
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 18040–18051
November 4-9, 2025 ©2025 Association for Computational Linguistics

Faster In-Context Learning for LLMs via N-Gram Trie Speculative
Decoding

Jinglin Chen1†, Qiwei Li2†, Zuchao Li3*, Baoyuan Qi4,
Guoming Liu4, Haojun Ai1, Hai Zhao5, Ping Wang6

1School of Cyber Science and Engineering, 2School of Computer Science,
3School of Artificial Intelligence, 6School of Information Management, Wuhan University,

4Xiaomi Inc. 5School of Computer Science, Shanghai Jiao Tong University,
{aaa1234, qw-line, zcli-charlie}@whu.edu.cn,

{qibaoyuan, liuguoming}@xiaomi.com, aihj@whu.edu.cn,
zhaohai@cs.sjtu.edu.cn, wangping@whu.edu.cn

Abstract

As a crucial method in prompt engineering,
In-Context Learning (ICL) enhances the gen-
eralization and knowledge utilization capa-
bilities of Large Language Models (LLMs)
(Dong et al., 2024). However, the lengthy
retrieved contexts and limited token through-
put in autoregressive models significantly con-
strain reasoning speed. To address this chal-
lenge, we propose N-Gram Trie Speculative
Decoding, a novel approach that leverages
the overlap between context and model out-
put. This method constructs an n-gram trie
from the context to generate drafts, acceler-
ating token generation for LLMs. We evalu-
ate our approach on summarization, Retrieval-
Augmented Generation (RAG), and context-
based Question Answering (QA) tasks. Experi-
mental results on Vicuna-7B, Llama2-7B-Chat,
and Llama3-8B-Instruct demonstrate substan-
tial speed improvements without compromising
accuracy. Compared with various strong base-
lines, our method achieves the highest mean
speedup, showcasing its effectiveness and effi-
ciency. Our implement code is available here:
https://github.com/mrlife219/Ngram-Trie.

1 Introduction

In-Context Learning (ICL) has emerged as a trans-
formative paradigm in the field of prompt engineer-
ing, fundamentally reshaping how Large Language
Models (LLMs) adapt to and perform on diverse
tasks. By leveraging context information provided
within the input prompt, ICL enables LLMs to gen-
eralize across tasks and domains without requiring
task-specific fine-tuning. This capability has pro-
found implications for the scalability and versatility

*Corresponding author.
†Equal contribution. This work was supported by the Na-

tional Natural Science Foundation of China (No. 62306216),
National Social Science Fundation of China [No. 24&ZD186],
the National Natural Science Foundation of China [No.
72374161] and Xiaomi Open-Competition Research Program.

of LLMs, allowing them to excel in various appli-
cations, such as context question answering, sum-
marization and Retrieval-Augmented Generation
(RAG). The ability to dynamically incorporate con-
textual knowledge has made ICL a cornerstone of
modern LLM deployment, driving advancements in
both academic research and industrial applications.

Despite its remarkable success, ICL faces a sig-
nificant challenge: the extensive length of retrieved
contexts and the inherent limitations of autoregres-
sive token generation will result in slow reasoning
speeds. As the complexity and length of context
information increase, the computational overhead
grows substantially, leading to delays in token gen-
eration and reduced efficiency. This bottleneck is
particularly problematic in real-time applications,
such as interactive systems or large-scale retrieval-
augmented tasks, where speed is critical. Address-
ing this issue is essential to unlocking the full po-
tential of ICL and enabling its broader adoption in
time-sensitive scenarios.

Nowadays, there are many approaches to en-
hance the speed of decoding, such as KV-Cache,
Prompt compression and speculative decoding. KV-
Cache (Yang et al., 2025; Zhao et al., 2025b;
Shi et al., 2025, 2024) leverages the characteris-
tic of LLMs in auto-regressive generation, where
substantial redundant computations occur. It sig-
nificantly reduces the computational load by stor-
ing the precomputed Key (K) and Value (V) vec-
tors of the LLM. Prompt compression (Zhao et al.,
2025a) refers to a technique that, on the premise
of not significantly altering the output quality of
large models, reduces the number of input tokens
of large models by shortening the length of the
input Prompt. Its purpose is to improve the re-
sponse speed of large models and lower the cost of
large model calls. Speculative decoding (Leviathan
et al., 2023; Cai et al., 2024; Li et al., 2024; He
et al., 2023; Luo et al., 2024) can effectively accel-
erate model inference. This approach employs a

18040

https://github.com/mrlife219/Ngram-Trie

smaller, faster draft model to predict potential to-
ken sequences, which are then verified by the larger
target model in parallel. By reducing the number
of sequential decoding steps required by the target
model, speculative decoding achieves significant
speedups while maintaining output quality. How-
ever, this method often requires additional compu-
tational resources and careful tuning to balance the
trade-off between speed and accuracy. REST (He
et al., 2023) employs an external corpus to gener-
ate draft tokens, where the output tokens serve as
prefixes to search for matching suffixes within the
corpus. However, the excessive reuse of nodes and
the global corpus tire reduce the acceptance rate
of draft tokens. Lookahead Decoding (Fu et al.,
2024) utilizes n-gram token histories as drafts for
verification. While this method shows promise, its
utility is primarily confined to scenarios where out-
put tokens exhibit repetitive patterns, restricting its
applicability in more diverse or dynamic contexts.

We propose N-Gram-Trie, a novel approach de-
signed to accelerate token generation by exploiting
the overlap between the context and the model’s
output. Then a trie is constructed by using the set
of prefixes and suffixes. Build a trie from the pre-
fix and suffix sets. In the model prediction stage,
the draft is constructed through the nodes in the
trie, which significantly improves reasoning speed
without compromising output quality.

We evaluate our approach on summariza-
tion (Nallapati et al., 2016), Retrieval-Augmented
Generation (Xia et al., 2024; Joshi et al., 2017)
and context Question Answering (context QA) (Ka-
malloo et al., 2023) tasks. Multiple base models
including Vicuna-7B (Zheng et al., 2023), Llama2-
7B-Chat (Touvron et al., 2023) and Llama3-8B-
Instruct (AI@Meta, 2024) are selected to be tested.
Experiment results show that our method exhibits
remarkable speedups on multiple models (mean
2.27x on Vicuna-7B, 2.10x on Llama2-7B-Chat
and 1.56x on Llama3-8B-Instruct). Through the ex-
periment comparison of the inference effect of the
model, we prove that our method can accelerate the
model in the process of context prompt inference
without affecting the inference ability of the base
model. We also conduct many further experiments
around the speedup effect. This work not only ad-
dresses a critical limitation of ICL but also provide
a effective method for more efficient and scalable
deployment of LLMs in real-world applications.

The contribution of this paper can be summa-
rized as follows:

• We propose an n-gram trie speculative decod-
ing method. It can effectively use the potential
overlap of the context and output tokens to ac-
celerate model inference speed.

• We design a novel n-gram trie construction
method. The trie constructed by n-gram sam-
pling can effectively improve the acceptance
rate of the draft.

• We conduct extensive experiments on several
models. It shows our excellent acceleration
effect on summarization, RAG and context
QA tasks.

2 Related work

2.1 In-Context Learning

In-Context Learning (ICL) is an approach which
makes LLMs perform better on specific-domain
task. By giving only a few examples or hints, LLMs
can find the underlying patterns of the context and
answer the question correctly. (Dong et al., 2024).
There are many approaches that can be applied to
ICL. (Gu et al., 2023) extract the context by pre-
training in a large corpus that contains long context.
(Wei et al., 2023) propose symbol tuning, which
uses tagged symbols as fine-tuned data for LLMs
to study. (Wei et al., 2022) leverages instruction
tuning in LLMs to enhance the zero-shot learning
in LLMs.

Also, there are also large variety of downstream
applications in the In Context learning. Prompt
engineering is one of them. We can write an ac-
curate prompt to make LLMs easier to understand
the downstream tasks and give a satisfying answer.
Prompt engineering are widely used in downstream
tasks, such as Context QA, RAG, Few-shot Learn-
ing and Summary. Context QA (Kamalloo et al.,
2023) tasks need LLMs to read the context and find
the potential answers. Concatenating the context
and question as prompts, LLMs can read them and
give an answer in a efficient way. Like Context QA,
RAG (Li et al., 2023) also needs retrieved context
to carry out user’s query. In Few-shot Learning,
some examples about downstream tasks are usu-
ally given. LLMs can study the potential patterns
between them and complete the task based on the
given pattern. Summarization also needs the ability
of context-reading.

18041

2.2 Speculative Decoding

Speculative decoding (Leviathan et al., 2023) has
been first proposed to ease the problem of through-
put in LLM generation. Using a small draft model
to explore the token way, target LLM just need to
verify in one step without calculating repeatedly
for getting these tokens.

Now, many speculative methods are based on
the guess and verify approach. For example,
Medusa (Cai et al., 2024) uses some trained
Medusa head to predict the next n-tokens, but the
prediction is not continuous and it degrades ac-
cept rate. Based on Medusa (Cai et al., 2024),
Hydra (Ankner et al., 2024) take the continuation
of the draft into consideration. The draft head can
predict tokens with However, both Medusa and
Hydra need extra training cost for draft models.
Also, some works focus on the reusing of the for-
mer tokens or the external corpus. For instance,
REST (He et al., 2023) uses an external corpus as
draft. The output tokens is used as prefix to search
for the suffix in the corpus. Nonetheless REST
simply store all the corpus into suffix arrays offline.
When inference starts, REST will search for the
suffix in the array corpus. Directly search from the
corpus has disadvantage because LLMs can’t see
the given arrays during output stage. The genera-
tion is independent from the external corpus. Also,
the smaller corpus decreases accept rate while the
bigger corpus makes REST harder to find the right
suffix. Lookahead decoding (Fu et al., 2024) uses
n-gram token history as draft to verify. But it is
useful only when the output token is repeatedly
generated. PLD/LLMA (Yang et al., 2023) (Sax-
ena, 2023) also try to use the overlap between the
input and output, but they simply copy certain num-
bers of suffixes without matching all the potential
suffixes in the prompt. Both of them don’t fully
make use of the given prompt. Besides, both of
them don’t use pre-bulit Trie approach to enhance
the speedup of the LLM inference.

2.3 Tree Attention

Tree attention (Miao et al., 2023) is proposed to
solve the problem how a tree-structured token se-
quences can be decoding in parallel. By using an
attention mask, the drafts can be easily integrated
in one mask in inference. In the attention mask,
Now tree attention is widely used in multi-draft
verification.

SpecInfer (Miao et al., 2024) uses some small

draft models to independently predict the potential
tokens sequences, the tokens will then be clipped
and put in the attention masks. Medusa (Cai et al.,
2024) uses some positional draft heads to predict
the top-k tokens in the next i place. It uses atten-
tion mask to integrate the top-k tokens into token
sequences for prediction. REST (He et al., 2023)
retrieved many tokens in a big suffix-array datas-
tore. After clipping the tokens, He et al. also use
tree attention mask to make a trie tree for faster
decoding.

3 Proposed Method

The structure of N-Gram-Trie is shown in Figure
1. In the in-context prompt tasks, we first build an
n-gram trie based on the context. The tree records
the dependencies between preceding and following
tokens of context. Subsequently, in the process of
model inference, the draft of model inference is
constructed by speculative decoding through the
dependencies of n-gram trie, which can accelerate
model inference speed.

3.1 N-Gram Trie Construction
Trie is a tree structure used to store and retrieve
strings efficiently by organizing tokens in a prefix-
based hierarchy. Its key advantage is faster suffix
finding, which makes it suitable for speculative de-
coding (He et al., 2023). However, traditional Trie
relies on massive documents to build for higher ac-
ceptance rate. It is difficult to construct an effective
retrieval scheme in the case of a small amount of
corpus. To this end, we design n-gram trie, sam-
pled by n-gram sliding window, and then used the
sampling results to build the trie. This method can
effectively improve the efficiency and accuracy of
suffix retrieval by constructing additional depen-
dency chains.

N-Gram Sampling Specifically, for the context
token list T = {t1, t2, ..., tl}, we set a sliding win-
dow of n-grams for sampling. The sampling length
is n. The sliding window moves token by token
from the beginning to the end over T . In the slid-
ing window workspace, we set a maximum prefix
length Lp to split tokens in the window. The split
part will be the prefix part and the suffix part of the
segment tokens. The prefix Pi and suffix Si can be
expressed as follows:

Pi = {ti, ti+1, ..., ti+Lp−1}
Si = {ti+Lp , ti+Lp+1, ..., ti+n−1}

}
i ∈ [1, l],

(1)

18042

of

What is the capital
of Germany?

Context

The capital of Gemany is the city state of Berlin. It is
the seat of the President of Germany ...

Query with Context Prompt

Gemany is thecapital of

The capital of

Sliding Window
Anwer the following question based on the
context:
Context:
The capital of Gemany is the city state of
Berlin. It is the seat of the President of
Germany ...
Question:
What is the capital of Germany?

prefix

suffix

root

The

capi-
tal

of

Gem
-any

capi-
tal

of

Gem-
any

is

of

Gem-
any

is

the

Berl-
in the

.

...

It

Pres-
ident

of

...

N-Gram Trie

LLM: The

Trie: The capital of Germany is the city

LLM: The capital of Germany is Berlin.

The capital of
Germany is Berlin.

Figure 1: The structure of N-Gram-Trie. We sample through a sliding window of n-grams and get the prefixes and
suffixes from the documents in that window. A trie can be constructed based on the set of prefixes obtained by
window sliding sampling. In the process of model inference, the trie is used for speculative decoding to quickly
predict the model output. The n in the n-gram sampling in the example of the figure is 6 and the maximum prefix
length Lp is 3.

where i denotes the start index of the window. We
establish the dependency between the prefix and
suffix for each tokens group, and obtain the depen-
dency set D by sliding window sampling. D can
be defined in the following form:

D = {< Pi, Si, f > |i ∈ [1, l]}, (2)

where f is the frequency of dependency < Pi, Si >
during the sampling process.

Trie Construction We build trie τ based on the
sample results D and the construction process is as
shown in Algorithm 1.

Specifically, for the prefix Pi in the sample set D,
we traverse and split it according to the maximum
prefix length to obtain its sub-prefixes SPi. The
process can be defined as:

SPi = {SPi,j |j ∈ (0, Lp)}
= {Pi[j : Lp]|j ∈ (0, Lp)}, i ∈ [1, l],

(3)

where j ∈ (0, Lp) denotes the cut length of the
sub-prefix. By constructing additional prefix nodes,
the corresponding prefix can be effectively found
according to the model output in the retrieval pro-
cess.

We take the dependency of each subprefix and
its suffix as the basic unit for trie insertion. During
insertion, the token t is used as the basic units
of the tree nodes. We iterate from the root node,
sharing a node for the same token. If there is no
corresponding token in the current nodes, insert an

additional token. The insertion logic is as follows:

node =

{
child, if t ∈ node.children
nodet, if t /∈ node.children

,

(4)
where child is the child of node and child.token =
t, nodet is a new node built by t and inserted into
the children of the original node. In this way, we
let suffix nodes with the same prefix share the same
prefix.

Note that we also record the frequency f of each
node as it is inserted, in order to provide a prior-
ity reference for subsequent retrieval. Finally, by
exploiting the samples in D, we can construct an
efficient and accurate n-gram trie τ .

3.2 Draft Collecting and Matching
As shown in the gray area in Figure 1, in-context
learning combines context with user query through
templates in the prompt engineering. The query
with context will serve as the reasoning basis for
the target model. We define the tokens that have
been generated by the s time step target model as
Ts = {t1, t2, ..., tk}. We will build the draft after s
time step through the n-gram trie τ constructed in
the former subsection that stores prefix and suffix
dependency of context. Then, the target model will
verify and revise the draft.

Draft Construction When searching for the
draft, we firstly extract the suffix of new tokens
Ts for prefix matching. At first, the length of the
prefix token will be set to Lp. If Ts matches the
prefix chain in τ , we can extract the suffix of this

18043

Algorithm 1 Trie Generation
Input: T : Token list

D: Collected n-gram sample results
Lp: Maximum prefix length

Output: τ
1: Init root as τ ▷ an empty root node
2: for < Pi, Si, f >∈ D do
3: for j ∈ (0, Lp) do
4: subprefix← Pi[j : Lp]
5: key ← subprefix+ Si

6: node← root
7: for t ∈ key do
8: for childinnode.children do
9: if t = child.token then

10: node← child
11: node.frequency.update(f)
12: end if
13: end for
14: if t /∈ node.children then
15: new ← Node(t, f)
16: node.children.insert(new)
17: node← new
18: end if
19: end for
20: end for
21: end for
22: return τ

prefix and break matching. If not found, we sub-
stract one token from prefix tokens until match the
or prefix tokens length is 0. Then, we can obtain
a suffix tree τs that matches the gernerated tokens
Ts of the target model. To improve the acceptance
rate of the draft, we prune the suffix tree according
to the frequency f of nodes and extract nodes with
lower f . The draft tree is not always very big, so
sometimes the pruning is not used.

Specifically, refering to (He et al., 2023) and
(Cai et al., 2024), we set a min-heap for storage of
suffix chains. For each node vk in τs, we build a
draft dk based on its path chain with the root node
of τs. The priority of the draft is determined by the
frequency of vk. This process can be expressed as:

dk =< Path(vr, vk), fk >

=< {vr, v1, ..., vi, ..., vk}, fk >,

i ∈ [1, k], vi ∈ τs,

(5)

where Path(vr, vk) means the nodes from node vr
to node vk. vr is the root node of τs and fk is the
frequency of vk.

He

He

likes

flow-
ers

play-
ing

gam-
es

hates

writ-
ing

pap-
ers

hates

writing

papers
likes

flowers

playing

games

He ha
tes

wr
itin
g

pa
pe
rs

lik
es

flo
we
rs

pla
yin
g

ga
me
s

Position ids: 0 1 2 3 1 2 2 3

Prie Attention Mask

Figure 2: An Example of Tree Attention. The tokens
in the orange part of the attention mask are visible to
each other, and the tokens in the gray part are invisible
to each other

Then, vk will be placed in the min-heap in order
of priority. Finally, alternative drafts are retained
according to the length of min-heap. In this way,
redundant nodes can be effectively removed and
the pruning of suffix tree τs can be realized.

Model Verification Figure 2 shows an example
of tree attention verifying the draft trie. For the
draft trie τs, deep traverse it to obtain a linear list
of tokens. In order to realize the tree attention, we
set the same position id for the nodes of the same
level. The specific form can be expressed as:

pi = Level(vi) + h, vi ∈ τs, (6)

where pi is the position id of ti. Level(vi) is the
level of vi. h is the length of the preceding model
tokens. This makes the tokens in each chain of the
trie continuous.

Then, following tree attention meathod, we use
attention mask to convert the draft tree into a 2-
dimention mask m. For any tokens ti and tj , mi,j

is 0 if there is a relationship between vi and vj in
τs, otherwise it is 1. By matching the mask and
position ids. The taget model can verify multiple
branches of trie simultaneously.

4 Experiments

4.1 Experiment Setting

We implement all the experiments on one NVIDIA
RTX 4090 with python version 3.9. All the exper-
iments are run on greedy decoding. The pytorch
version is 2.5.1 with CUDA version is 12.2.

4.1.1 Baselines
We choose the baselines provided on the Specu-
late Bench (Xia et al., 2024): vanilla inference

18044

Model Method
Spec-Bench

TriviaQA Hagrid Mean Speedup
Summary RAG

Vicuna-7B

Vanilla 1.00× (1.00) 1.00×(1.00) 1.00×(1.00) 1.00×(1.00) 1.00x
SpS 1.69×(2.44) 1.59×(2.30) 1.74×(2.49) 1.40×(2.46) 1.61x
Medusa 1.48×(2.01) 1.45×(2.08) 1.45×(2.03) 1.56× (2.17) 1.49x
SPACE 1.69×(2.26) 1.47×(1.91) 1.57×(2.26) 1.26×(2.05) 1.50x
Hydra 1.86× (2.70) 1.88× (2.90) 1.86× (2.84) 1.52×(2.98) 1.78×
Lookahead 1.29×(1.54) 1.19×(1.48) 1.27×(1.46) 0.95×(1.47) 1.18x
REST 1.13×(1.65) 1.32×(1.89) 1.31×(1.71) 1.33×(1.82) 1.27x
Ours 1.75× (2.39) 3.48× (5.19) 1.92× (2.36) 1.94× (3.07) 2.27×

Llama2-7B-Chat

Vanilla 1.00×(1.00) 1.00×(1.00) 1.00×(1.00) 1.00×(1.00) 1.00x
SpS 1.25×(1.54) 1.47× (1.91) 1.35×(1.86) 1.38×(1.62) 1.36x
Lookahead 1.44× (1.59) 1.40×(1.63) 1.53× (1.71) 1.38×(1.97) 1.44×
REST 1.03×(1.54) 1.14×(1.91) 1.22×(1.68) 1.42× (1.47) 1.20x
Ours 1.28× (1.76) 3.62× (5.00) 1.89× (2.88) 1.61× (2.34) 2.10×

Llama3-8B-Instruct

Vanilla 1.00×(1.00) 1.00×(1.00) 1.00×(1.00) 1.00×(1.00) 1.00x
Lookahead 1.25× (1.60) 1.18× (1.51) 1.58× (1.54) 1.38× (1.73) 1.50×
REST 0.93×(1.54) 1.14×(1.91) 1.13×(1.61) 1.02×(1.69) 1.05x
Ours 1.06× (1.42) 1.77× (2.11) 1.75× (1.86) 1.68× (2.34) 1.56×

Table 1: Speedup Ratio and Accept Length Comparison. The data on the left means speedup and the data on the
right means average accept length. The best performance for each metric is highlighted in bold font, while the
second-best performance is indicated with an underline.

without any speculative methods, speculative Sam-
pling (Chen et al., 2023), Medusa (Cai et al., 2024),
SPACE (Yi et al., 2024), Hydra (Ankner et al.,
2024), Lookahead (Fu et al., 2023) and REST (He
et al., 2023). For Speculative Sampling, we used
Llama-68m (Miao et al., 2024) as draft model to
match Llama2-7b and use Vicuna-68m to match
Vicuna-7b-v1.3. For Lookahead and REST, we
simply use the same experiment setup in Spec-
Bench(Xia et al., 2024).

4.1.2 Datasets

For datasets, we choose RAG, summary in Spec-
bench (Xia et al., 2024). The RAG dataset contains
80 data from Natural Questions. Five retrieved doc-
uments from Wikipedia (Li et al., 2023) are con-
catenated. (Kwiatkowski et al., 2019) and the sum-
mary dataset is randomly chosen by CNN/Daily
Mail (Nallapati et al., 2016). In addition, we make
TriviaQA (Joshi et al., 2017) dataset for additional
RAG task and make Hagrid (Kamalloo et al., 2023)
dataset for context QA task. For TriviaQA task, we
use bge-m3 (Chen et al., 2024a) and bge-reranker-
v2-m3 (Chen et al., 2024b) to search for 5 relevant
documents in Wikipedia corpus. For Hagrid task,
we simply concatenate the given context and the
question.

4.1.3 Base models

To conduct the experiments, we use three mod-
els for validation. One is Vicuna-7B-v1.3 (Zheng
et al., 2023), One is Llama-2-7B-chat (Tou-
vron et al., 2023) and the other is Llama-3-8B-
Instruct (AI@Meta, 2024).

4.1.4 Hyperparameters

In the experiment, there are two hypermeter that
need to be tuned: matched prefix Lp and gram-
length n. So we conduct the experiment to test
the efficiency. The details can be seen in table2.
Also, we use FAISS (Douze et al., 2025) to store
the embedding of the corpus using IVF-PQ method.
The parameter of the number of clusters is 4096
and the parameter that the vector will be separated
is 64. The clusters that will be searched is set to 16.
We firstly encode all the corpus text using bge-m3
(Chen et al., 2024a), and search top-100 relevant
texts for questions in triviaQA (Joshi et al., 2017).
Then we rerank the texts using bge-reranker-v2-
m3 (Chen et al., 2024b) to get the top-5 relevant
contexts.

4.1.5 Metrics

Like other speculative decoding, we use average
accept length, mean speedup in our evaluation.
Average accept length shows the length that the

18045

Figure 3: A Case on Summary Dataset. The inference exploration in one step. In the figure, the words are separated
in tokens. Yellow text is generated by n-gram trie.

drafts are accepted in every decoding step. Usu-
ally the accept length is higher, the speedup can be
higher. Mean speedup indicates the speedup of to-
kens throughput compared with decoding without
any speculative method (baseline).

4.2 Main Results

The experiment results can be seen in Table 1. We
can see that our method achieves optimal accelera-
tion results compared to the baseline for all tasks
except the summarization task. On average, the
mean speedup of our method has achieved a mean-
ingful improvement over the baselines (2.27× on
Vicuna-7B, 2.10× on Llama2-7B-Chat and 1.56×
on Llama3-8B-Instruct). It is worth noting that our
method performs better than REST (He et al., 2023)
on each model and task in the same speculative de-
coding with trie, demonstrating the superiority of
our n-gram trie.

RAG Task. The experiment result on Spec-
Bench RAG dataset show that the accept length
of the drafts achieves 5.19 on Vicuna-7B, 5.00 on
Llama2-7B-Chat and 2.11 on Llama3-8B-Instruct,
making the speedup rate achieve 3.48×, 3.62× and
1.77×. Its acceleration performance is much better
than that of the basic method REST. Experiment
results in multiple models show that our method
has the strongest speedup effect. It is far ahead of
second place on all models.

On TriviaQA dataset, the speedup rate of our
method achieves 1.92× on Vicuna-7B, 1.89×
on Llama2-7B-Chat and 1.75× on Llama3-8B-
Instruct. The speed-up performance is also the best.
Even though the accept length of our approach is
smaller than Hydra (Ankner et al., 2024) on Vicuna-
7B, we still have a better throughput performance
in this task.

Context QA Task. Our approach achieves the
best results on all models (1.94× on Vicuna-7B,
1.61× on Llama2-7B-Chat and 1.68× on Llama3-
8B-Instruct) on Hagrid datset, which outperforms
other approaches by 0.19x-0.99×. Compared to

the basic method REST, we have more speedup on
all models. This fully demonstrates the advantages
brought by n-gram trie.

Summary Task. The performance of our
method on Spec-Bench Summary dataset is not
the best. Global draft-getting method will re-
sult in wrongly draft clipping and unnecessarily
draft-searching. In summarization tasks, input arti-
cles can be segmented into discrete text blocks,
with most generated outputs demonstrating pri-
mary dependency on individual text units. The
proposed methodology employs a global draft se-
lection mechanism that may inadvertently incor-
porate non-essential drafts, potentially introducing
redundant verification overhead. However, in RAG
and multi-document QA scenarios, generated con-
tent exhibits stronger reliance on comprehensive
document analysis, necessitating preservation and
rigorous evaluation of multiple drafts. The exper-
imental validation confirms that our method opti-
mizes context utilization while maintaining compu-
tational efficiency through adaptive draft manage-
ment. But our method still ranks second (1.75× on
Vicuna-7B, 1.28× on Llama2-7B-Chat and 1.06×
on Llama3-8B-Instruct) in terms of speedup and
outperform REST.

4.3 Case Study

To fully demonstrate the speedup effect of our
method, we conduct a case study on the Summary
dataset. The example is shown in Figure 3. As can
be seen from the figure, our speculative decoding
method based on n-gram trie correctly predict the
large model output many times. A large number of
useful drafts provide an effective speedup scheme
for in-context based model inference.

4.4 Hyperparameter Analysis

In this section, we will will conduct experiments
on the hyperparameters n and Lp in our method
to get the best hyperparameter configuration. We
use the RAG task of the Spec-bench (Xia et al.,

18046

Figure 4: The accept length percentage in summary task and RAG tasks between models. The frequency of smaller
accept length is usually larger except in the longest accept length

n/Lp 2 3 4 5

8 75.75 71.48 63.49 54.06
9 70.22 68.96 72.02 68.34
10 83.05 80.05 75.65 74.56
11 70.69 82.68 76.46 74.86
12 74.21 82.49 72.55 74.64
13 87.45 92.46 88.02 85.52
14 91.52 78.64 84.80 74.06
15 80.25 75.09 77.41 73.99
16 73.72 87.51 83.77 89.34

Table 2: Token Output Speed. The value in the table is
token output number per second with different n and
Lp

2024) on Llama2-7B-Chat to test the performance
of N-Gram-Trie. We try the value between 8-16
for n-gram length n and 2-5 for maximum prefix
length Lp. The performance of the N-Gram-Trie
with different hyperparameter is shown in the Table
2. We can find that when n is small, the speedup ef-
fect will gradually deteriorate with the increase of
Lp. We think this is because the excessively long
Lp limits the length of the suffix, which in turn
reduces the acceleration ability. When n is large,
the token generation speed first speeds up and then
slows down as Lp increases. This is mainly be-
cause when the suffix is not short, the longer prefix
can better match the token of the model inference.
Furthermore, it can be proved that when n value is
large, appropriate redundant nodes can effectively
improve the acceleration effect of speculative de-
coding. Statistically, we can see that the best choice

of n is 13 and the maximum prefix length Lp is set
to 3.

4.5 Time Analysis

The time expended on Trie search versus Tree con-
struction during each step of draft retrieval from the
Trie is illustrated in the figure 5. It can be seen that
draft processing and draft tree making cost much
more time than Trie searching.

Table 3: Speedup comparison across different
num_draft values for Summarization and RAG tasks

num_draft Sum. Speedup RAG Speedup

8 1.5730x 1.9058x
16 1.5618x 1.9168x
32 1.5682x 1.9195x
64 1.5667x 1.7519x

128 1.4798x 1.8754x
256 1.4301x 1.7954x

4.6 Ablations on Retrieved Contexts

To evaluate the robustness of our method under
noisy context conditions, we conducted an addi-
tional experiment comparing performance in both
noisy and non-noisy retrieval settings across four
representative tasks (RAG, Summarization, Trivia,
and HAGRID). As shown in Table 4, our method
still delivers consistent acceleration even under
noisy retrieval, with speedup ratios such as 1.22×
(RAG) and 2.27× (Trivia), although the overall
gains are understandably reduced compared to

18047

Table 4: Speedup comparison under noisy and clean (not noisy) retrieval contexts across four tasks on Qwen2-7b-
Instruct

Context Quality RAG (↑) Summarization (↑) Trivia (↑) HAGRID (↑)
Noisy 1.22× 1.21× 2.27× 2.10×
Not noisy 1.87× 1.48× 1.71× 1.84×

Figure 5: Time distribution in searching operation. The
red opponent indicates time for searching in tree, the
blue opponent means suffix processing and the cyan
opponent means the attention tree making.

cleaner contexts (1.87× and 1.71× respectively).

We used the same hyperparameters as reported
in the main paper n = 3 and Lp = 10 to ensure fair
comparison. These results confirm that while per-
formance is somewhat affected by noisy contexts,
our method maintains its acceleration advantage
and remains applicable in less ideal retrieval condi-
tions.

4.7 Ablations on Num_Draft

We conducted the experiments using Qwen2-7b-
instruct and different values of num_draft. The
results are shown in the following table:

It can be seen that the speedup fluctuates with
the number of drafts. and the speedup achieve the
best when num_draft is 8. In summarization task,
the speedup is 1.5730x, which is the best speedup
we can get. For RAG task, the speedup is 1.9195x.
In summarization task, the speedup doesn’t change
a lot, but in RAG task, the speedup become better
when num_draft = 32. This means that num_draft
shouldn’t be too much larger than 32, otherwise the
speedup will be affected.

4.8 Further Study

In order to explore the distribution of accep-
tance length of different models. We test Vicuna-
7B (Zheng et al., 2023), Llama2-7B-Chat (Touvron
et al., 2023), and Llama3-8B-Instruct (AI@Meta,
2024) on the Spec-Bench (Xia et al., 2024) dataset.
The experimental results are shown in Figure 4. In
this figure, it can be seen that the accept length
concentrates in 1 (which means that no tokens are
accepted). Besides, most of accept length is smaller
than 4. And the percentage of the accept length de-
creases except in accept length = 11.

5 Conclusion

In this paper, we propose N-Gram Trie Spec-
ulative Decoding, a novel approach to acceler-
ate in-context inference for large language mod-
els. By constructing an n-gram trie from the con-
text through prefix and suffix dependencies, our
method efficiently generates speculative decoding
drafts, leveraging the overlap between context and
model output. Extensive experiments on sum-
marization, RAG, and context QA tasks demon-
strate significant speedups—2.27x on Vicuna-7B,
2.10x on Llama2-7B-Chat, and 1.56x on Llama3-
8B-Instruct—without compromising output quality.
This work addresses a critical limitation of ICL,
providing an effective and scalable solution for
real-world LLM deployment.

6 Limitations

This approach presents several limitations. First,
while the trie-based generation and search mech-
anism offers efficiency advantages, its current im-
plementation has suboptimal aspects. A key is-
sue arises when multiple suffix candidates share
identical frequency scores, which may lead to the
premature elimination of potentially useful draft
outputs due to the fixed threshold imposed by the
num_draft parameter. Second, the method exhibits
strong dependency on the quality of external re-
trieved corpora - performance degradation becomes
inevitable when processing noisy or irrelevant re-

18048

trieval results. To address these challenges, our
future work will focus on developing enhanced
trie construction algorithms that incorporate more
sophisticated frequency weighting schemes and
context-aware candidate selection strategies.

References
AI@Meta. 2024. Llama 3 model card.

Zachary Ankner, Rishab Parthasarathy, Aniruddha
Nrusimha, Christopher Rinard, Jonathan Ragan-
Kelley, and William Brandon. 2024. Hydra:
Sequentially-dependent draft heads for medusa de-
coding. Preprint, arXiv:2402.05109.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng,
Jason D Lee, Deming Chen, and Tri Dao. 2024.
Medusa: Simple llm inference acceleration frame-
work with multiple decoding heads. arXiv preprint
arXiv:2401.10774.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving,
Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. 2023. Accelerating large language model
decoding with speculative sampling. Preprint,
arXiv:2302.01318.

Jianlv Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu
Lian, and Zheng Liu. 2024a. Bge m3-embedding:
Multi-lingual, multi-functionality, multi-granularity
text embeddings through self-knowledge distillation.
Preprint, arXiv:2402.03216.

Jianlv Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu
Lian, and Zheng Liu. 2024b. Bge m3-embedding:
Multi-lingual, multi-functionality, multi-granularity
text embeddings through self-knowledge distillation.
Preprint, arXiv:2402.03216.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan
Ma, Rui Li, Heming Xia, Jingjing Xu, Zhiyong Wu,
Tianyu Liu, Baobao Chang, Xu Sun, Lei Li, and
Zhifang Sui. 2024. A survey on in-context learning.
Preprint, arXiv:2301.00234.

Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff
Johnson, Gergely Szilvasy, Pierre-Emmanuel Mazaré,
Maria Lomeli, Lucas Hosseini, and Hervé Jégou.
2025. The faiss library. Preprint, arXiv:2401.08281.

Yichao Fu, Peter Bailis, Ion Stoica, and Hao Zhang.
2023. Breaking the sequential dependency of llm
inference using lookahead decoding.

Yichao Fu, Peter Bailis, Ion Stoica, and Hao Zhang.
2024. Break the sequential dependency of llm in-
ference using lookahead decoding. arXiv preprint
arXiv:2402.02057.

Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang.
2023. Pre-training to learn in context. Preprint,
arXiv:2305.09137.

Zhenyu He, Zexuan Zhong, Tianle Cai, Jason D Lee,
and Di He. 2023. Rest: Retrieval-based speculative
decoding. Preprint, arXiv:2311.08252.

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke
Zettlemoyer. 2017. triviaqa: A Large Scale Distantly
Supervised Challenge Dataset for Reading Compre-
hension. arXiv e-prints, arXiv:1705.03551.

Ehsan Kamalloo, Aref Jafari, Xinyu Zhang, Nandan
Thakur, and Jimmy Lin. 2023. HAGRID: A human-
llm collaborative dataset for generative information-
seeking with attribution. arXiv:2307.16883.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-
ton Lee, Kristina Toutanova, Llion Jones, Matthew
Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natu-
ral questions: A benchmark for question answering
research. Transactions of the Association for Compu-
tational Linguistics, 7:452–466.

Yaniv Leviathan, Matan Kalman, and Yossi Matias.
2023. Fast inference from transformers via spec-
ulative decoding. In International Conference on
Machine Learning, pages 19274–19286. PMLR.

Chaofan Li, Zheng Liu, Shitao Xiao, and Yingxia Shao.
2023. Making large language models a better founda-
tion for dense retrieval. Preprint, arXiv:2312.15503.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang
Zhang. 2024. EAGLE: Speculative sampling requires
rethinking feature uncertainty. In International Con-
ference on Machine Learning.

Xianzhen Luo, Yixuan Wang, Qingfu Zhu, Zhiming
Zhang, Xuanyu Zhang, Qing Yang, Dongliang Xu,
and Wanxiang Che. 2024. Turning trash into treasure:
Accelerating inference of large language models with
token recycling. Preprint, arXiv:2408.08696.

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao
Cheng, Zeyu Wang, Zhengxin Zhang, Rae Ying Yee
Wong, Alan Zhu, Lijie Yang, Xiaoxiang Shi, Chu-
nan Shi, Zhuoming Chen, Daiyaan Arfeen, Reyna
Abhyankar, and Zhihao Jia. 2024. Specinfer: Accel-
erating large language model serving with tree-based
speculative inference and verification. In Proceed-
ings of the 29th ACM International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems, Volume 3, ASPLOS ’24, page
932–949. ACM.

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xin-
hao Cheng, Zeyu Wang, Zhengxin Zhang, Rae
Ying Yee Wong, Alan Zhu, Lijie Yang, Xiaoxiang
Shi, et al. 2023. Specinfer: Accelerating genera-
tive large language model serving with tree-based
speculative inference and verification. arXiv preprint
arXiv:2305.09781.

Ramesh Nallapati, Bowen Zhou, Cícero Nogueira dos
Santos, Çaglar Gülçehre, and Bing Xiang. 2016.

18049

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://arxiv.org/abs/2402.05109
https://arxiv.org/abs/2402.05109
https://arxiv.org/abs/2402.05109
https://arxiv.org/abs/2302.01318
https://arxiv.org/abs/2302.01318
https://arxiv.org/abs/2402.03216
https://arxiv.org/abs/2402.03216
https://arxiv.org/abs/2402.03216
https://arxiv.org/abs/2402.03216
https://arxiv.org/abs/2402.03216
https://arxiv.org/abs/2402.03216
https://arxiv.org/abs/2301.00234
https://arxiv.org/abs/2401.08281
https://lmsys.org/blog/2023-11-21-lookahead-decoding/
https://lmsys.org/blog/2023-11-21-lookahead-decoding/
https://arxiv.org/abs/2305.09137
https://arxiv.org/abs/2311.08252
https://arxiv.org/abs/2311.08252
https://arxiv.org/abs/1705.03551
https://arxiv.org/abs/1705.03551
https://arxiv.org/abs/1705.03551
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://arxiv.org/abs/2312.15503
https://arxiv.org/abs/2312.15503
https://arxiv.org/abs/2408.08696
https://arxiv.org/abs/2408.08696
https://arxiv.org/abs/2408.08696
https://doi.org/10.1145/3620666.3651335
https://doi.org/10.1145/3620666.3651335
https://doi.org/10.1145/3620666.3651335

Abstractive text summarization using sequence-to-
sequence rnns and beyond. In Proceedings of the
20th SIGNLL Conference on Computational Natural
Language Learning, CoNLL 2016, Berlin, Germany,
August 11-12, 2016, pages 280–290. ACL.

Apoorv Saxena. 2023. Prompt lookup decoding.

Luohe Shi, Zuchao Li, Lefei Zhang, Guoming
Liu, Baoyuan Qi, and Hai Zhao. 2025. Kv-
latent: Dimensional-level kv cache reduction
with frequency-aware rotary positional embedding.
Preprint, arXiv:2507.11273.

Luohe Shi, Hongyi Zhang, Yao Yao, Zuchao Li, and
Hai Zhao. 2024. Keep the cost down: A review on
methods to optimize llm’ s kv-cache consumption.
Preprint, arXiv:2407.18003.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models. Preprint, arXiv:2307.09288.

Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M. Dai, and Quoc V. Le. 2022. Finetuned
language models are zero-shot learners. Preprint,
arXiv:2109.01652.

Jerry Wei, Le Hou, Andrew Lampinen, Xiangning Chen,
Da Huang, Yi Tay, Xinyun Chen, Yifeng Lu, Denny
Zhou, Tengyu Ma, and Quoc V. Le. 2023. Symbol
tuning improves in-context learning in language mod-
els. Preprint, arXiv:2305.08298.

Heming Xia, Zhe Yang, Qingxiu Dong, Peiyi Wang,
Yongqi Li, Tao Ge, Tianyu Liu, Wenjie Li, and Zhi-
fang Sui. 2024. Unlocking efficiency in large lan-
guage model inference: A comprehensive survey of
speculative decoding. In Findings of the Associa-
tion for Computational Linguistics ACL 2024, pages
7655–7671, Bangkok, Thailand and virtual meeting.
Association for Computational Linguistics.

Haoqi Yang, Luohe Shi, Qiwei Li, Zuchao Li, Ping
Wang, Bo Du, Mengjia Shen, and Hai Zhao. 2025.

Faster moe llm inference for extremely large models.
Preprint, arXiv:2505.03531.

Nan Yang, Tao Ge, Liang Wang, Binxing Jiao, Daxin
Jiang, Linjun Yang, Rangan Majumder, and Furu
Wei. 2023. Inference with reference: Lossless
acceleration of large language models. Preprint,
arXiv:2304.04487.

Hanling Yi, Feng Lin, Hongbin Li, Peiyang Ning, Xi-
aotian Yu, and Rong Xiao. 2024. Generation meets
verification: Accelerating large language model infer-
ence with smart parallel auto-correct decoding. arXiv
preprint arXiv:2402.11809.

Yi Zhao, Zuchao Li, Hai Zhao, Baoyuan Qi, and
Guoming Liu. 2025a. Dac: A dynamic attention-
aware approach for task-agnostic prompt compres-
sion. Preprint, arXiv:2507.11942.

Yi Zhao, Yajuan Peng, Cam-Tu Nguyen, Zuchao Li,
Xiaoliang Wang, Hai Zhao, and Xiaoming Fu. 2025b.
Smallkv: Small model assisted compensation of
kv cache compression for efficient llm inference.
Preprint, arXiv:2508.02751.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric. P Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. 2023. Judg-
ing llm-as-a-judge with mt-bench and chatbot arena.
Preprint, arXiv:2306.05685.

18050

https://doi.org/10.18653/V1/K16-1028
https://doi.org/10.18653/V1/K16-1028
https://github.com/apoorvumang/prompt-lookup-decoding/
https://arxiv.org/abs/2507.11273
https://arxiv.org/abs/2507.11273
https://arxiv.org/abs/2507.11273
https://arxiv.org/abs/2407.18003
https://arxiv.org/abs/2407.18003
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2109.01652
https://arxiv.org/abs/2109.01652
https://arxiv.org/abs/2305.08298
https://arxiv.org/abs/2305.08298
https://arxiv.org/abs/2305.08298
https://doi.org/10.18653/v1/2024.findings-acl.456
https://doi.org/10.18653/v1/2024.findings-acl.456
https://doi.org/10.18653/v1/2024.findings-acl.456
https://arxiv.org/abs/2505.03531
https://arxiv.org/abs/2304.04487
https://arxiv.org/abs/2304.04487
https://arxiv.org/abs/2507.11942
https://arxiv.org/abs/2507.11942
https://arxiv.org/abs/2507.11942
https://arxiv.org/abs/2508.02751
https://arxiv.org/abs/2508.02751
https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2306.05685

Llama2 Summarization
n/Lp 2 3 4 5

8 17.4 14.7 17.7 17.5
9 13.7 18.1 16.6 18.0

10 18.3 15.5 17.9 14.7
11 17.8 18.2 16.0 16.8
12 17.7 17.9 18.6 18.4
13 14.5 17.8 18.2 18.0
14 15.1 18.1 17.8 17.8
15 18.0 17.7 13.5 18.1

Llama2 RAG
n/Lp 2 3 4 5

8 27.5 41.1 37.6 24.5
9 45.2 42.6 31.2 35.1
10 45.1 43.7 36.6 39.5
11 50.9 43.8 44.0 36.9
12 52.3 49.7 45.5 40.9
13 38.7 38.7 50.1 34.1
14 54.3 48.2 51.0 49.7
15 55.3 38.9 48.3 39.3

Vicuna Summarization
n/Lp 2 3 4 5

8 18.7 23.1 22.5 18.8
9 25.7 22.1 23.1 17.7

10 25.5 25.9 25.6 23.1
11 24.3 25.6 25.8 23.8
12 25.1 25.1 26.0 25.9
13 24.7 24.5 24.5 25.5
14 18.5 24.5 25.1 24.9
15 25.1 25.1 23.9 24.2

Vicuna RAG
n/Lp 2 3 4 5

8 35.7 42.8 29.5 25.2
9 50.3 47.6 33.2 29.9
10 38.2 50.5 36.1 44.0
11 53.2 48.9 37.9 35.9
12 54.8 52.1 50.8 50.8
13 55.1 54.0 52.8 50.9
14 55.3 41.8 54.5 53.8
15 59.6 54.1 41.2 54.6

Llama3 Summarization
n/Lp 2 3 4 5

8 13.6 13.6 13.9 13.7
9 13.7 13.8 13.6 13.6

10 13.6 13.5 13.5 13.5
11 13.7 13.5 13.4 13.5
12 13.5 13.5 13.5 13.5
13 13.3 13.5 13.4 13.7
14 13.3 13.2 13.5 13.5
15 13.6 13.3 13.4 13.4

Llama3 RAG
n/Lp 2 3 4 5

8 20.9 21.0 19.6 19.2
9 20.6 20.7 19.8 19.8
10 20.0 20.2 20.6 19.9
11 20.0 20.1 20.3 20.5
12 19.9 20.0 20.5 20.3
13 20.4 20.5 20.0 19.1
14 20.1 20.1 20.3 20.2
15 20.2 20.0 20.0 20.6

Table 5: Performance comparison of Llama2, Vicuna,
and Llama3 across Summarization and RAG tasks

A More experiments about parameters

We conduct more experiments in summary and
RAG tasks. The results of the experiment can be
seen in Table 5.

There is a downgrade of the experiment result
because the experiments are running with other
processes using GPU. These results show that if
the model and the dataset change, n and Lp also
need to adjust for better speculative performance.
What’s more, the strategy of choosing the parame-
ters may vary in GPU conditions. Also, we found
that in Llama3, there is no significant degrade in
the performance as the data changes. The choice of
the n and Lp may need further discussion because
now we haven’t found the best way of selecting
n and LP . The best choices may be different due
to many factors, which needs more experiments to
check.

B Trie time between n and Lp

The Trie-construction can be used before inference.
While we perform the prompt-guided tasks, the
Trie will firstly be created before inference. How-
ever, we don’t modify the Trie during an inference
process. And we don’t delete the Trie node at first.
during inference, we can search for the Trie node
to gain the smaller Trie for tree-attention as the
path can be called prefix and the child node is the
selected drafts. The draft-cutting process is done
after getting the smaller Trie.

Also the trie can be built dynamically with data
shifts. The overhead of the Trie-making can be
seen on Table ?? (Llama2-Sum).

As the given data, it can be seen that the over-
head of Trie generation is roughly 10ms, and the
inference time varies from 82.3ms to 162.0ms. The
Trie generation time is much smaller than the infer-
ence time. Besides, it can be seen that the inference
time would vary due to the changes of n and Lp.

Table 6: Average Trie Time and Average Inference Time
(unit: ms) under different n and Lp

Avg Trie Time (ms)

n/Lp 2 3 4 5

8 11.55 10.31 11.00 12.62
9 9.13 9.45 10.54 11.35

10 8.23 9.46 10.07 11.27
11 8.24 10.11 11.15 11.88
12 9.06 9.58 10.52 11.54
13 9.06 9.54 11.46 11.72
14 10.83 9.71 10.57 14.26
15 8.93 9.95 12.75 11.75

Avg Inference Time (ms)

n/Lp 2 3 4 5

8 162.5 89.5 94.4 129.0
9 86.7 91.2 110.2 92.8
10 91.6 89.0 130.3 86.9
11 82.9 91.5 87.3 129.4
12 82.3 86.1 86.6 87.3
13 104.7 97.7 82.3 105.6
14 86.5 104.8 81.5 83.3
15 84.6 103.7 107.1 97.0

18051

