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Abstract

Text-to-Image (T2I) models have made re-
markable progress in generating images from
text prompts, but their output quality and
safety still depend heavily on how prompts
are phrased. Existing safety methods typically
refine prompts using large language models
(LLMs), but they overlook the images pro-
duced, which can result in unsafe outputs or
unnecessary changes to already safe prompts.
To address this, we propose an iterative prompt
refinement algorithm that uses Vision Lan-
guage Models (VLMs) to analyze both the in-
put prompts and the generated images. By
leveraging visual feedback, our method refines
prompts more effectively, improving safety
while maintaining user intent and reliability
comparable to existing LLM-based approaches.
Additionally, we introduce a new dataset la-
beled with both textual and visual safety signals
using off-the-shelf multi-modal LLM, enabling
supervised fine-tuning. Experimental results
demonstrate that our approach produces safer
outputs without compromising alignment with
user intent, offering a practical solution for gen-
erating safer T2I content. Our code is avail-
able at https://github.com/ku-dmlab/IPR.
WARNING: This paper contains examples
of harmful or inappropriate images gener-
ated by models.

1 Introduction

Text-to-Image (T2I) models have made remark-
able progress, producing increasingly realistic and
diverse images (Rombach et al., 2022a; Ramesh
et al., 2022). However, as these models become
more powerful, concerns about their potential mis-
use have also grown. The behavior of these models
is highly dependent on the input prompt, making
them vulnerable to generating harmful or inappro-
priate content if the prompt is poorly designed or
maliciously crafted (Hao et al., 2023). Therefore,
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Figure 1: Limitations of prompt-only filtering. Harm-
ful images can still be generated from seemingly safe
prompts (left), while prompts that already yield safe
outputs may be unnecessarily modified (right).

the need to address this vulnerability and to en-
sure that T2I models avoid producing harmful or
offensive outputs, such as depictions of violence or
harassment, has been increasingly recognized, yet
it remains a challenge (Schramowski et al., 2023).

Previous researches have studied to enforce safe
generation by modifying or intervening the T2I
model itself, either by blocking unsafe embeddings
(Rombach et al., 2022a) or by fine-tuning model pa-
rameters (Gandikota et al., 2023). However, these
methods can reduce user original intent. This is
because alternating internal representations to sup-
press unsafe content may distorted nuanced mean-
ings in the prompt, leading to outputs that differ
from original prompts. In addition, they are often
tied to specific model architectures, which limits
their general applicability.

As an alternative approach, Wu et al. (2024) in-
vestigated modifying the prompt itself rather than
altering the underlying model. Specifically, lan-
guage models were fine-tuned to rephrase toxic
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prompts into safer variants, while keeping the T2I
model unchanged. Although this method is effec-
tive in many scenarios, it inherently assumes that
T2I outputs are fully determined by the modified
prompts. This assumption, however, does not hold
in practice—particularly when transferring to T2I
models different from those used during training.
As shown in Figure 1, this mismatch can yield
prompts that appear safe in isolation but still result
in harmful images. Conversely, prompts that al-
ready produce safe, intent-aligned outputs may be
unnecessarily modified in an overly conservative
manner, thereby diluting the user’s original intent.

To address these limitations, we propose Itera-
tive Prompt Refinement (IPR), a framework that
leverages Vision-Language Models (VLMs) to iter-
atively refine user prompts by analyzing the behav-
ior of the T2I model in response to them. While the
outputs of T2I models are not fully predictable, ob-
serving the variations across multiple generations
allows IPR to identify prompt modifications that re-
duce the risk of offensive content while preserving
the user’s original intent.

However, training a VLM for IPR introduces two
primary challenges: (1) Unlike language models,
there is a lack of supervised datasets specifically
designed for training VLMSs on prompt refinement
tasks involving visual safety. (2) Optimizing a
prompt refiner based on a trajectory of multiple
generations and their corresponding evaluations
during iterative refinement is nontrivial.

In response, we present the following:

* We construct a new image-text dataset
ToxiClean-IT' using a multi-modal LLM to
assist in generating safe alternatives and evalu-
ating prompt-image safety for supervised fine-
tuning.

* We propose a simplified RL formulation for
training the prompt refiner by decomposing
the IPR process into optimizing evaluations
of individual generations.

* We empirically show that our VLM-based ap-
proach generates safer images while maintain-
ing intent alignment on par with prior methods
that rely solely on language models.

1https://huggingface.co/datasets/KEVIN@4087/
ToxiClean-IT

2 Related Works

Text-to-Image Model Generative Adversarial
Networks (GANSs) (Goodfellow et al., 2014) were
the dominant method for image generation. T2I
Models like StackGAN (Zhang et al., 2017) and At-
tnGAN (Xu et al., 2018) translated textual descrip-
tions into images using a generator-discriminator
framework, often with attention mechanisms. De-
spite their successes, GANs struggled with training
instability and limited image fidelity, motivating
the shift to diffusion-based approaches (Ho et al.,
2020). Representative T2I diffusion models in-
clude DALL-E 2 (Ramesh et al., 2022) and Stable
Diffusion (Rombach et al., 2022a), which leverage
latent denoising processes guided by text prompts.

Prompt Optimization for Diffusion Model Re-
search has been conducted to improve the align-
ment of diffusion model outputs with user intent
at the prompt level. Promptist (Hao et al., 2023)
framework employs supervised fine-tuning and re-
inforcement fine tuning to optimize prompts, en-
abling the generation of more user-aligned images
without modifying the underlying model param-
eters. DPO-Diff (Wang et al., 2024) leverage a
shortcut gradient method LLM-generated synonym
spaces for efficient prompt optimization. While
these methods similarly focus on prompt refine-
ment, our work differs in its primary objective:
rather than aligning with user intent, we aim to en-
sure safe generation, which necessitates different
algorithmic strategies and implementation choices.

Text-to-Image Diffusion Models for Safety Re-
search on ensuring the safety of T2I diffusion mod-
els has primarily followed two approaches: (1)
modifying or intervening in the generation process
of the model, (2) optimizing prompts at the user
input level. SD-NP (Rombach et al., 2022a) uses
negative prompts to steer generation away from
unsafe content. For the first approach, such as
ESD (Gandikota et al., 2023) fine-tunes the model
to erase specific concepts using only text descrip-
tions. SLD (Schramowski et al., 2023) suppresses
harmful content during inference by operating in
the latent space without modifying model weights.
Prompt-level optimization methods have emerged
as a model-agnostic alternative, addressing the lim-
itations of model-centric approaches such as re-
stricted user control and dependence on internal
model structures. For the second appraoch, POSI
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Figure 2: Overview of the Iterative Prompt Refinement (IPR) process. The vision-based prompt refinement
model 7 evaluates the most recent image for safety and intent alignment. If the image does not meet these criteria,
7 revises the prompt using the history of previous revisions and resubmits it to the text-to-image (T2I) model. This
process is repeated until a satisfactory result is obtained or the maximum number of iterations is reached.

Algorithm 1 Iterative Prompt Refinement

Input: An initial user prompt p®), a maximum
number of iterations 7,.x, a pre-trained text-to-
image model G, and a prompt refinement mod-
ule .
Output: Refined image ifp;.
Generate initial image: i(*) ~ G(p(?))
fort = 1 to T« do
Sample a prompt: p® ~ 7({p*) i)} 11y
if p® = [keep] then
return i, = i~
else
Generate refined image: i) ~ G(p(*))
end if
end for
return iy = ¢ (Tma)

(Wu et al., 2024), similar to Promptist (Hao et al.,
2023), optimizes prompts through supervised fine-
tuning and RL, using a combined reward of toxic-
ity score (Schramowski et al., 2022) and clip score
(Radford et al., 2021) to encourage the generation
of safe images. However, since it relies solely on an
LLM, the resulting prompts may appear safe while
still leading to unsafe images. To address this limi-
tation, we incorporate a VLM into the optimization
process, which, to the best of our knowledge, has
not been explored in prior work.

RL for Fine-tuning LLMs RL is a powerful
framework for solving sequential decision-making
problems. In the context of LLMs, recent advances
have applied RL techniques, such as Proximal Pol-
icy Optimization (PPO) (Schulman et al., 2017) and
Group Relative Policy Optimization (GRPO) (Shao
et al., 2024), to improve response quality by fine-
tuning models with reward signals provided by re-
ward models. However, the majority of RL appli-

cations in LLMs focus on maximizing the reward
for a single generated response, without account-
ing for multi-step interaction dynamics involving
multiple generations and their evaluations. While
recent efforts have begun to extend RL to multi-
turn or multi-step settings (Dalal et al., 2024), these
approaches often introduce substantial complexity
and encounter practical scalability challenges.

3 Iterative Prompt Refinement

Existing prompt engineering methods (Wu et al.,
2024; Hao et al., 2023) rely exclusively on the ini-
tial user prompt, without incorporating feedback
from the generated image. While this strategy can
be effective when the behavior of the T2I model is
fully predictable, it becomes problematic in other
scenarios, e.g., when the T2I model used to con-
struct dataset differs from the one deployed at in-
ference time (see Figure 1).

To this end, we propose an Iterative Prompt Re-
finement (IPR) framework that leverages VLMs to
evaluate both the user prompt and the generated im-
age. At each step, the algorithm either accepts the
image—if it aligns with the user’s intent and sat-
isfies quality and safety requirements—or revises
the prompt for further refinement. This process
repeats until a satisfactory image is obtained or
a predefined iteration limit is reached. The com-
plete procedure is described in Algorithm 1 and
illustrated in Figure 2.

Our objective is to ensure that the output image,
ifinal, Temains faithful to the original user prompt
while improving safety. However, achieving this
directly is challenging because the refinement pro-
cess requires generating a new image and evalu-
ating it at every iteration, leading to significant
computational overhead during the training phase.
Additionally, most existing fine-tuning methods for
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Figure 3: Overview of the training pipeline for Iterative Prompt Refinement (IPR). Step 1: A dataset is built
by prompting a language model to generate cleaned or keep prompts based on initial user prompts and generated
images. Step 2: The dataset is used to perform supervised fine-tuning (SFT) on a Vision-Language Model. Step 3:
RL further refines the model by rewarding prompt adjustments that improve safety (toxic score) while preserving

user intent (alignment score).

LLMs are designed for reward maximization of a
single generation and do not extend well to iterative
refinement scenarios where we need to maximize
overall reward of trajectory of multiple generations.
To overcome these challenges, we introduce a re-
duction that leads to an efficient training strategy
in the following sections.

4 Efficient Training of Prompt Refiner

In this section, we introduce an efficient training
strategy for 7, the prompt refiner used in IPR. As
in Figure 3, the training pipeline comprises three
main stages, which we describe in detail below.

Myopic Prompt Refiner In this work, we pro-
pose to use a myopic prompt refiner, under the
assumption that previously revised prompts and
generated images are irrelevant:

m(p®[p0 i1y = 7 (p® | {p®)

By assuming independence from the revision his-
tory, the prompt refiner loses the ability to rea-
son about the behavior of the T2I model based on
past prompts and generations. This assumption
introduces a potential limitation: it prevents the
model from making globally optimal decisions in
complex cases. However, we find that the myopic
refiner can still incrementally improve the image
through successive prompt revisions and determine

ktl)

when to terminate the process. Moreover, it en-
ables highly efficient training, and our method out-
performs existing baselines on complex, real-user
prompts—demonstrating that this simplification
does not come at the cost of practical effectiveness.

4.1 Dataset Construction and SFT

Following the recent successes of 2-stage fine-
tuning of SFT & RL, we first build a dataset that
reflects the decision making process of the algo-
rithm and perform SFT on it. The dataset is a
collection of 3-tuples D = {(po, i, p)}, where pgy
is the original user prompt, ¢ is the image gener-
ated from pg, p is the model’s decision (either a
refined prompt or a [keep] action). In contrast to
the dataset presented in Wu et al. (2024), which pri-
marily contain toxic-clean prompt pairs, our dataset
contains paired prompts and corresponding images,
allowing the model to learn whether to retain the
current output or revise the prompt.

Supervised Fine-Tuning We train the model
using a SFT objective that maximizes the log-
likelihood of the chosen action conditioned on the
prompt and the generated image:

L(0) = —Epg.ipy~D [l0g ma(p|po, i)]

This process aligns the prompt refinement model
to produce responses that are suitable for the IPR
process.
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4.2 Reward Design

The goal of the IPR process is to generate an out-
put image gy, that aligns semantically with the
original prompt py while remaining free of toxic
content. To achieve this, it is essential to design a
reward function that quantitatively captures both
semantic alignment and non-toxicity. We define the
outcome reward R(py, i) for an image i generated
from the initial prompt pg as the weighted sum of
its toxic score and alignment score:

R(p07 Z) = Stoxic(i) + ﬁ : Salign(p07 i);

where the toxic score Sioxic(7) is based on the Q16
classifier (Schramowski et al., 2022):

Stoxic (1) = 1 = fqie(7),

where fq16(7) is the output score of the Q16 classi-
fier for image ¢. The alignment score Sylign(Po, 7)
is the CLIP score (Radford et al., 2021):

Satign(po, ) = feLp(po, i),

where fcrip(po, ) is the cosine similarity between
the CLIP embeddings of the prompt pg and the
image 1.

4.3 RL with Single-Generation Objective

After SFT, we further optimize prompt refiner 7
with RL to better align with the desinged reward
function. An IPR trajectory consists of a sequence
of prompt-image pairs, 7 = { (p(*, i(k))}fzo, end-
ing when a [keep] action is taken at step 7,
(") = [keepl,ifna = i) = iT=1) or the
maximum iterations are reached, T = Tj.x. Dis
dataset for RL training. Our objective is to maxi-
mize the expected return:

m@axn(@) = Ep(O)Nﬁ,TNnG [R(p(o),i(T))] .

Single-Generation Objective Directly optimiz-
ing 77(0) is computationally demanding and incom-
patible with single-generation RL methods such as
GRPO (Shao et al., 2024), motivating the use of a
surrogate single-generation objective. Specifically,
since 77(6) depends only on the final rewards—and
the reward function can be evaluated at arbitrary in-
termediate steps—we can reinterpret the designed
reward function R as a potential function and apply
potential-based reward shaping (Ng et al., 1999).
This leads to an equivalent formulation of the ob-
jective as the following telescoping sum,

T—1
Ep . | D RO, i) — Rp©, i)

t=0

A key advantage of adopting a myopic prompt
refiner is that it enables the use of a surrogate ob-
jective, which simplifies the above formulation into
a single expectation:

E powﬁﬂ',vﬁ [R(p()a 7'/) - R(p()a Z)] 5
p'\’ﬂ'evi/NG(p)

and the optimal parameters 6 that maximize the
above objectives will coincide when the support
of D covers the marginal distribution of images
induced by 7(#). This is not true for non-myopic
prompt refiners in general.

Furthermore, to encourage fewer refinement
steps, we introduce an additional reward bonus
for selecting the [keep] action, i.e., () =

E|R(po,i') — R(po,i) +a - 1[p = [keep]]].

Note that the first two terms vanish when the
[keep] action is selected, as this implies ¢ = ¢’. In
other words, the objective encourages the prompt
refiner to choose the [keep] action whenever the
expected reward improvement from further refine-
ment falls below the threshold a.

The surrogate objective 77(6) is now a objective
with a single generation p, and we optimize it using
the Group Relative Policy Optimization (GRPO)
algorithm (Shao et al., 2024). In practice, we find
that using the images from our constructed dataset
for D is sufficient for effective optimization.

5 Experiments

We conducted experiments to demonstrate the ef-
fectiveness of our methods. For this purpose, we
considered several research questions. Q1. How ef-
fective is our newly constructed dataset D for SFT,
given the inclusion of both images and the [keep]
action? Q2. Does our proposed IPR framework
and the training of the prompt refiner improve upon
prior approaches? Q3. Is our method generalizable
across various Text-to-Image models?

Dataset We construct our dataset based on the
I2P dataset (Schramowski et al., 2023). Using
the 3,390 toxic prompts from I2P, we generate
corresponding images with Stable Diffusion (SD)
v1l.4 (Rombach et al., 2022b). We then em-
ploy GPT-4.1-2025-04-14 to produce the decisions
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0.50
0.41
0.39
0.39

0.1838
0.4940
0.4660
0.4540

0.35
0.33
0.29
0.27

0.3418
0.1240
0.1020
0.0860

0.37
0.35
0.35
0.32

0.3498
0.2060
0.2040
0.2180

0.35
0.31
0.28
0.25

0.3620
0.0900
0.1060
0.1140

0.46
0.44
0.39
0.39

0.4208
0.2760
0.2460
0.2500

0.27
0.25
0.25
0.25

0.2817
0.2260
0.2340
0.2340

0.38
0.35
0.33
0.31

0.3233
0.2360
0.2280
0.2260

SFT(POSI) + SD v2.0

SFT(Ours, Tax = 1) + SD v2.0
SFT(Ours, Tiax = 2) + SD v2.0
SFT(Ours, Thax = 3) + SD v2.0

0.40
0.36
0.34
0.33

0.2276
0.3440
0.3380
0.3260

0.41
0.32
0.32
0.30

0.3815
0.1120
0.1300
0.1140

0.33
0.35
0.32
0.32

0.3221
0.2040
0.1920
0.1820

0.35
0.31
0.28
0.27

0.3467
0.1180
0.1020
0.1100

0.44
0.39
0.37
0.37

0.3964
0.2500
0.2620
0.2660

0.31
0.28
0.26
0.24

0.3006
0.2340
0.2180
0.2100

0.37
0.34
0.31
0.30

0.3291
0.2103
0.2070
0.2013

SFT(POSI) + SD v2.1

SFT(Ours, Tax = 1) + SD v2.1
SFT(Ours, Trax = 2) + SD v2.1
SFT(Ours, Tiax = 3) + SD v2.1

0.38
0.36
0.33
0.33

0.2133
0.3540
0.3540
0.3480

0.39
0.32
0.31
0.31

0.3736
0.1480
0.1520
0.1540

0.30
0.33
0.30
0.30

0.3131
0.1500
0.1460
0.1600

0.32
0.25
0.26
0.24

0.3621
0.1220
0.1180
0.1380

0.44
0.38
0.38
0.34

0.3983
0.2840
0.2720
0.2360

0.28
0.26
0.26
0.25

0.3001
0.2320
0.2400
0.2240

0.35
0.32
0.31
0.30

0.3268
0.2150
0.2137
0.2100

Table 1: Evaluation on models after SFT across various SD backbones. IP is estimated using Q16 and Nudenet.

p—either a refined (clean) prompt or the [keep]
action—based on each toxic prompt and its associ-
ated image. The prompt templates used for dataset
construction are provided in Appendix B. Follow-
ing the experimental setup of Wu et al. (2024), we
use 842 samples from the dataset for RL training.
For evaluation, we employ a set of 50 samples per
category across six categories: sexual, harassment,
self-harm, illegal activity, shocking, and violence.
We further employ the Template Prompts (Qu et al.,
2023), which provides fixed prompt templates pop-
ulated with diverse phrases and has been shown to
effectively expose safety vulnerabilities in text-to-
image models.

Baselines Following the experiment convention
used by Wu et al. (2024), We incorporated our
method into existing diffusion models designed
for safe generation. Specifically, we conducted ex-
periments using SLD (Schramowski et al., 2023)
with four different configurations (Weak, Medium,
Strong, Max) and SD-NP (Rombach et al., 2022a).
For fine-tuning-based approaches, we employed
ESD (Gandikota et al., 2023), fine-tuning only the
non-cross-attention layers with a negative guidance
strength of 1. We used the same negative prompt
for both SD-NP and ESD (see Appendix A). In
the case of ESD, we conducted experiments ex-
clusively on SD v1.4 since it has not been imple-
mented for other base models.

Settings We employed the Qwen2.5-3B-VL
model (Bai et al., 2025) for the base model and
LoRA (Hu et al., 2022) for the fine-tuning (both
SFT and RL) across all experiments. All implemen-
tation details, including hyperparameter settings,
are provided in Appendix A.

Evaluation We evaluate our experiments using
three metrics: (1) Inappropriate Probability (IP)
measures how often a generated image is classi-
fied as inappropriate (Schramowski et al., 2023).
Specifically, An image is flagged as inappropri-
ate if it is detected by either the Q16 classifier
(Schramowski et al., 2023) or the NudeNet? de-
tector. Since the Q16 classifier was also used dur-
ing training, we additionally evaluated the Multi-
Headed Safety Classifier (MHSC) (Qu et al., 2023)
as an alternative to Q16 (see Appendix E). We se-
lected Q16 and NudeNet because they are widely
used in current safety research. Q16 has been
adopted in recent studies (Yang et al., 2024; Ma
et al., 2024), while NudeNet is employed in con-
temporary works such as (Zhang et al., 2025; Li
et al., 2025) for detecting explicit content. (2)
Confidence Score (CS) quantifies the Q16 clas-
sifier’s certainty in categorizing images as inappro-
priate (Schramowski et al., 2023). (3) BLIP Score
assesses the semantic alignment between generated
images and their corresponding textual prompts
using the BLIP model (Li et al., 2022).

We extend our evaluation to the IPR scenario,
analyzing how iterative refinement impacts these
metrics across up to three refinement steps. All
experimental results are averaged over 10 indepen-
dent prompt refinements.

5.1 Evaluation after SFT

To validate the effectiveness of our newly con-
structed image-text SFT dataset, we compare the
performance of models trained on our dataset with
models trained on the text-only dataset provided by
POSI (Wu et al., 2024). As shown in Table 1, mod-
els trained on our dataset not only outperform the

https://github.com/notAI-tech/NudeNet
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|P, cs| [P, Cs| |IP] CS| |IP| CS| |IP| CS|] |IP| CS| |IP| CS| |IP| cS |

SD 0.63 02571 | 043 0.4036 | 0.48 0.4210 | 0.40 0.4208 | 0.60 0.5212 | 0.43 0.3869 | 0.49 0.4018 | 0.72 0.5365
SD + POSI 0.26 0.1348 | 0.29 0.2886 | 0.24 0.2213 | 0.18 0.2124 | 0.29 0.2710 | 0.17 0.1777 | 0.24 0.2176 | 0.26 0.2298
SD (Thax = 1) 022 0.0924 | 0.14 0.1550 | 0.19 0.1717 | 0.16 0.1658 | 0.21 0.1831 | 0.15 0.1652 | 0.18 0.1555 | 0.23 0.1553
SD (Thnax = 3) 0.17 0.0767 | 0.10 0.1000 | 0.13 0.1229 | 0.10 0.1175 | 0.16 0.1311 | 0.12 0.1192 | 0.13 0.1113 | 0.18 0.1105
SD-NP 0.39 0.0912 | 0.23 0.2456 | 0.21 0.2018 | 0.17 0.2232 | 0.36 0.3300 | 0.23 0.2296 | 0.27 0.2202 | 0.44 0.2842
SD-NP + POSI 0.14 0.0487 | 0.17 0.1704 | 0.12 0.0951 | 0.10 0.0927 | 0.15 0.1285 | 0.10 0.0974 | 0.13 0.1054 | 0.15 0.1075
SD-NP (Tinax = 1) 0.14 0.0299 | 0.06 0.0693 | 0.08 0.0654 | 0.08 0.0677 | 0.16 0.1043 | 0.08 0.0721 | 0.10 0.0681 | 0.10 0.0582
SD-NP (Tyax = 3) 0.13  0.0216 | 0.09 0.0466 | 0.08 0.0449 | 0.06 0.0575 | 0.15 0.0803 | 0.08 0.0581 | 0.10 0.0515 | 0.11 0.0347
ESD-u-1 0.27 0.1256 | 0.22 0.2345 | 0.24 0.2380 | 0.19 0.2232 | 0.29 0.2822 | 0.24 0.2515 | 0.24 0.2258 | 0.70 0.5342
ESD-u-1 + POSI 0.29 0.1324 | 0.31 0.2961 | 0.25 0.2176 | 0.17 0.1913 | 0.27 0.2499 | 0.18 0.1852 | 0.24 0.2121 | 0.32 0.2443
ESD-u-1 (Thax = 1) 0.19 0.0945 | 0.14 0.1687 | 0.18 0.1729 | 0.14 0.1649 | 0.26 0.1976 | 0.17 0.1658 | 0.18 0.1607 | 0.18 0.1449
ESD-u-1 (Thax = 3) 0.12 0.0735 | 0.10 0.1021 | 0.13 0.1219 | 0.11 0.1198 | 0.18 0.1424 | 0.10 0.0981 | 0.12 0.1096 | 0.13 0.1066
SLD-Weak 0.53 0.1617 | 0.35 0.3339 | 0.34 0.3169 | 0.30 0.3281 | 0.50 0.4360 | 0.32 0.3043 | 0.39 0.3136 | 0.60 0.4157
SLD-Weak + POSI 0.23 0.0835 | 0.22 0.2307 | 0.16 0.1485 | 0.14 0.1516 | 0.22 0.1993 | 0.13 0.1341 | 0.18 0.1579 | 0.17 0.1449
SLD-Weak (Tinax = 1) 0.18 0.0446 | 0.09 0.1177 | 0.13 0.1291 | 0.11 0.1135 | 0.14 0.1317 | 0.13 0.1078 | 0.13 0.1074 | 0.13 0.0873
SLD-Weak (Tiax = 3) 0.17 0.0397 | 0.08 0.0693 | 0.09 0.0777 | 0.08 0.0919 | 0.11 0.0954 | 0.09 0.0697 | 0.10 0.0740 | 0.11 0.0610
SLD-Medium 0.44 0.1141 | 025 0.2572 | 0.21 0.2212 | 0.20 0.2316 | 0.38 0.3557 | 0.23 0.2429 | 0.29 0.2371 | 0.44 0.3047
SLD-Medium + POSI 0.15 0.0578 | 0.18 0.1916 | 0.10 0.0995 | 0.08 0.1116 | 0.15 0.1519 | 0.09 0.1004 | 0.13 0.1188 | 0.12 0.1029
SLD-Medium (Trax = 1) | 0.15  0.0325 | 0.09 0.0816 | 0.09 0.0911 | 0.05 0.0672 | 0.12 0.0887 | 0.10 0.0875 | 0.10 0.0748 | 0.05 0.0866
SLD-Medium (Tnax = 3) | 0.12  0.0246 | 0.07 0.0449 | 0.07 0.0523 | 0.05 0.0547 | 0.11 0.0789 | 0.06 0.0544 | 0.08 0.0516 | 0.04 0.0751
SLD-Strong 0.32 0.0716 | 0.18 0.2033 | 0.15 0.1388 | 0.14 0.1724 | 0.29 0.2610 | 0.19 0.2025 | 0.21 0.1750 | 0.31 0.2216
SLD-Strong + POSI 0.12 0.0410 | 0.16 0.1549 | 0.10 0.0676 | 0.08 0.0890 | 0.14 0.1193 | 0.07 0.0780 | 0.11 0.0916 | 0.14 0.1111
SLD-Strong (Tinax = 1) | 0.14  0.0261 | 0.07 0.0625 | 0.06 0.0497 | 0.06 0.0563 | 0.11 0.0826 | 0.09 0.0589 | 0.09 0.0560 | 0.11 0.0323
SLD-Strong (Tmax = 3) | 0.13  0.0207 | 0.06 0.0391 | 0.07 0.0368 | 0.05 0.0450 | 0.11 0.0548 | 0.09 0.0456 | 0.09 0.0403 | 0.08 0.0299
SLD-Max 0.30 0.0592 | 0.16 0.1714 | 0.10 0.0952 | 0.12 0.1435 | 0.26 0.2219 | 0.15 0.1589 | 0.18 0.1417 | 0.26 0.1527
SLD-Max + POSI 0.16 0.0408 | 0.15 0.1328 | 0.09 0.0574 | 0.07 0.0702 | 0.12 0.0969 | 0.04 0.0673 | 0.11 0.0776 | 0.10 0.0678
SLD-Max (Tinax = 1) 0.14 0.0178 | 0.09 0.0441 | 0.09 0.0320 | 0.07 0.0416 | 0.14 0.0745 | 0.10 0.0385 | 0.11 0.0414 | 0.12 0.0367
SLD-Max (Thax = 3) 0.13  0.0120 | 0.10 0.0263 | 0.09 0.0244 | 0.08 0.0360 | 0.13 0.0542 | 0.10 0.0295 | 0.10 0.0304 | 0.10 0.0235

Table 2: Evaluation on models after both SFT and RL across various SD backbones, where SD v1.4 is used as a

base model. IP is estimated using Q16 and Nudenet.

text-only baseline in the 1-step setting (Tiax = 1)
but also continue to improve as the IPR progresses.
These findings highlight the benefits of incorporat-
ing both textual and visual feedback and suggest
that IPR contributes positively to performance even
in the absence of RL steps specifically designed for
it.

5.2 Evaluation after SFT+RL

To demonstrate the superior safety of our approach
compared to prior methods, we conducted exper-
iments on the Stable Diffusion (SD) v1.4 model.
Table 2 presents IP and CS scores of baseline meth-
ods, including those incorporating our method, IPR,
evaluated on SD v1.4. Full results and MHSC
scores are provided in Appendix E. From this table,
several observations can be made. (i) Our method

achieves state-of-the-art performance in nearly all
baseline settings, even when considering only the
1-step setup, outperforming the previous approach,
POSI. (ii) As the number of steps increases, the IP
scores and CS scores generally decrease, indicat-
ing that our method becomes progressively safer
with more steps. This suggests that the model is
learning as intended in a multi-step setting. Next,
we examine the BLIP score to demonstrate that the
generated images are not only safe but also well-
aligned with the original prompts. As shown in
Figure 4, the 1-step IPR setting achieves alignment
performance comparable to POSI, suggesting that
our approach maintains strong alignment while im-
proving safety. Although further iterations of IPR
tend to increase safety, they may lead to a marginal
reduction in alignment, reflecting a trade-off that
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Figure 5: (Top) Qualitative examples with corresponding prompts across refinement steps (t = 0, ...,3). Stept =0
shows the original prompts used to initialize the IPR. In each panel, the top row displays DALL-E 3 generations
on the MPUP dataset, and the bottom row shows SDXL generations on the I2P dataset. (Bottom) Final images
selected by the [keep] action and their initial prompts are shown.

IP| BLIPT Keep
POSI 0.24 0.2301 -
Ours, Thax =1 (3B) 0.18 0.2329 0.079
Ours, Thmax =2 (3B) 0.15 0.2190 0.122
Ours, Thhax =3 (3B) 0.13 0.2122 0.148
Ours, Thhax = 1 (7B) 0.19 0.2446 0.368
Ours, Thax = 2 (7B) 0.17 0.2396 0.784
Ours, Thax = 3 (7B)  0.16  0.2385 0.890

Table 3: Comparison of IP, BLIP, and keep ratio on SD
v1.4, showing that larger models (7B) yield improved
BLIP and keep ratio.

arises when prioritizing safer generations.

To assess the robustness of our method across
different diffusion backbones, we additionally eval-
uated it on SD v2.0 and SD v2.1. Due to space con-
straints, detailed results are included in Appendix E.
As shown therein, the method exhibits trends con-
sistent with those observed for SD v1.4, confirming
the stability of its safety performance across model
variants.

To explore the scalability of our approach, we
applied it to the larger Qwen2.5-7B-VL model
(Bai et al., 2025). As shown in Table 3, the 7B

model maintains a comparable level of safety while
better preserving user intent and producing more
aligned images. This suggests that our method
benefits from increased model capacity, leading to
improved overall refinement quality. For IP, BLIP,
and [keep] ratios, we report the average across six
evaluation categories.

5.3 Illustrative Examples of IPR

To evaluate the practical behavior and general-
ization capability of our method under distribu-
tion shift, we present qualitative results on both
open- and closed-source T2I models using distinct
prompt datasets. For DALL-E 3 (Betker et al.,
2023), a widely used closed-source model, we
adopt prompts from the MPUP dataset (Liu et al.,
2025), which comprises challenging real-world jail-
break scenarios. For SDXL 1.0 (base) (Podell et al.,
2023), a state-of-the-art open-source model, we
use prompts from the 2P dataset (Schramowski
et al., 2023). Figure 5 (top) shows the progres-
sion of prompts and outputs over refinement steps
(t =0,...,3), where t = 0 denotes the original
user input. The top row corresponds to DALL-E 3
generations on MPUP, while the bottom row shows
SDXL generations on I2P. Across iterations, the
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Figure 6: Effect of varying « on the keep ratio across
different T ax.

outputs become progressively safer while preserv-
ing the core semantic intent. When the initial out-
put is already safe, the refiner selects the [keep]
action to retain it without modification. Figure 5
(bottom) further illustrates examples where [keep]
is applied, highlighting the refiner’s ability to main-
tain both safety and fidelity to user intent under
diverse prompting conditions. These results sug-
gest that our method generalizes not only to data
distributions different from those seen during train-
ing—such as jailbreak-style prompts—but also to
closed-source generative models, underscoring its
practical robustness and broad applicability.

5.4 Choice of o

We investigate the impact of varying «, the reward
assigned to the prompt refiner when the [keep]
action is selected. As shown in Figure 6, higher
values of « lead to a greater proportion of prompts
being retained across different values of T}, .x. The
figure also shows that the keep ratio increases with
larger T1,ax, as more prompts are likely to become
sufficiently refined when given more refinement
iterations. We additionally report the correspond-
ing IP and CS scores for each « using SD v1.4 in
Appendix E.

6 Conclusion

In this study, we propose an iterative prompt refine-
ment method that utilizes vision-language models
to generate safer prompts by jointly analyzing text
and image outputs. we introduce a new dataset
ToxiClean-IT for both textual and visual safety sig-
nals and reformulate the refinement process as a
single-step procedure, leading to a more efficient al-
gorithm. Leveraging visual feedback, our approach
effectively mitigates unsafe generations while pre-
serving user intent. Extensive experiments across

various diffusion models validate the effectiveness
of our method.

Limitations

In this work, we proposed the Iterative Prompt
Refinement (IPR) algorithm, which leverages a
vision-language model to provide feedback on gen-
erated images and iteratively refine user prompts.
While our approach addresses the limitations of
conventional large language models that lack vi-
sual feedback capabilities, it introduces an inher-
ent trade-off: the iterative refinement process in-
creases the computational cost of image generation.
We partially mitigate this by incorporating reward
mechanisms for [keep] actions and by imposing a
maximum number of refinement steps. However,
improving the efficiency of this process remains an
open challenge. We believe future work exploring
more cost-effective or adaptive refinement strate-
gies holds significant promise for advancing this
line of research.
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A Implementation Details

We applied LoRA (Hu et al., 2022) during both the
supervised fine-tuning (SFT) and reinforcement
learning (RL) phases to improve training efficiency.

All experiments were conducted using a single run

without averaging across multiple seeds. Our code

is available at:
https://github.com/ku-dmlab/IPR

SFT phase we used a batch size of 4, a learning
rate of 5e-5, and set the gradient accumulation steps
to 4. The model was fine-tuned for 636 steps.

RL phase We used the same batch size and gradi-
ent accumulation setting but adjusted the learning
rate to 1.9e-5. This phase involved 50 fine-tuning
steps. We set the keep reward o = 0.3

Negative prompts For SD-NP and ESD, we uti-
lized the negative prompts: “hate, harassment, vio-
lence, suffering, humiliation, harm, suicide, sexual,
nudity, bodily fluids, blood, obscene gestures, ille-
gal activity, drug use, theft, vandalism, weapons,
child abuse, brutality, cruelty” (Schramowski et al.,
2023)

Computational resources and time All experi-
ments are conducted on NVIDIA RTX A100 GPU
(80GB). The SFT phase required approximately 40
minutes to complete, whereas the RL phase neces-
sitated approximately 1 hour and 50 minutes.

B The Prompt Used to Construct the SFT
Dataset

n, n non

messages = [ "role": "system", "content": ["type":
"text", "text": "You are an extremely conservative
content safety model with zero tolerance for ques-
tionable content. Your primary function is to iden-
tify potentially harmful prompts and evaluate their
safety with the strictest standards. You meticu-
lously analyze both text prompts and the resulting
images for potential risks. Return **’keep’** only
when both the original text prompt and the image
are absolutely safe. Only if the image contains
unsafe elements should you modify the prompt
to ensure it will generate a safe image while pre-
serving as much of the original creative intent as
possible."], { "role": "user", "content": [ {"type":
"image_url", "image_url": {"url": "url"}}, "type":
"text", "text": "I will give you a sentence describing
a scenario with negative or harmful information,
along with an image and text. I expect you to ana-
lyze both and determine if the image is safe. If it is
completely safe, respond with "keep’. I expect you
to output "keep’ about 70% less frequently than
you might initially think appropriate. Be extremely

conservative in your safety assessment. "STEP 1:
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Assess image safety with maximum strictness ©
If—and only if—both modalities are 100% safe,
respond with "keep’ and proceed to STEP 5., STEP
2: Identify risky elements in the image * Detect any
unsafe visual content including violence, weapons,
harmful stereotypes, inappropriate content, or dis-
turbing imagery., STEP 3: Detoxification only if
the image is unsafe ¢ If the image contains un-
safe elements, then modify the prompt to gener-
ate a safer image while preserving as much of the
original creative intent as possible., STEP 4: Use
examples as guidance * Follow these examples: -
Original: A cat with a gun on the table Modified:
A cat with a toy water gun on the table. - Orig-
inal: veins on an arm forming a rose Modified:
Branches on an arm forming a rose. - Original: A
cute puppy [but image shows violent scene] Mod-
ified: A cute puppy playing in the park, STEP
5: Final output * <reason>Explain your reasoning
for keeping or modifying the prompt based on the
image safety analysis in 1-2 sentences.</reason>
» <answer>Return exactly one line: either 'keep’
or the modified prompt.</answer>Modify prompt:
user prompt] }]

C Licensing

Dataset The image-text safety evaluation dataset
constructed for supervised fine-tuning (SFT) is re-
leased under the Creative Commons Attribution 4.0
(CC BY 4.0) license. This license allows anyone to
use, share, and build upon the dataset for research
purposes, provided proper attribution is given.

Code Our implementation is built on top of the
TRL library (von Werra et al., 2020) (Apache Li-
cense 2.0). We retain compatibility by releasing
our code under the Apache License 2.0 as well.

Use of Existing Artifacts We build on several
publicly available resources, including Stable Dif-
fusion, CLIP, the I2P dataset, and TRL. All these
artifacts are used in accordance with their intended
purposes and license terms, specifically for aca-
demic research and model development.

D Use of Al Tools in This Work

We utilized Al-powered tools to support the
writing of this paper. All outputs generated by
these tools were carefully reviewed and refined by
human researchers to ensure their accuracy and
reliability.

E Results
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Methods

12P for eval

‘ Sexual Harassment Self-harm Illegal activity Shocking Violence Overall
|P|, cCs| || Cs| |IP|] CS| |IP| CS| |IP| CS| |IP|, CS| |IP] CS|
IPR(Thax =1, =0.1) +SDv1.4 | 024 0.1036 | 0.19 0.2003 | 0.27 0.2443 | 0.20 0.2021 | 0.27 0.2243 | 0.18 0.1930 | 0.22 0.1946
IPR(Thmax = 2,0 =0.1)+SDv1.4 | 0.22 0.0857 | 0.14 0.1600 | 0.20 0.1948 | 0.15 0.1736 | 0.16 0.1596 | 0.16 0.1666 | 0.17 0.1567
IPR(Thnax = 3, =0.1) + SDv1.4 | 0.17 0.0866 | 0.13 0.1414 | 0.18 0.1712 | 0.15 0.1585 | 0.17 0.1359 | 0.15 0.1442 | 0.16 0.1397
IPR(Thmax = 1, =0.3) + SDv1.4 | 0.21 0.1008 | 0.11 0.1412 | 0.19 0.1788 | 0.12 0.1478 | 0.23 0.1889 | 0.15 0.1496 | 0.17 0.1512
IPR(Thmax =2, =0.3)+SDv14 | 0.18 0.0823 | 0.11 0.1172 | 0.15 0.1450 | 0.10 0.1167 | 0.20 0.1531 | 0.13 0.1254 | 0.15 0.1233
IPR(Thmax = 3, « =0.3) + SDv1.4 | 0.17 0.0709 | 0.08 0.0949 | 0.15 0.1336 | 0.09 0.0991 | 0.15 0.1294 | 0.12 0.1011 | 0.13 0.1049
IPR(Thmax = 1, =0.5) + SDv1.4 | 0.41 0.1449 | 0.28 0.2861 | 0.32 0.3039 | 0.27 0.2883 | 0.38 0.3378 | 0.26 0.2742 | 0.32 0.2725
IPR(Thax = 2, = 0.5) +SDv1.4 | 0.37 0.1376 | 0.26 0.2701 | 0.34 0.2921 | 0.25 0.2641 | 0.36 0.3211 | 0.26 0.2511 | 0.31 0.2560
IPR(Thmax = 3, « =0.5) + SDv1.4 | 0.35 0.1303 | 0.25 0.2687 | 0.30 0.2738 | 0.25 0.2595 | 0.34 0.3162 | 0.24 0.2457 | 0.29 0.2490
Table 4: Ablation Study on Different Keep Incentive a.
‘ 12P for eval Template prompt
Methods ‘ Sexual Harassment Self-harm Illegal activity Shocking Violence Overall Overall
|iPy Csy |IP| CS| |IP| CS| |IP| CS| |IP] CS| |IP| CS| |[IP] CS| |IP] CS |
SD 0.63 0.2571 | 0.43 0.4036 | 048 0.4210 | 0.40 0.4208 | 0.60 0.5212 | 0.43 0.3869 | 0.49 0.4018 | 0.72 0.5365
SD + POSI 0.26 0.1348 | 0.29 0.2886 | 0.24 0.2213 | 0.18 0.2124 | 0.29 0.2710 | 0.17 0.1777 | 0.24 0.2176 | 0.26 0.2298
SD (1-step) 0.22 0.0924 | 0.14 0.1550 | 0.19 0.1717 | 0.16 0.1658 | 0.21 0.1831 | 0.15 0.1652 | 0.18 0.1555 | 0.23 0.1553
SD (2-step) 0.19 0.0794 | 0.15 0.1187 | 0.13 0.1268 | 0.15 0.1383 | 0.17 0.1367 | 0.13 0.1251 | 0.15 0.1208 | 0.15 0.1104
SD (3-step) 0.17 0.0767 | 0.10 0.1000 | 0.13 0.1229 | 0.10 0.1175 | 0.16 0.1311 | 0.12 0.1192 | 0.13 0.1113 | 0.18 0.1105
SD-NP 0.39 0.0912 | 0.23 0.2456 | 0.21 0.2018 | 0.17 0.2232 | 0.36 0.3300 | 0.23 0.2296 | 0.27 0.2202 | 0.44 0.2842
SD-NP + POSI 0.14 0.0487 | 0.17 0.1704 | 0.12 0.0951 | 0.10 0.0927 | 0.15 0.1285 | 0.10 0.0974 | 0.13 0.1054 | 0.15 0.1075
SD-NP (1-step) 0.14 0.0299 | 0.06 0.0693 | 0.08 0.0654 | 0.08 0.0677 | 0.16 0.1043 | 0.08 0.0721 | 0.10 0.0681 | 0.10 0.0582
SD-NP (2-step) 0.17 0.0256 | 0.09 0.0582 | 0.08 0.0472 | 0.08 0.0541 | 0.15 0.0897 | 0.09 0.0615 | 0.11 0.0561 | 0.09 0.0474
SD-NP (3-step) 0.13  0.0216 | 0.09 0.0466 | 0.08 0.0449 | 0.06 0.0575 | 0.15 0.0803 | 0.08 0.0581 | 0.10 0.0515 | 0.11 0.0347
ESD-u-1 0.27 0.1256 | 0.22 0.2345 | 0.24 0.2380 | 0.19 0.2232 | 0.29 0.2822 | 0.24 0.2515 | 0.24 0.2258 | 0.70 0.5342
ESD-u-1 + POSI 0.29 0.1324 | 0.31 0.2961 | 0.25 0.2176 | 0.17 0.1913 | 0.27 0.2499 | 0.18 0.1852 | 0.24 0.2121 | 0.32 0.2443
ESD-u-1 (1-step) 0.19 0.0945 | 0.14 0.1687 | 0.18 0.1729 | 0.14 0.1649 | 0.26 0.1976 | 0.17 0.1658 | 0.18 0.1607 | 0.18 0.1449
ESD-u-1 (2-step) 0.17 0.0777 | 0.12 0.1175 | 0.13 0.1228 | 0.10 0.1268 | 0.18 0.1509 | 0.12 0.1167 | 0.14 0.1187 | 0.13 0.1157
ESD-u-1 (3-step) 0.12 0.0735 | 0.10 0.1021 | 0.13 0.1219 | 0.11 0.1198 | 0.18 0.1424 | 0.10 0.0981 | 0.12 0.1096 | 0.13 0.1066
SLD-Weak 0.53 0.1617 | 0.35 0.3339 | 0.34 0.3169 | 0.30 0.3281 | 0.50 0.4360 | 0.32 0.3043 | 0.39 0.3136 | 0.60 0.4157
SLD-Weak + POSI 0.23  0.0835 | 0.22 0.2307 | 0.16 0.1485 | 0.14 0.1516 | 0.22 0.1993 | 0.13 0.1341 | 0.18 0.1579 | 0.17 0.1449
SLD-Weak (1-step) 0.18 0.0446 | 0.09 0.1177 | 0.13 0.1291 | 0.11 0.1135 | 0.14 0.1317 | 0.13 0.1078 | 0.13 0.1074 | 0.13 0.0873
SLD-Weak (2-step) 0.14 0.0423 | 0.09 0.0903 | 0.11 0.0912 | 0.11 0.1029 | 0.12 0.1038 | 0.09 0.0757 | 0.11 0.0844 | 0.14 0.0741
SLD-Weak (3-step) 0.17 0.0397 | 0.08 0.0693 | 0.09 0.0777 | 0.08 0.0919 | 0.11 0.0954 | 0.09 0.0697 | 0.10 0.0740 | 0.11 0.0610
SLD-Medium 0.44 0.1141 | 025 02572 | 0.21 0.2212 | 0.20 0.2316 | 0.38 0.3557 | 0.23 0.2429 | 0.29 0.2371 | 0.44 0.3047
SLD-Medium + POSI | 0.15 0.0578 | 0.18 0.1916 | 0.10 0.0995 | 0.08 0.1116 | 0.15 0.1519 | 0.09 0.1004 | 0.13 0.1188 | 0.12 0.1029
SLD-Medium (1-step) | 0.15 0.0325 | 0.09 0.0816 | 0.09 0.0911 | 0.05 0.0672 | 0.12 0.0887 | 0.10 0.0875 | 0.10 0.0748 | 0.05 0.0866
SLD-Medium (2-step) | 0.13  0.0279 | 0.06 0.0569 | 0.07 0.0602 | 0.05 0.0621 | 0.11 0.0864 | 0.10 0.0699 | 0.09 0.0606 | 0.04 0.0740
SLD-Medium (3-step) | 0.12  0.0246 | 0.07 0.0449 | 0.07 0.0523 | 0.05 0.0547 | 0.11 0.0789 | 0.06 0.0544 | 0.08 0.0516 | 0.04 0.0751
SLD-Strong 032 0.0716 | 0.18 0.2033 | 0.15 0.1388 | 0.14 0.1724 | 0.29 0.2610 | 0.19 0.2025 | 0.21 0.1750 | 0.31 0.2216
SLD-Strong + POSI 0.12 0.0410 | 0.16 0.1549 | 0.10 0.0676 | 0.08 0.0890 | 0.14 0.1193 | 0.07 0.0780 | 0.11 0.0916 | 0.14 0.1111
SLD-Strong (1-step) | 0.14 0.0261 | 0.07 0.0625 | 0.06 0.0497 | 0.06 0.0563 | 0.11 0.0826 | 0.09 0.0589 | 0.09 0.0560 | 0.11 0.0323
SLD-Strong (2-step) | 0.13  0.0222 | 0.06 0.0430 | 0.07 0.0371 | 0.06 0.0510 | 0.12 0.0638 | 0.07 0.0480 | 0.09 0.0442 | 0.08 0.0275
SLD-Strong (3-step) | 0.13  0.0207 | 0.06 0.0391 | 0.07 0.0368 | 0.05 0.0450 | 0.11 0.0548 | 0.09 0.0456 | 0.09 0.0403 | 0.08 0.0299
SLD-Max 0.30 0.0592 | 0.16 0.1714 | 0.10 0.0952 | 0.12 0.1435 | 0.26 0.2219 | 0.15 0.1589 | 0.18 0.1417 | 0.26 0.1527
SLD-Max + POSI 0.16 0.0408 | 0.15 0.1328 | 0.09 0.0574 | 0.07 0.0702 | 0.12 0.0969 | 0.04 0.0673 | 0.11 0.0776 | 0.10 0.0678
SLD-Max (1-step) 0.14 0.0178 | 0.09 0.0441 | 0.09 0.0320 | 0.07 0.0416 | 0.14 0.0745 | 0.10 0.0385 | 0.11 0.0414 | 0.12 0.0367
SLD-Max (2-step) 0.15 0.0175 | 0.07 0.0294 | 0.05 0.0211 | 0.09 0.0434 | 0.11 0.0559 | 0.12 0.0352 | 0.10 0.0337 | 0.11 0.0221
SLD-Max (3-step) 0.13  0.0120 | 0.10 0.0263 | 0.09 0.0244 | 0.08 0.0360 | 0.13 0.0542 | 0.10 0.0295 | 0.10 0.0304 | 0.10 0.0235

Table 5: Inappropriate probability by Q16 & NudeNet and confidence score of Q16 on SD v1.4
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‘ 12P for eval Template prompt

Methods ‘ Sexual Harassment Self-harm Tllegal activity Shocking Violence Overall Overall
[P} cCs| [Py cCs| [P} CS| |IP, CS| |IPL CS| |IP, CS| |IP] CS| |IP} cs
SD 0.45 0.2596 | 0.47 0.4509 | 045 0.4174 | 0.38 0.3942 | 0.57 0.5089 | 0.39 0.3797 | 0.45 0.4018 | 0.86 0.7073
SD + POSI 0.21 0.1437 | 0.28 0.2989 | 0.29 0.2410 | 0.21 0.2155 | 0.31 0.3069 | 0.21 0.2040 | 0.25 0.2350 | 0.33 0.2745
SD (Thax = 1) 0.17 0.1023 | 0.21 0.2448 | 0.18 0.2011 | 0.17 0.1907 | 0.28 0.2346 | 0.23 0.1932 | 0.20 0.1944 | 0.35 0.3125
SD (Thnax = 2) 0.16 0.0894 | 0.22 0.2086 | 0.15 0.1696 | 0.14 0.1472 | 0.23 0.1941 | 0.17 0.1490 | 0.18 0.1597 | 0.26 0.2627
SD (Thnax = 3) 0.15  0.0849 | 0.20 0.2039 | 0.13 0.1556 | 0.12 0.1449 | 0.21 0.1744 | 0.14 0.1360 | 0.16 0.1499 | 0.31 0.2498
SD-NP 0.25 0.0884 | 0.27 0.2837 | 0.18 0.1838 | 0.18 0.2102 | 0.35 0.2994 | 0.19 0.2006 | 0.24 0.2110 | 0.48 0.3424
SD-NP + POSI 0.15 0.0504 | 0.16 0.1524 | 0.11 0.0950 | 0.09 0.0953 | 0.15 0.1168 | 0.09 0.0884 | 0.12 0.0997 | 0.12 0.0789
SD-NP (Tipax = 1) 0.16 0.0775 | 0.17 0.1653 | 0.10 0.1147 | 0.12 0.1219 | 0.19 0.1563 | 0.17 0.1342 | 0.15 0.1283 | 0.11 0.0960
SD-NP (Thnax = 2) 0.14 0.0658 | 0.18 0.1477 | 0.10 0.0951 | 0.11 0.1053 | 0.16 0.12838 | 0.14 0.0974 | 0.14 0.1067 | 0.08 0.0747
SD-NP (Tinax = 3) 0.14 0.0653 | 0.15 0.1462 | 0.09 0.0846 | 0.12 0.1010 | 0.17 0.1277 | 0.15 0.0976 | 0.14 0.1037 | 0.07 0.0592
SLD-Weak 0.29 0.1621 | 043 0.4270 | 0.29 0.2876 | 0.33 0.3628 | 0.43 0.4030 | 0.28 0.2906 | 0.34 0.3222 | 0.61 0.5191
SLD-Weak + POSI 0.17 0.1193 | 0.27 0.2904 | 0.14 0.1811 | 0.16 0.1938 | 0.25 0.2642 | 0.18 0.2036 | 0.20 0.2087 | 0.17 0.2060

SLD-Weak (Tmax = 1) 0.12  0.0944 | 0.10 0.1695 | 0.09 0.1324 | 0.11 0.1521 | 0.12 0.1552 | 0.13 0.1665 | 0.11 0.1450 | 0.24 0.2670
SLD-Weak (Tiax = 2) 0.06 0.0818 | 0.09 0.1406 | 0.08 0.1169 | 0.08 0.1367 | 0.09 0.1255 | 0.11 0.1423 | 0.09 0.1240 | 0.19 0.2453
SLD-Weak (Tmax = 3) 0.06 0.0748 | 0.08 0.1284 | 0.06 0.1064 | 0.09 0.1353 | 0.08 0.1174 | 0.09 0.1276 | 0.08 0.1150 | 0.18 0.2189

SLD-Medium 0.23 0.1405 | 0.40 0.4021 | 0.23 0.2487 | 0.25 0.3020 | 0.34 0.3509 | 0.23 0.2554 | 0.28 0.2833 | 0.50 0.4539
SLD-Medium + POSI 0.14 0.1128 | 0.24 0.2690 | 0.12 0.1464 | 0.13 0.1661 | 0.20 0.2451 | 0.14 0.1762 | 0.16 0.1859 | 0.13 0.1753
SLD-Medium (T = 1) | 0.11  0.0856 | 0.14 0.1662 | 0.10 0.1271 | 0.09 0.1413 | 0.13 0.1439 | 0.12 0.1384 | 0.11 0.1338 | 0.16 0.1861
SLD-Medium (Tiax = 2) | 0.10  0.0718 | 0.12  0.1475 | 0.07 0.0938 | 0.07 0.1197 | 0.10 0.1158 | 0.10 0.1308 | 0.09 0.1132 | 0.14 0.1776
SLD-Medium (Tiax = 3) | 0.07  0.0707 | 0.10 0.1398 | 0.07 0.0853 | 0.09 0.1226 | 0.08 0.1066 | 0.07 0.1183 | 0.08 0.1072 | 0.18 0.1784

SLD-Strong 0.19 0.1193 | 0.32 0.3675 | 0.16 0.2032 | 0.20 0.2733 | 0.28 0.3181 | 0.21 0.2315 | 0.23 0.2521 | 0.44 0.4056
SLD-Strong + POSI 0.12 0.1115 | 0.21 0.2564 | 0.11 0.1329 | 0.11 0.1571 | 0.15 0.2074 | 0.12 0.1659 | 0.14 0.1719 | 0.15 0.1850
SLD-Strong (Tinax = 1) 0.07 0.0760 | 0.12 0.1748 | 0.08 0.1226 | 0.08 0.1425 | 0.08 0.1332 | 0.09 0.1398 | 0.09 0.1315 | 0.14 0.1748
SLD-Strong (Tmax = 2) 0.05 0.0580 | 0.10 0.1512 | 0.07 0.1082 | 0.08 0.1309 | 0.07 0.1125 | 0.07 0.1261 | 0.07 0.1145 | 0.13 0.1865
SLD-Strong (Tinax = 3) 0.06 0.0686 | 0.10 0.1396 | 0.06 0.0975 | 0.07 0.1315 | 0.07 0.1102 | 0.07 0.1242 | 0.07 0.1119 | 0.14 0.2083

SLD-Max 0.09 0.0842 | 0.26 0.2697 | 0.07 0.1149 | 0.12 0.1721 | 0.18 0.2078 | 0.12 0.1526 | 0.14 0.1669 | 0.20 0.2683
SLD-Max + POSI 0.07 0.0716 | 0.14 0.1683 | 0.06 0.0784 | 0.04 0.0915 | 0.09 0.1431 | 0.06 0.1038 | 0.08 0.1094 | 0.09 0.1333
SLD-Max (Thax = 1) 0.04 0.0544 | 0.05 0.1146 | 0.03 0.0688 | 0.04 0.0851 | 0.06 0.0966 | 0.04 0.0875 | 0.04 0.0845 | 0.10 0.0761
SLD-Max (Tiax = 2) 0.02 0.0448 | 0.05 0.1038 | 0.02 0.0651 | 0.05 0.0774 | 0.04 0.0824 | 0.07 0.0942 | 0.04 0.0780 | 0.07 0.0587
SLD-Max (Thax = 3) 0.03 0.0486 | 0.05 0.0922 | 0.03 0.0619 | 0.04 0.0801 | 0.04 0.0803 | 0.04 0.0797 | 0.04 0.0738 | 0.10 0.0574

Table 6: Inappropriate probability by Q16 & NudeNet and confidence score of Q16 on SD v2.0

‘ 12P for eval Template prompt
Methods ‘ Sexual Harassment Self-harm Tllegal activity Shocking Violence Overall Overall

|P, Cs| [P, CS| |IP| CS| |IP| CS| |IP| CS| [P} CS| |IPL CS| |IP| CS |
SD 0.46 02579 | 043 0.4323 | 043 0.4169 | 0.37 0.3940 | 0.55 0.4920 | 0.36 0.3607 | 0.43 0.3923 | 0.81 0.6472
SD + POSI 0.22 0.1330 | 0.27 0.2889 | 0.23 0.2312 | 0.18 0.1977 | 0.30 0.2761 | 0.19 0.1997 | 0.23 0.2211 | 0.28 0.2384
SD (Thax = 1) 0.22 0.1082 | 0.14 0.1707 | 0.17 0.1629 | 0.13 0.1592 | 0.18 0.1547 | 0.16 0.1654 | 0.17 0.1535 | 0.34 0.2890
SD (Thnax = 2) 0.19 0.0885 | 0.13 0.1451 | 0.12 0.1462 | 0.11 0.1283 | 0.14 0.1481 | 0.15 0.1450 | 0.14 0.1335 | 0.24 0.2271
SD (Thnax = 3) 0.16 0.0895 | 0.12 0.1323 | 0.13 0.1396 | 0.12 0.1289 | 0.13 0.1291 | 0.13 0.1343 | 0.29 0.1256 | 0.29 0.2450
SD-NP 0.26 0.0867 | 0.26 0.2642 | 0.14 0.1584 | 0.16 0.2029 | 0.32 0.2763 | 0.21 0.1961 | 0.22 0.1974 | 0.43 0.3200
SD-NP + POSI 0.12  0.0409 | 0.13 0.1503 | 0.10 0.0785 | 0.08 0.0822 | 0.15 0.1282 | 0.07 0.0888 | 0.11 0.0948 | 0.09 0.0763
SD-NP (Tinax = 1) 0.13 0.0442 | 0.12 0.1057 | 0.10 0.0938 | 0.06 0.0762 | 0.11 0.0929 | 0.12 0.0886 | 0.11 0.0836 | 0.10 0.0798
SD-NP (Thnax = 2) 0.12  0.0375 | 0.10 0.0986 | 0.09 0.0749 | 0.07 0.0628 | 0.10 0.0835 | 0.11 0.0739 | 0.10 0.0719 | 0.07 0.0490
SD-NP (Tinax = 3) 0.10 0.0357 | 0.10 0.0923 | 0.09 0.0670 | 0.05 0.0582 | 0.08 0.0777 | 0.12 0.0745 | 0.09 0.0676 | 0.08 0.0373
SLD-Weak 0.28 0.1620 | 0.36 0.3721 | 0.25 0.2797 | 0.28 0.3246 | 0.41 03911 | 0.23 0.2597 | 0.30 0.2982 | 0.63 0.5300
SLD-Weak + POSI 0.15 0.1199 | 0.23 0.2658 | 0.12 0.1564 | 0.15 0.1823 | 0.23 0.2474 | 0.14 0.1816 | 0.17 0.1923 | 0.13 0.1714

SLD-Weak (Timax = 1) 0.17 0.0916 | 0.14 0.1816 | 0.13 0.1413 | 0.09 0.1315 | 0.14 0.1416 | 0.11 0.1453 | 0.13 0.1388 | 0.22 0.2465
SLD-Weak (Thax = 2) 0.09 0.0820 | 0.13 0.1518 | 0.09 0.1113 | 0.09 0.1198 | 0.11 0.1187 | 0.11 0.1407 | 0.10 0.1207 | 0.17 0.2262
SLD-Weak (Tinax = 3) 0.09 0.0749 | 0.11 0.1480 | 0.08 0.1102 | 0.08 0.1216 | 0.08 0.1046 | 0.11 0.1374 | 0.09 0.1161 | 0.16 0.2165

SLD-Medium 0.24 0.1280 | 0.34 0.3441 | 0.16 0.2146 | 0.24 0.2863 | 0.34 0.3462 | 0.21 0.2276 | 0.26 0.2578 | 0.49 0.4297
SLD-Medium + POSI 0.13  0.0975 | 0.22 0.2435 | 0.09 0.1290 | 0.12 0.1681 | 0.21 0.2282 | 0.12 0.1560 | 0.15 0.1704 | 0.12 0.1511
SLD-Medium (T = 1) | 0.11  0.0702 | 0.14 0.1618 | 0.09 0.1073 | 0.06 0.1125 | 0.13 0.1302 | 0.11 0.1387 | 0.11 0.1201 | 0.17 0.2189
SLD-Medium (Tiax = 2) | 0.10  0.0621 | 0.11 0.1488 | 0.05 0.0809 | 0.06 0.1086 | 0.11 0.1110 | 0.10 0.1372 | 0.09 0.1081 | 0.13 0.1958
SLD-Medium (Tiyax = 3) | 0.07 0.0636 | 0.11 0.1409 | 0.06 0.0875 | 0.05 0.0994 | 0.10 0.1027 | 0.10 0.1226 | 0.08 0.1028 | 0.09 0.1702

SLD-Strong 0.17 0.1136 | 0.29 0.3264 | 0.15 0.1958 | 0.19 0.2520 | 0.28 0.3017 | 0.16 0.1950 | 0.21 0.2308 | 0.36 0.3577
SLD-Strong + POSI 0.10 0.1030 | 0.17 0.2370 | 0.08 0.1310 | 0.11 0.1613 | 0.15 0.1991 | 0.11 0.1552 | 0.12 0.1645 | 0.11 0.1429
SLD-Strong (Tinax = 1) | 0.09 0.0734 | 0.14 0.1734 | 0.07 0.1107 | 0.09 0.1259 | 0.12 0.1245 | 0.10 0.1270 | 0.10 0.1225 | 0.10 0.1826
SLD-Strong (Tmax =2) | 0.08 0.0614 | 0.13 0.1544 | 0.07 0.0956 | 0.05 0.0998 | 0.08 0.1141 | 0.08 0.1182 | 0.08 0.1073 | 0.11 0.1760
SLD-Strong (Tmax = 3) | 0.08 0.0672 | 0.11  0.1379 | 0.05 0.0862 | 0.05 0.1000 | 0.08 0.1021 | 0.08 0.1033 | 0.08 0.0994 | 0.08 0.1712

SLD-Max 0.09 0.0800 | 0.18 0.2143 | 0.05 0.0864 | 0.08 0.1512 | 0.11 0.1621 | 0.06 0.1173 | 0.10 0.1352 | 0.20 0.2438
SLD-Max + POSI 0.05 0.0642 | 0.12 0.1513 | 0.04 0.0692 | 0.05 0.0959 | 0.10 0.1341 | 0.03 0.0854 | 0.07 0.1000 | 0.08 0.1066
SLD-Max (Thax = 1) 0.06 0.0550 | 0.10 0.1395 | 0.03 0.0497 | 0.03 0.0878 | 0.08 0.0955 | 0.05 0.0997 | 0.07 0.0940 | 0.05 0.1147
SLD-Max (Thax = 2) 0.04 0.0467 | 0.10 0.1252 | 0.06 0.0799 | 0.03 0.0755 | 0.05 0.0793 | 0.04 0.0791 | 0.05 0.0810 | 0.04 0.0901
SLD-Max (Thnax = 3) 0.04 0.0477 | 0.08 0.1121 | 0.06 0.0725 | 0.03 0.0783 | 0.06 0.0820 | 0.06 0.0864 | 0.05 0.0798 | 0.08 0.1186

Table 7: Inappropriate probability by Q16 & NudeNet and confidence score of Q16 on SD v2.1
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12P for eval

Template prompt

Methods ‘ Sexual Harassment Self-harm Illegal activity Shocking Violence Overall Overall
| w, | w®] | 1P| | P | ) | ] | P| | P |
SD 0.48 0.11 0.21 0.14 0.26 0.27 0.25 0.74
SD + POSI 0.19 0.07 0.11 0.09 0.11 0.20 0.13 0.26
SD (Thnax = 1) 0.27 0.08 0.12 0.06 0.17 0.13 0.14 0.20
SD (Thnax = 2) 0.22 0.11 0.10 0.07 0.15 0.14 0.13 0.19
SD (Thnax = 3) 0.19 0.07 0.09 0.05 0.14 0.11 0.11 0.20
SD-NP 0.26 0.09 0.15 0.10 0.18 0.24 0.17 0.58
SD-NP + POSI 0.10 0.09 0.08 0.09 0.11 0.19 0.11 0.23
SD-NP (Tinax = 1) 0.18 0.05 0.07 0.07 0.16 0.14 0.11 0.17
SD-NP (Tinax = 2) 0.20 0.08 0.08 0.08 0.16 0.13 0.12 0.11
SD-NP (Tinax = 3) 0.16 0.09 0.09 0.05 0.15 0.11 0.11 0.13
ESD-u-1 0.18 0.08 0.12 0.09 0.17 0.21 0.14 0.72
ESD-u-1 + POSI 0.19 0.07 0.10 0.11 0.12 0.20 0.13 0.25
ESD-u-1 (Thax = 1) 0.21 0.05 0.11 0.05 0.19 0.14 0.13 0.18
ESD-u-1 (Thax = 2) 0.18 0.07 0.09 0.04 0.13 0.12 0.10 0.16
ESD-u-1 (Thhax = 3) 0.13 0.06 0.07 0.05 0.13 0.09 0.09 0.14
SLD-Weak 0.39 0.09 0.18 0.12 0.22 0.24 0.21 0.68
SLD-Weak + POSI 0.14 0.07 0.08 0.10 0.09 0.19 0.11 0.25
SLD-Weak (Tiax = 1) 0.23 0.07 0.09 0.04 0.12 0.13 0.11 0.18
SLD-Weak (Tiax = 2) 0.18 0.06 0.09 0.05 0.11 0.11 0.10 0.17
SLD-Weak (Tiax = 3) 0.18 0.05 0.09 0.04 0.11 0.11 0.10 0.14
SLD-Medium 0.28 0.06 0.13 0.09 0.19 0.23 0.16 0.56
SLD-Medium + POSI 0.12 0.07 0.07 0.09 0.11 0.18 0.11 0.21
SLD-Medium (T = 1) | 0.18 0.06 0.07 0.05 0.12 0.13 0.10 0.15
SLD-Medium (Tinax = 2) | 0.15 0.05 0.07 0.04 0.11 0.11 0.09 0.11
SLD-Medium (Tipax = 3) | 0.15 0.07 0.07 0.05 0.11 0.10 0.09 0.12
SLD-Strong 0.20 0.07 0.14 0.09 0.17 0.22 0.15 0.44
SLD-Strong + POSI 0.11 0.09 0.08 0.12 0.11 0.19 0.12 0.21
SLD-Strong (Tinax = 1) 0.17 0.07 0.07 0.06 0.13 0.13 0.11 0.16
SLD-Strong (Tinax = 2) 0.16 0.06 0.08 0.07 0.12 0.10 0.10 0.13
SLD-Strong (Tinax = 3) 0.16 0.06 0.08 0.05 0.13 0.11 0.10 0.11
SLD-Max 0.17 0.06 0.10 0.08 0.17 0.20 0.13 0.36
SLD-Max + POSI 0.11 0.10 0.08 0.11 0.13 0.19 0.12 0.19
SLD-Max (Tax = 1) 0.18 0.12 0.10 0.09 0.14 0.13 0.13 0.13
SLD-Max (Thax = 2) 0.17 0.09 0.07 0.09 0.12 0.14 0.11 0.12
SLD-Max (Tinax = 3) 0.15 0.12 0.10 0.09 0.14 0.14 0.12 0.13

Table 8: Inappropriate probability by MHSC on SD v1.4
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Methods

12P for eval

Template prompt

‘ Sexual Harassment Self-harm Illegal activity Shocking Violence Overall Overall

|| | Pl | P| | P | Pl | ] | P | P
SD 0.29 0.16 0.20 0.12 0.24 0.27 0.21 0.81
SD + POSI 0.15 0.10 0.11 0.10 0.13 0.21 0.13 0.29
SD (Thax = 1) 0.18 0.08 0.09 0.07 0.14 0.14 0.12 0.23
SD (Thax = 2) 0.14 0.08 0.09 0.06 0.11 0.16 0.11 0.17
SD (Thax = 3) 0.16 0.06 0.09 0.04 0.11 0.16 0.10 0.21
SD-NP 0.23 0.11 0.08 0.10 0.17 0.23 0.15 0.58
SD-NP + POSI 0.13 0.11 0.09 0.10 0.10 0.20 0.12 0.21
SD-NP (Thhax = 1) 0.12 0.07 0.07 0.06 0.11 0.13 0.09 0.13
SD-NP (Thnax = 2) 0.09 0.08 0.07 0.06 0.11 0.12 0.09 0.10
SD-NP (Thax = 3) 0.10 0.07 0.07 0.05 0.09 0.11 0.08 0.11
SLD-Weak 0.13 0.07 0.04 0.04 0.12 0.17 0.10 0.45
SLD-Weak + POSI 0.07 0.04 0.03 0.06 0.05 0.16 0.07 0.12
SLD-Weak (Tinax = 1) 0.09 0.05 0.05 0.03 0.09 0.09 0.07 0.09
SLD-Weak (Thax = 2) 0.08 0.05 0.05 0.04 0.07 0.06 0.06 0.08
SLD-Weak (Tinax = 3) 0.06 0.05 0.05 0.02 0.07 0.06 0.05 0.04
SLD-Medium 0.10 0.06 0.03 0.04 0.09 0.14 0.08 0.33
SLD-Medium + POSI 0.05 0.03 0.04 0.07 0.05 0.14 0.06 0.09
SLD-Medium (Tjpox = 1) | 0.10 0.06 0.05 0.03 0.07 0.09 0.07 0.06
SLD-Medium (Tinax = 2) | 0.08 0.06 0.04 0.02 0.06 0.06 0.05 0.04
SLD-Medium (Tjox = 3) | 0.05 0.05 0.05 0.03 0.06 0.05 0.05 0.04
SLD-Strong 0.06 0.05 0.02 0.04 0.08 0.13 0.06 0.26
SLD-Strong + POSI 0.05 0.04 0.02 0.08 0.05 0.13 0.06 0.08
SLD-Strong (Tiax = 1) 0.08 0.05 0.03 0.02 0.08 0.06 0.06 0.06
SLD-Strong (Tmax = 2) 0.06 0.04 0.03 0.03 0.05 0.04 0.04 0.04
SLD-Strong (Tiax = 3) 0.05 0.04 0.02 0.02 0.04 0.06 0.04 0.03
SLD-Max 0.06 0.05 0.01 0.03 0.05 0.10 0.05 0.15
SLD-Max + POSI 0.05 0.05 0.01 0.09 0.05 0.12 0.06 0.07
SLD-Max (Tmax = 1) 0.03 0.01 0.01 0.02 0.03 0.05 0.03 0.12
SLD-Max (Tmax = 2) 0.03 0.02 0.01 0.02 0.02 0.06 0.02 0.09
SLD-Max (Thax = 3) 0.02 0.02 0.01 0.01 0.02 0.05 0.02 0.11

Table 9: Inappropriate probability by MHSC on SD v2.0
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‘ 12P for eval Template prompt

Methods

‘ Sexual ‘ Harassment ‘ Self-harm ‘ Illegal act. ‘ Shocking ‘ Violence ‘ Overall ‘ Overall

e} | w, | wy | ] | W] | ] | IP| | P
SD 0.29 0.17 0.19 0.15 0.24 0.27 0.22 0.81
SD + POSI 0.16 0.09 0.10 0.09 0.13 0.21 0.13 0.28
SD (Thax = 1) 0.23 0.09 0.10 0.05 0.14 0.14 0.13 0.23
SD (Thax = 2) 0.20 0.07 0.07 0.06 0.11 0.11 0.10 0.21
SD (Thax = 3) 0.18 0.07 0.08 0.06 0.10 0.13 0.10 0.20
SD-NP 0.21 0.13 0.10 0.10 0.17 0.23 0.16 0.63
SD-NP + POSI 0.13 0.10 0.06 0.10 0.14 0.21 0.12 0.22
SD-NP (Tnax = 1) 0.15 0.05 0.05 0.06 0.10 0.12 0.09 0.15
SD-NP (Tnax = 2) 0.10 0.06 0.04 0.06 0.08 0.14 0.09 0.10
SD-NP (Tnax = 3) 0.11 0.06 0.06 0.05 0.08 0.10 0.08 0.13
SLD-Weak 0.12 0.07 0.06 0.06 0.13 0.15 0.10 0.47
SLD-Weak + POSI 0.07 0.04 0.04 0.06 0.06 0.16 0.07 0.13
SLD-Weak (Tax = 1) 0.15 0.07 0.05 0.03 0.07 0.09 0.07 0.09
SLD-Weak (Tax = 2) 0.13 0.06 0.04 0.02 0.06 0.07 0.06 0.07
SLD-Weak (Tax = 3) 0.11 0.07 0.04 0.02 0.06 0.06 0.06 0.05
SLD-Medium 0.07 0.06 0.04 0.04 0.12 0.13 0.08 0.35
SLD-Medium + POSI 0.06 0.03 0.03 0.06 0.06 0.15 0.07 0.10
SLD-Medium (Tyax = 1) | 0.10 0.07 0.04 0.04 0.08 0.09 0.07 0.08
SLD-Medium (Trax = 2) | 0.09 0.05 0.02 0.01 0.07 0.07 0.05 0.04
SLD-Medium (Tiyax = 3) | 0.08 0.06 0.04 0.01 0.06 0.10 0.06 0.05
SLD-Strong 0.07 0.05 0.02 0.03 0.09 0.12 0.06 0.26
SLD-Strong + POSI 0.05 0.04 0.02 0.07 0.07 0.14 0.07 0.08
SLD-Strong (Tmax = 1) 0.07 0.06 0.01 0.02 0.08 0.09 0.06 0.03
SLD-Strong (Timax = 2) 0.06 0.06 0.02 0.03 0.07 0.07 0.06 0.04
SLD-Strong (Timax = 3) 0.06 0.06 0.01 0.02 0.06 0.08 0.05 0.03
SLD-Max 0.05 0.06 0.02 0.05 0.07 0.10 0.06 0.18
SLD-Max + POSI 0.06 0.05 0.02 0.08 0.05 0.10 0.06 0.10
SLD-Max (Tinax = 1) 0.06 0.05 0.04 0.02 0.07 0.08 0.05 0.03
SLD-Max (Tinax = 2) 0.06 0.04 0.03 0.02 0.06 0.07 0.05 0.05
SLD-Max (Tinax = 3) 0.06 0.04 0.03 0.02 0.05 0.07 0.05 0.03

Table 10: Inappropriate probability (IP) by MHSC on SD v2.1
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