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Abstract

Large Language Models (LLMs) have demon-
strated remarkable capabilities, yet their fur-
ther evolution is often hampered by the scarcity
of high-quality training data and the heavy re-
liance of traditional methods on expert-labeled
data. This reliance sets a ceiling on LLM per-
formance and is particularly challenging in
low data resource scenarios where extensive
supervision is unavailable. To address this
issue, we propose a novel paradigm named
LANCE (LANguage models as Continuous self-
Evolving data engineers) that enables LLMs
to train themselves by autonomously generat-
ing, cleaning, reviewing, and annotating data
with preference information. Our approach
demonstrates that LLMs can serve as continu-
ous self-evolving data engineers, significantly
reducing the time and cost of post-training data
construction. Through iterative fine-tuning on
Qwen?2 series models, we validate the effec-
tiveness of LANCE across various tasks, show-
ing that it can maintain high-quality data gen-
eration and continuously improve model per-
formance. Across multiple benchmark dimen-
sions, LANCE results in an average score en-
hancement of 3.64 for Qwen2-7B and 1.75 for
Qwen2-7B-Instruct. This autonomous data con-
struction paradigm not only lessens reliance on
human experts or external models but also en-
sures data aligns with human preferences, offer-
ing a scalable path for LLM self-improvement,
especially in contexts with limited supervisory
data. Code is available at: https://github.
com/Control-derek/LANCE.

1 Introduction

Large Language Models (LLMs) have exhibited
extraordinary proficiency in tackling diverse tasks,
such as natural language understanding, logical
reasoning, code generation, and mathematical rea-
soning (Dubey et al., 2024; Achiam et al., 2023;
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Figure 1: An illustration of our methodology. Tra-
ditional ML typically involves humans supervising
weaker models. Our methodology explores model self-
supervision, potentially advancing more autonomous
and capable Al systems.

Liu et al., 2024). These advancements are largely
attributed to instruction tuning (Wei et al., 2022)
and Reinforcement Learning from Human Feed-
back (RLHF) (Stiennon et al., 2020), and these
approaches have significantly improved the perfor-
mance of LLMs using quality data. High-quality
data not only enhances the precision and reliabil-
ity of models but also ensures that the outputs are
better aligned with human values and preferences
(Wang et al., 2023b).

However, with the rapid development of LLMs,
the acquisition of high-quality data becomes in-
creasingly challenging (Penedo et al., 2023). LLM
training is rapidly depleting high-quality data
sources, with projections from Villalobos et al.
(2024) indicating an exhaustion of public human-
generated text data between 2026 and 2032, neces-
sitating new high-quality data for continued LLM
advancement. Furthermore, reliance on human
experts for data curation is time-consuming and
costly (Villalobos et al., 2024). As models advance
towards capabilities potentially extending beyond
current human expertise (Burns et al., 2024), hu-
man supervisory signals might diminish in utility,
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and human-generated data quality could become a
bottleneck (Burns et al., 2024). Existing solutions
for these data challenges include synthetic data
generation via teacher LLMs (Lee et al., 2024; Dai
et al., 2025; Chen et al., 2024a), which depend on
external supervision. Other approaches advocate
for self-tuning with LLM-constructed data (Zelik-
man et al., 2022; Wang et al., 2023a; Gulcehre
et al., 2023), but these often lack comprehensive
coverage of the entire post-training data lifecycle
(Dubey et al., 2024).

To address these challenges, we propose LANCE,
anovel training paradigm empowering LLMs to au-
tonomously generate, clean, review, and annotate
data with preference information for self-training.
This approach exemplifies how language models
can operate as continuous self-evolving data engi-
neers, minimizing human intervention and external
resources. The process begins with the model re-
viewing the seed dataset. It then generates new
instruction data to cover distributional deficiencies
or preference data to enhance response quality. Af-
ter cleaning and review, this new data fuels self-
training. This iterative process can continuously
improve model performance. LANCE autonomously
constructs data for model post-training, eliminating
the need for human or external model involvement,
markedly reducing time and cost. An illustration of
our methodology is provided in Figure 1. This self-
supervised approach shifts from human-supervised
learning to autonomous self-evolution. By enabling
the model to continuously generate and refine its
own data, thereby iteratively enhancing its perfor-
mance and expanding the dataset’s utility, LANCE
offers a truly scalable path towards more capable
Al especially valuable in low-resource contexts.

To evaluate our method, we conduct iterative
fine-tuning on different models and assess their
capabilities in various aspects such as scientific
reasoning, commonsense reasoning, and mathemat-
ical reasoning. Even with iterative processing on
a small dataset, the model’s average performance
across various tasks rises, with individual metrics
remaining stable or improving. The experimental
results demonstrate LANCE’s effectiveness in en-
abling continuous model improvement through au-
tonomous data processing. The consistent perfor-
mance gains across multiple reasoning tasks sug-
gest the potential of this self-evolving approach for
advancing model intelligence. Importantly, our ap-
proach ensures efficient and cost-effective data gen-
eration, markedly reducing the reliance on human

intervention or external models. This autonomous
capability contributes valuable insights to develop-
ing more autonomous and highly capable Al

In summary, our contributions are as follows: (1)
We propose LANCE, a novel training paradigm,
which enables LLMs to autonomously gener-
ate, clean, review, and annotate data for self-
improvement, substantially reducing time, expense,
and the need for extensive supervisory signals
in post-training data preparation. (2) LANCE au-
tonomously manages the entire post-training data
construction process, enhancing data generation ef-
ficiency and quality while boosting model perfor-
mance across diverse tasks. (3) LANCE enhances
mathematical reasoning, improving both elemen-
tary and advanced tasks as well as multilingual pro-
ficiency, despite relying solely on general-purpose
data for training data generation.

2 Related Work
2.1 Data Augmentation for LLMs

Data augmentation techniques enhance LLMs’
training data. For example, Alpaca (Taori et al.,
2023) uses text-davinci-003 (Ouyang et al., 2022)
to generate data for fine-tuning a 7B LLaMA (Tou-
vron et al., 2023) model. CoAnnotating (Li et al.,
2023) employs human-LLM collaboration for ef-
ficient annotation. ReST-MCTS* (Zhang et al.,
2024) integrates process reward with MCTS* to
collect higher-quality reasoning traces. However,
this approach is limited to tasks requiring ground-
truth data. These methods often rely on external
models, human intervention, or specific task con-
straints, increasing costs and limiting scalability.

2.2 Self-Evolving LLLMs

Self-instruct (Wang et al., 2023a) harnesses the
LLM itself to construct instruction data, iteratively
enhancing the model’s instruction-following capa-
bility through SFT. Instruction backtranslation (Li
et al., 2024) augments unlabeled data with an in-
struction prediction model but requires substantial
input. Self-rewarding (Yuan et al., 2024) employs
the LLM itself as a reward model, iteratively train-
ing with DPO (Rafailov et al., 2024), improving
both the policy and reward models. SPIN (Chen
et al., 2024b) aligns models with human prefer-
ences through self-play but is limited by data distri-
bution. Similarly, SPPO (Wu et al., 2024b) approxi-
mates the Nash equilibrium through iterative policy
updates, relying on an external reward model.
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Figure 2: Overview of LANCE. Cycle begins at t = 0 with pre-annotated seed data Seedy. Each step ¢: M, guided
by a Constitution, reviews Seed;, then generates instruction/preference data via Post-training data construction
full-cycle. M, is fine-tuned on instruction data (NLL) yielding M, then on preference data (PLR) yielding MP.
For the next iteration, M becomes M, 1, and newly generated samples are merged with Seed; to form Seed; ;.

LANCE distinguishes itself by autonomously
engineering the entire post-training data lifecycle:
generating, cleaning, reviewing, and annotating
data with preference information. It uniquely uses
the LLM as an internal, dynamic reward model and
reviewer to identify and fix seed data deficiencies.
This allows LANCE to expand beyond the initial
data distribution without external models or expert
annotation, driving continuous self-improvement
from a small seed dataset via iterative data con-
struction, SFT, and DPO.

3 Methodology

Figure 2 illustrates an overview of our approach.
Starting with a small seed dataset, the model
generates instruction data and preference data
through the pipeline, which are used to optimize
the model via Negative Log-Likelihood (NLL) and
Preference-driven Likelihood Ratio (PLR). The re-
sulting model serves as the starting point for the
next iteration. By repeating this cycle, the model’s
overall performance is continuously improved.

3.1 Preliminaries

Supervised Fine-Tuning (SFT) SFT, also known
as instruction tuning, is typically applied to a pre-
trained LLM to enhance its ability to understand
and follow instructions. For a given model My, the
training dataset D = {(z;, ;) }}*, consists of N
instruction-response pairs (z,y). During SFT, the
LLM is trained to minimize the NLL loss:

T

Ls = —Eps[Y _ log(Mi(ykly<s, )] (1)
k=1

where T' represents the length of response y. From
Equation 1, Lg attains its minimum when the dis-
tribution of M; coincides with the conditional prob-
ability distribution p(y|x) of the responses in D,
Reinforcement Learning from Human Feedback
(RLHF) RLHF trains models to learn human pref-
erences from human feedback through reinforce-
ment learning, enabling responses that align with
human expectations. This approach plays a crucial
role in building safe, high-performance, and con-
trollable Al systems (Ouyang et al., 2022). Direct
Preference Optimization (DPO) (Rafailov et al.,
2024) eliminates the need for a reward model by
directly using human preferences. Given the SFT
model ;> and the model under optimization M/,
the preference dataset D = {(x;, y%, y)}I¥, is
used for training, where y* and y' denote the pre-
ferred and dispreferred responses, aiming to mini-
mize the PLR loss:

Lp = —Eprllog o(#(z,y") — #(z,y')] ()
In this context, #(x, y*) and #(z, y') represent the
reward values assigned by the model under opti-
mization, MY, and the reference model, M/, to
the preferred response y* and the dispreferred re-

sponse ¥/, respectively. They are computed as:
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M (ylx)
M§ (y|z)
where 8 > 0 controls the deviation from the base
reference policy, namely the initial SFT model Mts .

7(x,y) = Plog 3)

3.2 Initialization

Seed Data Our seed data comprises two compo-
nents, randomly mixed: (i) A small labeled dataset,
providing the initial basis for new data sampling.
(i1) A review dataset with prompts containing an
instruction and a response, and outputs detailing
the rationale and score.
Large Language Model The initial model M for
the iterative loop is an LLM fine-tuned (SFT) on
the mixed seed data. This SFT provides M, with
foundational instruction-following and data review
capabilities, crucial for iteration. The model, start-
ing from My, continues to improve through subse-
quent iterations, evolving into My — - -+ — My —
- — My, where t denotes the current iteration,
with the process beginning at ¢ = 0 and concluding
att =N — 1.

3.3 Post-training data construction

First, the seed data is reviewed using a language
model to assess quality and identify deficiencies.
Next, reward-based generation is employed to ei-
ther enhance low-quality data or create preference
pairs for high-quality data. Finally, the generated
data undergoes rigorous filtering and is selectively
added to the training datasets, ensuring high-quality
instruction tuning and preference learning.
Review Seed data. The distribution of examples in
an instruction tuning dataset is often uneven, with
some topics or tasks having lower-quality instruc-
tion data than others. When such data is used for
training, it may result in a language model with
potential deficiencies in certain capabilities. Zheng
et al. (2023) demonstrated the potential of LLM
as a judge, showing that a well-trained LLLM can
achieve high agreement with human evaluations.
Based on these insights, we utilize the language
model M, to review the seed data to identify distri-
bution anomalies and capability gaps.

Inspired by Constitutional Al (Bai et al., 2022),
we define a constitution C as a set of principles
including clarity, usefulness, challenge, safety, pro-
fessionalism, and guidance. For each seed example
(m5,y;) € D4, My conducts multiple reviews:

{(sits rir) 1Ty ~ Enr, (2, 93 [C) 4)

where &), is the evaluation operator of model M;
conditioned on the constitution C, producing Kp
distinct review tuples, each comprising a scalar
quality score s;; € [0,10] and a textual rationale
ri,. An aggregated quality metric, S;, is then de-
rived, typically the mean of the manifest scores:
SZ‘ = %R Z L Sik-

Reward-Based Generation. For each seed exam-
ple, we compare the reward value S; to a given
threshold V' € [0, 10] (see Appendix H for selec-
tion analysis). Based on this comparison, we clas-
sify examples into two sets: low-quality examples
Diq = {(zi, i) | Si < V} and high-quality exam-
plCS Dhq == {(CEl,yZ) ‘ SZ > V}

For examples in D4, we address data distribu-
tion deficiencies using few-shot learning (Brown
et al., 2020) and reasoning-based prompting. For
each (z;,y;) € D)y, the model generates K new
instructions {x;J e = Mi(wi,yi; P®) using a
few-shot prompt P°. Subsequently, M; generates
responses: ;= M (x; ;). The resulting pairs
{(x;J,y;j)}fVJfl explore the same topics as the
original instructions but with higher quality.

For examples in Dyq, we enhance the dataset by

generating intentionally flawed responses. For each
(xi,vi) € Dpq, the model generates K flawed re-
sponses {yg le = M;(x;,y:; PP). These flawed
responses and the original ones are sorted based on
their reward values, forming preference pairs for
preference learning.
Filtering and Training Data Construction. To
construct a high-quality training dataset, the gener-
ated data undergo a rigorous filtering process based
on sequential projection operators:

(I’,y)f = HSOHL(:U7Z/) (5)

where 11, is a length-based filter (removing outliers
based on token count) and Ilg is a semantic redun-
dancy filter (e.g., using ROUGE-L (Lin, 2004) to
discard instances overly similar to existing corpus
entries, mitigating diversity collapse (Wu et al.,
2024a)). Let (l’;j, y;j)f and (x;, ygj)f represent
(ac;j, y;j) and (z;, yflj) cleaned respectively.

After these computationally inexpensive clean-
ing steps, we utilize M; to reward newly gener-
ated data via Equation 4. For instruction tuning,
data with a reward S; greater than V are first col-
lected into the dataset D}, which is then merged
with the instruction dataset D°. This step can be
viewed as model-adjudicated rejection sampling:
Dy = {(x;;, ;) | S > V}. The instruction
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dataset D, initialized from D,?eed, is then updated
by merging it with D® « DS U Dts.

For data intended for preference training, we
compare the rewards of each of the two responses.
Let 5‘? and Sf denote the reward values of the two
responses for the i-th instruction. If S¢ > S?, the
first item is used as the preferred response and the
second as the dispreferred response; otherwise, the
roles are reversed. Formally, the preference pair
for the i-th instruction is constructed as:

(zi,yf y?) i Sf> S,

6
(zi,9%,y2) otherwise, ©)

where x; is the instruction, y;” is the preferred re-
sponse, and yﬁ is the dispreferred response. These
preference pairs are collected into a temporary pref-
erence dataset DY = {(z;,y%,y})}. The prefer-
ence dataset DT, initialized as an empty set ¢, is
then updated by merging it with D¥ < DF U DF .

3.4 Language Models as Continuous
Self-Evolving Data Engineers

The core of LANCE lies in its ability to continuously
refine and evolve language models through iterative
data engineering. Initially, the algorithm uses the
initial seed data Seedy and the language model M
to perform SFT, yielding the initial model M. In
each iteration ¢ (from 0 to N — 1), it generates two
datasets DI’ and D} using the method described
in Section 3.3, which update the preference dataset
D and the supervised dataset D°, respectively.
The supervised dataset D is used to fine-tune M
through SFT, producing the model M;°. Then, the
preference dataset D' is used for DPO on M},
yielding the model M. This model M}/ is then
directly used as the model for the next iteration,
denoted My 1. After N — 1 rounds of iteration, the
final model M obtained is a more powerful lan-
guage model. Algorithm 1 in Appendix B provides
a detailed description of LANCE.

4 Experiments

4.1 Experimental Setup

Models We used Qwen2-7B and Qwen2-7B-
Instruct (Yang et al., 2024) as the backbone models
to assess the effectiveness of our training paradigm
across different model alignment phases (other
model experiments in Appendix I).

Datasets We construct the seed dataset from two
sources: (1) 3,184 examples sampled from Ultra-
Chat (Ding et al., 2023), and (2) 5,632 examples

from OpenAssistant Conversations (Kopf et al.,
2024), which include human-labeled scores. Us-
ing Llama3-70B (Dubey et al., 2024), we generate
reward rationales and scores, retaining only those
consistent with the human labels.

Baselines We employ several representative meth-
ods as our baselines: (1) SFT (Supervised Fine-
Tuning): The starting point for all self-evolution
methods. (2) Self-Instruct (Wang et al., 2023a):
Enhances instruction-following by generating new
instruction data using the LLM itself. (3) SPIN
(Chen et al., 2024b): A self-evolution approach that
leverages self-play fine-tuning to improve the LLM.
(4) I-SHEEP (Liang et al., 2024): A self-alignment
method where the LLM generates and assesses its
own training data to achieve self-improvement.
Benchmarks We assess our model using a com-
prehensive suite of benchmarks aligned with the
Huggingface Open LLM Leaderboard (Beeching
et al., 2023), including HellaSwag (Zellers et al.,
2019) and Winogrande (Sakaguchi et al., 2020) for
commonsense reasoning, MMLU (Hendrycks et al.,
2021) for multi-domain knowledge, TruthfulQA
(Lin et al., 2022) for accuracy, GSM8K (Cobbe
et al., 2021) for mathematical reasoning, and ARC-
Challenge (Clark et al., 2018) for scientific reason-
ing. Additionally, we assess the model’s iterative
improvements in mathematical reasoning abilities
using MATH (Hendrycks et al., 2021), Olympiad-
Bench (He et al., 2024), MGSM (Shi et al., 2023),
and Minerva Math (Lewkowycz et al., 2022). The
specific evaluation settings for these benchmarks
are detailed in Appendix C. Additionally, Appendix
D details the hyperparameter settings used during
the sampling and training processes.

4.2 LANCE Improves Benchmark Performance

Table 1 presents the results of LANCE and other it-
erative self-evolution methods on Qwen2 across
multiple benchmarks, showing their performance
at optimal iteration rounds. Figure 3 illustrates
the average performance of these methods across
each iteration round. Notably, our approach demon-
strates strong performance both in post-training the
pre-trained model and in further refining the fully
trained model. Appendix E shows performance
on each benchmark per iteration, and Appendix F
tracks model performance after each step.

For the average scores, LANCE shows an improve-
ment of 3.64 on Qwen2-7B over the initial model
(SFT), and 1.75 on Qwen2-7B-Instruct. The most
notable improvement is in mathematical abilities.
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HuggingFace Open LLM Leaderboard

Backbone | Method | Average | o fijlaSwag MMLU TruthfulQA GSMSK Winogrande
SFT 64.60 51.11 78.63 68.71 55.15 60.96 73.01
Self-Instruct | 64.66 006 | 52.39 78.34 69.19 50.30 65.20 72.53
S SPIN 68.00 +341) | 50.43 78.98 69.68 55.35 81.43 72.14
I-SHEEP | 67.06 (+246) | 51.02 78.18 68.34 53.72 78.54 72.53
LANCE 68.24 :3.64) | 50.68 78.76 69.31 55.54 82.11 73.01
< SFT 67.48 53.07 78.32 68.10 53.96 79.83 71.59
g Self-Instruct | 67.94 047 | 54.44 79.63 69.94 52.67 81.05 69.93
é’ SPIN 68.41 (093 | 53.07 79.72 69.80 55.27 82.03 70.56
A I-SHEEP | 68.67 +1.20) | 53.16 79.95 69.61 57.13 82.34 69.85
= LANCE 69.22 (+1.75) | 55.89 79.74 69.58 55.62 83.55 70.96

Table 1: Performance of multiple self-evolution methods at their optimal iteration rounds across various
benchmarks on Qwen2. SFT represents the initial model obtained through SFT on the seed dataset. Bold
values denote the best results achieved, underlined values signify the second-best results, red values highlight the
improvement over the base model. LANCE outperforms other baselines in terms of average performance across these
benchmarks, often ranking as the top or second-best in most benchmarks.

MGSM_latin Olympiad Minerva
Model Average | GSMSK ~ MATH de SwW es fr average Bench Math
SFT ‘ 40.32 ‘ 60.96 4174 5280 1.20 60.40 58.00 43.10 11.10 44.68
Self-Instruct ‘ 31.63 ‘ 65.20 1198 29.60 6.00 42.80 34.80 28.30 8.00 44.68
SPIN Iterl 37.56 81.43 25.62 2040 0.80 36.00 34.00 22.80 12.30 45.64
SPIN Iter2 39.87 81.96 26.00 54.80 0.00 4320 36.80 33.70 12.30 45.40
SPIN Iter3 39.97 81.58 2644 5440 0.00 43.60 36.00 33.50 12.70 45.62
SPIN Iter4 34.68 80.74 17.80  46.40 0.00 20.00 4.00 17.60 12.00 45.28
I-SHEERP Iterl 37.86 73.09 3450 4720 2.00 6240 44.00 38.90 7.10 35.70
I-SHEEP Iter2 | 38.05 74.37 36.38 44.00 0.80 57.60 45.60 37.00 7.10 35.38
I-SHEEP Iter3 | 38.57 70.96 39.80 3520 2.80 57.20 51.60 36.70 8.10 37.28
I-SHEEP Iterd | 38.96 78.54 3440 41.60 1.60 56.40 44.40 36.00 7.40 38.46
LANCE Iterl 43.51 67.32 4190 6560 280 7040 67.20 51.50 11.40 45.44
LANCE Iter2 44.96 66.64 46.54 66.80 3.60 71.60 66.80 52.20 13.60 45.84
LANCE Iter3 47.54 80.14 4722 6560 6.80 68.00 6520 51.40 13.60 45.35
LANCE Iter4 48.83 82.11 48.12 67.60 640 72.00 6640 53.10 14.70 46.10

Table 2: Evolution of mathematical reasoning capabilities in multiple self-evolving algorithms on Qwen2-7B.

On GSMSK, Qwen2-7B improves by 21.15, while
Qwen2-7B-Instruct improves by 3.72. For MMLU,
a benchmark covering a wide range of domains
and significant challenges, our method also yields
improvements: Qwen2-7B improves by 0.60, and
Qwen2-7B-Instruct by 1.48. Other abilities either
improve or remain largely unchanged.

Regarding iterative self-evolution, our method
demonstrates notable improvements over iterations,
particularly for the pre-trained model (Qwen2-
7B), as shown in the line chart (Figure 3). For
the fully post-trained model (Qwen2-7B-Instruct),
while intermediate iterations exhibit some fluctua-
tions, the final iteration achieves a substantial per-
formance gain, surpassing all previous rounds and

reaching the highest performance level. This dif-
ference likely arises because Qwen2-7B-Instruct,
having undergone extensive post-training, requires
higher-quality data for further improvement. Con-
sequently, notable gains only emerge after multiple
iterations generate sufficiently high-quality data.
In contrast, SPIN shows improvements only in
the first round, with performance declining in sub-
sequent rounds. This may be explained by Chen
et al. (2024b), who establish that SPIN converges
only when the LLM’s distribution aligns with the
seed data. The limited seed data in our experi-
ments likely restricts SPIN’s gains, whereas LANCE
can generate data beyond the seed distribution, en-
abling continuous improvement. Further discus-
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Figure 3: Various self-evolution methods show av-
erage scores across benchmarks. The Self-Instruct
method, without iterative processes, sampled 50k exam-
ples for self-training. "Iter ¢" denotes the ¢-th iteration.

sion and distribution visualization can be found in
Appendix A, with case studies in Appendix J.

I-SHEEP exhibits improvement in the first itera-
tion on Qwen2-7B-Instruct but suffers from perfor-
mance degradation in later iterations. On Qwen2-
7B, I-SHEEP demonstrates an oscillating pattern,
with performance rising in iterations 1 and 2, drop-
ping in iteration 3, and recovering in iteration
4. However, even after this recovery, -SHEEP’s
final performance remains markedly lower than
LANCE’s, with a gap of 1.18. Due to computa-
tional constraints, we conducted four rounds of it-
erative experiments with N = 5. The results show
consistent performance improvements in each it-
eration, indicating potential for further gains with
additional iterations and highlighting the promise
of self-evolving language models.

4.3 LANCE Improves Math Skills

Table 2 compares Qwen2-7B’s performance under
various self-evolution algorithms on mathemati-
cal reasoning benchmarks. We included GSM8K,
a benchmark from the Open LLM Leaderboard
that evaluates elementary mathematical abilities,
along with MATH, Olympiad Bench, and Minerva
Math to assess advanced reasoning capabilities on
competition-level and even Olympiad-level mathe-
matical problems. Furthermore, MGSM was used
to assess multilingual mathematical proficiency.
On the benchmark of elementary mathematical
abilities (as measured by GSM8K), all methods

Model Full w/odpo w/o sft
SFT 64.60  64.60 64.60
LANCE Iterl 65.58  66.89 61.57
LANCE Iter2 65.65  67.08 61.00
LANCE Iter3 67.92  67.85 59.23
LANCE Iter4 68.24  67.79 64.08

Table 3: The changes in average performance of the
Qwen2-7B model when certain steps are removed from
LANCE. SFT serves as the starting point for all iterations.
"w/o dpo" excludes DPO-related steps, while "w/o sft"
removes SFT-related steps. The results underscore the
necessity of a complete pipeline, as the absence of either
component leads to slow and unstable improvement.

improved the SFT model’s performance. LANCE
also exhibited notable advantages in competition-
level mathematical abilities. Specifically, on the
MATH benchmark, only LANCE achieved a notable
improvement, increasing accuracy by 6.38. On the
Olympiad Bench, while both LANCE and SPIN im-
proved accuracy, SPIN’s best result yielded only
a modest gain of 1.60, whereas LANCE achieved a
more substantial improvement of 3.60. Addition-
ally, on the Minerva Math benchmark, both LANCE
and SPIN enhanced model performance with com-
parable gains. This discrepancy may stem from
the following: improvements in elementary mathe-
matical abilities rely on pattern memorization and
optimization of simple problems, while advance-
ments in higher-level mathematical abilities require
methods capable of generating data with complex
reasoning logic. The accurate generation of data
involving complex reasoning may benefit from our
approach of requiring the model to engage in thor-
ough deliberation before producing an answer dur-
ing both the generation and review phases. This
deliberate reasoning process enhances the model’s
understanding of the input, thereby improving the
quality and accuracy of the generated data.

In terms of multilingual mathematical abilities
(as evaluated by MGSM), despite the training
set being exclusively in English, the model also
achieved substantial improvements in mathemati-
cal proficiency across other Latin-based languages.
Notably, only our algorithm demonstrated this
cross-lingual transfer capability. This phenomenon
may be explained by LANCE’s ability to generate
high-quality mathematical data that genuinely en-
hances the model’s reasoning capabilities, enabling
strong generalization across linguistic contexts.
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LANCE Outperforms UltraChat with Superior Data Efficiency
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Figure 4: Qwen2-7B SFT performance with different
data sources by sampled data amount. Dot size indi-
cates supervisory signal efficiency (model performance
/ amount of supervisory signal). show
where LANCE outperforms UltraChat.

The notable improvement in mathematical rea-
soning, despite a generic seed dataset, is attributed
to LANCE’s core mechanics. The autonomous data
generation and review processes inherently compel
the model to engage in multi-step logical reason-
ing. This engagement appears to embed richer
logical structures within the self-generated data,
even when originating from general-purpose in-
puts. Consequently, the model is trained on data
that, through its construction process, implicitly
carries more complex reasoning patterns, thereby
fostering its mathematical problem-solving skills
and highlighting LANCE’s potential to effectively
leverage general-purpose data for specialized capa-
bility enhancement.

4.4 Ablation Studies

Table 3 illustrates the impact on the Qwen2-7B
model’s average performance when either SFT-
related or DPO-related components are omitted.
When the DPO-related components are removed,
the model’s performance can still improve itera-
tively in the first three iterations, but at a slower
rate compared to the full pipeline, and performance
starts to decline after the fourth iteration. This
suggests that DPO components are instrumental in
accelerating performance gains and also essential
for sustaining long-term improvements. When the
SFT-related components are removed, the model’s
performance consistently declines in the first three
iterations and only partially recovers in iter4, re-
maining below the initial performance. This high-
lights the critical role of SFT in maintaining the
model’s foundational stability and ensuring steady
progress throughout the training process. These
findings collectively emphasize the necessity of
a complete and well-integrated data generation
and training pipeline. The interplay between SFT
and DPO components appears to be synergistic:

SFT provides the foundational stability, while DPO
drives faster and more sustainable improvements.
Table 9 in Appendix G provides a detailed break-
down of the model’s performance across each test
benchmark throughout the iterations.

4.5 Supervisory Signal Efficiency of LANCE

To evaluate LANCE’s low-resource efficiency, we
compared its generated SFT data against randomly
sampled UltraChat data (Figure 4). A key distinc-
tion is the supervisory cost for SFT data generation:
LANCE consistently uses only an initial 8,816 seed
examples, regardless of the final SFT dataset size,
whereas UltraChat’s required supervision scales
with the number of SFT samples. This smaller
and fixed supervisory footprint not only substan-
tially reduces the time and cost of post-training
data preparation but also enables LANCE to achieve
superior model performance when equivalent SFT
data volumes are used for fine-tuning. This trans-
lates to higher data efficiency for LANCE, visually
represented in Figure 4 by its larger data point sizes
as the SFT dataset expands, whereas UltraChat’s
corresponding data points become smaller. Essen-
tially, while UltraChat’s gains require an increasing
supervisory budget, LANCE excels at amplifying a
small, fixed supervisory signal into substantial per-
formance improvements, underscoring its value as
a resource-efficient paradigm for advancing LLMs
when extensive labeled data is scarce.

5 Conclusion

We introduce LANCE, a novel training paradigm
where LLMs autonomously generate, clean, re-
view, and annotate data with preference informa-
tion, thereby reducing post-training data construc-
tion time and cost. A key strength of LANCE is
its efficiency in leveraging supervisory signals, en-
abling substantial model improvements even from a
minimal initial seed dataset. This paradigm proves
effective for both the initial post-training of pre-
trained models and the continued post-training of
already tuned models, demonstrating consistent
performance gains across diverse tasks and out-
performing other self-evolution methods. Notably,
LANCE significantly boosts mathematical reason-
ing capabilities, even when its training originates
from general-purpose datasets. By ensuring that au-
tonomously generated data aligns with human pref-
erences while minimizing the resource demands
for high-quality data creation, especially through
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its efficient use of supervision, LANCE offers a scal-
able and resource-efficient path toward developing
more advanced and autonomous Al systems.

Limitation

Our experimental results demonstrate that while
LANCE substantially enhances the model’s math-
ematical reasoning capabilities, its improvement
on knowledge-dependent tasks remains limited.
Specifically, in the absence of external supervision
signals, the self-evolved data cannot introduce new
knowledge beyond the model’s existing capacity.
This inherent limitation suggests that self-evolution
may have restricted potential in augmenting the
model’s knowledge base, making it more suitable
for enhancing weakly knowledge-dependent capa-
bilities. Addressing the enhancement of strongly
knowledge-dependent abilities remains an open
challenge for future research.

Furthermore, while LANCE demonstrates strong
efficacy when initial supervisory data is scarce
(i.e., in data-low-resource scenarios) by operating
with only a small seed dataset and autonomously
generating substantial training data, its application
in compute-low-resource settings presents a chal-
lenge. The process involves multiple iterations of
sampling, reviewing, and annotation, which intro-
duces non-negligible computational overhead. This
computational cost represents a limitation that ne-
cessitates further optimization in future work.

Ethic Statement

In this study, all datasets and models utilized are
publicly available and adhere to their respective
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Appendix

A Data Distribution Visualization

t-SNE Visualization of Datasets Distribution

Dimension 2

Dimension 1

Figure 5: Visualization of the distribution of seed data
and synthetic data generated by LANCE

We sampled 1000 examples each from the seed
dataset, the synthetic SFT dataset, and the DPO
dataset. Using the stella_en_400M_v5 model
(Zhang et al., 2025), we extracted embeddings for
each example and applied t-SNE for dimensionality
reduction, visualized in Figure 5.

The visualization reveals that the synthetic data
generated by LANCE not only encompasses the dis-
tribution range of the original seed data but also
explores new regions in the embedding space. This
indicates that LANCE can produce data that aligns
with a broader and more diverse distribution, ef-
fectively expanding the original data distribution.
Such expansion is particularly valuable for improv-
ing model generalization, as it introduces variabil-
ity that better reflects real-world scenarios.

Notably, the SFT dataset exhibits the widest dis-
tribution range among the three datasets. This can
be attributed to the generation of new instructions
during its construction, which introduces additional
diversity and complexity to the data. This suggests
that the instruction generation process in LANCE
plays a critical role in enhancing data diversity and
coverage.

Overall, these findings highlight the effective-
ness of LANCE in generating high-quality synthetic
data that not only preserves the characteristics
of the original seed data but also extends its
boundaries, enabling more robust and generaliz-
able model training.

B Algorithm Description

In this section, we present the detailed implementa-
tion of our proposed framework, Language Mod-
els as Continuous Self-Evolving Data Engineers
(LANCE), as described in Algorithm 1. The algo-
rithm outlines the key steps and methodologies
employed to achieve continuous self-evolving data
engineering for enhancing language models.

C Evaluation Setting

Benchmarks num shots  version eval tools
ARC-C 0 1.0 LM Evaluation Harness'
HellaSwag 0 1.0 LM Evaluation Harness
MMLU 0 1.0 LM Evaluation Harness
Truthful QA 6 2.0 LM Evaluation Harness
Winogrande 0 1.0 LM Evaluation Harness
Minerva Math 4 1.0 LM Evaluation Harness
GSM8K 4 1d7fe4 OpenCompass>
MATH 0 393424 OpenCompass
MGSM 0 d967bc OpenCompass
Olympiad Bench 0 Qwen2.5-Math?

Table 4: Details of the evaluation settings for all bench-
marks in this study.

Figure 4 provides an overview of the evalua-
tion details for all benchmarks included in this
study. The num shots’ column indicates the num-
ber of few-shot examples provided during evalua-
tion, which varies across benchmarks, with values
such as 0, 4, or 6 depending on the task. The ’ver-
sion’ column specifies the version of the evaluation
configuration file used, ensuring reproducibility
and consistency in the assessment process. Lastly,
the ’eval tools’ column identifies the evaluation
frameworks employed, such as LM Evaluation Har-
ness and OpenCompass, along with their respective
GitHub repositories for reference. This table encap-
sulates the key parameters and tools used to ensure
a rigorous and standardized evaluation across all
benchmarks.

D Hyperparameter Settings

In this section, we provide detailed descriptions
of the hyperparameters used during the sampling
and training processes. All experiments were con-
ducted using two NVIDIA RTX A6000 GPUs,
each equipped with 48GB VRAM, ensuring ef-
ficient data generation and model training. Table 5

"https://github.com/EleutherAI/
Im-evaluation-harness

2https://github.com/open-compass/opencompass

3https://github.com/QwenLM/QwenZ.5—Math
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Algorithm 1 Language Models as Continuous Self-Evolving Data Engineers

Input: Initial seed data D(Sf‘ed, initial language model M, iteration count N, quality threshold V'
Output: More powerful language model My

1: Initialize D < D4, DP « ¢, My < SFT(M, D¥)

2: fort =0to N —1do

3: [/ Step 1: Review seed data
4: ift = 0 then
5: for each (z;,y;) € D{*d do
6: Compute {(s;, rik>}kKjl ~ &, (zi,y;|C) using Equation 4
7: Aggregate quality metric S; = %R >k Sik
8: end for
9:  end if
10:  Initialize low-quality and high-quality examples Diq <~ ¢, Dypq < ¢
11:  for each (z;,y;,S;) € D** do
12: if S; < V then
13: qu = qu U {(I‘Z, yl)}
14: else
15: Dhq = Dhq U {(l‘l, yz)}
16: end if
17:  end for
18:  // Step 2: Reward-based generation
19:  for each (z;,y;) € Diq do
20: Generate K new instructions {x;] }le = M;(xi, yi; P?)
21 Generate the corresponding responses {y;J }fil = My(x, )
22:  end for
23:  for each (z;,y;) € Dpq do
24: Generate K flawed responses {ylﬂ] }le = My(x;,yi; PP)
25:  end for
26: /[ Step 3: Data cleaning and annotation
27:  Clean generated data using length-based filtering Iy, and semantic redundancy filtering Ils:
(x;jv y;])f =1Ilgo H]L(x;j’ y;j)v (4, yg)f = Mg o Iy, (w, y?])
28: Initialize temporary instruction and preference dataset DY < ¢, Df « ¢
29:  Compute rewards S; for {(ac;-j, y;j)f} U { (s, y?j)f} like lines 5-10.
30:  Update seed data D;fff — Djeed gy {(:z:;j, y;j,é_’ij)f} U { (=i, y?j,gij)f}
31: if (2, ) € {(:L';j,y;j)f} and S; < V then
32: Dy < Dy U{(i,9i)}
33:  end if
34: for each pair yf, Yl e {zv/%}f-(:1 U{yi} do
35: if S* > S? then
36 DF « DFP U {z;,y%, 40}
37: else
38: DF « DF U {z, 9%, v¢}
39: end if
40:  end for
41:  Update supervised and preference dataset D° < D° U Dy, D* <~ DY u DF
42: [/ Step 4: Model fine-tuning
43:  Fine-tune M; on D? via SFT (Equation 1) to obtain M}’
44:  Perform DPO (Equation 2) on M using D* to obtain M}
45:  Set My, 1 < MP
46: end for
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outlines the hyperparameters employed during the
sampling phase with LANCE, which includes key
settings such as the threshold V/, set to 7.0, which
acts as the reward cutoff for distinguishing high-
quality data from low-quality data. The sample
size K, set to 4, determines the number of sam-
ples generated during both the data generation and
review phases. To maintain randomness and con-
trol the diversity of outputs, Top-p is set to 0.9,
and Temperature is set to 0.7. Additionally, Max
New Tokens limits the maximum number of to-
kens generated during sampling to 512, while Min
Length and Max Length define the acceptable to-
ken length range for filtering, set to 10 and 4096,
respectively.

Parameter Value
Threshold V/ 7.0
Sample nums K 4
Top-p 0.9
Temperature 0.7
Max new tokens 512
Min length 10
Max length 4096

Table 5: The hyperparameters used during the sampling
process with LANCE.

Meanwhile, Table 6 details the hyperparameters
used during the training phase, where the model
is fine-tuned on the generated data. For SFT, the
learning rate is set to 3e-5, with a batch size of 2
and gradient accumulation steps of 2, trained over
1 epoch. A warmup ratio of 0.01 is applied, and
the cutoff length is set to 4096. For DPO, the learn-
ing rate is reduced to 5e-6, with a batch size of 1
and gradient accumulation steps of 8, also trained
over 1 epoch. The warmup ratio remains at 0.01,
and the cutoff length is similarly set to 4096. The
B parameter, which controls the strength of the
preference optimization, is set to 0.2. These con-
figurations ensure a balanced and effective training
process, tailored to the specific requirements of
each method.

E Iteration details

Table 7 presents the specific scores of LANCE and
baseline methods during the iterative process across
various benchmarks, where red / green values in-
dicate improvements/declines compared to the pre-
vious iteration, respectively. For the pre-trained

model Qwen2-7B, only LANCE achieved continu-
ous performance improvement (all change values
are marked in red). Although the I-SHEEP method
showed an upward trend in the first two iterations,
it experienced a decline in the third iteration. De-
spite rebounding to the peak in the fourth iteration,
its overall performance still lags significantly be-
hind LANCE. For the fully post-trained Qwen2-7B-
Instruct model, only LANCE demonstrated sustained
improvement over multiple iterations, while other
methods showed progress only in the first itera-
tion. Notably, although LANCE exhibited a tempo-
rary performance fluctuation in the second itera-
tion, it rebounded in the third iteration and reached
the performance peak in the final iteration. These
comparative results fully validate the significant
advantages and potential of LANCE in continuously
optimizing model performance.

F Model Evolution Steps

Table 8 illustrates the impact of each step on model
performance during the implementation of LANCE.
For Qwen2-7B, although the DPO phase in the first
three iterations resulted in performance degrada-
tion, the results in Table 8 without DPO-related
components reveal that the absence of these com-
ponents leads to only slow and unstable iterative
improvements. This underscores the critical role of
DPO-related components in enhancing the model’s
ability to generate high-quality data. For Qwen2-
7B-Instruct, performance declined in the second
and third iterations but rebounded notably in the
fourth iteration, achieving substantial improvement.
These findings collectively emphasize the impor-
tance of a complete iterative training pipeline for
achieving robust and consistent performance gains.

G Ablation Details

Table 9 provides a detailed breakdown of our ab-
lation experiments, showing the performance of
LANCE with specific components removed across
each iteration step and evaluation benchmark. Be-
yond the findings discussed in Section 4.4, where
we highlighted that an incomplete pipeline leads
to unstable performance improvements or even de-
clines, we observe that removing SFT-related com-
ponents significantly degrades the model’s perfor-
mance on GSM8K. This is likely because our SFT
data construction process generates novel instruc-
tions, which enhances the model’s mathematical
and logical reasoning capabilities. In contrast, the
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Method Learning Rate Batch Size Gradient Accumulation Epochs Warmup Ratio Cutoff Length
SFT 3e-5 2 2 1 0.01 4096 -
DPO 5e-6 1 8 1 0.01 4096 0.2

Table 6: The hyperparameters used during the training process with LANCE.
Benchmarks
Base Model Average | RC HellaSwag MMLU TruthfulQA GSMBK Winogrande
SFT 64.60 51.11 78.63 68.71 55.15 60.96 73.01
Self-Instruct 50k | 64.66 0.06) | 52.39 78.34 69.19 50.30 65.20 72.53
SPIN Iterl 68.00 (+3.41) | 50.43 78.98 69.68 55.35 81.43 72.14
SPIN Iter2 67.86 -0.14) | 49.83 79.13 69.73 55.38 81.96 71.11
SPIN Iter3 67.34 (052 | 48.12 79.31 69.71 54.99 81.58 70.32
S SPIN Iter4 66.96 -0.33) | 46.16 79.38 69.66 55.66 80.74 70.17
N; I-SHEEP Iterl | 66.17 +1.57 | 50.85 78.32 68.45 53.60 73.09 72.69
4 I-SHEEP Iter2 | 66.34 +0.17) | 51.45 78.27 68.49 53.76 74.37 71.67
o I-SHEEP Iter3 | 65.75 058 | 51.11 78.09 68.29 53.85 70.96 72.22
I-SHEEP Iter4 | 67.06 +130) | 51.02 78.18 68.34 53.72 78.54 72.53
LANCE Iterl 65.58 (+0.99) | 50.85 78.45 68.96 55.53 67.32 72.38
LANCE Iter2 65.65 +0.07 | 50.51 78.94 69.41 55.97 66.64 72.45
LANCE Iter3 67.92 (+226) | 50.77 79.12 69.24 55.78 80.14 72.45
LANCE Iter4 68.24 (+0.32) | 50.68 78.76 69.31 55.54 82.11 73.01
SFT 67.48 53.07 78.32 68.10 53.96 79.83 71.59
Self-Instruct 50k | 67.94 047 | 54.44 79.63 69.94 52.67 81.05 69.93
SPIN Iterl 68.41 093 | 53.07 79.72 69.80 55.27 82.03 70.56
- SPIN Iter2 68.14 027 | 51.79 79.66 69.65 56.46 81.58 69.69
2 SPIN Iter3 68.11 -0.03) | 51.19 79.99 69.49 56.42 82.11 69.46

g SPIN Iter4 67.62 049 | 50.77 80.04 69.59 56.07 81.05 68.19

; I-SHEEP Iterl | 68.67 +120) | 53.16 79.95 69.61 57.13 82.34 69.85

E I-SHEEP Iter2 | 68.65 0.02) | 54.10 79.92 69.56 56.53 81.96 69.85

s I-SHEEP Iter3 | 68.39 027) | 53.33 79.96 69.38 55.80 82.56 69.30
5 I-SHEEP Iter4 | 68.35 004 | 53.50 79.61 69.37 55.43 82.71 69.46
LANCE Iterl 68.72 (+124) | 55.38 79.53 69.34 55.85 81.73 70.48
LANCE Iter2 68.36 (-0.36) | 55.12 79.76 69.55 55.98 80.14 69.61
LANCE Iter3 68.64 (+0.28) | 55.03 79.92 69.56 55.69 80.59 71.03
LANCE Iter4 69.22 (+0.59) | 55.89 79.74 69.58 55.62 83.55 70.96

Table 7: Experimental results of multiple self-evolution methods across various benchmarks. Red / Green
values indicate improvements / decreases compared to the previous iteration. LANCE consistently shows performance

gains across iterations, outperforming other baselines.

DPO data construction process does not produce
new instructions, which may explain its limited
impact in this regard.

H Parameter Sensitivity Analysis

Understanding the influence of hyperparameters
is crucial for assessing the robustness of a train-
ing paradigm and for optimizing its performance
across different scenarios. In this section, we
present a sensitivity analysis for a key hyperpa-
rameter within LANCE: the data filtering threshold,
denoted as V. This threshold plays a significant
role in the data selection process during the iterative

training loop. Due to computational resource con-
straints, our current analysis focuses specifically on
V', with experiments conducted on LANCE applied
to Qwen2-7B during its fourth iteration (iter4) of
self-improvement.

The data filtering threshold V' is utilized in
LANCE to discern the quality of autonomously gen-
erated data. A higher V implies stricter filtering
criteria, while a lower V' is more lenient. In the
early stages of our research, an initial analysis was
performed to determine a suitable value for V', as re-
peated adjustments during the full iterative process
would be resource-intensive. The value V' = 7.0
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Base Model Average Benchmarks
ARC HellaSwag MMLU TruthfulQA GSMS8K Winogrande

SFT 64.60 | 53.07 78.32 68.10 53.96 79.83 71.59

LANCE SFT Iterl 66.89 | 54.98 79.42 69.44 55.09 81.58 69.85

- LANCE DPO Iterl 65.58 55.38 79.53 69.34 55.85 81.73 70.48
Z LANCE SFT Iter2 67.94 | 54.01 79.64 69.61 55.00 81.12 69.46
5 LANCE DPO Iter2 | 65.65 55.12 79.76 69.55 55.98 80.14 69.61
g, LANCE SFT Iter3 68.09 | 54.01 79.52 69.71 54.76 81.27 70.17
LANCE DPO Iter3 67.92 | 55.03 79.92 69.56 55.69 80.59 71.03
LANCE SFT Iter4 68.20 | 54.61 79.49 69.53 55.41 83.17 71.11

LANCE DPO Iter4 | 68.24 | 55.89 79.74 69.58 55.62 83.55 70.96

SFT 67.48 51.11 78.63 68.71 55.15 60.96 73.01

‘g LANCE SFT Iterl 68.39 | 50.85 78.36 68.90 54.80 75.74 72.69
= LANCE DPO Iterl 68.72 | 50.85 78.45 68.96 55.53 67.32 72.38
._.‘l= LANCE SFT Iter2 68.14 | 50.85 78.77 69.01 55.07 81.35 72.61
g LANCE DPO Iter2 | 68.36 | 50.51 78.94 69.41 55.97 66.64 72.45
cé LANCE SFT Iter3 68.24 | 50.43 78.78 69.42 55.23 81.80 72.85
2 LANCE DPO Iter3 68.64 | 50.77 79.12 69.24 55.78 80.14 72.45
o LANCE SFT Iter4 68.89 | 50.94 78.64 69.41 55.41 81.96 72.85
LANCE DPO Iter4 | 69.22 | 50.68 78.76 69.31 55.54 82.11 73.01

Table 8: Evolution of Model Performance During the Implementation of LANCE. LANCE SFT Iter ¢ Denotes the
Model Fine-tuned with SFT Data After the ¢-th Iteration, and LANCE DPO Iter ¢t Represents the Model Fine-tuned

with DPO Data After the ¢-th Iteration.

Model Average Benchmarks
8¢ "ARC HellaSwag MMLU TruthfulQA GSM8K Winogrande

SFT 64.60 | 51.11 78.63 68.71 55.15 60.96 73.01

LANCE Iterl w/odpo | 66.89 50.85 78.36 68.90 54.80 75.74 72.69
LANCE Iter2 w/odpo | 67.08 | 48.63 78.21 69.11 53.87 80.97 71.67
LANCE Iter3 w/odpo | 67.85 50.51 78.65 69.03 54.78 81.80 72.30
LANCE Iter4 w/o dpo | 67.79 50.85 78.63 69.06 54.71 81.43 72.06
LANCE Iterl w/o sft 61.57 | 53.05 78.92 68.98 56.28 39.58 72.61
LANCE Iter2 w/o sft 61.00 | 51.54 78.84 68.89 56.73 37.68 72.30
LANCE Iter3 w/o sft 59.23 51.88 78.87 68.98 56.56 26.46 72.61
LANCE Iter4 w/o sft 64.08 51.79 78.94 69.06 56.22 56.25 72.22
LANCE Iterl 65.58 50.85 78.45 68.96 55.53 72.38 67.32
LANCE Iter2 65.65 50.51 78.94 69.41 55.97 66.64 72.45
LANCE Iter3 67.92 | 50.77 79.12 69.24 55.78 80.14 72.45
LANCE Iter4 68.24 | 50.68 78.76 69.31 55.54 82.11 73.01

Table 9: The performance of LANCE without SFT-related and DPO-related components on each evaluation benchmark

at every iteration step.

was selected for the main experiments presented in
this paper.

To further investigate and validate the impact
of V' on model performance, we conducted sup-
plementary experiments by varying this threshold
during the fourth iteration (iter4) of LANCE with the
Qwen2-7B model. We evaluated performance with
V set to 6.0, 7.0, and 8.0. The results, presented
in Table 10, include performance metrics across

several standard benchmarks.

The experimental results presented in Table 10
highlight the impact of the data filtering threshold
V' on the performance of LANCE.

* For V' = 7.0: This setting, which was used
for the main results reported in this paper,
yielded the best overall performance, partic-
ularly for the DPO variant (Average score
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Model Configuration | Average \ ARC HellaSwag MMLU TruthfulQA Winogrande GSMSK

SFT V=17.0 68.20 | 50.94 78.64 69.41 55.41 72.85 81.96
DPO V=7.0 68.24 | 50.68 78.76 69.31 55.54 73.01 82.11
SFT v=8.0 67.98 | 51.11 78.61 69.51 55.41 71.51 81.73
DPO V=8.0 67.60 | 51.02 78.95 69.08 55.67 71.43 79.45
SFT V=6.0 67.67 | 51.02 78.91 69.07 55.65 72.69 78.70
DPO V=6.0 67.81 50.94 78.90 69.10 5542 72.69 79.83

Table 10: Performance of LANCE (Qwen2-7B, iter4) with varying data filtering thresholds V. Scores are averaged
over benchmarks, along with individual benchmark scores. The best average performance is highlighted in bold.

of 68.24). This suggests that a threshold of
7.0 strikes an effective balance between strin-
gently filtering for high-quality data and re-
taining a sufficient volume and diversity of
examples necessary for robust model training.
The quality of data selected at this threshold
appears optimal for both the SFT and DPO
stages within the fourth iteration.

* For V' = 8.0: Increasing the threshold to 8.0
imposes stricter filtering criteria. While the
intention is to select only the highest qual-
ity data, this stricter approach also leads to
a smaller volume of data being available for
SFT and subsequent DPO. The results show
a slight decrease in average performance for
both SFT (67.98) and DPO (67.60) compared
to V = 7.0. This indicates that while data
quality is important, an overly aggressive fil-
tering strategy might discard useful training
signals or reduce data diversity to an extent
that hampers overall learning and generaliza-
tion. For instance, the GSM8K score for the
DPO model notably dropped to 79.45 from
82.11 with V = 7.0.

* For V = 6.0: Conversely, lowering the
threshold to 6.0 makes the filtering criteria
more lenient. This approach risks includ-
ing lower-quality data, which may contain
more noise, inaccuracies, or less helpful in-
structional content. The introduction of such
noise during training can negatively impact
the learning process. As observed, both SFT
(67.67) and DPO (67.81) models trained with
V' = 6.0 exhibited a decline in average perfor-
mance compared to V' = 7.0. This suggests
that the benefits of a larger dataset resulting
from lenient filtering are outweighed by the
detrimental effects of lower data quality. The
GSMSK scores, in particular, were lower for

V = 6.0 compared to V' = 7.0.

These findings are consistent with our initial
analysis and underscore that the choice of the data
filtering threshold V' is a significant factor influenc-
ing model performance within the LANCE paradigm.
An appropriately calibrated threshold is essential
to ensure that the model is trained on data that is
both high in quality and sufficient in quantity and
diversity.

I Generalization of LANCE to Other Model
Architectures

To assess the broader applicability of LANCE be-
yond the Qwen model family, and in response to
reviewer suggestions, we conducted preliminary ex-
periments applying our self-evolution paradigm to
other open-source models. This appendix presents
the results of these investigations on Zephyr and
Mistral-NeMo-12B-Instruct. These experiments
were conducted for the first two iterations of LANCE.
Experiments on Zephyr. To evaluate LANCE on
a different architectural base and to align with re-
lated research such as SPIN Chen et al. (2024b),
we applied our methodology to Zephyr, a model
derived from Mistral-7B-v0.1. We performed two
full iterations of LANCE, encompassing both Super-
vised Fine-Tuning (SFT) and Direct Preference Op-
timization (DPO) stages within each iteration. The
evaluation results across several standard bench-
marks are presented in Table 11.

The results in Table 11 demonstrate that LANCE
facilitates continuous performance improvements
on the Zephyr model through the first two itera-
tions. Notably, consistent gains are observed in the
average score, with the DPO stage in each iteration
further enhancing performance. An encouraging
trend is the improvement in multi-step reasoning
tasks, such as GSM8K, which saw an increase from
39.04 at iterO to 43.37 after DPO iter2.
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Model Configuration | Average | ARC HellaSwag MMLU TruthfulQA Winogrande GSMS8K

Zephyr iter0 ‘ 56.52 ‘ 53.16 79.38 55.90 39.72 71.90 39.04
Zephyr SFT iter]l 56.86 | 52.90 79.19 56.01 39.92 72.22 40.94
Zephyr DPO iterl 57.25 | 54.18 79.82 56.38 39.69 71.82 41.62
Zephyr SFT iter2 57.25 | 53.07 79.27 55.92 40.30 71.90 43.06
Zephyr DPO iter2 57.43 | 53.90 79.39 56.27 40.08 71.59 43.37

Table 11: Performance of LANCE applied to Zephyr over two iterations.

Model Configuration

‘Average ‘ ARC HellaSwag MMLU TruthfulQA Winogrande GSMS8SK

Mistral-NeMo-12B-Instruct iterQ ‘ 68.26 ‘ 58.19 80.51 64.67 51.41 75.45 79.30
Mistral-NeMo-12B-Instruct SFT iterl 68.39 | 58.45 80.51 64.98 52.14 74.82 79.45
Mistral-NeMo-12B-Instruct DPO iterl 68.63 59.13 80.87 65.14 52.65 74.98 79.00
Mistral-NeMo-12B-Instruct SFT iter2 68.58 58.87 80.86 65.10 52.12 75.14 79.38
Mistral-NeMo-12B-Instruct DPO iter2 | 69.05 60.67 81.64 65.11 53.49 75.53 77.86

Table 12: Performance of LANCE applied to Mistral-NeMo-12B-Instruct over two iterations.

Experiments on Mistral-NeMo-12B-Instruct. To
further investigate the scalability and applicability
of LANCE on larger models, we conducted experi-
ments on Mistral-NeMo-12B-Instruct. Similar to
the Zephyr experiments, we completed two itera-
tions of SFT and DPO. The performance metrics
are detailed in Table 12.

As shown in Table 12, LANCE also yields con-
sistent performance improvements on the larger
Mistral-NeMo-12B-Instruct model across the ini-
tial two iterations. The average score increased
from 68.26 to 69.05 after two full iterations. While
the GSM8K score showed some fluctuation and
a slight decrease in the DPO iter2, overall im-
provements were observed across most other bench-
marks, indicating the potential of LANCE to enhance
even larger language models.

The preliminary experimental results on both
Zephyr and Mistral-NeMo-12B-Instruct suggest
that LANCE is not limited to a single model family
(i.e., Qwen) and can bring performance improve-
ments to other architectures, including those of dif-
ferent sizes. Consistent gains were observed over
two iterations, particularly in average scores and on
specific reasoning tasks for Zephyr. These findings
further validate the potential for broad applicability
of our self-evolution paradigm.

J Case Study

Figure 6 illustrates the comparison between the
SFT data generated from reference seed data and
the original seed data. The original seed data
exhibits a disorganized structure, where cooking

steps and wine recommendations lack logical co-
herence. For instance, wine descriptions are dis-
connected from the cooking process, resulting in
an abrupt and disjointed flow. In contrast, the SFT
data demonstrates a more structured and contextu-
ally coherent approach. The generated instruction
aligns wine recommendations with the dish’s fla-
vor profile and culinary context, ensuring seamless
integration and a more engaging user experience.

The original seed data presents a recipe involv-
ing Parmesan cheese, abruptly transitioning to a
wine recommendation that feels disconnected from
the cooking steps. While the response is infor-
mative, it fails to explicitly link the wine sugges-
tions to the dish’s preparation or flavor profile.
Conversely, the SFT data introduces a clear con-
text—spicy Thai green curry—and explicitly ties
the wine recommendation to the dish’s aromatic
and spicy characteristics. This creates a natural
flow, presenting the wine pairing as an integral
part of the culinary experience rather than an af-
terthought. The thought process behind this im-
provement involved identifying the limitations of
the original data, such as its lack of logical coher-
ence, and deliberately crafting a new instruction
that maintains the theme of wine pairing while en-
suring relevance and distinctiveness.

Furthermore, the SFT data enhances instruc-
tional quality by providing a detailed rationale for
wine recommendations. It suggests Riesling and
Gewiirztraminer, explaining how their sweetness,
acidity, and aromatic intensity complement the
dish’s flavors. This level of detail enriches user un-
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Instruction: Finely chop the onions and sauté in oil.
Add the warm stock, boil for two minutes and then put
everything in the blender and mix. Strain and allow to cool.
Add salt, oil and pepper to taste. Pour into a soda siphon
charged with three carbon-dioxide cartridges and place in
cold water with ice.

Cut the tips off the peeled asparagus and put on one side.
Boil the stems in plenty of water and make a creamy sauce
with the blender. Cut the asparagus tips into fine strips.
Glaze the rice in hot oil, quench with a little white wine and
add the chicken stock. When the rice is al dente, add the
asparagus sauce and the strips of the asparagus tips.
Finally, work in the butter and freshly grated Parmesan
cheese.

Don't you have the wine Quarz?

"Delicate as the fine inclusions of quartz in Terlano’s
volcanic porphyry rock — that is our Sauvignon Selection,
which does full justice to its name. Quarz offers a
combination of fine texture, depth and salty aftertaste that
has given this noble white an international reputation."
Could you recommend a wine that pairs well with the
Parmesan cheese in this recipe, such as Quarz Sauvignon
Selection?

Response: Certainly, based on the description of Quarz
Sauvignon Selection, it sounds like a great pairing with the
Parmesan cheese in this recipe. However, you could also
consider a full-bodied white wine like a Chardonnay or a
white blend with similar characteristics of texture and depth.
Ultimately, it comes down to personal preference, but Quarz
Sauvignon Selection would be a great choice.

Thought Process: The original instruction involves a detailed recipe for a dish that includes Parmesan cheese and a

specific wine recommendation request. The original answer provides a wine pairing suggestion based on the characteristics of the

requested wine, Quarz Sauvignon Selection, and offers alternatives like Chardonnay or a white blend. To create a new instruction,

| will maintain the theme of wine pairing with a dish but shift the focus to a different type of cuisine and a different wine variety.
Qs ensures the new instruction is relevant and coherent while being distinct from the original.

Instruction: Context: You are preparing a spicy Thai

green curry with coconut milk, lemongrass, and fresh basil.
The dish has a rich, creamy texture and a bold, aromatic
flavor profile.

Question: Could you recommend a wine that pairs well with
the spicy and aromatic elements of this Thai green curry,
such as a Riesling or Gewurztraminer?

e N
Response: Absolutely! Both Riesling and
Gewdrztraminer are excellent choices for pairing with Thai
green curry due to their ability to balance the spicy and
aromatic elements of the dish.

1. Riesling: A slightly off-dry Riesling is a classic pairing for
spicy dishes. Its natural sweetness helps to counteract the
heat of the curry, while its high acidity refreshes the palate.
Look for a Riesling from Germany (such as a Kabinett or
Spatlese) or from Alsace, France.

2. Gewiirztraminer: This wine is known for its aromatic
profile, with notes of lychee, rose, and spice, which
complement the lemongrass and basil in the curry.
Gewlrztraminer from Alsace is particularly well-suited, as it
often has a touch of sweetness and a rich, full-bodied
texture that matches the creaminess of the coconut milk.

Both wines have the acidity and aromatic complexity to

enhance the flavors of the curry without overwhelming

them. If you prefer a slightly sweeter wine to balance the

spice, go for the Riesling. If you want a wine with more

aromatic intensity, the Gewlrztraminer is an excellent
\\choice. Enjoy your meal! /

—4

Figure 6: An example of SFT data generation based on seed data using LANCE.

derstanding and provides actionable insights, mak-
ing the generated data more practical and infor-
mative. The thought process ensured these expla-
nations were accurate and contextually tailored,
significantly improving the overall quality of the
generated content. By focusing on contextual rel-
evance and user-centric design, the SFT data ex-
emplifies the effectiveness of the method used to
generate high-quality instructional content.

Figure 7 presents an example of generating a
suboptimal response from high-quality seed data
to construct DPO data. Notably, this suboptimal
response is intentionally generated by LANCE to cre-
ate a dispreferred response for contrastive learning.
The original instruction requests step-by-step guid-
ance for wrapping a present professionally, includ-
ing tips for measuring, cutting, folding, and adding
decorative touches. The preferred response pro-

vides a detailed, structured, and professional set
of instructions, aligning perfectly with the instruc-
tion’s intent. It begins with gathering materials,
followed by precise steps for measuring and cut-
ting the wrapping paper, folding edges neatly, and
securing the ends with tape. The response also
emphasizes adding decorative touches like bows
and ribbons, and concludes with tips for ensuring
a polished, professional appearance. This high-
quality reply is clear, actionable, and serves as an
ideal candidate for the preferred response in DPO
training.

In contrast, the dispreferred response is de-
signed to deviate from the original’s quality and
professionalism. The thought process guiding its
creation focused on introducing inaccuracies, re-
ducing clarity, and adding unnecessary or mislead-
ing information. For example, the response sug-
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DPO

Instruction: write step-by-step instructions for
wrapping a present in a professional style, including tips for
measuring and cutting the wrapping paper, folding the
edges neatly, and adding decorative touches like bows and
ribbons.

Instruction: write step-by-step instructions for wrapping a present in a professional style, including tips for measuring

and cutting the wrapping paper, folding the edges neatly, and adding decorative touches like bows and ribbons.

( Response: Step 1: Gather your materials You will need
wrapping paper, scissors, tape, ribbon or bows, and any
other decorative touches you want to add.

Step 2: Measure and cut the wrapping paper Place the
present on the wrapping paper, and cut enough paper to
cover the entire present. Leave a few extra inches on each
side, so you can fold the edges neatly. Use scissors or a
cutting tool to trim the paper, making sure it's straight and
even.

Step 3: Fold the edges Starting with one side of the present,
fold the wrapping paper over the present and tape it down
in the center. Pull the other side of the paper tight, and fold
it over the first side, so the edges meet in the center. Tape it
in place, making sure it's smooth and tight.

Step 4: Fold the ends Take one end of the wrapping paper,
and fold it down toward the center of the present. Create a
neat edge by folding the paper over itself and creasing it.
Fold the other end in the same way, so they meet in the
center.

Step 5: Tape the ends Secure the ends down by taping
them to the present. Press firmly to make sure they're stuck
securely.

Step 6: Add decorative touches Now it's time to add your
decorative touches! Tie a ribbon or bow around the present,
using the tape to hold it in place. You can also add small
ornaments, a gift tag, or even a sprig of greenery for a
festive touch.

Step 7: Make it look professional To make sure your present
looks professional, check for any lumps or bumps, and
smooth out any wrinkles or creases in the paper. Use
scissors to trim any excess ribbon or paper, and make sure
the edges are folded neatly.

You're done! Your present is now wrapped and ready to
give.

Preferred Response

e ™\
Response: Step 1: Gather your materials You will need

wrapping paper, scissors, tape, ribbon or bows, and any
other decorative touches you want to add.

Step 2: Measure and cut the wrapping paper Place the
present on the wrapping paper, and cut enough paper to
cover the entire present. Leave a few extra inches on each
side, so you can fold the edges neatly. Use scissors or a
cutting tool to trim the paper, making sure it's straight and
even.

Step 3: Fold the edges Starting with one side of the present,
fold the wrapping paper over the present and tape it down
in the center. Pull the other side of the paper tight, and fold
it over the first side, so the edges meet in the center. Tape it
in place, making sure it's smooth and tight.

Step 4: Fold the ends Take one end of the wrapping paper,
and fold it down toward the center of the present. Create a
neat edge by folding the paper over itself and creasing it.
Fold the other end in the same way, so they meet in the
center.

Step 5: Tape the ends Secure the ends down by taping
them to the present. Press firmly to make sure they're stuck
securely.

Step 6: Add decorative touches Now it's time to add your
decorative touches! Tie a ribbon or bow around the present,
using the tape to hold it in place. You can also add small
ornaments, a gift tag, or even a sprig of greenery for a
festive touch.

Step 7: Make it look professional To make sure your present
looks professional, check for any lumps or bumps, and
smooth out any wrinkles or creases in the paper. Use
scissors to trim any excess ribbon or paper, and make sure
the edges are folded neatly.

You're done! Your present is now wrapped and ready to

Dispreferred Response

Response: Step 1: Get some stuff together

You'll need some wrapping paper, maybe scissors if you
can find them, and some tape. Ribbons or bows are
optional, but who cares about those anyway?

Step 2: Just cut the paper somehow

Put the present on the paper and guess how much you
need. Cut it roughly, but don’t worry if it's too much or too
little. Precision is overrated. If the edges are jagged, it adds
character.

Step 3: Fold the edges, | guess

Take one side of the paper and just slap it over the present.
Tape it somewhere in the middle, but don’t bother making it
tight. Do the same with the other side, but overlap it
randomly. If it looks messy, that's fine—nobody will notice.
Step 4: Fold the ends, or don’t

Fold one end of the paper toward the center, but don't
crease it too hard. Fold the other end however you feel like.
If they don’t meet, just cover it up with more tape.

Step 5: Tape it all down

Use as much tape as you want. If it looks bulky, who cares?
Just press it down with your fist or something. It'll hold...
probably.

Step 6: Add decorations, if you feel like it

Tie a ribbon around it, but don’t worry about making it neat.
If it looks bad, just say it's “artistic.” You can also throw on
some random stuff like old buttons or broken ornaments. It's
your gift—make it weird.

Step 7: Make it look “professional”

Smooth out the paper with your hands, but don’t spend too
much time on it. If there are wrinkles, just say they're part of
the design. Trim any excess ribbon with your teeth if you
can’t find scissors.

You're done! Your present is now wrapped in a way that's
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sure to confuse and disappoint. Enjoy!
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cognition and values.

Thought Process: To create a new response that is inferior to the original, | will introduce inaccuracies in the instructions, make the steps less clear, and add unnecessary or misleading
information. | will also degrade the expression by using vague language and omitting key details. Additionally, | will include a toxic suggestion to make the response inappropriate for human ‘

Figure 7: An example of DPO data generation based on seed data using LANCE. The Preferred Response and
Dispreferred Response represent 4 and g in Equation 2, respectively.

gests cutting the paper roughly, folding edges hap-
hazardly, and using excessive tape without concern
for neatness. It also trivializes the importance of
decorative touches, recommending random or un-
conventional additions like old buttons or broken
ornaments. Furthermore, the response dismisses
the need for precision or professionalism, suggest-
ing that wrinkles and jagged edges add character
or artistic flair. These deliberate deviations were
introduced to degrade the quality of the response,
making it less useful and less aligned with the in-
struction’s intent.

This case demonstrates the intentional creation
of a suboptimal response to form a preference pair
for DPO training. The preferred response exempli-
fies clarity, precision, and professionalism, while
the dispreferred response showcases carelessness
and a lack of detail. Guided by the thought pro-
cess, the dispreferred response introduces inaccu-
racies, vague language, and unnecessary informa-
tion, creating a clear contrast with the preferred
response. Together, these responses provide a valu-
able contrastive pair, enabling the model to learn
and prioritize high-quality outputs, ultimately im-

proving its ability to generate user-aligned content.
This structured approach to constructing preference
pairs highlights the effectiveness of the method in
refining the model’s performance through targeted
contrastive learning.

Both cases collectively illustrate the robust-
ness of our framework, LANCE, in generating high-
quality instructional content and refining model
behavior through iterative improvements. The
SFT data showcases the ability to enhance coher-
ence and contextual relevance, while the DPO data
demonstrates the strategic creation of contrastive
pairs to guide the model toward better alignment
with user expectations. These examples underscore
the practical utility and methodological rigor of our
approach in advancing language model capabili-
ties.
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