
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 18237–18266
November 4-9, 2025 ©2025 Association for Computational Linguistics

UniDebugger: Hierarchical Multi-Agent Framework for Unified Software
Debugging

Cheryl Lee1*, Chunqiu Steven Xia2, Longji Yang1, Jen-tse Huang1,
Zhouruixing Zhu3, Lingming Zhang2, Michael R. Lyu1

1The Chinese University of Hong Kong 2University of Illinois Urbana-Champaign
3The Chinese University of Hong Kong, Shenzhen

1*cheryllee@link.cuhk.edu.hk 2chunqiu2@illinois.edu 6lingming@illinois.edu 7lyu@cse.cuhk.edu.hk

Abstract

Software debugging is a time-consuming en-
deavor involving a series of steps, such as fault
localization and patch generation, each requir-
ing thorough analysis and a deep understanding
of the underlying logic. While large language
models (LLMs) demonstrate promising poten-
tial in coding tasks, their performance in de-
bugging remains limited. Current LLM-based
methods often focus on isolated steps and strug-
gle with complex bugs. In this paper, we pro-
pose the first end-to-end framework, UniDe-
bugger, for unified debugging through multi-
agent synergy. It mimics the entire cognitive
processes of developers, with each agent spe-
cialized as a particular component of this pro-
cess rather than mirroring the actions of an inde-
pendent expert as in previous multi-agent sys-
tems. Agents are coordinated through a three-
level design, following a cognitive model of
debugging, allowing adaptive handling of bugs
with varying complexities. Experiments on ex-
tensive benchmarks demonstrate that UniDe-
bugger significantly outperforms state-of-the-
art repair methods, fixing 1.25× to 2.56×
bugs on the repo-level benchmark, Defects4J.
This performance is achieved without requir-
ing ground-truth root-cause code statements,
unlike the baselines. Our source code is avail-
able on an anonymous link: https://github.
com/BEbillionaireUSD/UniDebugger.

1 Introduction

Debugging is a crucial process of identifying, ana-
lyzing, and rectifying bugs in software. Significant
advancements (Yang et al., 2024; Xia and Zhang,
2022; Wei et al., 2023; Xia and Zhang, 2024) have
been achieved in addressing bugs with the boost of
LLMs—they typically propose a prompting frame-
work and query an LLM to automate an isolated
phase in test-driven debugging, generally Fault
Localization (FL) or Automated Program Repair
(APR). FL attempts to identify suspicious code

Chart 12

 if (p.getCurrentToken() == JsonToken.START_ARRAY) {
 return super.deserializeTypedFromAny(p, ctxt);
+ } else if (p.getCurrentToken() ==
JsonToken.VALUE_STRING &&
+
ctxt.isEnabled(DeserializationFeature.ACCEPT_EMPTY_STRING_AS
_NULL_OBJECT) &&
+ p.getText().isEmpty()) {
+ return null;
 }

JacksonDatabind 74

diff --git buggy.java fixed.java
@@ -142,5 +142,5 @@ public class MultiplePiePlot
extends Plot implements Cloneable, Serializable {
public MultiplePiePlot(CategoryDataset dataset) {
 super();
- this.dataset = dataset;
+ setDataset(dataset);
 PiePlot piePlot = new PiePlot(null);

Figure 1: An example of the “diff” patch.

statements, while APR provides patches or fixed
code snippets. A typical “diff” patch records the
textual differences between two source code files,
as shown in Figure 1.

While LLMs demonstrate great potential in ad-
dressing individual debugging tasks for basic bugs,
previous APR studies cannot deliver a satisfying
end-to-end solution for the entire task. To bridge
this gap, we propose the first multi-agent frame-
work, UniDebugger, for developer-side debugging,
which can be seamlessly integrated into the CI/CD
pipeline. A key challenge lies in how to coordinate
multiple agents. Existing multi-agent frameworks
for complex problem-solving adopt a horizontal
collaboration paradigm where each agent acts as an
independent expert, mirroring human team dynam-
ics through bidirectional discussions and mesh-like
communication (e.g., (Hong et al., 2024; Islam
et al., 2024; Qian et al., 2024)). However, this de-
sign introduces critical limitations for debugging:
(1) The inherent redundancy of peer-to-peer ne-
gotiations conflicts with debugging’s logical, in-
cremental nature, wasting computational resources
on trivial bugs; (2) The lack of structured prob-
lem decomposition leads to suboptimal resource
allocation across bugs of varying complexity.

In response, we uniquely structure UniDebugger
as a hierarchical multi-agent coordination paradigm
grounded in cognitive debugging theory, as shown
in Figure 2. Our key innovation lies in redefin-
ing agents as functional components of a unified
cognitive process rather than autonomous experts.
Inspired by Hale and Haworth’s model of struc-
tural learning (Hale and Haworth, 1991), which
argues that developers employ a multi-level goal-

18237

mailto:cheryllee@link.cuhk.edu.hk
https://github.com/BEbillionaireUSD/UniDebugger
https://github.com/BEbillionaireUSD/UniDebugger

Locator Fixer

Marked bug
locations

Run tests

Plausible

Human
veri!cation

L1

Summarizer

L2
Function descriptions

Slicer

Suspicious
snippet

Locator Fixer FixerPro

Patch
back

Helper

Online Solutions & References

RepoFocus Summarizer

Related
!les

Multi-call

Slicer Locator Fixer FixerPro

Code summary of multiple !les

L3

Generated
patch

Generated
patch

Compile

Run test

Not Plausible

So!ware EnvGenerated
patch

Not
Plausible

Not
Plausible

Toolbox
…

Static/
dynamic
analysis

Invoke

Re"ection & Re!nement

Figure 2: Overview of UniDebugger. It starts with the simple L1 repair. If no plausible patch is generated, the L2
repair is triggered, and so is L3. Agents on the same level can communicate with others.

orientated mechanism during debugging (Hale
et al., 1999), UniDebugger implements a three-
level mechanism. The initial level only provides
quick and straightforward solutions, and if that
fails, higher levels of repairs are triggered for com-
plex bugs, entailing more cognitive activities that
involve deeper analysis, tool invocation, and ex-
ternal information ingestion. Unlike mesh-based
teamwork, where members with diverse perspec-
tives and backgrounds engage in bidirectional dis-
cussion and negotiation to share knowledge and
solve tasks collaboratively, this cognitive process is
unidirectional and coherent, with each stage accu-
mulating knowledge incrementally and building on
the last. By seamlessly aligning with debugging,
this paradigm serves as the basis of our design for
multi-agent synergy.

Our framework encompasses seven agents, each
specialized in a distinct cognitive state: 1) Helper:
retrieves and synthesizes debugging solutions
through online research; 2) RepoFocus: analyzes
dependencies and identifies bug-related code files;
3) Summarizer: generates code summaries; 4)
Slicer: isolates a code segment (typically tens to
hundreds of lines) likely to cause an error; 5) Lo-
cator: marks the specific root-cause code lines; 6)
Fixer: generates patches or fixed code snippets;
7) FixerPro: generates an optimized patch upon
the testing results of the patch generated by Fixer
along with a detailed analysis report.

Particularly, UniDebugger first isolates the code
file most likely causing the error through unit test-
ing. On level one (L1), only Locator and Fixer are
initiated for simple bugs. If the generated patch is
not plausible (i.e., pass all test cases), Summarizer

and Slicer are triggered with the bug-located code
file on level two (L2). Then Locator, Fixer, and
FixerPro are called sequentially with access to the
responses from Summarizer and Slicer. If it still
fails, UniDebugger undertakes a deeper inspection
and thus activates all agents (i.e., level three, L3),
where Helper searches for solutions online to guide
all the other agents, and RepoFocus examines the
entire program to provide a list of bug-related code
files, followed by the other agents working in line.
Slicer, Locator, and Fixer can invoke traditional
code analysis tools on the last two levels to collect
static and dynamic analysis information.

We evaluate UniDebugger on four benchmarks
with bug-fix pairs across three programming
languages, including real-world software (De-
fects4J Just et al., 2014) and competition pro-
grams (QuixBugs Lin et al., 2017, Codeflaws Tan
et al., 2017, ConDefects Wu et al., 2024). On De-
fects4J, UniDebugger achieves a new state-of-the-
art (SoTA) by correctly fixing 197 bugs with 286
plausible fixes. Our method does not require prior
FL while still outperforming strong baselines like
ChatRepair, which uses ground-truth root causes
with 10x sampling times. Plus, UniDebugger fixes
all bugs in QuixBugs and generates 2.2× more
plausible fixes on Codeflaws. Our ablation study
shows that UniDebugger consistently makes signifi-
cant improvements across various LLM backbones.

2 Related Work

Software Debugging: Test-driven debugging has
gained popularity since testing is an essential and
prevalent part of practical CI/CD, and this method-
ology typically contains two core steps (Benton

18238

et al., 2020): FL and APR. Many studies aim to
automate either step. Traditional FL are typically
spectrum-based (Abreu et al., 2009, 2006; Zhang
et al., 2011) or mutation-based (Moon et al., 2014;
Li and Zhang, 2017; Zhang et al., 2013). Learning-
based FL learns program behaviors from rich data
sources (Li et al., 2021, 2022; Lou et al., 2021;
Li et al., 2019) via multiple types of neural net-
works. Recently, LLMAO (Yang et al., 2024) pro-
poses to utilize LLMs for test-free FL. APR re-
search either searches for suitable solutions from
possible patches (Goues et al., 2012; Weimer et al.,
2009a,b) or directly generates patches by repre-
senting the generation as an explicit specification
inference (Mechtaev et al., 2016; Nguyen et al.,
2013; Liu et al., 2019). Learning-based studies
((Lutellier et al., 2020; Jiang et al., 2021; Ye et al.,
2022)) translate faulty code to correct code using
neural machine translation (NMT). On top of di-
rectly prompting LLMs (Xia et al., 2023), recent
studies have explored prompt engineering (Xia
and Zhang, 2024, 2022) or combining code syn-
thesis (Wei et al., 2023) for APR. In addition to
developer-oriented debugging, techniques for ad-
dressing user-oriented issues receive great atten-
tion (Xia et al., 2024; Jimenez et al., 2024). These
methods responsively update software based on
problems discovered by users. This paper focuses
on the CI phase, reducing the burden on developers
responsible for proactively detecting and resolving
bugs to prevent errors from entering production.
LLM-based Multi-Agent (LLM-MA): Various
LLMs have been developed for code synthe-
sis (Chen et al., 2021; Guo et al., 2024; Roz-
ière et al., 2023), in addition to general-purpose
LLMs (OpenAI, 2023a,b; Anil et al., 2023). They
have shown potential in solving coding-related
tasks, including program repair (Xia et al., 2023;
Huang et al., 2023; Tian et al., 2024). The inspiring
capabilities of the single LLM-based agent boost
the development of multi-agent frameworks. Re-
cent research has demonstrated promising results in
utilizing LLM-MA for complex problem-solving,
including software engineering, science, and other
society-simulating activities. For software engi-
neering, LLM-MA studies (Qian et al., 2024; Hong
et al., 2024; Dong et al., 2023; Huang et al., 2024;
Islam et al., 2024) usually emulate real-world roles
(e.g., product managers, programmers, and testers)
and collaborate through communication. Hong
et al. (2024); Dong et al. (2023) adopt a shared
information pool to reduce overhead.

3 UniDebugger

UniDebugger is an end-to-end framework for uni-
fied debugging through LLM-based multi-agent
synergy. It comprises seven agents, each special-
ized as a state in Hale and Haworth’s cognitive
debugging model with an explicit goal instead of
being a task-oriented, individual entity. UniDebug-
ger operates on a three-level architecture, initial-
izing different levels of repair involving different
agents, and agents can adaptively invoke tools in a
given toolbox. The communication among agents
on the same level follows an assembly-line thought
process rather than the mesh interactions typical
of teams. This section introduces the profiles of
agents, their interactions with external environ-
ments, and the hierarchical organization. Prompt
details are displayed in A.3.

3.1 Profiles of Agents

All agents in UniDebugger share a one-shot struc-
ture of the system prompt, which defines their roles,
skills, actions, objectives, and constraints, followed
by a manually crafted example to illustrate the de-
sired response format. Moreover, all agents have
access to certain meta-information known as bug
metadata, including the bug-located code file, fail-
ing test cases, reported errors during compilation
and testing, and program requirements described
in natural language. The response of each agent
comprises two elements: the answer fulfilling its
goal and an explanation of its thinking. Inspired
by a software engineering principle, rubber duck
debugging (Andrew and David, 2000), where de-
velopers articulate their expectations versus actual
implementations to identify the gap, we request
each agent to monitor key program variables and
explain how it guides the answer.
Helper. The goal of Helper is to provide refer-
ences via retrieve-augmented generation (RAG),
inspired by the fact that developers commonly uti-
lize web search engines (e.g., Google) to enhance
productivity (Xia et al., 2017). By analyzing the
bug metadata, Helper generates a short query and
invokes an external search engine to retrieve the
best-matching solutions. Then, it integrates the
retrieval results and generates reference solutions
that are customized for the context of the buggy
code (e.g., variable naming and function structure).
These are internal processes hidden from the other
agents, and only the final response—a reference so-
lution—can be read only on L3. Figure 3 provides

18239

The bug you're encountering seems to be related to the ‘test2947660’
in JFreeChart's ‘AbstractCategoryItemRendererTests’.
Steps to resolve:
1. Investigate the ‘test2947660’: Check whether the test
2. Renderer Configuration: …’CategoryItemRenderer’…
3. Run Tests with Debugging: …item rendering or dataset updates…
4. Cross-Check Dataset: The error could also be from an incorrect…

Figure 3: After retrieving similar solutions, Helper even-
tually responds with an executable debug guide.

an example of the response from Helper.
RepoFocus. Comprehending cross-file dependen-
cies is crucial to debugging large software, and
real-world software is often large and complex (cor-
responding to L3 repair). However, inputting all of
the code in a program may overwhelm an LLM, re-
sulting in slow responses with significant resource
consumption or incorrect results. Thus, RepoFocus
provides a list of bug-related code files that need
further examination by analyzing the bug metadata
and the file structure of the program.
Summarizer. Code summarization aims to gener-
ate concise, semantically meaningful summaries
that accurately describe software functions. Unlike
high-level code analysis, these natural language
summaries better align with the training objectives
of LLMs. Summarizer is triggered on L2 and L3.
On L2, it summarizes the buggy code file. Though
the window size of advanced LLMs can handle
most single code files, a too-long prompt may ex-
acerbate the illusion of LLMs. Thus, Summarizer
handles overly long code here, in conjunction with
Slicer, which narrows down a suspicious segment
from the buggy code. On L3, Summarizer runs
once on every bug-related file identified by Repo-
Focus. The other agents do not need to read every
code line in the program while still knowing the
core contents through these summaries.
Slicer. Slicer narrows down the inspection scope
by slicing out a small suspicious segment (typically
tens of code lines) from the bug-located code file.
We extract the beginning and end lines from the
initial output to locate the segment, ensuring the
final output is directly sliced from the original code
to prevent code tampering caused by LLM halluci-
nations. Slicer is also launched for large software
on the last two levels, where it can invoke static or
dynamic analysis tools.
Locator. Locator is responsible for marking code
lines with a comment “// buggy line” or “// missing
line” to indicate faulty or missing statements. Simi-
lar to Slicer, we directly annotate the original code
through contextual string matching. Locator only

leverages the bug metadata on L1, where on L2,
it can access the dynamic analysis reports. If the
program is large enough so that Slicer and Summa-
rizer are invoked, Locator receives the suspicious
code segment (generated by Slicer) to replace the
original complete code, along with the buggy code
summary (generated by Summarizer).
Fixer. Fixer is prompted to generate a "diff", as
shown in Figure 1 in Introduction. It receives code
marked by Locator and other bug metadata. To
maintain consistency between Locator and Fixer,
Fixer first assesses whether the marked lines should
be modified and then describes the modification.
This also enables Fixer to correct possible errors
made by Locator. On L2 and L3, Fixer also has
access to static/dynamic analysis and auxiliary in-
formation generated by upstream agents.
FixerPro. FixerPro extends and complements
Fixer by generating an optimized patch and re-
pair analysis. Inspired by code review, in which
one or more developers check a program to ensure
software quality, we request FixerPro to evaluate
the performance and potential vulnerability of the
plausible fix generated by Fixer. Then, FixerPro
provides suggestions for refactoring the patch to op-
timize simplicity and maintainability. If Fixer fails,
FixerPro generates a new patch while analyzing
the failing reasons.

3.2 External Interactions
Plausibility Feedback. We conduct repairs by
modifying the buggy code rather than directly ap-
plying the generated patches because they usually
make mistakes in the format, especially the indices
of code lines, as LLMs often struggle with counting.
Unlike prior studies, such as (Xia et al., 2024), us-
ing a Search/Replace method for code editing, our
post-adjustment methodology more readily aligns
with LLM training databases as the outcomes of
extensive code edits are stored in a "diff" format.
Our modification is rule-based by matching the in-
variant context between the patch and the buggy
code. Afterward, we compile and run tests on the
fixed program. The patch will be sent to developers
for manual correctness verification if passing all
test cases. The results of plausibility testing are
returned to UniDebugger as feedback for further
processing, such as initializing a higher level of
repair or conducting self-reflection.
Tool Usage. The toolbox of UniDebugger cur-
rently contains static analysis tools, dynamic analy-
sis tools, and a search engine optimized for LLMs

18240

Reference solution provider
…

Helper

Meta Info of the buggy project
Code in bug-located !le:

…
protected AbstractCategoryItemRenderer() {
 this.itemLabelGeneratorList = new
ObjectList();
 this.toolTipGeneratorList = new
ObjectList();
 this.urlGeneratorList = new
ObjectList();

Failing information:

"ery

org.jfree.chart.renderer.category.junit.AbstractCa
tegoryItemRendererTests::test2947660
junit.framework.AssertionFailedError…

Program description (if available):
JFreeChart is a powerful charting library that
supports various types of charts such as bar
charts, pie charts, line charts, etc…

Search results

Reference
solutions

Assistant for identifying
bug-related !les…

RepoFocus

File list

Repo Related code

Assistant for identifying
bug-related !les…

Summarizer
Code summaris

Multiple calls
Assistant for extracting
suspicious code snippets

Slicer

Skilled assistant for
localizing buggy lines

Locator

Code with bug marks:
CategoryDataset dataset =
this.plot.getDataset(index);
 if (dataset != null) { // buggy code
 return result;
 }

Skilled assistant for
localizing buggy lines

Fixer

Patch:
- int index =
this.plot.getIndexOf(this);
+ int index =
this.plot.getIndexOf();

Patch:
return result;}
- int seriesCount =
dataset.getRowCount();
+ int seriesCount = -1;

Patch:
- CategoryDataset dataset =
this.plot.getDataset(index);
+ CategoryDataset dataset = null;
if (dataset != null) {

New Patch:
 CategoryDataset dataset =
this.plot.getDataset(index);
- if (dataset != null) {
+ if (dataset == null) {

Patching
Compiling

Testing

Skilled code optimizer
a#er bug !x…

FixerPro

Analysis:
The incorrect patch causes a
compilation error or runtime error
because the method `getIndexOf`…

Plausible

Final return

100public LegendItemCollection getLegendItems()
{

…
if (dataset != null) {return result;}

Suspicious code snippet:

Failing info
of patch

Able to run multiple times

Figure 4: L3 triggers all the seven agents to generate plausible patches.

and RAG. Static analysis provides static errors and
warnings, as well as Abstract Syntax Tree (AST),
a tree representation of the abstract syntactic struc-
ture of source code. We mainly consider the cover-
age of failing test cases in dynamic analysis since
it is commonly assumed that code statements not
executed during testing are less likely to cause the
failures (Kochhar et al., 2016). Note that the results
of tool invocations will be stored for the requests of
downstream agents to avoid duplicated invocations.

3.3 Hierarchical Coordination

Our main principle of coordination is that prob-
lems of different complexities warrant cognitive
activities of different intensities. That is, upon the
failure of a straightforward solution, a higher-level
goal will be triggered with more information and
thinking. Following Hale and Haworth’s cognitive
debugging model, we define three workflows for
the three levels of repair, respectively.

The first level identifies and fixes obvious logic
errors in code, so we assume that agents can easily
fix the bug. Thus, L1 only contains Locator and
Fixer with a simple communication flow, where
Fixer generates a patch based on the fault localiza-
tion done by Locator. If the fix is not plausible,
then L2 is triggered, assuming that the fix can be
achieved by only inspecting a single file, which is
often applied in previous FL and APR studies (Sore-
mekun et al., 2023). L2 involves five agents: Slicer,
Summarizer, Locator, Fixer, and FixerPro. Slicer
isolates a suspicious segment, and Summarizer gen-
erates a code summary simultaneously, both from
the bug-located file. Afterward, Locator, Fixer, and
FixerPro work in sequence based on the suspicious
segment, and all have access to the code summary.

If it still fails, we turn to L3, which believes that
the bug is very complex, so repairing it requires
understanding cross-file dependencies and external
information. L3 activates all the seven agents. First,
Helper and RepoFocus are initialized at the same
time, and Helper provides references for all other
agents. Then, Summarizer runs multiple times fol-
lowing the file list identified by RepoFocus. These
code summaries are shared by the remaining four
agents, which work one after another subsequently
with the same workflow as L2. Figure 4 presents
an example conversation among agents on L3.

Upon no plausible patch, UniDebugger grad-
ually requests agents on L3 to reflect and refine
its answer based on the plausibility feedback in
a reversed order, as downstream agents are more
error-prone as errors may accumulate during the
debugging process. Specifically, we first ask Fix-
erPro to refine its response. If the fix fails again,
we then request Fixer, leading to input changes of
FixerPro, so it is re-sampled the second time. Even-
tually, plausible patches are returned to developers
for manual verification. If no plausible patch is
produced, UniDebugger will display the analysis
report written by FixerPro and take another run
until reaching a resource threshold.

4 Experiments

4.1 Experimental Setup
Benchmarks. We evaluate UniDebugger on four
benchmarks featuring bug-fix pairs, including com-
petition programs (Codeflaws Tan et al., 2017,
QuixBugs Lin et al., 2017, ConDefects Wu et al.,
2024) and real-world projects (Defects4J Just et al.,
2014). Codeflaws contains 3902 faulty C programs.
QuixBugs includes 40 faulty programs available

18241

Table 1: Comparison with baselines. #Corr and #Plau represent the number of bugs correctly and plausibly patched,
respectively. The green cells indicate the best results. The blue cells indicate the results are obtained from sampled
data, while other results are obtained on the whole dataset.

Tools Sampling
Times

Defects4J-Java Codeflaws-C QuixBugs-Java QuixBugs-Python Note
#Corr #Plau #Corr #Plau #Corr #Plau #Corr #Plau

Angelix 1,000 - - 318 591 - - - -

R
ea

lis
tic

FLProphet 1,000 - - 310 839 - - - -
SPR 1,000 - - 283 783 - - - -

CVC4 - - - 15† 91† - - - -
Semfix 1,000 25 68 38† 56† - - - -
Recoder 100 72 140 - - 17 17 - -

GenProg 1000 5 20 255-369 1423 1 4 - -

Pe
rf

ec
tF

LCoCoNuT 20,000 44⋆ 85⋆ 423 716 13 20 19 21
CURE - 57⋆ 104⋆ - - 26 35 - -

RewardRepair 200 90 75 - - 20 - - -
Tbar 500 77 121 - - - - - -

AlphaRepair 5,000 110 159 - - 28 30 27 32
Repilot 5,000 116 - - - - - - -

ChatRepair 100-200 157 - - - 40 40 40 40

CodeLlama-34b

20

24 41 91(%)‡ 1,488 25 28 33 33

Pe
rf

ec
tF

LLLaMA2-70b 39 78 91(%)‡ 1,576 25 28 33 33
DeepSeekCoderV2 57 82 93(%)‡ 1,937 30 34 25 38

gemini-1.5-flash 19 36 86(%)‡ 1,291 29 32 29 35
gpt-3.5-turbo-ca 45 71 94(%)‡ 2,343 33 34 34 36

claude-3.5-sonnet 70 116 95(%)‡ 2,624 36 37 40 40
gpt-4o 72 119 93(%)‡ 2,549 35 36 39 39

UniDebugger-Lite 5 - - 95(%)‡ 3,130 40 40 40 40
UniDebugger 20 197 286 - - - - - -

⋆ Only the result on Defects4J 1.2 is available.
† The result is obtained from 665 sampled bugs.
‡ We randomly select 100 plausible patches to check their correctness because of the huge number of plausible patches.

in both Java and Python. ConDefects recently col-
lected to address data leakage concerns in LLMs,
consists of 1,254 Java and 1,625 Python faulty pro-
grams. Defects4J, a widely used benchmark from
15 real-world Java projects, features bugs across
two versions: version 1.2 with 391 active bugs and
version 2.0 adding an additional 415 active bugs,
totaling 806. We will report the total number of
fixes across these versions.

Baselines. We compare UniDebugger against 14
APR baselines, including:

• Traditional: Angelix (Mechtaev et al., 2016),
Prophet (Long, 2018), SPR (Long and Rinard,
2015), and CVC4 (Reynolds et al., 2015).

• Genetic programming-based: Sem-
fix (Nguyen et al., 2013) and GenProg (Goues
et al., 2012; Weimer et al., 2009a).

• NMT-based: CoCoNuT (Lutellier et al.,
2020), CURE (Jiang et al., 2021), and Re-
wardRepair (Ye et al., 2022).

• Domain knowledge-driven: Tbar (Liu et al.,
2019) and Recoder (Zhu et al., 2021).

• LLM-based (SoTA): AlphaRepair (Xia and
Zhang, 2022), Repilot (Wei et al., 2023), and
ChatRepair (Xia and Zhang, 2024).

Note that different APR baselines adopted di-
verse prior fault locations. We use realistic to rep-
resent traditional FL and perfect to denote ground-
truth FL. We report the results provided in their
original papers and follow-up survey (Le et al.,
2018; Ye et al., 2021; Xia et al., 2023), following
previous studies (Xia et al., 2023; Xia and Zhang,
2024; Lutellier et al., 2020).

LLM Backbones. We apply UniDebugger to
seven LLMs, including four general-purpose mod-
els (gemini-1.5-flash Anil et al., 2023, gpt-3.5-
turbo-ca OpenAI, 2023a, gpt-4o OpenAI, 2023b,
and claude-3.5-sonnet Anthropic, 2024) and three
open-source code LLMs (DeepSeekCoderV2 Guo
et al., 2024, CodeLlama-34b Rozière et al., 2023,
LLaMA2-70b Touvron et al., 2023). Naturally,
these LLMs also serve as baselines for compari-
son, where we apply the original chain-of-thought
(CoT) prompting method (Wei et al., 2022). The

18242

default backbone of UniDebugger is gpt-4o.
Metrics. We utilize the APR metrics, specifically
focusing on the number of bugs that are plausibly or
correctly fixed. Given the extensive size of ConDe-
fects, we randomize samples from plausible fixes
to verify their correctness. Thus, we also employ
the metric known as correctness rate—defined as
the ratio of correct fixes to plausibly fixed bugs—to
assess the effectiveness of UniDebugger.
Implementation. For single-file competition pro-
grams, only agents on L2 and L1 need to be initial-
ized, named as UniDebugger-Lite. The maximum
number of attempts is set to 5 per bug for Lite and
20 for Full. Each query has a timeout limit of 1 sec.
Previous studies typically sample hundreds to thou-
sands of times. For instance, CoCoNuT samples up
to 50,000 patches per bug (Lutellier et al., 2020),
while ChatRepair samples 100-200 times (Xia and
Zhang, 2024). Our approach is significantly more
cost-effective than baselines. Furthermore, we alter
the default web search engine (Tavily Tavily) to a
local one during evaluation to prevent retrieving
ground-truth solutions online. The local database
consists of the training dataset of CoCoNut (Lutel-
lier et al., 2020) with JavaScript programs removed.
Since CoCoNuT was also evaluated on Defects4J
and ConDefects, the risk of data leakage is minimal.
The static and dynamic analysis is supported by
our written scripts and open-source plugins (Sonar-
Qube and GZoltar).

4.2 Comparison with baselines
This section evaluates the debugging capabilities
of our framework, UniDebugger. The results are
shown in Table 1. We do not use ConDefects herein
because it is a recently released dataset, and few
approaches have been evaluated on it.
Competition Programs. UniDebugger plausi-
bly fixes 3130 out of 3982 bugs on Codeflaws,
producing 2.2x plausible fixes as the best APR
method, GenProg. It has a correctness rate of
95%, i.e., UniDebugger correctly repairs 95 bugs
out of 100 sampled plausible patches, improv-
ing the correctness rate by 60.81% compared to
that of CoCoNuT, which correctly fixes the most
bugs among APR approaches. UniDebugger sur-
passes the best-performing LLM baseline, claude-
3.5-sonnet, by ∼19.28% with the same correctness
rate. Moreover, UniDebugger successfully fixes
all bugs in QuixBugs across two programming lan-
guages, achieving the same SoTA as ChatRepair.
Real-World Software. On Defects4J, UniDebug-

ger correctly fixes 197 bugs while plausibly solving
286 bugs, outperforming the SoTA, ChatRepair, by
∼25.48%. Moreover, UniDebugger correctly fixes
42 unique bugs that the top four baselines have
never fixed. Figure 5 shows the Venn diagram of
the bugs fixed by the top four baselines and UniDe-
bugger on Defects4J. We see that UniDebugger
correctly fixes 42 unique bugs that these strong
baselines have not addressed. We show an example
of the unique fixes in A.1.

12 140

16

2

0

0

29

13

0

0

0
0

0

0

42

2

21

12

5 13
4

25

23

3

6

7

22

3

26

UniDebugger

ChatRepair

AlphaRepair

RecoderTbar

Figure 5: Bug fix Venn diagram on Defects4J.

Overall, LLM-involved baselines perform rea-
sonably well. On top, UniDebugger significantly
enhances base LLMs on all benchmarks, especially
on Defects4J. This is because direct prompting
LLMs struggles with too long contexts and com-
plex reasoning. We split debugging into several
cognitive steps and introduce external tools and
knowledge, thus boosting the capabilities of LLMs.

Takeaway: UniDebugger fixes 197 bugs on De-
fects4J, a 25.48% improvement over the leading base-
line. Its lite version fixes all bugs on QuixBugs and
achieves 19.28% more plausible fixes on ConDefects
with the highest correctness rate.

4.3 Performance on Different LLMs

To verify the robustness of UniDebugger across var-
ious LLMs, we compare UniDebugger-Lite with its
seven LLM backbones, evaluated on 600 randomly
sampled bugs from ConDefects (300 for each pro-
gramming language). Since manually checking the
patches is time-consuming, we only present the
number of plausible fixes. Table 3 displays the per-
formance gains of UniDebugger-Lite (UD-L) over
its backbone with CoT prompting. For simplicity,
we only report the number of plausible fixes.

The results indicate that UniDebugger can con-
sistently enhance its backbone LLM by 21.60%-
52.31%. Notably, UD-L with LLaMA2 achieves
280 plausible fixes, closely rivaling the perfor-
mance of gpt-3.5-turbo-ca (282). Plus, UD-L with

18243

Table 2: Ablation study on agents. #Plau represent the number of plausibly fixed bugs. The! indicates the addition
of a specific agent, and% denotes its absence. Expense denotes the average expense running once for a bug.

Helper RepoFocus Summarizer Slicer Locator Fixer FixerPro #Plau Expense ($) Level

% % % % % ! % 72 0.030 L1
% % % % ! ! % 140 0.048

% % % % ! ! ! 192 0.116
L2% % % ! ! ! ! 224 0.225

% % ! ! ! ! ! 238 0.317

% ! ! ! ! ! ! 245 0.364 L3
! ! ! ! ! ! ! 291 0.410

Table 3: Performance gains of UniDebugger-Lite over different LLMs on 600 samples from ConDefects.

LLMs ConDefects-Java ConDefects-Python

CoT UD-L Gain ↑ CoT UD-L Gain ↑
CodeLlama-34b 87 113 29.89% 69 86 24.64%
LLaMA2-70b 108 147 36.11% 91 133 46.15%

DeepSeekCoderV2 130 198 52.31% 125 178 42.40%
gemini-1.5-flash 62 89 43.55% 63 82 30.16%
gpt-3.5-turbo-ca 155 191 23.23% 127 174 37.01%

claude-3.5-sonnet 213 259 21.60% 186 227 22.04%
gpt-4o 211 262 24.17% 179 225 25.70%

DeepSeekCoderV2 plausibly fixes similar bugs
(376) as gpt-4o does (390). The results indicate that
UniDebugger brings the gap between open-source
code LLMs and proprietary systems like gpt-4o in
debugging. Furthermore, though UniDebugger can
make improvements across varying LLMs, its over-
all performance is strongly related to the coding
ability of its backbone LLM.

4.4 Ablation Study

4.4.1 Impact of Different Agents

To understand the impact of different agents on the
effectiveness of UniDebugger, we exclude certain
agents across Defects4J, as we trigger all agents
on it. We also report the number of plausible fixes
herein. As indicated by Table 2, the addition of
agents different from just Fixer consistently im-
proves the number of plausible fixes. While more
agents slightly increase the expenses, the overall
performance improves noticeably, demonstrating
the effectiveness of the various agents and the im-
portance of the divide-and-conquer idea. Since the
higher level is only triggered when the lower level
fails, higher levels naturally improve performance.

Plus, the performance gains of L2 to L1 are more
pronounced than that of L3 to L2 as expected, since
L2 adds more agents to L1 with tool usage, while L3

only adds reference solutions and auxiliary cross-
file information. We notice that Helper only in-
creases 46 plausible fixes, indicating that the in-
ternet cannot always provide solutions, so domain-
specific tools for debugging are highly desired.

4.4.2 Impact of External Interactions
We also evaluate the impact of external interactions
on Defects4J, including the feedback of testing re-
sults to FixerPro and toolbox usage. As shown in
Table 4, introducing external interactions leads to a
significant improvement ranging from 23 to 121 in
the number of plausible fixes. This illustrates how
our designed mechanism of environment interac-
tions can contribute to high-quality debugging.

Table 4: Ablation study on external interactions.

Online Search Static Dynamic Testing #Plau

% ! ! ! 245
! % ! ! 268
! ! % ! 170
! ! ! % 244
! ! ! ! 291

5 Conclusion

This paper presents UniDebugger, the first end-to-
end framework leveraging LLM-based multi-agent
synergy to tackle unified software debugging. Our

18244

method employs a novel hierarchical coordination
paradigm inspired by a cognitive debugging model
to efficiently manage cognitive steps with minimal
communication and dynamically adjust to bug com-
plexity through its three-level architecture. Exten-
sive experiments on four benchmarks demonstrate
the superiority of our method over SoTA repair ap-
proaches and base LLMs. UniDebugger fixes 1.25–
2.56× bugs on a repo-level benchmark and fixes
all bugs on QuixBugs. Its lite version achieves the
most plausible fixes on the other two competition
program benchmarks. Lastly, the effective imple-
mentation of Hale and Haworth’s cognitive model
for debugging paves new pathways for research in
advancing LLM-based multi-agent frameworks for
tackling complex coding tasks.

6 Limitation

Traditional APR tasks typically assume the pres-
ence of failing test cases to guide fault localization
and repair, which aligns with the CI/CD pipeline
where developers encounter bugs during automated
testing. In such scenarios, the debugging process
relies on concrete evidence (e.g., test failures, stack
traces) to isolate errors. UniDebugger is specifi-
cally designed for this context, where test cases
serve as the primary oracle to validate fixes. On
the one hand, this design mirrors real-world devel-
oper workflows, where unit tests and integration
tests are integral to identifying and resolving bugs
during development. On the other hand, we follow
previous studies (Motwani et al., 2022; Zhu et al.,
2021; Liu et al., 2019; Xia and Zhang, 2024) of
modeling the APR task in a test-driven framework.

In contrast, issue-driven repair (e.g., SWE-
bench (Jimenez et al., 2024)) targets user-reported
bugs described in natural language, often lacking
explicit test cases or formal specifications. While
this scenario is practically relevant, it emphasizes
replicating and fixing bugs based on user obser-
vations (e.g., "the application crashes when click-
ing button X"), while test-driven APR focuses on
resolving errors detectable for developers before
software release. The latter provides a structured,
reproducible environment for evaluating automated
debugging systems. However, extending UniDe-
bugger to issue-driven contexts would require in-
tegrating natural language understanding modules
and replicating user-described failures, which re-
mains a direction for future work. Furthermore,
although this debugging model falls within a well-

studied scope of program repair, the ability of our
approach to address broader classes of bugs, such
as configuration errors, remains unknown. Future
work should explore optimizing token consump-
tion, improving adaptability to diverse bug types,
and ensuring smoother integration with external
tools for faster and more reliable debugging.

7 Ethics Consideration

We do not foresee any immediate ethical or soci-
etal risks arising from our work. However, given
that UniDebugger relies heavily on LLM-generated
code patches, there is a potential risk of introducing
unintended vulnerabilities or errors in software. We
encourage researchers and practitioners to apply
UniDebugger cautiously, particularly when using
it in production environments. Ensuring thorough
validation and testing of LLM-generated patches
is crucial to mitigate any negative consequences.
Additionally, We adhere to the License Agreement
of the LLM models and mentioned open-sourced
tools.

8 Artifact Discussion

All adopted benchmarks, LLM models, and open-
source tools are used strictly within their intended
research purposes as defined by their creators:

• Benchmark datasets (Codeflaws, QuixBugs,
ConDefects, Defects4J) are all academic re-
sources explicitly created for evaluating pro-
gram repair techniques.

• Baseline APR tools (e.g., Angelix, Semfix,
CoCoNuT) are used in accordance with their
original research implementations

• LLM backbones (gpt-4o, claude-3.5-sonnet,
etc.) are accessed through official APIs under
research-only agreements.

• Code analysis tools (SonarQube, GZoltar) are
used as open-source static analysis utilities
per their LGPL licenses.

Acknowledgments

This work was supported by the Research Grants
Council of the Hong Kong Special Administrative
Region, China (No. CUHK 14209124 of the Gen-
eral Research Fund).

18245

References
Rui Abreu, Peter Zoeteweij, and Arjan J. C. van

Gemund. 2006. An evaluation of similarity coef-
ficients for software fault localization. In 12th IEEE
Pacific Rim International Symposium on Dependable
Computing (PRDC 2006), 18-20 December, 2006,
University of California, Riverside, USA, pages 39–
46. IEEE Computer Society.

Rui Abreu, Peter Zoeteweij, and Arjan J. C. van
Gemund. 2009. Spectrum-based multiple fault lo-
calization. In ASE 2009, 24th IEEE/ACM Interna-
tional Conference on Automated Software Engineer-
ing, Auckland, New Zealand, November 16-20, 2009,
pages 88–99. IEEE Computer Society.

Hunt Andrew and Thomas David. 2000. The pragmatic
programmer: From journeyman to master.

Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-
Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan
Schalkwyk, Andrew M. Dai, Anja Hauth, Katie Mil-
lican, David Silver, Slav Petrov, Melvin Johnson,
Ioannis Antonoglou, Julian Schrittwieser, Amelia
Glaese, Jilin Chen, Emily Pitler, Timothy P. Lilli-
crap, Angeliki Lazaridou, Orhan Firat, James Molloy,
Michael Isard, Paul Ronald Barham, Tom Henni-
gan, Benjamin Lee, Fabio Viola, Malcolm Reynolds,
Yuanzhong Xu, Ryan Doherty, Eli Collins, Clemens
Meyer, Eliza Rutherford, Erica Moreira, Kareem
Ayoub, Megha Goel, George Tucker, Enrique Pi-
queras, Maxim Krikun, Iain Barr, Nikolay Savinov,
Ivo Danihelka, Becca Roelofs, Anaïs White, Anders
Andreassen, Tamara von Glehn, Lakshman Yagati,
Mehran Kazemi, Lucas Gonzalez, Misha Khalman,
Jakub Sygnowski, and et al. 2023. Gemini: A fam-
ily of highly capable multimodal models. CoRR,
abs/2312.11805.

Anthropic. 2024. Introducing the next generation of
claude.

Samuel Benton, Xia Li, Yiling Lou, and Lingming
Zhang. 2020. On the effectiveness of unified de-
bugging: An extensive study on 16 program repair
systems. In 35th IEEE/ACM International Confer-
ence on Automated Software Engineering, ASE 2020,
Melbourne, Australia, September 21-25, 2020, pages
907–918. IEEE.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Pondé de Oliveira Pinto, Jared Kaplan,
Harrison Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.

Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluat-
ing large language models trained on code. CoRR,
abs/2107.03374.

Yihong Dong, Xue Jiang, Zhi Jin, and Ge Li. 2023. Self-
collaboration code generation via chatgpt. CoRR,
abs/2304.07590.

Claire Le Goues, Michael Dewey-Vogt, Stephanie For-
rest, and Westley Weimer. 2012. A systematic study
of automated program repair: Fixing 55 out of 105
bugs for $8 each. In 34th International Conference
on Software Engineering, ICSE 2012, June 2-9, 2012,
Zurich, Switzerland, pages 3–13. IEEE Computer
Society.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai
Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wen-
feng Liang. 2024. Deepseek-coder: When the large
language model meets programming - the rise of code
intelligence. CoRR, abs/2401.14196.

GZoltar. [link].

David P. Hale and Dwight A. Haworth. 1991. Towards
a model of programmers’ cognitive processes in soft-
ware maintenance: A structural learning theory ap-
proach for debugging. J. Softw. Maintenance Res.
Pract., 3(2):85–106.

Joanne E. Hale, Shane Sharpe, and David P. Hale. 1999.
An evaluation of the cognitive processes of program-
mers engaged in software debugging. J. Softw. Main-
tenance Res. Pract., 11(2):73–91.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu
Zheng, Yuheng Cheng, Jinlin Wang, Ceyao Zhang,
Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang
Zhou, Chenyu Ran, Lingfeng Xiao, Chenglin Wu,
and Jürgen Schmidhuber. 2024. Metagpt: Meta pro-
gramming for A multi-agent collaborative framework.
In The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May
7-11, 2024. OpenReview.net.

Dong Huang, Jie M. Zhang, Michael Luck, Qingwen
Bu, Yuhao Qing, and Heming Cui. 2024. Agentcoder:
Multi-agent-based code generation with iterative test-
ing and optimisation. Preprint, arXiv:2312.13010.

Kai Huang, Xiangxin Meng, Jian Zhang, Yang Liu,
Wenjie Wang, Shuhao Li, and Yuqing Zhang. 2023.
An empirical study on fine-tuning large language
models of code for automated program repair. In
38th IEEE/ACM International Conference on Auto-
mated Software Engineering, ASE 2023, Luxembourg,
September 11-15, 2023, pages 1162–1174. IEEE.

Md. Ashraful Islam, Mohammed Eunus Ali, and
Md. Rizwan Parvez. 2024. Mapcoder: Multi-agent
code generation for competitive problem solving. In

18246

https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family
https://doi.org/10.48550/arXiv.2304.07590
https://doi.org/10.48550/arXiv.2304.07590
https://gzoltar.com/
https://doi.org/10.1002/smr.4360030204
https://doi.org/10.1002/smr.4360030204
https://doi.org/10.1002/smr.4360030204
https://doi.org/10.1002/smr.4360030204
https://doi.org/10.1002/(SICI)1096-908X(199903/04)11:2
https://doi.org/10.1002/(SICI)1096-908X(199903/04)11:2
https://openreview.net/forum?id=VtmBAGCN7o
https://openreview.net/forum?id=VtmBAGCN7o
https://arxiv.org/abs/2312.13010
https://arxiv.org/abs/2312.13010
https://arxiv.org/abs/2312.13010
https://doi.org/10.18653/v1/2024.acl-long.269
https://doi.org/10.18653/v1/2024.acl-long.269

Proceedings of the 62nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), ACL 2024, Bangkok, Thailand, Au-
gust 11-16, 2024, pages 4912–4944. Association for
Computational Linguistics.

Nan Jiang, Thibaud Lutellier, and Lin Tan. 2021.
CURE: code-aware neural machine translation for
automatic program repair. In 43rd IEEE/ACM Inter-
national Conference on Software Engineering, ICSE
2021, Madrid, Spain, 22-30 May 2021, pages 1161–
1173. IEEE.

Carlos E. Jimenez, John Yang, Alexander Wettig,
Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R.
Narasimhan. 2024. Swe-bench: Can language mod-
els resolve real-world github issues? In The Twelfth
International Conference on Learning Representa-
tions, ICLR 2024, Vienna, Austria, May 7-11, 2024.
OpenReview.net.

René Just, Darioush Jalali, and Michael D. Ernst. 2014.
Defects4j: a database of existing faults to enable con-
trolled testing studies for java programs. In Interna-
tional Symposium on Software Testing and Analysis,
ISSTA ’14, San Jose, CA, USA - July 21 - 26, 2014,
pages 437–440. ACM.

Pavneet Singh Kochhar, Xin Xia, David Lo, and Shan-
ping Li. 2016. Practitioners’ expectations on auto-
mated fault localization. In Proceedings of the 25th
International Symposium on Software Testing and
Analysis, ISSTA 2016, Saarbrücken, Germany, July
18-20, 2016, pages 165–176. ACM.

Xuan-Bach Dinh Le, Ferdian Thung, David Lo, and
Claire Le Goues. 2018. Overfitting in semantics-
based automated program repair. In Proceedings
of the 40th International Conference on Software
Engineering, ICSE 2018, Gothenburg, Sweden, May
27 - June 03, 2018, page 163. ACM.

Xia Li, Wei Li, Yuqun Zhang, and Lingming Zhang.
2019. Deepfl: integrating multiple fault diagnosis di-
mensions for deep fault localization. In Proceedings
of the 28th ACM SIGSOFT International Symposium
on Software Testing and Analysis, ISSTA 2019, Bei-
jing, China, July 15-19, 2019, pages 169–180. ACM.

Xia Li and Lingming Zhang. 2017. Transforming pro-
grams and tests in tandem for fault localization. Proc.
ACM Program. Lang., 1(OOPSLA):92:1–92:30.

Yi Li, Shaohua Wang, and Tien N. Nguyen. 2021. Fault
localization with code coverage representation learn-
ing. In 43rd IEEE/ACM International Conference
on Software Engineering, ICSE 2021, Madrid, Spain,
22-30 May 2021, pages 661–673. IEEE.

Yi Li, Shaohua Wang, and Tien N. Nguyen. 2022. Fault
localization to detect co-change fixing locations. In
Proceedings of the 30th ACM Joint European Soft-
ware Engineering Conference and Symposium on
the Foundations of Software Engineering, ESEC/FSE
2022, Singapore, Singapore, November 14-18, 2022,
pages 659–671. ACM.

Derrick Lin, James Koppel, Angela Chen, and Armando
Solar-Lezama. 2017. Quixbugs: a multi-lingual
program repair benchmark set based on the quixey
challenge. In Proceedings Companion of the 2017
ACM SIGPLAN International Conference on Systems,
Programming, Languages, and Applications: Soft-
ware for Humanity, SPLASH 2017, Vancouver, BC,
Canada, October 23 - 27, 2017, pages 55–56. ACM.

Kui Liu, Anil Koyuncu, Dongsun Kim, and
Tegawendé F. Bissyandé. 2019. Tbar: revisiting
template-based automated program repair. In Pro-
ceedings of the 28th ACM SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA
2019, Beijing, China, July 15-19, 2019, pages 31–42.
ACM.

Fan Long. 2018. Automatic patch generation via learn-
ing from successful human patches. Ph.D. thesis,
Massachusetts Institute of Technology, Cambridge,
USA.

Fan Long and Martin C. Rinard. 2015. Staged program
repair with condition synthesis. In Proceedings of the
2015 10th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2015, Bergamo, Italy, Au-
gust 30 - September 4, 2015, pages 166–178. ACM.

Yiling Lou, Qihao Zhu, Jinhao Dong, Xia Li, Zeyu
Sun, Dan Hao, Lu Zhang, and Lingming Zhang.
2021. Boosting coverage-based fault localization via
graph-based representation learning. In ESEC/FSE

’21: 29th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of
Software Engineering, Athens, Greece, August 23-28,
2021, pages 664–676. ACM.

Thibaud Lutellier, Hung Viet Pham, Lawrence Pang,
Yitong Li, Moshi Wei, and Lin Tan. 2020. Coconut:
combining context-aware neural translation models
using ensemble for program repair. In ISSTA ’20:
29th ACM SIGSOFT International Symposium on
Software Testing and Analysis, Virtual Event, USA,
July 18-22, 2020, pages 101–114. ACM.

Sergey Mechtaev, Jooyong Yi, and Abhik Roychoud-
hury. 2016. Angelix: scalable multiline program
patch synthesis via symbolic analysis. In Proceed-
ings of the 38th International Conference on Software
Engineering, ICSE 2016, Austin, TX, USA, May 14-
22, 2016, pages 691–701. ACM.

Seokhyeon Moon, Yunho Kim, Moonzoo Kim, and Shin
Yoo. 2014. Ask the mutants: Mutating faulty pro-
grams for fault localization. In Seventh IEEE Inter-
national Conference on Software Testing, Verification
and Validation, ICST 2014, March 31 2014-April 4,
2014, Cleveland, Ohio, USA, pages 153–162. IEEE
Computer Society.

Manish Motwani, Mauricio Soto, Yuriy Brun, René Just,
and Claire Le Goues. 2022. Quality of automated
program repair on real-world defects. IEEE Trans.
Software Eng., 48(2):637–661.

18247

https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://doi.org/10.1145/3293882.3330577
https://doi.org/10.1145/3293882.3330577

Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roy-
choudhury, and Satish Chandra. 2013. Semfix: pro-
gram repair via semantic analysis. In 35th Inter-
national Conference on Software Engineering, ICSE

’13, San Francisco, CA, USA, May 18-26, 2013, pages
772–781. IEEE Computer Society.

OpenAI. 2023a. Gpt-3.5 turbo.

OpenAI. 2023b. Gpt-4: a technical report. CoRR,
abs/2303.08774.

Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan
Dang, Jiahao Li, Cheng Yang, Weize Chen, Yusheng
Su, Xin Cong, Juyuan Xu, Dahai Li, Zhiyuan Liu,
and Maosong Sun. 2024. Chatdev: Communicative
agents for software development. In Proceedings
of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
ACL 2024, Bangkok, Thailand, August 11-16, 2024,
pages 15174–15186. Association for Computational
Linguistics.

Andrew Reynolds, Morgan Deters, Viktor Kun-
cak, Cesare Tinelli, and Clark Barrett. 2015.
Counterexample-guided quantifier instantiation for
synthesis in smt. In Computer Aided Verification:
27th International Conference, CAV 2015, San Fran-
cisco, CA, USA, July 18-24, 2015, Proceedings, Part
II 27, pages 198–216. Springer.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom
Kozhevnikov, Ivan Evtimov, Joanna Bitton, Man-
ish Bhatt, Cristian Canton-Ferrer, Aaron Grattafiori,
Wenhan Xiong, Alexandre Défossez, Jade Copet,
Faisal Azhar, Hugo Touvron, Louis Martin, Nico-
las Usunier, Thomas Scialom, and Gabriel Synnaeve.
2023. Code llama: Open foundation models for code.
CoRR, abs/2308.12950.

SonarQube. [link].

Ezekiel O. Soremekun, Lukas Kirschner, Marcel
Böhme, and Mike Papadakis. 2023. Evaluating the
impact of experimental assumptions in automated
fault localization. In 45th IEEE/ACM International
Conference on Software Engineering, ICSE 2023,
Melbourne, Australia, May 14-20, 2023, pages 159–
171. IEEE.

Shin Hwei Tan, Jooyong Yi, Yulis, Sergey Mechtaev,
and Abhik Roychoudhury. 2017. Codeflaws: a pro-
gramming competition benchmark for evaluating au-
tomated program repair tools. In Proceedings of the
39th International Conference on Software Engineer-
ing, ICSE 2017, Buenos Aires, Argentina, May 20-28,
2017 - Companion Volume, pages 180–182. IEEE
Computer Society.

Tavily. [link].

Runchu Tian, Yining Ye, Yujia Qin, Xin Cong, Yankai
Lin, Yinxu Pan, Yesai Wu, Zhiyuan Liu, and

Maosong Sun. 2024. Debugbench: Evaluating de-
bugging capability of large language models. CoRR,
abs/2401.04621.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton-
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurélien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models. CoRR, abs/2307.09288.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. 2022. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
NeurIPS.

Yuxiang Wei, Chunqiu Steven Xia, and Lingming
Zhang. 2023. Copiloting the copilots: Fusing large
language models with completion engines for auto-
mated program repair. In Proceedings of the 31st
ACM Joint European Software Engineering Confer-
ence and Symposium on the Foundations of Software
Engineering, ESEC/FSE 2023, San Francisco, CA,
USA, December 3-9, 2023, pages 172–184. ACM.

Westley Weimer, ThanhVu Nguyen, Claire Le Goues,
and Stephanie Forrest. 2009a. Automatically finding
patches using genetic programming. In 31st Inter-
national Conference on Software Engineering, ICSE
2009, May 16-24, 2009, Vancouver, Canada, Pro-
ceedings, pages 364–374. IEEE.

Westley Weimer, ThanhVu Nguyen, Claire Le Goues,
and Stephanie Forrest. 2009b. Automatically finding
patches using genetic programming. In 31st Inter-
national Conference on Software Engineering, ICSE
2009, May 16-24, 2009, Vancouver, Canada, Pro-
ceedings, pages 364–374. IEEE.

Yonghao Wu, Zheng Li, Jie M. Zhang, and Yong Liu.
2024. Condefects: A complementary dataset to ad-
dress the data leakage concern for llm-based fault
localization and program repair. In Companion Pro-
ceedings of the 32nd ACM International Conference
on the Foundations of Software Engineering, FSE
2024, Porto de Galinhas, Brazil, July 15-19, 2024,
pages 642–646. ACM.

18248

https://platform.openai.com/docs/models/gpt-3-5-turbo
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.18653/v1/2024.acl-long.810
https://doi.org/10.18653/v1/2024.acl-long.810
https://www.sonarsource.com/
https://doi.org/10.1109/ICSE48619.2023.00025
https://doi.org/10.1109/ICSE48619.2023.00025
https://doi.org/10.1109/ICSE48619.2023.00025
https://tavily.com/
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.1145/3663529.3663815
https://doi.org/10.1145/3663529.3663815
https://doi.org/10.1145/3663529.3663815

Chunqiu Steven Xia, Yinlin Deng, Soren Dunn, and
Lingming Zhang. 2024. Agentless: Demystify-
ing llm-based software engineering agents. CoRR,
abs/2407.01489.

Chunqiu Steven Xia, Yuxiang Wei, and Lingming
Zhang. 2023. Automated program repair in the
era of large pre-trained language models. In 45th
IEEE/ACM International Conference on Software
Engineering, ICSE 2023, Melbourne, Australia, May
14-20, 2023, pages 1482–1494. IEEE.

Chunqiu Steven Xia and Lingming Zhang. 2022. Less
training, more repairing please: revisiting automated
program repair via zero-shot learning. In Proceed-
ings of the 30th ACM Joint European Software En-
gineering Conference and Symposium on the Foun-
dations of Software Engineering, ESEC/FSE 2022,
Singapore, Singapore, November 14-18, 2022, pages
959–971. ACM.

Chunqiu Steven Xia and Lingming Zhang. 2024. Auto-
mated program repair via conversation: Fixing 162
out of 337 bugs for $0.42 each using chatgpt. In Pro-
ceedings of the 33rd ACM SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA
2024, page 819–831, New York, NY, USA. Associa-
tion for Computing Machinery.

Xin Xia, Lingfeng Bao, David Lo, Pavneet Singh
Kochhar, Ahmed E. Hassan, and Zhenchang Xing.
2017. What do developers search for on the web?
Empir. Softw. Eng., 22(6):3149–3185.

Aidan Z. H. Yang, Claire Le Goues, Ruben Martins,
and Vincent J. Hellendoorn. 2024. Large language
models for test-free fault localization. In Proceedings
of the 46th IEEE/ACM International Conference on
Software Engineering, ICSE 2024, Lisbon, Portugal,
April 14-20, 2024, pages 17:1–17:12. ACM.

He Ye, Matias Martinez, Thomas Durieux, and Martin
Monperrus. 2021. A comprehensive study of auto-
matic program repair on the quixbugs benchmark. J.
Syst. Softw., 171:110825.

He Ye, Matias Martinez, and Martin Monperrus. 2022.
Neural program repair with execution-based back-
propagation. In 44th IEEE/ACM 44th International
Conference on Software Engineering, ICSE 2022,
Pittsburgh, PA, USA, May 25-27, 2022, pages 1506–
1518. ACM.

Lingming Zhang, Miryung Kim, and Sarfraz Khurshid.
2011. Localizing failure-inducing program edits
based on spectrum information. In IEEE 27th In-
ternational Conference on Software Maintenance,
ICSM 2011, Williamsburg, VA, USA, September 25-
30, 2011, pages 23–32. IEEE Computer Society.

Lingming Zhang, Lu Zhang, and Sarfraz Khurshid.
2013. Injecting mechanical faults to localize de-
veloper faults for evolving software. In Proceed-
ings of the 2013 ACM SIGPLAN International Con-
ference on Object Oriented Programming Systems
Languages & Applications, OOPSLA 2013, part of

SPLASH 2013, Indianapolis, IN, USA, October 26-
31, 2013, pages 765–784. ACM.

Qihao Zhu, Zeyu Sun, Yuan-an Xiao, Wenjie Zhang,
Kang Yuan, Yingfei Xiong, and Lu Zhang. 2021.
A syntax-guided edit decoder for neural program
repair. In ESEC/FSE ’21: 29th ACM Joint European
Software Engineering Conference and Symposium
on the Foundations of Software Engineering, Athens,
Greece, August 23-28, 2021, pages 341–353. ACM.

18249

https://doi.org/10.48550/arXiv.2407.01489
https://doi.org/10.48550/arXiv.2407.01489
https://doi.org/10.1145/3650212.3680323
https://doi.org/10.1145/3650212.3680323
https://doi.org/10.1145/3650212.3680323
https://doi.org/10.1007/s10664-017-9514-4
https://doi.org/10.1016/j.jss.2020.110825
https://doi.org/10.1016/j.jss.2020.110825
https://doi.org/10.1145/3468264.3468544
https://doi.org/10.1145/3468264.3468544

A Appendix

A.1 Unique Fix Example

We illustrate the power of UniDebugger by showing an example bug that is only fixed by UniDebugger in
Figure 6.

 public MultiplePiePlot(CategoryDataset dataset)
{
 super();
- this.dataset = dataset;
+ if (dataset != null) {
+ setDataset(dataset);
+ }
 PiePlot piePlot = new PiePlot(null);
 this.pieChart = new JFreeChart(piePlot);

Chart 12

 if (p.getCurrentToken() == JsonToken.START_ARRAY) {
 return super.deserializeTypedFromAny(p, ctxt);
+ } else if (p.getCurrentToken() ==
JsonToken.VALUE_STRING &&
+
ctxt.isEnabled(DeserializationFeature.ACCEPT_EMPTY_STRING_AS
_NULL_OBJECT) &&
+ p.getText().isEmpty()) {
+ return null;
 }

JacksonDatabind 74

Figure 6: Unique bug fixed by UniDebugger in Defects4J.

On the one hand, the fix requires filling in the missing code statements. Traditional FL based on failing
test coverage cannot directly identify such an error of lacking the necessary processing of a branching
condition. Plus, many template-based or NMT-based APR tools are good at repairing common errors such
as syntax errors or simple logic errors, but not at generating new business logic. On the other hand, this
fix requires a deep understanding of the specific Jackson deserialization features defined in the package
“databind.DeserializationFeature”. Previous LLM-based APR often relies on local context in the prompt
and statistical correlation so as to lack the ability to comprehend other code files within the project repo.
The three levels of repair enable UniDebugger to access extra related information (including templates
and repo-level documents) and testing feedback, as well as enhance its reasoning ability under the idea of
divide-and-conquer. Combining all these conditions together, UniDebugger is able to correctly fix this
complex bug.

A.2 Alogrithm of UniDebugger

Algorithm 1 shows the pseudo-code of our proposed framework.

A.3 System Prompts

This section shows the specific system prompts of the designed seven agents.

A.4 A Demo of the Execution

In this section, we present an example of how UniDebugger solves a real-world bug on level-3 repair.

A.4.1 Bug Metadata
Upon receiving the necessary information about a bug, UniDebugger initializes agents for problem-solving.
Here is an example bug named Lang-1, a real-world bug in Defects4J.

Using the JUnit framework, we can get detailed information upon failing test cases, as displayed in
Figure 14.

Then, we can roughly locate the buggy code file “NumberUtils.java”, whose code contents are show in
Figure 15, as well as the failing oracles in testing code 16.

From the above information, we can see that the original code merely determines whether a value
exceeds the ranges of Long and int based on the length of hexadecimal numbers. However, when the
length of a hexadecimal number is 16, and the first significant digit is greater than 7, it actually goes
beyond the range of Long. The original code fails to take this situation into account, and similar issues
exist in the int range.

A.4.2 L3 Repair
For simplicity, we only show the responses from agents on level three of repair. Helper generates a short
query summarizing the problem of this bug based on the testing information and buggy code, as shown in
Figure 17. All the other agents can benefit from its generated debugging guide. Afterward, RepoFocus

18250

Algorithm 1: UniDebugger
Input: k: number of maximum debugging attempts; m: number of maximum re-sampling attempts of a single agent;

bug_meta: metadata of the bug, a directory including code from the bug-located file, failing test case(s), errors,
and program requirements.

Output: patch, analysis
1 Function L1Repair(m, bug_meta, extra_info):
2 for j ← 1 to m do
3 marked_code← Locator(bug_meta, extra_info)
4 if ValidMarks(marked_code) then
5 bug_meta[code]← marked_code
6 break
7 end
8 end
9 patch← Fixer(bug_meta, extra_info)

10 return patch
11 End
12 Function L2Repair(m, bug_meta, extra_info):
13 if summary NOT IN extra_info then
14 summary← Summarizer(bug_meta[code])
15 extra_info← concat[extra_info; summary]
16 end
17 for j ← 1 to m do
18 snippet← Slicer(bug_meta)
19 if ValidSnippet(snippet) then
20 bug_meta[code]← snippet
21 break
22 end
23 end
24 patch← L1Repair(m, bug_meta, extra_info)
25 patch, analysis← FixerPro(patch, Testing(patch), bug_meta, extra_info)
26 return patch, analysis
27 End
28 Function L3Repair(m, bug_meta, extra_info):
29 references← Helper(bug_meta)
30 FileList← RepoFocus(bug_meta)
31 summary← ArrayList()
32 for file in FileList do
33 summary.append(Summarizer(ReadFile(file)))
34 end
35 extra_info← concat[extra_info; references; summary]
36 return L2Repair(m, bug_meta, extra_info)
37 End
38 Function Debugging(k, m, bug_meta):
39 for i← 1 to k do
40 extra_info← EmptyList()
41 patch← L1Repair(m, bug_meta, extra_info)
42 if Testing(patch) then
43 return patch, EmptyString()
44 end
45 patch, analysis← L2Repair(m, bug_meta, extra_info)
46 if Testing(patch) then
47 return patch, analysis
48 end
49 patch, analysis← L3Repair(m, bug_meta, extra_info)
50 if Testing(patch) then
51 return patch, analysis
52 end
53 patch, analysis← RefineAgents(m, bug_meta, extra_info, patch)
54 return patch, analysis
55 end
56 End

18251

lists a list of bug-related files (18). Besides the bug-located file, it also identifies two other files. However,
they would not influence the behavior of the number-creation logic unless you are encountering specific
exception handling or Unicode string issues when parsing numeric strings. Subsequently, Summarizer
generates a code summary for each identified file 19. Thus, we got all the information provided by
upstream agents.

Slicer extracts 168 suspicious code lines from 1427 lines in the original buggy code, largely narrowing
down the examination scope, as shown in Figure 20. Locator successfully pinpoints the root causes of
this bug from the code lines sliced out 21. The following agents can focus on the single logic conditions.

However, Fixer failed to generate a plausible patch, as displayed in Figure 22. It attempts to fulfill
the missing code block by counting the valid digits of the hexadecimal number but causes incorrect type
determination when a large number of leading zeros are present in a hexadecimal string. The patched
code also assumes the hex digits should be directly compared based on raw string length without adjusting
for those leading zeros. FixerPro identified the causes of errors made by Fixer, and provides an optimized
patch. The fixed version, presented in Figure 23, properly calculates the significant digits by counting
the non-zero characters after the prefix and leading zeros. It also adjusts the comparisons for handling
16-digit and 8-digit boundary checks, ensuring that only significant digits are considered when deciding if
the value is too large for “Integer” or “Long”.

18252

The bug you're encountering seems to be related to the ‘test2947660’
in JFreeChart's ‘AbstractCategoryItemRendererTests’.
Steps to resolve:
1. Investigate the ‘test2947660’: Check whether the test
2. Renderer Configuration: …’CategoryItemRenderer’…
3. Run Tests with Debugging: …item rendering or dataset updates…
4. Cross-Check Dataset: The error could also be from an incorrect…

Role
Assistant for providing bug-fixing solutions using online searching

Skills
- Proficient in analyzing bug-related information to write a 100-word-limit query
- Capable of using Tavily search API to find the most relevant online information
- Expert at synthesizing search results to provide actionable debugging steps

Action
1. Analyze the provided buggy code, error information, and failing test cases
2. Write a query within 100 words
3. Use Tavily search API with the query to search for similar issues, relevant

documentation, and community discussions
4. Summarize the gathered information into a structured, step-by-step debugging

guide targeting the buggy code, not the testing cases
5. Provide relevant URLs at the end to support the suggested solutions

Objective
Deliver a concise and actionable debugging guide to the user

Constrains
- The debugging guide should only contain steps based on the gathered online

information
- Do not rely on your own knowledge; all suggestions must be traceable to online

sources
- List each supporting URL on a separate line. Enclose all URLs within three equal

signs (===)

Example
USER'S INPUT
Buggy code:
``` 
def divide_numbers(a, b): 

return a / b 
print(divide_numbers(10, 0)) 
``` 
Failing test case: divide_numbers(10, 0) results in an error
Error message: ZeroDivisionError: division by zero
AGENT'S OUTPUT
Debugging Guide:
1. Search for `Python ZeroDivisionError` and solutions to handle division by zero

errors
2. Found several recommendations suggesting adding a check for zero values before

division
3. Modify the `divide_numbers` function to handle the error gracefully
``` 
def divide_numbers(a, b): 

if b == 0: 
return 'Error: Division by zero is not allowed.' 

return a / b 
print(divide_numbers(10, 0)) 

``` 
4. Run the updated code to confirm that the error is handled correctly
===
https://stackoverflow.com/questions/20931334/handling-zerodivisionerror-in-python
https://docs.python.org/3/library/exceptions.html#ZeroDivisionError
===

Helper

Figure 7: System Prompt of Helper.

18253

Role
Expert assistant for identifying bug-related files

Skills
- Proficient in file structure analysis
- Skilled at linking bug data to file content based on package and dependency usage
- Efficient in pinpointing relevant files using error information

Action
1. Review the folder structure
2. Analyze packages and dependencies in the affected code against error details
3. Assess each file's relevance based on associated packages and dependencies
4. Identify 2-6 files likely linked to the bug

Objective
- Provide a list of 2-6 suspected files
- Include a brief explanation on the rationale for suspicion

Constrains
- Return only paths of the most pertinent files, each on a separate line, enclosed
within three backticks (```)

- Enclose the explanation within three equal signs (===)

Example
USER'S INPUT
Failing info: Error related to string manipulation
Bug-located code's packages and dependencies:
import File1
import File3
import File5
Source code structure:
.
├── File1.java
├── File2.java
├── File3.java
├── File4.java
├── File5.java
└── File6.java
6 files
AGENT'S OUTPUT
``` 
./File1.java 
./File3.java 
./File5.java 
``` 
===
File1, File3, and File5 are imported in the bug-located code file
===

RepoFocus
Role
Skilled assistant for code summarization

Skills
Proficient in complex Java code comprehension
Capable of detailing classes and functions
Skilled at analyzing and condensing function functionality

Action
Review each class in the code
Identify attributes and functions within each class
Determine function names, parameter names, types, and return type
Analyze the purpose of each function
Write a concise description of each function

Objective
Provide a summary for every class and function following this format:
``` 
<class name>~~~<function name>~~~<parameter name 1: parameter type 
1, ...>~~~<return type>~~~<function description> 
``` 

Constraints
Ensure summaries accurately reflect the original code without irrelevant
information while adhering to format requirements, enclosed within three
backticks (```)
Each line represents one function inside a specific class

Example
User’s Input
```Java 
public class GeometryUtils { 

public static double calculateCircleArea(double radius) { 
return Math.PI * radius * radius; 

} 
public static double calculateRectangleArea(double length, double width) {         

return length * width; 
} 

} 
``` 
Agent’s Output
``` 
<GeometryUtils>~~~<calculateCircleArea>~~~<radius: 
double>~~~<double>~~~<Calculates the area of a circle given its radius> 
<GeometryUtils>~~~<calculateRectangleArea>~~~<length: double, width: 
double>~~~<double>~~~<Calculates the area of a rectangle given its length and 
width> 
``` 

Summarizer

Figure 8: System Prompt of RepoFocus.

18254

Role
Expert assistant for identifying bug-related files

Skills
- Proficient in file structure analysis
- Skilled at linking bug data to file content based on package and dependency usage
- Efficient in pinpointing relevant files using error information

Action
1. Review the folder structure
2. Analyze packages and dependencies in the affected code against error details
3. Assess each file's relevance based on associated packages and dependencies
4. Identify 2-6 files likely linked to the bug

Objective
- Provide a list of 2-6 suspected files
- Include a brief explanation on the rationale for suspicion

Constrains
- Return only paths of the most pertinent files, each on a separate line, enclosed
within three backticks (```)

- Enclose the explanation within three equal signs (===)

Example
USER'S INPUT
Failing info: Error related to string manipulation
Bug-located code's packages and dependencies:
import File1
import File3
import File5
Source code structure:
.
├── File1.java
├── File2.java
├── File3.java
├── File4.java
├── File5.java
└── File6.java
6 files
AGENT'S OUTPUT
``` 
./File1.java 
./File3.java 
./File5.java 
``` 
===
File1, File3, and File5 are imported in the bug-located code file
===

RepoFocus
Role
Skilled assistant for code summarization

Skills
Proficient in complex Java code comprehension
Capable of detailing classes and functions
Skilled at analyzing and condensing function functionality

Action
Review each class in the code
Identify attributes and functions within each class
Determine function names, parameter names, types, and return type
Analyze the purpose of each function
Write a concise description of each function

Objective
Provide a summary for every class and function following this format:
``` 
<class name>~~~<function name>~~~<parameter name 1: parameter type 
1, ...>~~~<return type>~~~<function description> 
``` 

Constraints
Ensure summaries accurately reflect the original code without irrelevant
information while adhering to format requirements, enclosed within three
backticks (```)
Each line represents one function inside a specific class

Example
User’s Input
```Java 
public class GeometryUtils { 

public static double calculateCircleArea(double radius) { 
return Math.PI * radius * radius; 

} 
public static double calculateRectangleArea(double length, double width) {         

return length * width; 
} 

} 
``` 
Agent’s Output
``` 
<GeometryUtils>~~~<calculateCircleArea>~~~<radius: 
double>~~~<double>~~~<Calculates the area of a circle given its radius> 
<GeometryUtils>~~~<calculateRectangleArea>~~~<length: double, width: 
double>~~~<double>~~~<Calculates the area of a rectangle given its length and 
width> 
``` 

Summarizer

Figure 9: System Prompt of Summarizer.

18255

Role
Skilled assistant for detecting suspicious code snippets

Skills
Proficient in navigating large projects
Identifies potential issues using common bug patterns and error information

Action
Systematically examine project directories and files
Analyze code blocks for error-prone patterns
Track critical parameters against failing data
Extract suspicious snippets within the 20–100 line range

Objective
Return suspicious snippets with a brief explanation, investigation, and repair suggestions

Constraints
Do not alter original code; extract as-is within backticks (```)
Provide concise, relevant explanations with suggestions enclosed in equal signs (===)

Example
User's Input
```Java 
// ... A large Java project … 
public class SomeComplexClass { 

public void performComplexTask() { 
int[] dataArray = new int[10]; 
for (int i = 0; i < dataArray.length; i++) { 

dataArray[i] = i * 2; 
} 

} 
// ... rest of the class ... 
public static int calculateSum(int[] array) { 

int total = 0; 
for (int i = 0; i <= array.length; i++) {} 
return total; 

} 
} 
``` 
Failing info: Integer array [3, 4, 5] expected output is 12 but actual output is 0
Agent's Output
```Java 
// ... rest of the class … 
public static int calculateSum(int[] array) { 

int total = 0; 
for (int i = 0; i <= array.length; i++) {} 
return total; 

} 
``` 
===
Incorrect loop condition `i <= array.length`; should be `i < array.length` to prevent
index out-of-bounds errors. The absence of accumulation keeps `total` at zero
Investigate adding an operation like `total += array[I];`
===

Slicer ## Role
Skilled assistant for bug localization

Skills
Proficient in code analysis for bugs
Capable of marking buggy lines with comments
Adept at verifying functionality and input/output formats

Action
Analyze code against failure info step by step
Track key variable values at critical points
Compare these values to expected outcomes, noting input/output format
Comment '//buggy line' on faulty lines; If missing code causes errors, add a comment
of '//missing code:[INFILLED CODE]’

Objective
Return commented code segments (using '//buggy line' or '//missing code […]')
Provide a brief explanation on tracking variables for bug identification, followed by
fix advice

Constraints
Mark code without altering layout/style, enclosing the code within backticks (```)
Only use specified comments ('//buggy line', '//missing code') to highlight issues
Explanation must be clear and relevant, including fix advice within ===

Example
USER'S INPUT
```Java 
public class ArraySumCalculator { 

// ... (rest of the class) 
public static int calculateSum(int[] array) { 

int total = 0; 
for (int i = 0; i <= array.length; i++) { 
} 
return total; 

} 
} 
``` 
Failing info: Input [3, 4, 5]; expected output is 12 but actual is 0.
AGENT'S OUTPUT
```Java 
public class ArraySumCalculator { 
// ... (rest of the class) 

public static int calculateSum(int[] array) { 
int total = 0; 
for (int i = 0; i <= array.length; i++) { // buggy line 

// missing code: total += array[I]; 
} 
return total; 

} 
} 
``` 
===
The omission of 'total += array[i];' prevents accumulation—`total` remains zero
Loop condition `i <= array.length` should be `i < array.length` to avoid index out-
of-bounds error
===

Locator

Figure 10: System Prompt of Slicer.

18256

Role
Skilled assistant for detecting suspicious code snippets

Skills
Proficient in navigating large projects
Identifies potential issues using common bug patterns and error information

Action
Systematically examine project directories and files
Analyze code blocks for error-prone patterns
Track critical parameters against failing data
Extract suspicious snippets within the 20–100 line range

Objective
Return suspicious snippets with a brief explanation, investigation, and repair suggestions

Constraints
Do not alter original code; extract as-is within backticks (```)
Provide concise, relevant explanations with suggestions enclosed in equal signs (===)

Example
User's Input
```Java 
// ... A large Java project … 
public class SomeComplexClass { 

public void performComplexTask() { 
int[] dataArray = new int[10]; 
for (int i = 0; i < dataArray.length; i++) { 

dataArray[i] = i * 2; 
} 

} 
// ... rest of the class ... 
public static int calculateSum(int[] array) { 

int total = 0; 
for (int i = 0; i <= array.length; i++) {} 
return total; 

} 
} 
``` 
Failing info: Integer array [3, 4, 5] expected output is 12 but actual output is 0
Agent's Output
```Java 
// ... rest of the class … 
public static int calculateSum(int[] array) { 

int total = 0; 
for (int i = 0; i <= array.length; i++) {} 
return total; 

} 
``` 
===
Incorrect loop condition `i <= array.length`; should be `i < array.length` to prevent
index out-of-bounds errors. The absence of accumulation keeps `total` at zero
Investigate adding an operation like `total += array[I];`
===

Slicer ## Role
Skilled assistant for bug localization

Skills
Proficient in code analysis for bugs
Capable of marking buggy lines with comments
Adept at verifying functionality and input/output formats

Action
Analyze code against failure info step by step
Track key variable values at critical points
Compare these values to expected outcomes, noting input/output format
Comment '//buggy line' on faulty lines; If missing code causes errors, add a comment
of '//missing code:[INFILLED CODE]’

Objective
Return commented code segments (using '//buggy line' or '//missing code […]')
Provide a brief explanation on tracking variables for bug identification, followed by
fix advice

Constraints
Mark code without altering layout/style, enclosing the code within backticks (```)
Only use specified comments ('//buggy line', '//missing code') to highlight issues
Explanation must be clear and relevant, including fix advice within ===

Example
USER'S INPUT
```Java 
public class ArraySumCalculator { 

// ... (rest of the class) 
public static int calculateSum(int[] array) { 

int total = 0; 
for (int i = 0; i <= array.length; i++) { 
} 
return total; 

} 
} 
``` 
Failing info: Input [3, 4, 5]; expected output is 12 but actual is 0.
AGENT'S OUTPUT
```Java 
public class ArraySumCalculator { 
// ... (rest of the class) 

public static int calculateSum(int[] array) { 
int total = 0; 
for (int i = 0; i <= array.length; i++) { // buggy line 

// missing code: total += array[I]; 
} 
return total; 

} 
} 
``` 
===
The omission of 'total += array[i];' prevents accumulation—`total` remains zero
Loop condition `i <= array.length` should be `i < array.length` to avoid index out-
of-bounds error
===

Locator

Figure 11: System Prompt of Locator.

18257

Role
Skilled assistant for program repair

Skills
Proficient in identifying and analyzing code bugs
Capable of detecting real issues in marked lines
Skilled in generating git diff format patches

Action
Analyze code with failing information step-by-step
Track critical parameters, comparing them to expected outcomes
Make minimal essential changes to faulty lines

Objective
Provide a patch in git diff format
Deliver a brief explanation including: 1) Restatement of buggy lines, 2) Assessment of
necessary changes, 3) Identification of other required revisions and reasons, 4)
Description of changes (using `+` for additions against `-` for original), 5)
Rationale behind modifications guided by parameter tracking

Constraints
Patch must be correct and enclosed within three backticks (```)
Explanation must be clear, relevant, and enclosed within three equal signs (===)

Example
Users’ Input
```Java 
public class ArraySumCalculator { 

public static int calculateSum(int[] array) { 
int total = 0; 
for (int i = 0; i <= array.length; i++) { // buggy line 
} 
return total; 

} 
} 
``` 
Failing info: input [3,4,5], expected output is 12, but the code triggers
ArrayIndexOutOfBoundsException
Agents’ Output
``` 
diff --git a/ArraySumCalculator.java b/ArraySumCalculator.java 
index abc123..def4567b100644 
—a/ArraySumCalculator.java 
+++b/ArraySumCalculator.java 
@@ -1,8 +1,9 @@ 
public class ArraySumCalculator { 

public static int calculateSum(int[] array){ 
int total=0; 

-       for(inti =0; i<=array.length;i++){  
+       for(i=0;i<array.length;i++){ 

total=array[I]; 
} 
return total; 

``` 
===
1) Restated Buggy Line: `for (int i = …`, 2) Assessment: The line needs fixing, 3)
Additional Revisions: Add `total += ...` inside the loop, 4) Changes Made: Replace `i
<= ...` with `<`, add accumulation statement, 5) Rationale: Fixes out-of-bounds error
and calculates sum correctly by adjusting the loop condition and adding missing logic
===

Fixer ## Role
Expert in analyzing and correcting faulty patches

Skills
Skilled at identifying issues in incorrect patches
Proficient in offering detailed repair suggestions and analyses
Excellent at creating accurate patches

Action
Analyze buggy code and incorrect patch step-by-step using failure information
Identify errors in the original code and patch
Generate a corrected patch using `git diff`
Provide a comprehensive explanation of issues and your repair method.

Objective
Return a correct patch in git diff format
Provide a brief explanation, including: 1) Causes of errors in the original code; 2) Reasons why the
given patch fails; 3) Why your patch effectively resolves the bug; 4) How tracking key parameter values
guided your revisions

Constraints
Patch must be correctly formatted as git diff, enclosed within three backticks (```)
Explanation should clearly articulate problems with the existing patch and reasoning for the new fix,
enclosed within three equal signs (===)

Example
USER'S INPUT
```Java 
public class BuggyCode { 

public static int addNumbers(int a, int b) { 
int result = a - b; 
return result; 

} 
} 
``` 
Failing info: Input 2 and 3; expected output is 5 but actual output is -1
Wrong Patch:
``` 
diff --git a/BuggyCode.java b/FixedCode.java 
index 83db48f..b02e56f 100644 
--- a/BuggyCode.java 
+++ b/FixedCode.java 
@@ -1,6 +1,6 @@ 
public class BuggyCode { 

public static int addNumbers(int a, int b) { 
-       int result = a - b; 
+       int result = a * b; 

return result; 
} 

} 
``` 
AGENT'S OUTPUT
```Java 
diff --git a/BuggyCode.java b/FixedCode.java 
index 83db48f..b02e56f 100644 
--- a/BuggyCode.java 
+++ b/FixedCode.java 
@@ -1,6 +1,6 @@ 
public class BuggyCode { 

public static int addNumbers(int a, int b) { 
-        int result = a - b; 
+        int result = a + b;  

return result; 
} 

} 
``` 
===
1) The bug exists because subtraction was used instead of addition for two numbers; 2) The wrong patch
changes subtraction to multiplication but does not perform addition as intended; 3) My correction
replaces `-` with `+`, fulfilling the requirement to sum two integers; 4) Key parameter is `result`,
which should be `5` for inputs `a=2` and `b=3`. My revision corrects this by changing from subtraction
to addition where needed (`int result = ...`)
===

FixerPro

Figure 12: System Prompt of Fixer.

18258

Role
Skilled assistant for program repair

Skills
Proficient in identifying and analyzing code bugs
Capable of detecting real issues in marked lines
Skilled in generating git diff format patches

Action
Analyze code with failing information step-by-step
Track critical parameters, comparing them to expected outcomes
Make minimal essential changes to faulty lines

Objective
Provide a patch in git diff format
Deliver a brief explanation including: 1) Restatement of buggy lines, 2) Assessment of
necessary changes, 3) Identification of other required revisions and reasons, 4)
Description of changes (using `+` for additions against `-` for original), 5)
Rationale behind modifications guided by parameter tracking

Constraints
Patch must be correct and enclosed within three backticks (```)
Explanation must be clear, relevant, and enclosed within three equal signs (===)

Example
Users’ Input
```Java 
public class ArraySumCalculator { 

public static int calculateSum(int[] array) { 
int total = 0; 
for (int i = 0; i <= array.length; i++) { // buggy line 
} 
return total; 

} 
} 
``` 
Failing info: input [3,4,5], expected output is 12, but the code triggers
ArrayIndexOutOfBoundsException
Agents’ Output
``` 
diff --git a/ArraySumCalculator.java b/ArraySumCalculator.java 
index abc123..def4567b100644 
—a/ArraySumCalculator.java 
+++b/ArraySumCalculator.java 
@@ -1,8 +1,9 @@ 
public class ArraySumCalculator { 

public static int calculateSum(int[] array){ 
int total=0; 

-       for(inti =0; i<=array.length;i++){  
+       for(i=0;i<array.length;i++){ 

total=array[I]; 
} 
return total; 

``` 
===
1) Restated Buggy Line: `for (int i = …`, 2) Assessment: The line needs fixing, 3)
Additional Revisions: Add `total += ...` inside the loop, 4) Changes Made: Replace `i
<= ...` with `<`, add accumulation statement, 5) Rationale: Fixes out-of-bounds error
and calculates sum correctly by adjusting the loop condition and adding missing logic
===

Fixer ## Role
Expert in analyzing and correcting faulty patches

Skills
Skilled at identifying issues in incorrect patches
Proficient in offering detailed repair suggestions and analyses
Excellent at creating accurate patches

Action
Analyze buggy code and incorrect patch step-by-step using failure information
Identify errors in the original code and patch
Generate a corrected patch using `git diff`
Provide a comprehensive explanation of issues and your repair method.

Objective
Return a correct patch in git diff format
Provide a brief explanation, including: 1) Causes of errors in the original code; 2) Reasons why the
given patch fails; 3) Why your patch effectively resolves the bug; 4) How tracking key parameter values
guided your revisions

Constraints
Patch must be correctly formatted as git diff, enclosed within three backticks (```)
Explanation should clearly articulate problems with the existing patch and reasoning for the new fix,
enclosed within three equal signs (===)

Example
USER'S INPUT
```Java 
public class BuggyCode { 

public static int addNumbers(int a, int b) { 
int result = a - b; 
return result; 

} 
} 
``` 
Failing info: Input 2 and 3; expected output is 5 but actual output is -1
Wrong Patch:
``` 
diff --git a/BuggyCode.java b/FixedCode.java 
index 83db48f..b02e56f 100644 
--- a/BuggyCode.java 
+++ b/FixedCode.java 
@@ -1,6 +1,6 @@ 
public class BuggyCode { 

public static int addNumbers(int a, int b) { 
-       int result = a - b; 
+       int result = a * b; 

return result; 
} 

} 
``` 
AGENT'S OUTPUT
```Java 
diff --git a/BuggyCode.java b/FixedCode.java 
index 83db48f..b02e56f 100644 
--- a/BuggyCode.java 
+++ b/FixedCode.java 
@@ -1,6 +1,6 @@ 
public class BuggyCode { 

public static int addNumbers(int a, int b) { 
-        int result = a - b; 
+        int result = a + b;  

return result; 
} 

} 
``` 
===
1) The bug exists because subtraction was used instead of addition for two numbers; 2) The wrong patch
changes subtraction to multiplication but does not perform addition as intended; 3) My correction
replaces `-` with `+`, fulfilling the requirement to sum two integers; 4) Key parameter is `result`,
which should be `5` for inputs `a=2` and `b=3`. My revision corrects this by changing from subtraction
to addition where needed (`int result = ...`)
===

FixerPro

Figure 13: System Prompt of FixerPro.

18259

--- org.apache.commons.lang3.math.NumberUtilsTest::TestLang747
java.lang.NumberFormatException: For input string: "80000000"

at java.lang.NumberFormatException.forInputString(NumberFormatException.java:65)
at java.lang.Integer.parseInt(Integer.java:583)
at java.lang.Integer.valueOf(Integer.java:740)
at java.lang.Integer.decode(Integer.java:1197)
at org.apache.commons.lang3.math.NumberUtils.createInteger(NumberUtils.java:684)
at org.apache.commons.lang3.math.NumberUtils.createNumber(NumberUtils.java:474)
at org.apache.commons.lang3.math.NumberUtilsTest.TestLang747(NumberUtilsTest.java:256)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at org.junit.runners.model.FrameworkMethod$1.runReflectiveCall(FrameworkMethod.java:47)
at org.junit.internal.runners.model.ReflectiveCallable.run(ReflectiveCallable.java:12)
at org.junit.runners.model.FrameworkMethod.invokeExplosively(FrameworkMethod.java:44)
at org.junit.internal.runners.statements.InvokeMethod.evaluate(InvokeMethod.java:17)
at org.junit.runners.ParentRunner.runLeaf(ParentRunner.java:271)
at org.junit.runners.BlockJUnit4ClassRunner.runChild(BlockJUnit4ClassRunner.java:70)
at org.junit.runners.BlockJUnit4ClassRunner.runChild(BlockJUnit4ClassRunner.java:50)
at org.junit.runners.ParentRunner$3.run(ParentRunner.java:238)
at org.junit.runners.ParentRunner$1.schedule(ParentRunner.java:63)
at org.junit.runners.ParentRunner.runChildren(ParentRunner.java:236)
at org.junit.runners.ParentRunner.access$000(ParentRunner.java:53)
at org.junit.runners.ParentRunner$2.evaluate(ParentRunner.java:229)
at org.junit.runners.ParentRunner.run(ParentRunner.java:309)
at junit.framework.JUnit4TestAdapter.run(JUnit4TestAdapter.java:38)
at org.apache.tools.ant.taskdefs.optional.junit.JUnitTestRunner.run(JUnitTestRunner.java:520)
at org.apache.tools.ant.taskdefs.optional.junit.JUnitTask.executeInVM(JUnitTask.java:1484)
at org.apache.tools.ant.taskdefs.optional.junit.JUnitTask.execute(JUnitTask.java:872)
at org.apache.tools.ant.taskdefs.optional.junit.JUnitTask.executeOrQueue(JUnitTask.java:1972)
at org.apache.tools.ant.taskdefs.optional.junit.JUnitTask.execute1(JUnitTask.java:824)
at org.apache.tools.ant.taskdefs.optional.junit.JUnitTask.execute(JUnitTask.java:2277)
at org.apache.tools.ant.UnknownElement.execute(UnknownElement.java:291)
at sun.reflect.GeneratedMethodAccessor4.invoke(Unknown Source)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at org.apache.tools.ant.dispatch.DispatchUtils.execute(DispatchUtils.java:106)
at org.apache.tools.ant.Task.perform(Task.java:348)
at org.apache.tools.ant.Target.execute(Target.java:392)
at org.apache.tools.ant.Target.performTasks(Target.java:413)
at org.apache.tools.ant.Project.executeSortedTargets(Project.java:1399)
at org.apache.tools.ant.Project.executeTarget(Project.java:1368)
at org.apache.tools.ant.helper.DefaultExecutor.executeTargets(DefaultExecutor.java:41)
at org.apache.tools.ant.Project.executeTargets(Project.java:1251)
at org.apache.tools.ant.Main.runBuild(Main.java:811)
at org.apache.tools.ant.Main.startAnt(Main.java:217)
at org.apache.tools.ant.launch.Launcher.run(Launcher.java:280)
at org.apache.tools.ant.launch.Launcher.main(Launcher.java:109)

Failing test cases

Figure 14: Failing test cases reported by JUnit.

18260

package org.apache.commons.lang3.math;
import java.lang.reflect.Array;
import java.math.BigDecimal;
import java.math.BigInteger;
import org.apache.commons.lang3.StringUtils;

public class NumberUtils {
…

 if (pfxLen > 0) { // we have a hex number
 final int hexDigits = str.length() - pfxLen;
 if (hexDigits > 16) { // too many for Long
 return createBigInteger(str);
 }
 if (hexDigits > 8) { // too many for an int
 return createLong(str);
 }
 return createInteger(str);
 }
 final char lastChar = str.charAt(str.length() - 1);
 String mant;
 String dec;
 String exp;
 final int decPos = str.indexOf('.');
 final int expPos = str.indexOf('e') + str.indexOf('E') + 1; // assumes both not present
 // if both e and E are present, this is caught by the checks on expPos (which prevent IOOBE)
 // and the parsing which will detect if e or E appear in a number due to using the wrong offset

…
 return !allowSigns && foundDigit;
 }
}

src/main/java/org/apache/commons/lang3/math/NumberUtils.java

src/test/java/org/apache/commons/lang3/math/NumberUtilsTest.java
17 package org.apache.commons.lang3.math;

19 import static org.junit.Assert.assertEquals;
20 import static org.junit.Assert.assertFalse;
21 import static org.junit.Assert.assertNotNull;

…
37 public class NumberUtilsTest {

…
249 @Test
250 public void TestLang747() {
251 assertEquals(Integer.valueOf(0x8000), NumberUtils.createNumber("0x8000"));
252 assertEquals(Integer.valueOf(0x80000), NumberUtils.createNumber("0x80000"));
253 assertEquals(Integer.valueOf(0x800000), NumberUtils.createNumber("0x800000"));
254 assertEquals(Integer.valueOf(0x8000000), NumberUtils.createNumber("0x8000000"));
255 assertEquals(Integer.valueOf(0x7FFFFFFF), NumberUtils.createNumber("0x7FFFFFFF"));
256 assertEquals(Long.valueOf(0x80000000L), NumberUtils.createNumber("0x80000000"));
257 assertEquals(Long.valueOf(0xFFFFFFFFL), NumberUtils.createNumber("0xFFFFFFFF"));

…
1401 }
1402 }

Figure 15: Bug-located code snippet.

package org.apache.commons.lang3.math;
import java.lang.reflect.Array;
import java.math.BigDecimal;
import java.math.BigInteger;
import org.apache.commons.lang3.StringUtils;

public class NumberUtils {
…

 if (pfxLen > 0) { // we have a hex number
 final int hexDigits = str.length() - pfxLen;
 if (hexDigits > 16) { // too many for Long
 return createBigInteger(str);
 }
 if (hexDigits > 8) { // too many for an int
 return createLong(str);
 }
 return createInteger(str);
 }
 final char lastChar = str.charAt(str.length() - 1);
 String mant;
 String dec;
 String exp;
 final int decPos = str.indexOf('.');
 final int expPos = str.indexOf('e') + str.indexOf('E') + 1; // assumes both not present
 // if both e and E are present, this is caught by the checks on expPos (which prevent IOOBE)
 // and the parsing which will detect if e or E appear in a number due to using the wrong offset

…
 return !allowSigns && foundDigit;
 }
}

src/main/java/org/apache/commons/lang3/math/NumberUtils.java

src/test/java/org/apache/commons/lang3/math/NumberUtilsTest.java
17 package org.apache.commons.lang3.math;

19 import static org.junit.Assert.assertEquals;
20 import static org.junit.Assert.assertFalse;
21 import static org.junit.Assert.assertNotNull;

…
37 public class NumberUtilsTest {

…
249 @Test
250 public void TestLang747() {
251 assertEquals(Integer.valueOf(0x8000), NumberUtils.createNumber("0x8000"));
252 assertEquals(Integer.valueOf(0x80000), NumberUtils.createNumber("0x80000"));
253 assertEquals(Integer.valueOf(0x800000), NumberUtils.createNumber("0x800000"));
254 assertEquals(Integer.valueOf(0x8000000), NumberUtils.createNumber("0x8000000"));
255 assertEquals(Integer.valueOf(0x7FFFFFFF), NumberUtils.createNumber("0x7FFFFFFF"));
256 assertEquals(Long.valueOf(0x80000000L), NumberUtils.createNumber("0x80000000"));
257 assertEquals(Long.valueOf(0xFFFFFFFFL), NumberUtils.createNumber("0xFFFFFFFF"));

…
1401 }
1402 }

Figure 16: Testing code triggering errors.

18261

L3: Response of Helper

1. The error occurs because the string "80000000" is being parsed as an `int` but exceeds its limit.
When parsing numbers from strings, Java determines the number type based on the string length after
hex prefix like `0x`.
2. A solution is to ensure that large hex numbers are parsed as `long` or `BigInteger` when they
exceed the `int` range.
3. Modify the hex parsing logic in `createNumber` to correctly handle large hex values. Check the
digit count for determining the correct type, defaulting to `Long` or `BigInteger` when needed.
4. Test the fix with all size boundaries, especially around `int` and `long` limits.

===
https://stackoverflow.com/questions/5499523/how-to-avoid-number-format-exception-in-java
https://www.geeksforgeeks.org/numberformatexception-in-java-with-examples/
https://www.delftstack.com/howto/java/java-numberformatexception-for-input-string/
https://bootcamptoprod.com/java-numberformatexception/
===

Query

Debugging Guide

L3: Response of RepoFocus
``` 
./math/NumberUtils.java 
./exception/ExceptionUtils.java 
./text/translate/UnicodeEscaper.java 
``` 
===
The selected files are considered suspicious because they are directly related to the packages and
dependencies used in the bug-located code file:
1. **NumberUtils.java** in the `math` package is directly imported in the bug-located code file.
2. **ExceptionUtils.java** in the `exception` package might contain relevant error-handling
mechanisms.
3. **UnicodeEscaper.java** in the `text.translate` package could be relevant due to the bug's
relation to string manipulation.
===

Accessed by
other agents

Passed to
Summarizer

L3: Formalized response of Summarizer
{
 "./exception/ExceptionUtils.java": {
 "ExceptionUtils": {
 "ExceptionUtils": "void\tPublic constructor for ExceptionUtils",
 "getCause": {
 "desp": "Introspects the Throwable to obtain the cause with custom method names",
 "paras": {
 "methodNames": "String[]",
 "throwable": "Throwable"
 },
 "return_type": "Throwable"
 },
 "getCauseUsingMethodName": {
 "desp": "Finds a Throwable by method name",
 "paras": {
 "methodName": "String",
 "throwable": "Throwable"
 },
 "return_type": "Throwable"
 },

…
 }
 }
}

Figure 17: Response and tool usage of Helper.

L3: Response of Helper

1. The error occurs because the string "80000000" is being parsed as an `int` but exceeds its limit.
When parsing numbers from strings, Java determines the number type based on the string length after
hex prefix like `0x`.
2. A solution is to ensure that large hex numbers are parsed as `long` or `BigInteger` when they
exceed the `int` range.
3. Modify the hex parsing logic in `createNumber` to correctly handle large hex values. Check the
digit count for determining the correct type, defaulting to `Long` or `BigInteger` when needed.
4. Test the fix with all size boundaries, especially around `int` and `long` limits.

===
https://stackoverflow.com/questions/5499523/how-to-avoid-number-format-exception-in-java
https://www.geeksforgeeks.org/numberformatexception-in-java-with-examples/
https://www.delftstack.com/howto/java/java-numberformatexception-for-input-string/
https://bootcamptoprod.com/java-numberformatexception/
===

Query

Debugging Guide

L3: Response of RepoFocus
``` 
./math/NumberUtils.java 
./exception/ExceptionUtils.java 
./text/translate/UnicodeEscaper.java 
``` 
===
The selected files are considered suspicious because they are directly related to the packages and
dependencies used in the bug-located code file:
1. **NumberUtils.java** in the `math` package is directly imported in the bug-located code file.
2. **ExceptionUtils.java** in the `exception` package might contain relevant error-handling
mechanisms.
3. **UnicodeEscaper.java** in the `text.translate` package could be relevant due to the bug's
relation to string manipulation.
===

Accessed by
other agents

Passed to
Summarizer

L3: Formalized response of Summarizer
{
 "./exception/ExceptionUtils.java": {
 "ExceptionUtils": {
 "ExceptionUtils": "void\tPublic constructor for ExceptionUtils",
 "getCause": {
 "desp": "Introspects the Throwable to obtain the cause with custom method names",
 "paras": {
 "methodNames": "String[]",
 "throwable": "Throwable"
 },
 "return_type": "Throwable"
 },
 "getCauseUsingMethodName": {
 "desp": "Finds a Throwable by method name",
 "paras": {
 "methodName": "String",
 "throwable": "Throwable"
 },
 "return_type": "Throwable"
 },

…
 }
 }
}

Figure 18: Response of RepoFocus.

18262

L3: Response of Helper

1. The error occurs because the string "80000000" is being parsed as an `int` but exceeds its limit.
When parsing numbers from strings, Java determines the number type based on the string length after
hex prefix like `0x`.
2. A solution is to ensure that large hex numbers are parsed as `long` or `BigInteger` when they
exceed the `int` range.
3. Modify the hex parsing logic in `createNumber` to correctly handle large hex values. Check the
digit count for determining the correct type, defaulting to `Long` or `BigInteger` when needed.
4. Test the fix with all size boundaries, especially around `int` and `long` limits.

===
https://stackoverflow.com/questions/5499523/how-to-avoid-number-format-exception-in-java
https://www.geeksforgeeks.org/numberformatexception-in-java-with-examples/
https://www.delftstack.com/howto/java/java-numberformatexception-for-input-string/
https://bootcamptoprod.com/java-numberformatexception/
===

Query

Debugging Guide

L3: Response of RepoFocus
``` 
./math/NumberUtils.java 
./exception/ExceptionUtils.java 
./text/translate/UnicodeEscaper.java 
``` 
===
The selected files are considered suspicious because they are directly related to the packages and
dependencies used in the bug-located code file:
1. **NumberUtils.java** in the `math` package is directly imported in the bug-located code file.
2. **ExceptionUtils.java** in the `exception` package might contain relevant error-handling
mechanisms.
3. **UnicodeEscaper.java** in the `text.translate` package could be relevant due to the bug's
relation to string manipulation.
===

Accessed by
other agents

Passed to
Summarizer

L3: Formalized response of Summarizer
{
 "./exception/ExceptionUtils.java": {
 "ExceptionUtils": {
 "ExceptionUtils": "void\tPublic constructor for ExceptionUtils",
 "getCause": {
 "desp": "Introspects the Throwable to obtain the cause with custom method names",
 "paras": {
 "methodNames": "String[]",
 "throwable": "Throwable"
 },
 "return_type": "Throwable"
 },
 "getCauseUsingMethodName": {
 "desp": "Finds a Throwable by method name",
 "paras": {
 "methodName": "String",
 "throwable": "Throwable"
 },
 "return_type": "Throwable"
 },

…
 }
 }
}

Figure 19: Response of Summarizer.

L3: Response of Slicer
 public static Number createNumber(final String str) throws NumberFormatException {

…
 pfxLen += pfx.length();
 break;
 }
 }
 if (pfxLen > 0) {
 final int hexDigits = str.length() - pfxLen;
 if (hexDigits > 16) {
 return createBigInteger(str);
 }
 if (hexDigits > 8) {
 return createLong(str);
 }
 return createInteger(str);
 }
 final char lastChar = str.charAt(str.length() - 1);
 String mant;

… (168 lines in total)
===
1. The `createNumber` method is responsible for converting a string value into a `java.lang.Number`
object, handling various formats and qualifiers.
2. The code snippet is suspicious because it contains complex logic for identifying different number
types (integer, long, float, double, etc.) based on the input string.
3. The method includes handling hex prefixes like "0x", decimal points, exponential notation, and
trailing characters indicating number type (e.g., 'f' for Float, 'L' for Long, etc.).
4. The logic appears intricate and error-prone, especially with multiple conditional checks and
potential parsing issues for different number representations.
5. Further investigation should focus on simplifying the logic, improving readability, and ensuring
accurate handling of various number formats to avoid potential bugs and number format exceptions.
===

Slice 168 lines out of the
original 1427-line code snippet

L3: Response of Locator
 public static Number createNumber(final String str) throws NumberFormatException {

…
 break;
 }
 }
 if (pfxLen > 0) {

 // missing code: counting the significant digits by skipping leading zeros in a
 // hexadecimal number.

 final int hexDigits = str.length() - pfxLen;
 if (hexDigits > 16) { // buggy line
 return createBigInteger(str); // buggy line
 } // buggy line
 if (hexDigits > 8) { // buggy line
 return createLong(str); // buggy line
 } // buggy line
 return createInteger(str);
 }
 final char lastChar = str.charAt(str.length() - 1);
 String mant;

… (168 lines in total)
===
By tracking variable values such as `hexDigits` and interpreting conditions for hexadecimal input
handling for values "0x80000000", we identify where decisions between `Integer` and `Long` or
`BigInteger` are made. The original conditions after computing `hexDigits` did not check whether the
characters after the prefix are actually valid hexadecimal digits. Without validation, strings that
don't correspond to valid hexadecimal numbers could still be processed, leading to potential
misinterpretation or NumberFormatException being thrown later.
===

Mark the position to fill the
missing code block and the
buggy lines need to be modified

Figure 20: Response of Slicer.

18263

L3: Response of Slicer
 public static Number createNumber(final String str) throws NumberFormatException {

…
 pfxLen += pfx.length();
 break;
 }
 }
 if (pfxLen > 0) {
 final int hexDigits = str.length() - pfxLen;
 if (hexDigits > 16) {
 return createBigInteger(str);
 }
 if (hexDigits > 8) {
 return createLong(str);
 }
 return createInteger(str);
 }
 final char lastChar = str.charAt(str.length() - 1);
 String mant;

… (168 lines in total)
===
1. The `createNumber` method is responsible for converting a string value into a `java.lang.Number`
object, handling various formats and qualifiers.
2. The code snippet is suspicious because it contains complex logic for identifying different number
types (integer, long, float, double, etc.) based on the input string.
3. The method includes handling hex prefixes like "0x", decimal points, exponential notation, and
trailing characters indicating number type (e.g., 'f' for Float, 'L' for Long, etc.).
4. The logic appears intricate and error-prone, especially with multiple conditional checks and
potential parsing issues for different number representations.
5. Further investigation should focus on simplifying the logic, improving readability, and ensuring
accurate handling of various number formats to avoid potential bugs and number format exceptions.
===

Slice 168 lines out of the
original 1427-line code snippet

L3: Response of Locator
 public static Number createNumber(final String str) throws NumberFormatException {

…
 break;
 }
 }
 if (pfxLen > 0) {

 // missing code: counting the significant digits by skipping leading zeros in a
 // hexadecimal number.

 final int hexDigits = str.length() - pfxLen;
 if (hexDigits > 16) { // buggy line
 return createBigInteger(str); // buggy line
 } // buggy line
 if (hexDigits > 8) { // buggy line
 return createLong(str); // buggy line
 } // buggy line
 return createInteger(str);
 }
 final char lastChar = str.charAt(str.length() - 1);
 String mant;

… (168 lines in total)
===
By tracking variable values such as `hexDigits` and interpreting conditions for hexadecimal input
handling for values "0x80000000", we identify where decisions between `Integer` and `Long` or
`BigInteger` are made. The original conditions after computing `hexDigits` did not check whether the
characters after the prefix are actually valid hexadecimal digits. Without validation, strings that
don't correspond to valid hexadecimal numbers could still be processed, leading to potential
misinterpretation or NumberFormatException being thrown later.
===

Mark the position to fill the
missing code block and the
buggy lines need to be modified

Figure 21: Response of Locator.

18264

L3: Response of Fixer
--- Lang_1_buggy.java
+++ Lang_1_fixed.java
@@ -464,11 +464,20 @@ public class NumberUtils {
 if (pfxLen > 0) { // we have a hex number
+ boolean foundFirstNonZero = false;
+ int leadingZeroCount = 0;
+ for(int i = pfxLen; i < str.length(); i++) {
+ char currentChar = str.charAt(i);
+ if (!foundFirstNonZero && currentChar == '0') {
+ leadingZeroCount++;
+ } else if (!foundFirstNonZero && currentChar!= '0') {
+ foundFirstNonZero = true;
+ }
+ }
 final int hexDigits = str.length() - pfxLen;
- if (hexDigits > 16) { // too many for Long
+ if (hexDigits > 16 || (hexDigits == 16 && (!foundFirstNonZero || str.charAt(pfxLen +
15) > '7'))) { // too many for Long
 return createBigInteger(str);
 }
- if (hexDigits > 8) { // too many for an int
+ if (hexDigits > 8 || (hexDigits == 8 && (!foundFirstNonZero || str.charAt(pfxLen + 7) >
'7'))) { // too many for an int
 return createLong(str);
 }
 return createInteger(str);
===
1) Restating:
- Missing code: `// missing code: counting the significant digits by skipping leading zeros in a
hexadecimal number.`

- Buggy lines:`if (hexDigits > 16) { // too many for Long` and `if (hexDigits > 8) { // too many for
an int`

2) Assessment: The marked lines are indeed necessary to be corrected.
3) No other lines appear to need modification since the changes directly impact the processing of hex
numbers, which is a specific section of the function.
4) The patch introduces these key changes:
- Skipping leading zeros: A loop counts and skips leading zeros to ensure only significant digits are
processed.
- Boundary checks: It ensures numbers exceeding `int` or `long` limits are handled as BigInteger by
checking if the 8th or 16th digit exceeds '7'.
5) Reason for changes:
- Skipping zeros: Ensures correct digit count, preventing invalid conversions.
- Boundary checks: Prevents overflow by correctly handling numbers beyond `int` and `long` limits.

+ boolean foundFirstNonZero = false;
+ int leadingZeroCount = 0;
+ for(int i = pfxLen; i < str.length(); i++) {
+ char currentChar = str.charAt(i);
+ if (!foundFirstNonZero && currentChar == '0') {
+ leadingZeroCount++;
+ } else if (!foundFirstNonZero && currentChar!= '0') {
+ foundFirstNonZero = true;
+ }
+ }

- if (hexDigits > 16) { // too many for Long
+ if (hexDigits > 16 || (hexDigits == 16 && (!foundFirstNonZero || str.charAt(pfxLen +
15) > '7'))) { // too many for Long

- if (hexDigits > 8) { // too many for an int
+ if (hexDigits > 8 || (hexDigits == 8 && (!foundFirstNonZero || str.charAt(pfxLen + 7) >
'7'))) { // too many for an int

Figure 22: Response of Fixer.

18265

L3: Response of FixerPro
--- Lang_1_buggy.java
+++ Lang_1_fixed.java
@@ -464,11 +464,23 @@ public class NumberUtils {
 if (pfxLen > 0) { // we have a hex number
+ boolean foundFirstNonZero = false;
+ int leadingZeroCount = 0;
+ int significantHexDigits = 0;
+ for(int i = pfxLen; i < str.length(); i++) {
+ char currentChar = str.charAt(i);
+ if (!foundFirstNonZero && currentChar == '0') {
+ leadingZeroCount++;
+ } else if (!foundFirstNonZero && currentChar != '0') {
+ foundFirstNonZero = true;
+ }
+ if (foundFirstNonZero) {
+ significantHexDigits++;
+ }
+ }
 final int hexDigits = significantHexDigits;
- if (hexDigits > 16) { // too many for Long
+ if (hexDigits > 16 || (hexDigits == 16 && (!foundFirstNonZero || str.charAt(pfxLen +
leadingZeroCount + 15) > '7'))) { // too many for Long
 return createBigInteger(str);
 }
- if (hexDigits > 8) { // too many for an int
+ if (hexDigits > 8 || (hexDigits == 8 && (!foundFirstNonZero || str.charAt(pfxLen +
leadingZeroCount + 7) > '7'))) { // too many for an int
 return createLong(str);
 }
 return createInteger(str);
===
Causes of the errors:
The original code doesn't account for leading zeros in hexadecimal numbers, leading to incorrect
type determination based on raw string length, rather than significant digits.
Why the provided patch cannot fully fix the buggy code:
The patch counts leading zeros but still uses the raw string length to calculate hexDigits, which
misrepresents the number's actual size.
Why this patch fixes the bug:
The updated patch correctly counts significant digits after leading zeros, ensuring type selection
(Integer, Long, BigInteger) is based on the actual number size.
Tracking key parameter values:
By counting both leading zeros and significant digits, the patch makes the logic more accurate,
handling edge cases like 0x00000000123 and avoiding errors from untrimmed input.

+ boolean foundFirstNonZero = false;
+ int leadingZeroCount = 0;
+ int significantHexDigits = 0;
+ for(int i = pfxLen; i < str.length(); i++) {
+ char currentChar = str.charAt(i);
+ if (!foundFirstNonZero && currentChar == '0') {
+ leadingZeroCount++;
+ } else if (!foundFirstNonZero && currentChar != '0') {
+ foundFirstNonZero = true;
+ }
+ if (foundFirstNonZero) {
+ significantHexDigits++;
+ }
+ }

- if (hexDigits > 16) { // too many for Long
+ if (hexDigits > 16 || (hexDigits == 16 && (!foundFirstNonZero || str.charAt(pfxLen +
leadingZeroCount + 15) > '7'))) { // too many for Long

- if (hexDigits > 8) { // too many for an int
+ if (hexDigits > 8 || (hexDigits == 8 && (!foundFirstNonZero || str.charAt(pfxLen +
leadingZeroCount + 7) > '7'))) { // too many for an int

Figure 23: Response of FixerPro.

18266

