the original LLM-based BEq implementation. In
fact, in their most compute-intensive setup, BEq
achieves a recall of 72.86% on their samples, which
is only slightly better than the 67.14% baseline. On
ProofNetVerif, BEq+ outperforms BEqL with a
larger relative improvement for the recall: 48.3%
vs. 30.9%.

A.6 BEq+ failure cases
A.6.1 False positives
A typical example of two non-semantically equiv-
alent statements that are considered equivalent by
BEq+:
theorem ground_truth (a b : Z) :
(ofInt a : GaussianInt) | ofInt b → a | b :=

sorry

theorem prediction (a b : Z) (ha : a | b) : a |
(b : Z) := sorry

The main issue here lies from the fact that it
is trivial to prove one formalization assuming the
other. A generalization of this issue has been found
by Simon Sorg:
theorem ground_truth (n : Nat) : n + n = 2 * n

:= sorry

theorem prediction (p : Prop) (h : p) : p :=
sorry

A fix with minimal performance loss is available
in our implementation and is now the default.

A.6.2 False negatives
False negatives with BEq+ are caused by the rela-
tively weak power of the static proof search we use.
A typical example is:
theorem ground_truth : Infinite {p : Nat.Primes

// p ≡ -1 [ZMOD 6]} :=

theorem prediction : Set.Infinite {p : N | Nat.
Prime p ∧ p % 6 = 5} :=

Proving the equivalence between these two state-
ments require a consequential work as it requires
to (1) prove that p % 6 = 5 is equivalent to p ≡ -1

[ZMOD 6], (2) prove that the set of natural numbers
is equivalent to the set of natural numbers with the

17959

https://github.com/augustepoiroux/LeanInteract/blob/8cd9835e3aa87700886eaac2ff3e67409f544d87/examples/beq_plus.py

Table 7: Binary performance, in percentage, of BEqL and BEq+ metrics on ProofNetVerif. The evaluation is
performed on 3 splits based on the reference formalizations length. These splits contain roughly 1250 entries each.

Reference formalization length Binary Metric BEqL BEq+

Less than 115 characters
Precision 100.0 97.1
Recall 39.9 62.5
F1 Score 57.0 76.1

Between 115 and 165 characters
Precision 100.0 99.2
Recall 28.2 41.0
F1 Score 44.0 58.0

More than 165 characters
Precision 100.0 100.0
Recall 17.2 29.6
F1 Score 29.3 45.6

All
Precision 100.0 98.0
Recall 30.9 48.3
F1 Score 47.2 64.7

prime predicate, and (3) unstructuring the two sets
to prove the equivalence between the two quanti-
fied statements. This is currently out of reach of
our BEq+ implementation and solving these cases
will likely require using powerful general-purpose
proof search methods. Finding a way to develop
such methods while keeping efficiency and align-
ment with human judgments is an interesting direc-
tion for future work.

A.7 BEq+ pass@n Additional Results

In Figure 5, we conduct a study on BEq+ pass@n
with 4 models: Llama3 8B, Llemma 7B, Llemma
34B, and GPT-4o on both ProofNet# and RLM25.
For ProofNet#, we use 12-shot prompting. For
RLM25, we prompt models with in-file context
with proofs removed as described in subsection 6.3.
Llemma 34B model has not been run on the
RLM25 benchmark.

A.8 ProofNet#: Baseline study

We report a baseline performance in Table 8. We
evaluated the models described in subsection 6.1
using greedy decoding, coupled with either 12-shot
learning or a fine-tuning on either MMA (Jiang
et al., 2023) or Lean Workbook (Ying et al., 2024a).

A.9 Detailed Results of Sampling-Based
Methods on ProofNet#

We present detailed results about the use of
sampling-based methods on different models and
autoformalization methods in Table 9.

1 2 5 10 20 50
0

10

20

30

n

B
E

q+
pa

ss
@
n

(%
)

Llama3 8B Llemma 7B
Llemma 34B GPT-4o

1 2 5 10 20 50
10

20

30

40

n

ProofNet# RLM25

Figure 5: BEq+ pass@n scaling trends with respect
to the number of samples on ProofNet# validation split
and RLM25 using in-context learning prompting. We
vary the number of candidate samples from n = 1 to 50.

In Figure 6, we report results on the ProofNet#
test dataset by supplementing tested models us-
ing our self-consistency method described in sub-
section 5.2. Overall, we observe a consistent and
significant improvement over the greedy baseline
across all selection methods and all models eval-
uated. Interestingly, even using random selection
over filtered generated statements is enough to out-
perform the greedy decoding baseline substantially.
This demonstrates the practical efficacy of exten-
sively leveraging the type-checker in the context
of statement autoformalization. We find that the
overall best strategy is to use type-check filtering

17960

Table 8: Baseline performance on ProofNet# using greedy decoding. Except for Codex, which has been evaluated
on Lean 3 in Azerbayev et al. (2023a) (indicated with an asterisk *, only the results on the test split are available),
all models are evaluated on Lean 4.

Method Model Validation Test

Type-Check Accuracy↑ BEqL↑ BEq+↑ Type-Check Accuracy↑ BEqL↑ BEq+↑
12-shot Codex - - - - 23.7* 13.4* - -
Prompt retrieval Codex - - - - 45.2* 16.1* - -

MMA Llama3-8B 12.6 4.9 2.2 3.3 4.3 - 0.5 0.5
MMA Llemma-7B 14.2 6.0 2.7 4.4 9.7 - 0.0 1.1
Lean Workbook1 Llemma-7B 39.5 - 5.4 7.0 39.3 - 5.4 6.5

12-shot Llama3-8B 13.7 5.5 3.3 4.4 13.0 3.3 1.6 3.3
12-shot Llemma-7B 26.8 8.7 3.3 6.0 29.9 10.9 5.4 6.5
12-shot Llemma-34B 33.3 16.9 5.5 9.3 29.9 12.5 5.4 7.1
12-shot GPT-4-turbo 24.6 19.7 8.7 12.6 27.7 22.8 13.0 16.8
12-shot GPT-4o 33.3 26.2 10.9 16.4 42.9 31.0 13.6 18.5

Llam
a3

8B

Llem
ma 7B

Llem
ma 34

B

GPT-4
o

0

10

20

30

40

50

A
cc

ur
ac

y
(%

)

Accuracy on ProofNet# test split

Greedy baseline Filter + Random selection
Filter + Majority voting Filter + Self-BLEU

Figure 6: Autoformalization accuracy on the
ProofNet# test set. All methods use 12-shot prompting
in this figure. Detailed results are reported in Table 8
and Table 9.

and Self-BLEU for the selection step. One can
notice that the absolute improvement in accuracy
achieved by this method ranges from +8.7% to
+18.4% over greedy decoding, with relative im-
provements between 1.4x and 3x. We also report
results of sampling-based methods on other clas-
sical benchmarks, PDA and MiniF2F, in subsec-
tion A.11.

A.10 Detailed Results on RLM25

We present detailed results about the use of
sampling-based methods on different models and
autoformalization methods in Table 10.

A.11 Other Benchmarks

While we focused our work on the ProofNet# and
RLM25 benchmarks, sampling-based methods are
not specific to this benchmark, and we believe they
should yield improvements out of the box on other
statement autoformalization benchmarks.

In this section, we report results on two other
benchmarks: Process-Driven Autoformalization
(PDA) (Lu et al., 2024a), and MiniF2F (Zheng
et al., 2022). The PDA benchmark from Lu et al.
(2024a) has been designed to evaluate statement
and proof autoformalization. Given the size of this
benchmark, 3 test splits of 1000 theorems, and the
fact that not all of these subsets contain reference
formalizations, we sample 50 random problems for
each test split and conduct a manual evaluation. We
report our results in Table 11 .

On all test splits, we observe that sampling-based
methods largely improve over greedy decoding. We
have found the real test split to be challenging as
problems are sampled from Arithmo dataset (Jindal,
2023) without solutions, therefore requiring first
solving the problem before providing an accurate
formalization.

The authors of the PDA benchmark reported
compilation results for statement and proof auto-
formalization at once. However, they do not report
results for statement autoformalization alone and
do not report accuracy results either. This lack
of data in Lu et al. (2024a) means that we cannot
compare directly to their results.

We report results on the MiniF2F benchmark
in Table 12. We find the Llemma 7B model fine-
tuned on Lean Workbook (Ying et al., 2024a) to
perform particularly well on it. However, since

17961

Table 9: Evaluation results (in percentage) of sampling-based methods on ProofNet#. For all these results, for each
informal statement in the benchmark, we sampled 50 formalization attempts per model and filtered type-checking
ones before applying a selection method. We observe some performance differences between the two splits which
are caused by the small size of the ProofNet# benchmark (2x 185 statements).

Model Selection
method

Validation Test

Type-Check Accuracy↑ BEqL↑ BEq+↑ Type-Check Accuracy↑ BEqL↑ BEq+↑
MMA fine-tune

Llama3-8B
Random 33.3 9.3 3.3 4.9 29.0 - 2.2 4.8
Majority 33.3 8.7 3.3 4.4 29.0 - 1.1 4.8

Self-BLEU 33.3 8.7 3.3 4.4 29.0 - 1.1 4.3

Llemma-7B
Random 61.2 9.3 4.4 5.5 52.2 - 3.2 5.9
Majority 61.2 10.9 3.8 5.5 52.2 - 3.8 7.0

Self-BLEU 61.2 13.7 4.9 6.6 52.2 - 5.4 8.1

Lean Workbook fine-tune

Llemma-7B
Random 86.0 - 7.6 9.2 86.6 - 7.0 8.6
Majority 86.0 - 9.2 10.8 86.6 - 5.9 8.6

Self-BLEU 86.0 - 9.7 12.4 86.6 - 6.5 10.2

12-shot

Llama3-8B
Random 42.1 9.8 4.4 6.6 45.7 13.6 4.9 10.3
Majority 42.1 12.0 4.9 7.1 45.7 14.7 4.9 10.9

Self-BLEU 42.1 12.6 6.0 8.2 45.7 12.0 4.9 9.2

Llemma-7B
Random 84.7 16.9 4.9 7.7 88.6 21.2 9.8 11.4
Majority 84.7 23.0 8.2 9.8 88.6 23.9 10.3 12.0

Self-BLEU 84.7 23.5 7.7 11.5 88.6 29.3 11.4 17.9

Llemma-34B
Random 89.6 21.3 4.9 9.8 84.2 19.6 5.4 11.4
Majority 89.6 27.3 8.7 12.6 84.2 27.7 10.9 14.1

Self-BLEU 89.6 29.5 8.7 13.1 84.2 28.3 9.8 14.7

GPT-4o
Random 65.6 43.2 16.4 23.5 70.1 42.9 15.8 22.8
Majority 65.6 45.4 15.8 21.3 70.1 44.6 15.8 22.8

Self-BLEU 65.6 44.8 15.3 21.3 70.1 45.1 16.3 23.4

the Lean Workbook dataset has been synthetically
generated by a model finetuned on the MiniF2F and
ProofNet benchmarks, some data leakage might
have happened.

A.12 Low-correction Effort Formalizations
One goal of autoformalization is the development
of AI-assisted tools for formalization. In this set-
ting, producing close-to-correct formal statements
can already help users by providing hints and poten-
tial directions. Using the same setup as in the previ-
ous section, we report our results on the ProofNet#
test split in Figure 6. Note that in this setup, con-
trary to Jiang et al. (2023), we are considering only
well-typed statements.

We find that, by using sampling-based methods,
open-source models Llemma-7B and Llemma-34B
can autoformalize ∼ 50% of the mathematical
statements from the ProofNet# test benchmark in a
close-to-correct way4. This makes these open mod-
els good fit for local autoformalization assistant,
especially Llemma-7B for its relatively small size.

4We define close-to-correct formalizations as those with
one slightly diverging hypothesis or conclusion, typically fix-
able in a matter of seconds.

In this section, we present several examples of
autoformalizations on ProofNet# validation split
that are evaluated as incorrect yet fixable with low
effort. Evaluation results on ProofNet# test split
are presented in Table 13.

Low-correction effort examples

Rudin exercise_1_1a
Informal statement: If r is rational (r ̸= 0)
and x is irrational, prove that r+x is irrational.
Generated formalization:
theorem exercise_1_1a (hr : r ̸= 0) (hi :

Irrational x) : Irrational (r + x) :=

Issue: r has not been declared as a rational
number.

Herstein exercise_4_3_25
Informal statement: Let R be the ring of 2×2
matrices over the real numbers; suppose that I
is an ideal of R. Show that I = (0) or I = R.
Generated formalization:
theorem exercise_4_3_25 {R : Type*} [

17962

Table 10: Results on RLM25 for different methods and models. In this setup, all models are prompted with in-file
context and proofs are removed. Greedy decoding is used for generation.

Model Method Type-Check BEqL BEq+

Llama3 8B
No fine-tuning 37.19 18.90 20.29
MMA 41.73 17.55 19.24

Llemma 7B
No fine-tuning 55.96 22.49 24.16
MMA 51.63 21.37 22.63
Lean Workbook 53.89 21.84 23.55

GPT-4o No fine-tuning 51.37 21.18 24.56

Table 11: Evaluation results (in percentage) of sampling-based methods on the Process-Driven Autoformalization
benchmark. We evaluate on 50 samples on each of the "Basic", "Random", and "Real" splits of this benchmark.
Greedy decoding is used for methods without sampling, i.e., when filtering is not mentioned. For sampling-based
methods, we sample n = 50 predictions with temperature T = 0.7. We separate greedy decoding methods from
sampling-based methods by a gray line for each model.

Model Method Basic Random Real

Type-Check Accuracy↑ Type-Check Accuracy↑ Type-Check Accuracy↑

Llama3-8B 12-shot 18.0 16.0 20.0 16.0 20.0 4.0
12-shot + Filter + Self-BLEU 48.0 28.0 46.0 32.0 72.0 8.0

Llemma-7B 12-shot 20.0 14.0 30.0 26.0 62.0 0.0
12-shot + Filter + Self-BLEU 76.0 58.0 72.0 54.0 100.0 8.0

GPT-4o 12-shot 30.0 28.0 42.0 38.0 4.0 0.0
12-shot + Filter + Self-BLEU 64.0 54.0 66.0 56.0 26.0 12.0

CommRing R] (I : Ideal (Matrix (Fin 2) (
Fin 2) R)) : I = ⊥ ∨ I = ⊤ :=

Issue: Superfluous declaration of CommRing R.

A.13 Ablation Study: Detailed Results
We present detailed results of our ablation study on
the type-check filtering step in Table 14.

A.14 Sampling Scaling
Detailed results about our sampling study can be
found in Table 15.

Llam
a3

8B

Llem
ma 7B

Llem
ma 34

B

GPT-4
o

0

20

40

60

A
cc

ur
ac

y
(%

)

Accuracy - Low correction effort

Greedy baseline Filter + Random
Filter + Majority voting Filter + Self-BLEU

Figure 7: Proportion of formalized statements eval-
uated as correct or as fixable with a low amount of
effort (i.e., close-to-correct) on the ProofNet# test set.
All models are prompted with 12-shot examples. De-
tailed results are reported in Table 13.

17963

Table 12: Performance of different methods on MiniF2F. Greedy decoding is used for methods without sampling,
i.e., when filtering is not mentioned. For sampling-based methods, we sample n = 50 predictions with temperature
T = 0.7. We separate greedy decoding methods from sampling-based methods by a gray line for each model. 1Lean
Workbook dataset has been curated with a model trained on the MiniF2F benchmark, thus data leakage concerns
apply.

Model Method Type-Check BEqL↑ BEq+↑

Llama3 8B
12-shot 45.9 6.8 14.6
MMA 36.7 3.1 8.8
12-shot + Filter + Self-BLEU 93.0 10.3 21.3

Llemma 7B

12-shot 67.0 7.6 16.0
MMA 32.2 2.1 5.3
Lean Workbook1 89.6 14.3 28.5
12-shot + Filter + Self-BLEU 99.8 10.3 21.3
Lean Workbook + Filter + Self-BLEU1 99.0 14.1 28.1

GPT-4o 12-shot 24.4 8.0 13.5

Table 13: Models performance (in percentage) on
ProofNet# test split when accounting for formalizations
that can be corrected with a low amount of efforts.

Model Method Accuracy↑

Llama3-8B

Greedy 9.1
Filter + Random 23.7
Filter + Majority 25.8
Filter + Self-BLEU 25.3

Llemma-7B

Greedy 16.7
Filter + Random 37.1
Filter + Majority 40.9
Filter + Self-BLEU 48.9

Llemma-34B

Greedy 19.9
Filter + Random 35.5
Filter + Majority 40.3
Filter + Self-BLEU 51.1

GPT-4o

Greedy 40.3
Filter + Random 60.7
Filter + Majority 60.2
Filter + Self-BLEU 61.3

17964

Table 14: Models performance (in percentage) on ProofNet# validation split removing different aspects of sampling-
based methods. We also report Greedy baseline and the Filter + Self-BLEU results as reference.

Model Method Type-Check Accuracy↑ BEqL↑ BEq+↑

Llama3-8B

Greedy 13.7 5.5 3.3 4.4
No filter + Random 9.8 4.4 2.7 2.7
No filter + Majority 13.1 5.5 3.3 3.8
No filter + Self-BLEU 14.2 6.0 2.7 3.8
Filter + Random 42.1 9.8 4.4 6.6
Filter + Self-BLEU 42.1 12.6 6.0 8.2

Llemma-7B

Greedy 26.8 8.7 3.3 6.0
No filter + Random 25.7 6.0 3.3 3.8
No filter + Majority 25.1 10.9 4.4 4.9
No filter + Self-BLEU 32.2 14.2 6.6 9.3
Filter + Random 84.7 16.9 4.9 7.7
Filter + Self-BLEU 84.7 23.5 7.7 11.5

Llemma-34B

Greedy 33.3 16.9 5.5 9.3
No filter + Random 24.6 9.3 2.7 4.4
No filter + Majority 24.6 10.9 4.9 7.1
No filter + Self-BLEU 32.8 14.2 3.8 6.0
Filter + Random 89.6 21.3 4.9 9.8
Filter + Self-BLEU 89.6 29.5 8.7 13.1

GPT-4o

Greedy 33.3 26.2 10.9 16.4
No filter + Random 33.3 25.7 9.8 14.8
No filter + Majority 35.5 29.5 12.0 16.4
No filter + Self-BLEU 36.1 28.4 12.0 16.9
Filter + Random 65.6 43.2 16.4 23.5
Filter + Self-BLEU 65.6 44.8 15.3 21.3

Table 15: Evaluation results (in percentage) of sampling-based methods on ProofNet# validation split for different
numbers of formalizations sampled during the sampling phase (represented by the number n in this table). We used
a 12-shot prompt with the filter+Self-BLEU variant and a temperature of 0.7.

Model Type-Check Accuracy↑ BEqL↑ BEq+↑
n=1 n=5 n=20 n=50 n=1 n=5 n=20 n=50 n=1 n=5 n=20 n=50 n=1 n=5 n=20 n=50

Llama3-8B 9.8 22.4 32.8 42.1 4.4 7.1 10.4 12.6 2.7 3.3 4.4 6.0 2.7 4.9 6.0 8.2
Llemma-7B 25.7 50.3 71.0 84.7 6.0 10.9 19.7 23.5 3.3 3.3 7.1 7.7 3.8 6.0 10.4 11.5

Llemma-34B 24.6 55.2 78.7 89.6 9.3 14.8 25.7 29.5 2.7 5.5 8.2 8.7 4.4 8.7 12.0 13.1
GPT-4o 33.3 47.0 55.7 65.6 25.7 34.4 38.8 44.8 9.8 14.2 13.7 15.3 14.8 20.2 19.7 21.3

17965

A.15 12-shot Prompt
Note: We translated the 12-shot prompt from
ProofNet# to Lean 4, with as minimal changes as
possible, for the accuracy comparison with previ-
ous results to be as fair as possible. In particular,
we did not remove/change the statements leaked
from the benchmark and did not correct potential
formalization mistakes in this prompt to make our
results comparable with the results in Azerbayev
et al. (2023a).

12-shot examples

Natural language version:
Let P be a p-subgroup of G. Then P is con-
tained in a Sylow p-subgroup of G.
Translate the natural language version to a
Lean 4 version:
theorem exists_le_sylow [Group G] {P :

Subgroup G} (hP : IsPGroup p P) : ∃ Q :
Sylow p G, P ≤ Q :=

Natural language version:
Let E and F be complex normed spaces and
let f : E → F . If f is differentiable and
bounded, then f is constant Translate the natu-
ral language version to a Lean 4 version:
theorem exists_eq_const_of_bounded {E : Type

u} [NormedAddCommGroup E] [NormedSpace
C E] {F : Type v} [NormedAddCommGroup F
] [NormedSpace C F] {f : E → F} (hf :
Differentiable C f)(hb : IsBounded (
range f)) : ∃ c, f = const E c :=

Natural language version:
Let X be a topological space; let A be a subset
of X . Suppose that for each x ∈ A there is
an open set U containing x such that U ⊂ A.
Then A is open in X .
Translate the natural language version to a
Lean 4 version:
theorem subset_of_open_subset_is_open (X :

Type*) [TopologicalSpace X]
(A : Set X) (hA : ∀ x ∈ A, ∃ U : Set X,

IsOpen U ∧ x ∈ U ∧ U ⊆ A):
IsOpen A :=

Natural language version:
Two multiplicative functions f, g : N → R
are equal if and only if f(pi) = f(gi) for all
primes p.
Translate the natural language version to a
Lean 4 version:

theorem eq_iff_eq_on_prime_powers [
CommMonoidWithZero R] (f :
ArithmeticFunction R)

(hf : f.IsMultiplicative) (g :
ArithmeticFunction R) (hg : g.
IsMultiplicative) :

f = g ↔ ∀ p i : N, Nat.Prime p → f (p ^ i)
= g (p ^ i) :=

Natural language version:
If z1, . . . , zn are complex, then |z1+z2+ · · ·+
zn| ≤ |z1|+ |z2|+ · · ·+ |zn|.
Translate the natural language version to a
Lean 4 version:
theorem abs_sum_leq_sum_abs (n : N) (f : N

→ C) :
abs (Σ i in Finset.range n, f i) ≤ Σ i in

Finset.range n, abs (f i) :=

Natural language version:
If x and y are in Rn, then |x+y|2+ |x−y|2 =
2|x|2 + 2|y|2.
Translate the natural language version to a
Lean 4 version:
theorem

sum_add_square_sub_square_eq_sum_square
(n : N) (x y : EuclideanSpace R (Fin n)
) :

∥x + y∥^2 + ∥x - y∥^2 = 2*∥x∥^2 + 2*∥y∥^2 :=

Natural language version:
If x is an element of infinite order in G, prove
that the elements xn, n ∈ Z are all distinct.
Translate the natural language version to a
Lean 4 version:
theorem

distinct_powers_of_infinite_order_element
(G : Type*) [Group G] (x : G)

(hx_inf : ∀ n : N, x ^ n ̸= 1) :
∀ m n : Z, m ̸= n → x ^ m ̸= x ^ n :=

Natural language version:
A set of vectors {vi}i∈I orthogonal with re-
spect to some bilinear form B : V × V →
K is linearly independent if for all i ∈
I,B(vi, vi) ̸= 0.
Translate the natural language version to a
Lean 4 version:
theorem linear_independent_of_is_Ortho {V K :

Type*} [Field K]
[AddCommGroup V] [Module K V] {n : Type*} {B

: BilinForm K V}
{v : n → V} (hv1 : B.iIsOrtho v)
(hv2 : ∀ (i : n), ¬B.IsOrtho (v i) (v i)) :
LinearIndependent K v :=

17966

Natural language version:
Suppose that V is an n-dimensional vector
space. Then for some set of vectors {vi}ki=1, if
k > n then there exist scalars f1, . . . , fk such
that

∑k
i=1 fkvk = 0.

Translate the natural language version to a
Lean 4 version:
theorem

exists_nontrivial_relation_sum_zero_of_
dim_succ_lt_card {K V : Type*}

[DivisionRing K] [AddCommGroup V] [Module K
V] [FiniteDimensional K V]

{t : Finset V} (h : FiniteDimensional.
finrank K V + 1 < t.card) :

∃ (f : V → K), t.sum (λ (e : V) => f e · e)
= 0 ∧ t.sum (λ (e : V) => f e) = 0

∧ ∃ (x : V) (H : x ∈ t), f x ̸= 0 :=

Natural language version:
A group is commutative if the quotient by the
center is cyclic.
Translate the natural language version to a
Lean 4 version:
theorem comm_group_of_cycle_center_quotient

{G H : Type*} [Group G] [Group H]
[IsCyclic H] (f : G →* H) (hf : f.ker ≤ (

center G : Subgroup G)):
CommGroup G :=

Natural language version:
If H is a p-subgroup of G, then the index of H
inside its normalizer is congruent modulo p to
the index of H .
Translate the natural language version to a
Lean 4 version:
theorem card_quotient_normalizer_modEq_

card_quotient {G : Type*} [Group G] [
Fintype G] {p : N} {n : N} [hp : Fact p
.Prime]

{H : Subgroup G} (hH : Fintype.card H = p ^
n) :

Fintype.card (normalizer H / Subgroup.comap
((normalizer H).subtype : normalizer H
→* G) H) ≡

Fintype.card (G / H) [MOD p] :=

Natural language version:
Suppose X,Y, Z are metric spaces, and Y is
compact. Let f map X into Y , let g be a
continuous one-to-one mapping of Y into Z,
and put h(x) = g(f(x)) for x ∈ X . Prove
that f is uniformly continuous if h is uniformly
continuous.
Translate the natural language version to a
Lean 4 version:

theorem uniform_continuous_of_continuous_
injective_uniform_continuous_comp

{X Y Z : Type*} [MetricSpace X] [MetricSpace
Y] [MetricSpace Z]

(hY : CompactSpace Y) (f : X → Y) (g : Y →
Z) (hgc : Continuous g)

(hgi : Function.Injective g)
(h : UniformContinuous (g ◦ f)) :

UniformContinuous f :=

A.16 Data Contamination

Data contamination is a serious issue in today’s
LLM benchmarks. In fact, large language mod-
els are trained on large-scale training data, thus,
despite the filtering efforts, data leakage might hap-
pen. For the new dataset RLM25 we introduce, as
stated in subsection 4.1, all projects selected for
evaluation were made available after the knowledge
cutoff dates of the evaluated models. In particular,
Llemma 7B, performing almost on par with GPT-
4o on this benchmark, is open-weight and has been
released in August 2023, thus before the first com-
mit of any of these projects.

ProofNet 3 was released in February 2023, and
an unofficial port to Lean 4 has been publicly avail-
able since March 2024. Since the cutoff training
dates for all models used in these experiments are
before March 2024, Lean 4 data contamination due
to training is not possible. However, it remains the-
oretically possible that some models were trained
on the Lean 3 version and weakly generalized to
Lean 4. Such data leakage for the Llemma models
family (Azerbayev et al., 2023b) seems unlikely as
the authors claim they have specifically excluded
ProofNet from their training data.

For our data contamination study, we use an un-
official Lean 4 port (Vishwakarma, 2024) of the
ProofNet benchmark made by an independent re-
search team. This port shows minimal differences
from the original Lean 3 ProofNet benchmark, pre-
serving the order of hypotheses and terms. Upon
analyzing the raw predictions of all models, we did
not find any exact matches with the Lean 4 ground
truths. This is primarily because the theorems in
the benchmark follow an exercise_number naming
scheme, which the models do not produce. Conse-
quently, we employed fuzzy matching for our data
contamination checks. This involved normalizing
whitespaces and removing comments and theorem
names. We found a maximum of 2.2% matches
(4 statements out of 185/186) for each model in-
dependently on the validation split, including the

17967

2 statements leaked by the prompt. Given that the
space of correct formal statements is heavily con-
strained, this hit rate is quite reasonable. Below,
we provide a list of all unique hits found across
all models and experiments. Most of these hits
are very short and almost unavoidable. Consider-
ing these results, it seems unlikely that significant
data leakage occurred during the training of these
models.

Nonetheless, during our data contamination
study, we found that 4 examples from the 12-shot
prompt in Azerbayev et al. (2023a), which we in-
tended to compare to, were also present in the
benchmark (2 in the validation set and 2 in the
test set). Fortunately, this affects the results only
negligibly (at most ∼ 1.1%). We report all our
results with these statements removed.

List of all the hits found (using fuzzy match-
ing) across all our experiments on the
ProofNet validation split

Munkres|exercise_29_1:
theorem exercise_29_1 : ¬

LocallyCompactSpace Q :=

Dummit-Foote|exercise_1_1_22a:
theorem exercise_1_1_22a {G : Type*} [Group

G] (x g : G) :

orderOf x = orderOf (g−1 * x * g) :=

Herstein|exercise_2_1_27:
theorem exercise_2_1_27 {G : Type*} [Group G

]
[Fintype G] : ∃ (m : N), ∀ (a : G), a ^ m

= 1 :=

Munkres|exercise_17_4:
theorem exercise_17_4 {X : Type*} [

TopologicalSpace X]
(U A : Set X) (hU : IsOpen U) (hA :

IsClosed A) :
IsOpen (U \ A) ∧ IsClosed (A \ U) :=

Herstein|exercise_5_5_2:
theorem exercise_5_5_2 : Irreducible (X^3 -

3*X - 1 : Polynomial Q) :=

Munkres|exercise_32_3:
theorem exercise_32_3 {X : Type*} [

TopologicalSpace X]

(hX : LocallyCompactSpace X) (hX' :
T2Space X) :

RegularSpace X :=

Herstein|exercise_4_3_25:
theorem exercise_4_3_25 (I : Ideal (Matrix (

Fin 2) (Fin 2) R)) :
I = ⊥ ∨ I = ⊤ :=

Statements from the validation split leaked
by the ProofNet prompt

Munkres|exercise_13_1
theorem subset_of_open_subset_is_open (X :

Type*) [TopologicalSpace X]
(A : Set X) (hA : ∀ x ∈ A, ∃ U : Set X,

IsOpen U ∧ x ∈ U ∧ U ⊆ A):
IsOpen A :=

Dummit-Foot|exercise_1_1_34
theorem

distinct_powers_of_infinite_order_element
(G : Type*) [Group G] (x : G)

(hx_inf : ∀ n : N, x ^ n ̸= 1) :
∀ m n : Z, m ̸= n → x ^ m ̸= x ^ n :=

17968

A.17 All results on ProofNet#
We report in the table below metric results for all autoformalization methods and models on which we
conducted manual evaluation. Such manual evaluation has been conducted on both ProofNet# validation
and test splits.

Model Strategy Split Type Check Accuracy BEqL BEq+ Hyp. Rej.

ensemble-12shot-top50 top50 type-checked majority voting test 96.2 44.6 17.4 23.4 3.8
ensemble-12shot-top50 top50 type-checked random test 96.2 33.2 9.8 14.7 2.2
ensemble-12shot-top50 top50 type-checked self consistent test 96.2 48.4 17.9 26.6 3.3
gpt-4-turbo-2024-04-09 greedy type-checked test 27.7 22.8 13.0 16.8 1.1
gpt-4-turbo-2024-04-09 greedy type-checked valid 24.6 19.7 8.7 12.6 0.0
gpt-4o-2024-05-13 greedy type-checked test 42.9 31.0 13.6 18.5 1.6
gpt-4o-2024-05-13 greedy type-checked valid 33.3 26.2 10.9 16.4 0.0
gpt-4o-2024-05-13-top50 top50 type-checked majority voting test 70.1 44.6 15.8 22.8 2.2
gpt-4o-2024-05-13-top50 top50 type-checked random test 70.1 42.9 15.8 22.8 1.1
gpt-4o-2024-05-13-top50 top50 type-checked self consistent test 70.1 45.1 16.3 23.4 2.2
gpt-4o-2024-05-13-top50 top20 type-checked self consistent valid 55.7 38.8 13.7 19.7 0.5
gpt-4o-2024-05-13-top50 top50 majority voting type-checked valid 35.5 29.5 12.0 16.4 0.0
gpt-4o-2024-05-13-top50 top50 random type-checked valid 33.3 25.7 9.8 14.8 0.0
gpt-4o-2024-05-13-top50 top50 self consistent type-checked valid 36.1 28.4 12.0 16.9 0.0
gpt-4o-2024-05-13-top50 top50 type-checked majority voting valid 65.6 45.4 15.8 21.3 0.0
gpt-4o-2024-05-13-top50 top50 type-checked random valid 65.6 43.2 16.4 23.5 0.0
gpt-4o-2024-05-13-top50 top50 type-checked self consistent valid 65.6 44.8 15.3 21.3 0.0
gpt-4o-2024-05-13-top50 top5 type-checked self consistent valid 47.0 34.4 14.2 20.2 0.0
llama3-8b greedy type-checked test 13.0 3.3 1.6 3.3 1.1
llama3-8b greedy type-checked valid 13.7 5.5 3.3 4.4 0.5
llama3-8b-mma valid valid 12.6 4.9 2.2 3.3 2.2
llama3-8b-mma-top50 top50 type-checked most frequent valid 33.3 8.7 3.3 4.4 2.2
llama3-8b-mma-top50 top50 type-checked random valid 33.3 9.3 3.3 4.9 2.7
llama3-8b-mma-top50 top50 type-checked self consistent valid 33.3 8.7 3.3 4.4 2.7
llama3-8b-top50 top50 type-checked majority voting test 45.7 14.7 4.9 10.9 2.2
llama3-8b-top50 top50 type-checked random test 45.7 13.6 4.9 10.3 1.1
llama3-8b-top50 top50 type-checked self consistent test 45.7 12.0 4.9 9.2 1.6
llama3-8b-top50 top20 type-checked self consistent valid 32.8 10.4 4.4 6.0 0.5
llama3-8b-top50 top50 majority voting type-checked valid 13.1 5.5 3.3 3.8 0.5
llama3-8b-top50 top50 random type-checked valid 9.8 4.4 2.7 2.7 0.5
llama3-8b-top50 top50 self consistent type-checked valid 14.2 6.0 2.7 3.8 0.5
llama3-8b-top50 top50 type-checked most frequent valid 42.1 12.0 4.9 7.1 1.1
llama3-8b-top50 top50 type-checked random valid 42.1 9.8 4.4 6.6 1.1
llama3-8b-top50 top50 type-checked self consistent valid 42.1 12.6 6.0 8.2 1.1
llama3-8b-top50 top5 type-checked self consistent valid 22.4 7.1 3.3 4.9 1.1
llemma-34b greedy type-checked test 29.9 12.5 5.4 7.1 1.1
llemma-34b greedy type-checked valid 33.3 16.9 5.5 9.3 0.0
llemma-34b-top50 top50 type-checked majority voting test 84.2 27.7 10.9 14.1 3.3
llemma-34b-top50 top50 type-checked random test 84.2 19.6 5.4 11.4 2.2
llemma-34b-top50 top50 type-checked self consistent test 84.2 28.3 9.8 14.7 2.2
llemma-34b-top50 top20 type-checked self consistent valid 78.7 25.7 8.2 12.0 1.1
llemma-34b-top50 top50 majority voting type-checked valid 24.6 10.9 4.9 7.1 0.0
llemma-34b-top50 top50 random type-checked valid 24.6 9.3 2.7 4.4 0.5
llemma-34b-top50 top50 self consistent type-checked valid 32.8 14.2 3.8 6.0 0.0
llemma-34b-top50 top50 type-checked majority voting valid 89.6 27.3 8.7 12.6 1.1
llemma-34b-top50 top50 type-checked random valid 89.6 21.3 4.9 9.8 2.2
llemma-34b-top50 top50 type-checked self consistent valid 89.6 29.5 8.7 13.1 1.6
llemma-34b-top50 top5 type-checked self consistent valid 55.2 14.8 5.5 8.7 2.2
llemma-7b greedy type-checked test 29.9 10.9 5.4 6.5 2.2
llemma-7b greedy type-checked valid 26.8 8.7 3.3 6.0 0.0
llemma-7b-mma valid valid 14.2 6.0 2.7 4.4 0.0
llemma-7b-mma-top50 top50 type-checked most frequent valid 61.2 10.9 3.8 5.5 1.6
llemma-7b-mma-top50 top50 type-checked random valid 61.2 9.3 4.4 5.5 2.7
llemma-7b-mma-top50 top50 type-checked self consistent valid 61.2 13.7 4.9 6.6 2.7
llemma-7b-top50 top50 type-checked majority voting test 88.6 23.9 10.3 12.0 2.7
llemma-7b-top50 top50 type-checked random test 88.6 21.2 9.8 11.4 4.9
llemma-7b-top50 top50 type-checked self consistent test 88.6 29.3 11.4 17.9 4.3
llemma-7b-top50 top20 type-checked self consistent valid 71.0 19.7 7.1 10.4 1.6
llemma-7b-top50 top50 majority voting type-checked valid 25.1 10.9 4.4 4.9 0.5
llemma-7b-top50 top50 random type-checked valid 25.7 6.0 3.3 3.8 1.1
llemma-7b-top50 top50 self consistent type-checked valid 32.2 14.2 6.6 9.3 0.5
llemma-7b-top50 top50 type-checked most frequent valid 84.7 23.0 8.2 9.8 2.2
llemma-7b-top50 top50 type-checked random valid 84.7 16.9 4.9 7.7 2.7
llemma-7b-top50 top50 type-checked self consistent valid 84.7 23.5 7.7 11.5 1.6
llemma-7b-top50 top5 type-checked self consistent valid 50.3 10.9 3.3 6.0 1.6

17969

