

Understanding the Thinking Process of Reasoning Models: A Perspective from Schoenfeld’s Episode Theory

Ming Li*, Nan Zhang*, Chenrui Fan*, Hong Jiao
Yanbin Fu, Sydney Peters, Qingshu Xu, Robert Lissitz, Tianyi Zhou

University of Maryland

{minglii, hjiao}@umd.edu, tianyidavidzhou@gmail.com

Project: https://github.com/MingLiiii/Schoenfeld_Reasoning

Abstract

While Large Reasoning Models (LRMs) generate extensive chain-of-thought reasoning, we lack a principled framework for understanding how these thoughts are structured. In this paper, we introduce a novel approach by applying Schoenfeld’s Episode Theory, a classic cognitive framework for human mathematical problem-solving, to analyze the reasoning traces of LRMs. We annotated thousands of sentences and paragraphs from model-generated solutions to math problems using seven cognitive labels (e.g., Plan, Implement, Verify). The result is the first publicly available benchmark for the fine-grained analysis of machine reasoning, including a large annotated corpus and detailed annotation guidebooks. Our preliminary analysis reveals distinct patterns in LRM reasoning, such as the transition dynamics between cognitive states. This framework provides a theoretically grounded methodology for interpreting LRM cognition and enables future work on more controllable and transparent reasoning systems.

1 Introduction

Large Reasoning Models (LRMs) such as OpenAI GPT-01 (OpenAI, 2024a) and the open-source DeepSeek-R1 (DeepSeek-AI et al., 2025) exemplify a shift toward producing long, explicit, chain-of-thought (CoT) (Wei et al., 2023) that boost performance on demanding tasks (Xiong et al., 2025; Xia et al., 2025; Liu et al., 2024; Wang and Zhao, 2023; Shao et al., 2024; Xu et al., 2024). These extended and fine-grained reasoning trajectories emerge either from reinforcement-learning optimization (DeepSeek-AI et al., 2025) or from supervised fine-tuning on expert high-quality responses (Li et al., 2024c,b,a; Ye et al., 2025; Muennighoff et al., 2025), showcasing increasingly sophisticated thinking patterns.

*Co-First Authors.

However, we still lack a principled understanding of how these models organize their problem-solving process. *Are the thinking behaviors of these advanced LRMs similar to Humans? Can we utilize the existing cognitive theories for humans to analyze the LRM reasoning behaviors?* Some researchers notice the extremely human-like thinking token patterns such as “Hmmm.”, “Wait.”, “Let me check.”, “Am I correct?” (Mitchell, 2025; Zhao et al., 2025; Fan et al., 2025; Li et al., 2025), and human-aligned meta-cognitive patterns (Steyvers and Peters, 2025; Huang et al., 2025). In a more quantitative way, Shan et al. (2025) and Musker et al. (2025) utilized cognitive views on analyzing the thinking process of LRMs. However, most of them are from observation and summary rather than grounded in solid theories (Gandhi et al., 2025; Marjanović et al., 2025).

Motivated by the advanced theoretical analysis on human behaviors in the area of cognitive science, we propose to utilize the *Schoenfeld’s Episode Theory* (Schoenfeld, 1985) as an analytical framework to understand the thinking process of LRMs. This theory was built on hundreds of hours of recorded tape of students tackling non-routine math problems while being asked to think aloud. Widely regarded as a gold-standard framework in mathematics-education research, this theory offers a rigorously validated, fine-grained lens for dissecting both expert and novice problem-solving strategies. After thorough investigation, we find that the thinking process of LRMs can be well-aligned with the episodes in the theory: the 7 fine-grained episode categories, including *Read*, *Analyze*, *Plan*, *Implement*, *Explore*, *Verify*, and *Monitor*, are also presented in the reasoning traces of LRMs, as they also follow similar problem-solving processes. Examples for each episode are shown in Table 1.

In this paper, we apply Schoenfeld’s Episode Theory to the reasoning traces generated by one of the most representative open-sourced LRMs,

Category	Reasoning Trace Example (Sentence)
Read	“The question asks us to find the value of x in the equation $2x + 5 = 10$.”
Analyze	“According to the Pythagorean theorem, the square of the hypotenuse is equal to ...”
Plan	“Next, we will differentiate both sides of the equation with respect to x .”
Implement	“Substituting $x = 3$ into the equation, we get $2(3) + 5 = 6 + 5 = 11$.”
Explore	“Maybe we can try substituting different values for x to see if we can find a pattern.”
Verify	“Let me double-check my calculations: ... which matches the previous result.”
Monitor	“But wait, hold on.”

Table 1: Representative examples for each episode category in the reasoning traces of LRM.

DeepSeek-R1 (DeepSeek-AI et al., 2025), for both paragraph-level and sentence-level annotation and analysis. Specifically, we collect R1 responses on 1,385 SAT Mathematics items retrieved from the SAT®Suite Question Bank¹, as it includes additional meta information, including the difficulty level and the problem domain. Then the reasoning responses are annotated and analyzed at both paragraph and sentence levels.

Specifically, in our annotation system, there are 3 general categories at the paragraph level, including *General*, *Verify*, *Explore*, and 7 fine-grained episode categories at the sentence level. The annotation procedure consists of two parts: Firstly, human annotators are trained to manually annotate the responses into proper categories, until the inter-rater reliability reaches a certain level. Secondly, all the generated reasoning traces are annotated by the trained annotators. In total, 38 math problems, including 915 paragraphs and 3,087 sentences, are manually annotated into episode categories. We also leverage LLM-based and SLM-based methods for labeling and evaluate their efficiency and consistency compared to human labeling, not only formulating this as a well-defined task, but also providing a replacement for the labor-intensive annotation process, making it a more scalable analytical framework for analyzing the reasoning process of LRM. Our contributions are summarized:

- We propose the earliest exploration on applying Schoenfeld’s Episode Theory to reasoning traces of LRM, providing a unified view between how humans and LRM solve math problems.
- We provide a theoretically grounded analytical framework for understanding and analyzing LRM thinking process from a cognitive view.

¹<https://satsuitequestionbank.collegeboard.org/>

- We release the open annotation protocol and annotated corpus with thousands of annotations for the above-mentioned task, making it a well-defined task for controllable analysis.

2 Cognitive Foundations

2.1 Large Reasoning Models

LRM differ from earlier instruction-following LLMs (Scao et al., 2022; Mishra et al., 2021; Wei et al., 2022; Chung et al., 2022; OpenAI, 2023; Touvron et al., 2023) by dedicating both their training and inference budgets to explicit chain-of-thought computation. For instance, GPT-01 (OpenAI, 2024b) is trained with reinforcement learning that rewards intermediate reasoning traces and is allowed to “think longer” at inference, which means that the thinking time and output are both lengthened. This steadily improves accuracy as additional test-time compute is spent. Following a similar philosophy, DeepSeek-R1 (DeepSeek-AI et al., 2025) directly optimizes a reward that incentivizes logically coherent multi-step solutions, yielding strong performance. These designs contrast with earlier instruction-following models such as GPT-4o, whose inference paths remain short and lengths relatively fixed. Based on the open-sourced thinking traces provided by R1, the communities have noticed the flexible response lengths of R1 when targeting different problems, and the human-like thinking token patterns on the explicit textual thinking traces. These human-like behaviors and human-readable thinking traces during problem-solving make it possible to apply behavioral analysis from a cognitive perspective in human research.

2.2 Schoenfeld’s Episode Theory

Schoenfeld’s Episode Theory (Schoenfeld, 1985, 2016) frames problem-solving as a temporally

ordered sequence of “episodes” that reveal both the solver’s evolving goal structure and the metacognitive control. This theory was built on hundreds of hours of recorded tape of students tackling non-routine math problems while being asked to think aloud. The original episodes include 6 categories, i.e., *Read*, *Analyze*, *Plan*, *Implement*, *Explore*, and *Verify*. Crucially, the theory disentangles what knowledge a solver possesses from how it is strategically deployed, emphasizing that expert performance hinges less on sheer domain knowledge than on the dynamic orchestration of planning, monitoring, and evaluation processes. Episode theory has since become a foundational analytic lens in mathematics-education research and in studies of human reasoning, offering a fine-grained vocabulary for tracing cognitive control and strategy shifts (Harskamp and Suhre, 2007). All of the above characteristics are directly pertinent when we scrutinize the reasoning traces generated by contemporary large language models. See Appendix A for a more detailed discussion and comparison on different cognitive theories used in human research.

2.3 Why Episode Theory Fits LRM Traces

Schoenfeld’s theory represents a natural framework for understanding problem-solving processes, as it was originally developed to capture how humans naturally approach and resolve mathematical challenges. The theory encapsulates the organic flow of cognitive processes that occur when individuals encounter and work through math problems. After through investigation on LRM generated reasoning traces, we actually find their reasoning structures are well-aligned with the theory: Typically, when facing a given problem, the models will *Read* and restate the problem in a form that they can understand better, then *Analyze* the potential strategies to solve the problem. After that, they will *Plan* for the future steps right before they *Implement* the calculation. Sometimes, when the problem cannot be easily solved, LRMs will *Explore* other potential methods and *Verify* their generated traces. Among these categories, *Explore* and *Verify* further represent the current trained on test-time scaling and the occurrence of the “aha moment” (DeepSeek-AI et al., 2025) of LRMs.

Moreover, since LRMs externalize these transitions between episodes in natural-language form, which shows a better form for further analysis than humans. LRM’s long reasoning traces can be segmented clearly through paragraph-level and

sentence-level boundaries, and then annotated at the same fine-grained episode categories used to analyze human problem-solving sessions. This process uncovers the system’s dynamic metacognitive regulation rather than leaving it a black box. Consequently, Episode Theory offers a uniquely well-suited lens for analyzing the LRM reasoning behavior. Representative examples for each episode category are shown in Table 1, and a fully annotated reasoning trace is shown in Appendix C.

3 Dataset Construction

3.1 Data Source

Our experiments are conducted on 1,385 SAT Mathematics items retrieved from the SAT®Suite Question Bank, which contains 19 fine-grained skill categories. SAT serves as a nationwide college admission test in the U.S., which is usually taken by junior and senior high school students. There are two types of questions in SAT Math: multiple-choice (MC) items and student-produced response (SPR) items. Each item consists of the following parts of information: question text, skill, difficulty level, and a step-by-step human solution (rationale). Depending on the question type, choices, figures, or tables could exist. For LRM-generated responses, DeepSeek-R1 is selected since its thinking trajectories can be obtained during the inference. Specifically, 38 responses, 2 for each fine-grained skill category, including 915 paragraphs, and 3,087 sentences, are annotated.

3.2 Data Annotation

Annotation Strategy. We leverage Schoenfeld’s Episode Theory to systematically annotate the reasoning processes of LRMs. Compared to the traditional “think aloud” protocols used for human problem-solving, LRM-generated responses often exhibit much finer granularity, with explicit steps and monitoring indicators articulated in the output. This increased granularity can sometimes make it challenging to assign clear episode labels to every sentence. For example, in some cases, all several paragraphs in the response may be related to a certain behavior like *Verify*. However, during the whole verify process, the model might still conduct more finegrained behaviors, such as *Plan*, (plan on how to verify), etc. Thus, a better annotation strategy is required to tackle these issues like “Plan during Verify”.

To address this, we adopt a hierarchical annota-

tion strategy that operates at both the paragraph and sentence levels. At the paragraph level, we capture broader, long-term behaviors, such as the initial attempt to solve a problem or the process of verifying an existing answer. At the sentence level, we annotate more fine-grained strategies, for example, the specific planning, implementation, or verification steps that occur within a broader verification episode. By leveraging contextual information and this hierarchical approach, we are able to define and label sentences more precisely, even in cases where boundaries between categories are subtle.

For paragraph-level annotation, each response is segmented into paragraphs following the original formatting. Each paragraph is then assigned one of three labels, *General* if the paragraph is directly solving the math problem, *Explore* if the paragraph diverges from the main solution to investigate possibilities or gather insights, or *Verify* if the paragraph is checking a solution, according to the dominant episode it represented. For sentence-level annotation, we further split each response to isolate individual sentences. Afterward, each sentence is labeled into one of the seven episodes: *Read* if the sentence is repeating the question; *Analyze* if the sentence is recalling relevant theories, deducing relationships, or introducing symbols; *Plan* if the sentence is announcing the next step; *Implement* if the sentence is executing a planned strategy; *Explore* if the sentence is generating potential ideas or making guesses; *Verify* if the sentence is judging the correctness. An extra category *Monitor* was added to serve as transitions between episodes, such as self-monitoring or hesitation. Examples for each episode are shown in Table 1. Since paragraphs and sentences form an interwoven hierarchy, annotators work in sequence for each item: they first label all paragraphs, ensuring coherent episode-level categorization, and then label each extracted sentence, capturing finer moves within those episodes.

Annotation Process. We first develop a preliminary annotation guidebook grounded in Schoenfeld’s Episode Theory. Next, two of the authors each annotate 5 R1 responses using the initial guide. This pilot annotation familiarizes the annotators with the structure of the responses and highlights areas of ambiguity or inconsistency in the guide itself. Based on their annotation experience, the annotation definitions and examples are further refined. After the guidebook is determined, three annotators are trained and complete all the reamin-

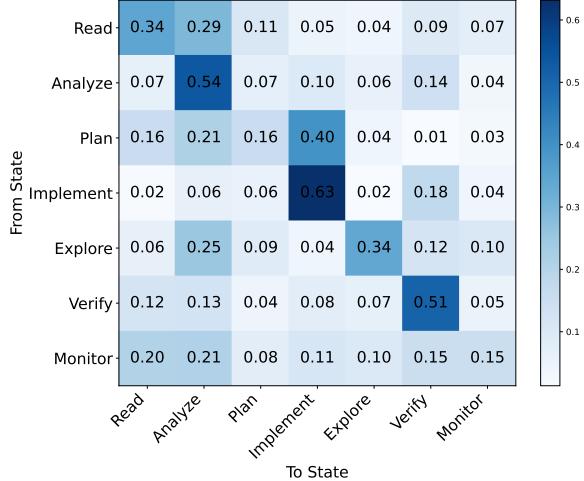


Figure 1: The sentence-level state transition matrix for our ground-truth annotation. A darker color represents a higher probability of transfer from one state to another.

ing responses. See Appendix D and Appendix E for the full guidebooks. An annotated example is shown in Appendix C.

4 Experiments and Analysis

In this section, we explore the potential automated annotation methods for our task.

4.1 Transition Matrix

Figure 1 presents the state transition matrix for our ground-truth annotation. A darker color represents a higher probability of transfer from one state to another. The darkest values aside from the diagonal are *Read-Analyze*, *Plan-Implement*, and *Explore-Analyze*, representing that these categories have a higher probability of appearing continuously. For example, *Plan-Implement* represents that *Implement* has more chance to follow the *Plan*. This matrix directly shows the relation between different categories, which further shows a strong alignment with human behaviors.

4.2 LLM-based Zero-shot Methods

In this section, we investigate how advanced LLMs perform on Schoenfeld’s Episode Theory annotations as shown in Table 2. In the table, we present the results of using *GPT-4.1*, *GPT-4o*, and *Gemini-2.0-flash* on different prompting techniques. *Base* represents using LLM zero-shot prompting only. *Guidebook* represents using our detailed guidebook as the guidance. *Example* represents providing some ground-truth examples for in-context learning. *Ex+Guide* represents using both of the men-

Model	Base		Example		Guidebook		Ex+Guide	
	Para	Sent	Para	Sent	Para	Sent	Para	Sent
GPT-4.1	0.444	0.595	0.559	0.604	0.740	0.676	0.757	0.681
Gemini-2.0	0.460	0.590	0.647	0.628	0.723	0.655	0.697	0.626
GPT-4o	0.388	0.475	0.537	0.504	0.656	0.577	0.714	0.609

Table 2: Comparison of paragraph-level accuracy (Para) and sentence-level accuracy (Sent) across models with different prompting techniques. *Base* uses zero-shot prompting only; *Example* provides ground-truth in-context examples; *Guidebook* adds our detailed guidebook; *Ex+Guide* combines both methods. The performance shows the extraordinary performance improvement of using our detailed guidebook for automatic annotation.

GPT-4.1							
	Read	Analyze	Plan	Impl.	Expl.	Verif.	Monit.
Read	11.3	0.1	0.0	0.0	0.1	0.5	0.2
Analyze	0.8	16.6	0.3	0.2	2.3	4.8	0.6
Plan	0.1	0.0	5.7	0.1	0.2	0.5	0.6
Implement	0.0	0.5	0.5	17.1	0.4	3.2	0.1
Explore	0.0	0.0	0.1	0.0	6.1	0.4	0.1
Verify	0.0	0.4	0.1	0.3	0.3	18.5	0.7
Monitor	0.0	0.0	0.1	0.0	0.2	0.5	5.2
BERT							
	Read	Analyze	Plan	Impl.	Expl.	Verif.	Monit.
Read	9.0	2.6	0.2	0.2	0.2	0.1	0.0
Analyze	1.2	19.8	1.0	0.8	1.1	2.5	0.1
Plan	0.9	0.8	4.3	0.9	0.1	0.3	0.2
Implement	0.2	3.5	0.5	16.5	0.1	1.1	0.5
Explore	0.2	0.6	0.2	0.2	4.9	0.8	0.2
Verify	0.1	2.5	0.5	0.9	0.5	13.6	0.3
Monitor	0.0	0.2	0.3	0.0	0.1	1.0	4.2

Table 3: Sentence-level confusion matrices (percentage) for GPT-4.1 (top) and BERT (bottom). Rows correspond to true labels and columns to predicted labels.

tioned methods. These experiments are conducted on all of our annotated data. The performance shows the extraordinary performance improvement of using our detailed guidebook for automatic annotation. Comparing the performances of different LLMs, we notice that GPT-4.1 can obtain the best performance most of the time. Gemini-2.0 can outperform others in the in-context learning scenarios.

4.3 Training-based methods

For the training-based method, we split all our annotated data into training (70%) and testing (30%) subsets, and finetune BERT-level models, including BERT (Devlin et al., 2019) and RoBERTa (Liu et al., 2019). In addition, to investigate how powerful embeddings help the task, we try stronger embedding models, Gemini, and utilize its embeddings to train SVM and MLP for the classification. Based on Gemini embedding, we also try KNN method to see how it performs. As shown in Table 4, GPT-4.1 obtains the best results, with the highest

Model	Accuracy	Cohen's κ
GPT-4.1 (Ex+Guide)	0.805	0.764
BERT	0.732	0.671
RoBERTa	0.730	0.670
SVM-Gemini	0.704	0.632
MLP-Gemini	0.684	0.613
KNN-Gemini	0.587	0.490

Table 4: Overall sentence-level accuracy and Cohen's κ for each model on the 30% test subset. GPT-4.1 obtains the best results, while for training-based methods, the BERT model obtains the best performance.

accuracy (0.805) and the highest κ (0.764). The detailed confusion matrices on sentence-level accuracy on both GPT-4.1 and BERT are shown in Table 3. According to the confusion matrices, we can find the highest values aside from the diagonal are *Analyze-Verify*, *Implement-Verify*, and *Verify-Implement*, which represent scenarios where even the best model can not perform well.

5 Conclusion

In this work, we bridged a gap between cognitive science and artificial intelligence by using Schoenfeld's Episode Theory to analyze the reasoning of Large Reasoning Models. We demonstrated that a framework designed for human problem-solving can effectively decode machine-generated thought processes, revealing a structured, episodic nature in how LRM tackle mathematical challenges. The core of our contribution is a novel, large-scale annotated corpus and a reusable analytical protocol, which we have made publicly available to foster further research. This research not only offers initial insights into the thinking patterns of current models but also establishes a foundational methodology for future investigations.

Limitations

The main limitation of this version of the paper is the scope. Currently, only SAT math data is taken into account and labeled. To enhance the dataset's size and complexity, future iterations should incorporate data from additional sources. For example, since the SAT is designed as a college admission test in the U.S., the overall difficulty level is relatively moderate. As a next step, we plan to include other datasets, which are derived from mathematical Olympiad competitions and features more challenging items. Besides, the accuracy for automatic annotation is not very high, further efforts are needed to improve the accuracy.

References

Hyung Won Chung, Le Hou, S. Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Dasha Valter, Sharan Narang, Gaurav Mishra, and 13 others. 2022. [Scaling instruction-finetuned language models](#). *ArXiv*, abs/2210.11416.

Ellie Darlington. 2013. The use of bloom's taxonomy in advanced mathematics questions. In *Proceedings of the British Society for Research into Learning Mathematics*, volume 33, pages 7–12.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, and etc. 2025. [Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning](#). *Preprint*, arXiv:2501.12948.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. [BERT: Pre-training of deep bidirectional transformers for language understanding](#). In *Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)*, pages 4171–4186, Minneapolis, Minnesota. Association for Computational Linguistics.

Chenrui Fan, Ming Li, Lichao Sun, and Tianyi Zhou. 2025. Missing premise exacerbates overthinking: Are reasoning models losing critical thinking skill? *arXiv preprint arXiv:2504.06514*.

Kanishk Gandhi, Abhishek Chakravarthy, Ansh Singh, Nik Lile, and Noah D. Goodman. 2025. [Cognitive behaviors that enable self-improving reasoners, or, four habits of highly effective stars](#). *Preprint*, arXiv:2503.01307.

Carole Greenes. 1995. [Mathematics learning and knowing: A cognitive process](#). *Journal of Education*, 177(1):85–106.

E. Harskamp and C. Suhre. 2007. [Schoenfeld's problem solving theory in a student controlled learning environment](#). *Computers & Education*, 49(3):822–839.

Lulu Huang, Da Li, Hao Liu, and Lingxiao Cheng. 2025. [Beyond accuracy: The role of calibration in self-improving large language models](#). *arXiv preprint arXiv:2504.02902*.

David R. Krathwohl. 2002. [A revision of bloom's taxonomy: An overview](#). *Theory into Practice*, 41(4):212–218.

Ana Kuzle. 2013. Patterns of metacognitive behavior during mathematics problem-solving in a dynamic geometry environment. *International Electronic Journal of Mathematics Education*, 8(1):20–40.

Ming Li, Yanhong Li, and Tianyi Zhou. 2024a. What happened in llms layers when trained for fast vs. slow thinking: A gradient perspective. *arXiv preprint arXiv:2410.23743*.

Ming Li, Zhengyuan Yang, Xiyao Wang, Dianqi Li, Kevin Lin, Tianyi Zhou, and Lijuan Wang. 2025. What makes reasoning models different? follow the reasoning leader for efficient decoding. *arXiv preprint arXiv:2506.06998*.

Ming Li, Yong Zhang, Shuai He, Zhitao Li, Hongyu Zhao, Jianzong Wang, Ning Cheng, and Tianyi Zhou. 2024b. [Superfiltering: Weak-to-strong data filtering for fast instruction-tuning](#). In *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pages 14255–14273, Bangkok, Thailand. Association for Computational Linguistics.

Ming Li, Yong Zhang, Zhitao Li, Juhai Chen, Lichang Chen, Ning Cheng, Jianzong Wang, Tianyi Zhou, and Jing Xiao. 2024c. [From quantity to quality: Boosting LLM performance with self-guided data selection for instruction tuning](#). In *Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)*, pages 7595–7628, Mexico City, Mexico. Association for Computational Linguistics.

Changshu Liu, Shizhuo Dylan Zhang, Ali Reza Ibrahimzada, and Reyhaneh Jabbarvand. 2024. [Code-mind: A framework to challenge large language models for code reasoning](#). *Preprint*, arXiv:2402.09664.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. [Roberta: A robustly optimized bert pretraining approach](#). *Preprint*, arXiv:1907.11692.

Sara Vera Marjanović, Arkil Patel, Vaibhav Adlakha, Milad Aghajohari, Parishad BehnamGhader, Mehar Bhatia, Aditi Khandelwal, Austin Kraft, Benno Krojer, Xing Han Lù, and 1 others. 2025. Deepseek-r1 thoughtology: Let's think about llm reasoning. [arXiv preprint arXiv:2504.07128](#).

John Mason, Leone Burton, and Kaye Stacey. 2010. *Thinking Mathematically*, second edition. Pearson Education, Harlow, England.

Swaroop Mishra, Daniel Khashabi, Chitta Baral, and Hannaneh Hajishirzi. 2021. Cross-task generalization via natural language crowdsourcing instructions. [arXiv preprint arXiv:2104.08773](#).

Melanie Mitchell. 2025. *Artificial intelligence learns to reason*. *Science*, 387(6740):eadw5211.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. 2025. *s1: Simple test-time scaling*. [Preprint](#), arXiv:2501.19393.

Sam Musker, Alex Duchnowski, Raphaël Millière, and Ellie Pavlick. 2025. *Llms as models for analogical reasoning*. [Preprint](#), arXiv:2406.13803.

OpenAI. 2023. *Gpt-4 technical report*. [Preprint](#), arXiv:2303.08774.

OpenAI. 2024a. *OpenAI o1 System Card*.

OpenAI. 2024b. Openai o1 system card. <https://openai.com/index/openai-o1-system-card/>. Accessed: 2025-08-12.

George Pólya. 1945. *How to Solve It*. Princeton University Press, Princeton.

Farzad Radmehr and Michael Drake. 2018. *Revised bloom's taxonomy and major theories and frameworks that influence the teaching, learning, and assessment of mathematics: a comparison*. *International Journal of Mathematical Education in Science and Technology*, 49(6):917–929.

Teven Le Scao, Angela Fan, Christopher Akiki, Elizabeth-Jane Pavlick, Suzana Ilić, Daniel Hesslow, Roman Castagn'e, Alexandra Sasha Luccioni, Francois Yvon, Matthias Gallé, Jonathan Tow, Alexander M. Rush, Stella Rose Biderman, Albert Webson, Pawan Sasanka Ammanamanchi, Thomas Wang, Benoît Sagot, Niklas Muennighoff, Albert Villanova del Moral, and 69 others. 2022. *Bloom: A 176b-parameter open-access multilingual language model*. [ArXiv](#), abs/2211.05100.

Alan H. Schoenfeld. 1985. *Mathematical Problem Solving*. Academic Press.

Alan H. Schoenfeld. 2016. Learning to think mathematically: Problem solving, metacognition, and sense making in mathematics. *Journal of Education*, 196(2):1–38.

Lianlei Shan, Shixian Luo, Zezhou Zhu, Yu Yuan, and Yong Wu. 2025. *Cognitive memory in large language models*. [Preprint](#), arXiv:2504.02441.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. 2024. *Deepseekmath: Pushing the limits of mathematical reasoning in open language models*. [Preprint](#), arXiv:2402.03300.

Mark Steyvers and Megan A. K. Peters. 2025. *Metacognition and uncertainty communication in humans and large language models*. [arXiv preprint arXiv:2504.14045](#).

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, and Guillaume Lample. 2023. *Llama: Open and efficient foundation language models*. [Preprint](#), arXiv:2302.13971.

Yuqing Wang and Yun Zhao. 2023. *Gemini in reasoning: Unveiling commonsense in multimodal large language models*. [Preprint](#), arXiv:2312.17661.

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du, Andrew M. Dai, and Quoc V Le. 2022. *Finetuned language models are zero-shot learners*. In *International Conference on Learning Representations*.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and Denny Zhou. 2023. *Chain-of-thought prompting elicits reasoning in large language models*. [Preprint](#), arXiv:2201.11903.

Shijie Xia, Xuefeng Li, Yixin Liu, Tongshuang Wu, and Pengfei Liu. 2025. *Evaluating mathematical reasoning beyond accuracy*. [Preprint](#), arXiv:2404.05692.

Wei Xiong, Hanning Zhang, Chenlu Ye, Lichang Chen, Nan Jiang, and Tong Zhang. 2025. *Self-rewarding correction for mathematical reasoning*. [Preprint](#), arXiv:2502.19613.

Xiaohan Xu, Ming Li, Chongyang Tao, Tao Shen, Reynold Cheng, Jinyang Li, Can Xu, Dacheng Tao, and Tianyi Zhou. 2024. *A survey on knowledge distillation of large language models*. [Preprint](#), arXiv:2402.13116.

Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie Xia, and Pengfei Liu. 2025. *Limo: Less is more for reasoning*. [Preprint](#), arXiv:2502.03387.

Joseph B. W. Yeo and Ban Har Yeap. 2010. *Characterising the cognitive processes in mathematical investigation*. *International Journal for Mathematics Teaching and Learning*, pages 1–10.

Weixiang Zhao, Xingyu Sui, Jiahe Guo, Yulin Hu, Yang Deng, Yanyan Zhao, Bing Qin, Wanxiang Che, Tat-Seng Chua, and Ting Liu. 2025. **Trade-offs in large reasoning models: An empirical analysis of deliberative and adaptive reasoning over foundational capabilities.** [arXiv preprint arXiv:2503.17979](https://arxiv.org/abs/2503.17979).

Table of Contents for Appendix

A Theories of Mathematical Problem Solving	10
B SAT Data Source	12
C Example	13
D Paragraph-level Annotation Guidebook	15
E Sentence-level Annotation Guidebook	18

A Theories of Mathematical Problem Solving

Analyzing human problem-solving behaviors has long been central to cognitive psychology and mathematics education, informing theoretical models and annotation practices used extensively in research. Early studies frequently employed broad cognitive taxonomies such as the revised Bloom's Taxonomy (Krathwohl, 2002), which categorizes cognitive processes hierarchically into *Remember, Understand, Apply, Analyze, Evaluate, and Create*. Although influential for setting educational objectives and evaluating task complexity, Bloom's framework was originally a classification system set for educational learning objectives in the cognitive domain. Therefore, it failed to capture the nuanced cognitive strategies and iterative processes inherent in mathematical problem-solving (Darlington, 2013; Radmehr and Drake, 2018) and was inconsistent with our analysis purpose.

To address these limitations, researchers developed domain-specific frameworks. One seminal model is Pólya (1945) four-phase model, consisting of *Understanding the problem, Devising a plan, Carrying out the plan, and Reflecting* (looking back). Pólya's framework influenced both instructional practices and subsequent theoretical developments. Teachers often use this model as an explicit guide to help students structure their problem-solving approach in mathematics classrooms. In terms of coding and annotation of behavior, Pólya's phases provide a general partitioning of the problem-solving timeline. For instance, early studies analyzed students' think-aloud protocols or written solutions by tagging broad segments as "understanding" versus "planning." However, Pólya's framework was intended as a prescriptive guide and reflective tool, not a fine-grained analytical scheme. It captures the high-level structure of an ideal solving process, but within each phase there can be a lot of cognitive action that Pólya's labels don't distinguish.

Similarly, Mason et al. (2010) introduced a three-phase model (i.e., *Entry, Attack, and Review*) that sought to highlight both cognitive and emotional states during problem-solving. Mason's framework aimed primarily at helping students develop reflective habits in managing their thought processes. Later, this model was refined by Yeo and Yeap (2010), who provided additional subtasks (such as *Specializing, Conjecturing, and Generalizing*) within these broader phases and added additional phases *Extension* after the *Review* phase. Despite this enhancement, these models still function mainly as instructional scaffolds, explicitly intended to guide students through the cognitive and metacognitive aspects of problem-solving rather than serving as rigorous empirical coding tools. In other words, while useful for teaching students how to engage effectively with mathematical tasks, their application in systematic behavior annotation and empirical cognitive analysis has been limited, primarily because their detailed subtasks were not fully operationalized or validated for research annotation.

A more refined model explicitly emphasizing cognitive and metacognitive dimensions is Greene's (1995) five-stage framework. Greene proposed a sequential but detailed cognitive approach to problem-solving, consisting of: (1) *Problem representation*, clearly interpreting and formulating the problem's meaning; (2) *Strategy design*, identifying potential solution approaches; (3) *Implementation*, executing the selected strategy or calculation steps; (4) *Monitoring and evaluation*, continuously checking progress and strategy effectiveness; and (5) *Reflection and consolidation*, critically reviewing the final solution and reflecting on problem-solving strategies and outcomes for future problem-solving situations. Greene's model particularly highlighted the critical role of metacognitive monitoring and evaluation, emphasizing that successful problem-solving involves active self-assessment and the willingness to adapt strategies dynamically. However, despite its strength in explicitly addressing metacognitive behaviors, Greene's sequential stage structure can be limiting when coding nonlinear, iterative problem-solving processes typically observed in real-world mathematics tasks.

The most comprehensive and empirically validated framework available is Schoenfeld's episode theory (Schoenfeld, 1985). This model codes student behaviors into explicit problem-solving episodes such as *Reading, Analysis, Exploration, Planning, Implementation, and Verification*. Schoenfeld's episode theory is empirically supported by using detailed protocol analyses, explicitly identifying strategic decisions and critical moments of cognitive transition or failure, and distinguishing successful from unsuccessful problem-solving attempts. By examining transitions between these episodes, Schoenfeld observed that students often failed to solve problems not due to a lack of mathematical knowledge, but because of ineffective metacognitive control. For instance, many students would read the problem and immediately

begin exploring solutions without adequate analysis or planning. This premature transition often led them down unproductive paths, highlighting the importance of strategic decision-making at episode boundaries. Therefore, successful problem-solving is heavily influenced by the solver's ability to monitor and regulate their cognitive processes. Further empirical support comes from a study by [Kuzle \(2013\)](#), who investigated the problem-solving behaviors of preservice teachers using dynamic geometry software. Applying Schoenfeld's framework, Kuzle identified that participants who engaged in thorough analysis and planning before implementation were more successful in solving problems. Conversely, those who skipped these critical phases often encountered difficulties, underscoring the role of strategic transitions between episodes in effective problem-solving. Because of its rich granularity and robust empirical grounding, Schoenfeld's model facilitates detailed insights into both cognitive and metacognitive dimensions of mathematical reasoning.

Recently, as artificial intelligence (AI) systems increasingly produce mathematical explanations, scholars have begun applying human-based frameworks to AI-generated reasoning. While broad frameworks (Bloom's, Pólya's) are limited by their lack of specificity in coding detailed cognitive actions, Schoenfeld's detailed cognitive-metacognitive structure is especially appropriate. His explicit focus on strategic control and self-monitoring aligns closely with known challenges in AI reasoning, such as inadequate self-regulation and verification steps, making his framework uniquely suitable for annotating and analyzing AI-generated responses systematically.

In summary, although broad cognitive frameworks (i.e., Bloom's Taxonomy) and general phase-based models ([Pólya, 1945](#); [Mason et al., 2010](#); [Greenes, 1995](#)) historically provided foundational instructional value, their limitations become evident when applied to detailed empirical research annotations. Schoenfeld's theory empirically robust, fine-grained cognitive-metacognitive model addresses these limitations, effectively supporting detailed analysis and annotation of both human and AI-generated mathematical reasoning, justifying its selection for the present study.

B SAT Data Source

The SAT®Suite Question Bank (<https://satsuitequestionbank.collegeboard.org/>) math section assesses students' proficiency across four domains, comprising a total of 19 distinct skills. In the Algebra domain, the skills include "Linear equations in one variable," "Linear equations in two variables," "Linear functions," and "Systems of two linear equations." The Advanced Math domain includes "Equivalent expressions," "Nonlinear equations in one variable," "Systems of equations in two variables," "Nonlinear relationships," and "Functions." Within the Problem Solving and Data Analysis domain, the assessed skills are "Ratios, rates, and proportions," "Percents," "Units," "Tables and data inferences," "Data collection and conclusions," and "Probability and conditional probability." Lastly, the Geometry and Trigonometry domain includes "Area and volume," "Lines, angles, and triangles," "Right triangles and trigonometry," and "Circles." These skills collectively reflect the mathematical knowledge and reasoning required for college readiness.

Two types of items are available in SAT math. Multiple-choice (MC) items have four options, with each item having one and only one correct or best answer. Some items on the Math Tests are student-produced response (SPR) items, which require the student to solve a problem and then grid their response on the answer sheet. Each item consists of the following parts of information: Question text, domain, skill, difficulty level, and a step-by-step human solution (rationale). Depending on the question type, choices, figures, or tables could exist. All of the information was collected from the SAT Suite Question Bank and put into a JSON file. The JSON file has the following fields: Question ID, Assessment, Test, Domain, Skill, Question Difficulty, Item Stem, Question, Choice A, Choice B, Choice C, Choice D, Correct Answer Rationale, Table, Figure. Assessment means the specific assessment from the SAT Suite; test specifies the subject of the assessment; domain and skill refer to the aspect of math knowledge tested by each item, which was specified in the test specification of SAT; question difficulty is a three-level categorical variable (i.e., easy, medium, hard), of which the calculation was provided in Appendix; Item Stem is the content of the math problem without the question at the end, which was put in the Question field; all other json fields represent what their names mean. Note that we converted the math language into LaTeX format for the machine to understand.

C Example

In this section, we present an example of an annotated reasoning process under the adapted Schoenfeld's Episode Theory as shown in Figure 2. Paragraph-level annotations are indicated by square brackets on the left, while sentence-level annotations are color-coded by cognitive process categories.

Sentence-level Coding

① Read ② Analyze ③ Plan ④ Implement ⑤ Explore ⑥ Verify ⑦ Monitor

Domain: Algebra

Skill: Linear equations in one variable

Question: If $\frac{x}{8} = 5$, what is the value of $\frac{8}{x}$?

Model Response:

① Okay, so I need to solve this problem: If x divided by 8 equals 5, what is the value of 8 divided by x ? Hmm, let's start by understanding what the problem is asking.

① First, the equation given is x over 8 equals 5. So, written out, that's $\frac{x}{8} = 5$. I need to find the value of 8 over x , which is $\frac{8}{x}$. Alright, so maybe I can find x first from the first equation and then plug it into the second expression?

General

⑦ Let me try that. If x divided by 8 is 5, then multiplying both sides by 8 should give me x .

⑦ Let's do that:

④ $\frac{x}{8} = 5$ Multiply both sides by 8: $x = 5 \times 8 = 40$

① Okay, so x is 40. Now, the question is asking for 8 divided by x . So substituting x with 40, that would be:

$$\frac{8}{x} = \frac{8}{40}$$

① Simplifying 8 over 40. Hmm, both numerator and denominator are divisible by 8? Let me check. 8 divided by 8 is 1, and 40 divided by 8 is 5. So $\frac{8}{40}$ simplifies to $\frac{1}{5}$.

① Therefore, 8 divided by x is $\frac{1}{5}$. So the answer should be $\frac{1}{5}$. Let me double-check to make sure I didn't make any mistakes.

① Starting again, if $\frac{x}{8} = 5$, then $x = 40$. Then $\frac{8}{x}$ is $\frac{8}{40}$, which is $\frac{1}{5}$. Yep, that seems right.

⑤ Alternatively, maybe there's another way to think about it without solving for x directly. If $\frac{x}{8} = 5$, then taking the reciprocal of both sides would give $\frac{8}{x} = \frac{1}{5}$. Wait, is that valid?

⑥ Let me verify. If I have an equation $\frac{a}{b} = c$, then taking reciprocal of both sides would be $\frac{b}{a} = \frac{1}{c}$. As long as a and c are not zero, which they aren't here because c is 5 and a is x , which from the original equation must be 40, so non-zero. So yes, that works.

② So another way is to flip both sides of the equation $x/8 = 5$, which gives $\frac{8}{x} = \frac{1}{5}$. That's a quicker way, maybe. So that confirms the answer again.

⑥ Either method leads to the same result, so I think it's safe to say that the value of $8/x$ is $\frac{1}{5}$.

Final Answer The value of $\frac{8}{x}$ is $\frac{1}{5}$. </think>

① Given the equation $\frac{x}{8} = 5$, we need to find the value of $\frac{8}{x}$.

④ First, solve for x :

$$\frac{x}{8} = 5$$

④ Multiply both sides by 8:

$$x = 5 \times 8 = 40$$

④ Now, substitute $x = 40$ into $\frac{8}{x}$:

$$\frac{8}{x} = \frac{8}{40}$$

④ Simplify the fraction by dividing both the numerator and the denominator by 8:

$$\frac{8}{40} = \frac{1}{5}$$

④ Alternatively, taking the reciprocal of both sides of the original equation $\frac{x}{8} = 5$ directly gives:

$$\frac{8}{x} = \frac{1}{5}$$

Thus, the value of $\frac{8}{x}$ is $\frac{1}{5}$.

Figure 2: This figure presents an example of an annotated reasoning process under the adapted Schoenfeld's Episode Theory. Paragraph-level annotations are indicated by square brackets on the left, while sentence-level annotations are color-coded by cognitive process categories.

D Paragraph-level Annotation Guidebook

In this project, we aim to analyze the reasoning process of current large language models (LLMs) with advanced reasoning capabilities, i.e., Large Reasoning Models, LRM, based on a modified version of Alan Schoenfeld's (1985) "Episode-Timeline" framework for problem-solving. The original Schoenfeld's theory was built on hundreds of hours of recorded tapes of students tackling non-routine math problems while being asked to think aloud. Widely regarded as a gold-standard framework in mathematics-education research, this theory offers a rigorously validated, fine-grained lens for dissecting both expert and novice problem-solving strategies. After thorough investigation, we find that the thinking process of LRM can be well-aligned with the episodes in the theory, as they also follow similar problem-solving processes. Thus, in this project, we aim to annotate the model (solver) responses with these episode categories. However, to better apply the theory to the analysis of model responses, we apply a hierarchical annotation structure, including paragraph-level annotation and sentence-level annotation. Paragraph-level annotation is used to capture the overall flow of the model response, including **three** categories: General, Explore, and Verify. Sentence-level annotation is used to capture the fine-grained behavior of each sentence, including **seven** categories: Read, Analyze, Plan, Implement, Explore, Verify, and Monitor.

This guidebook provides guidelines for **paragraph-level annotation**. For the given model response paragraphs, each of them will be annotated as one of three broad episode types: General, Explore, or Verify. Please remember, the paragraph-level annotation is used to capture the overall flow of the model response, thus we should take the context into consideration to decide the correct category.

Label Definitions and Guidelines

1. General

- **Definition:** A General episode is a response paragraph where the solver carries out the initial attempt and main line of problem-solving. This category encompasses all general problem-solving actions that are NOT explicitly exploratory trials (Explore) or verification checks (Verify). It typically includes understanding the problem, devising and following a plan, executing solution steps, and making transitions between ideas in a coherent way. In essence, whenever the response is proceeding methodically toward solving the problem (stating facts, applying formulas, deriving results) without digressing into off-plan explorations or checking of results, it falls under a General episode.

• Guidelines:

- Assign the General label to any paragraph that focuses on *direct progress* toward the solution using established methods or known information. And that progress should not be a part of the verification or exploration process.
- This can range from restating the problem in the solver's own words, setting up equations, systematically carrying out computations, to explaining a step-by-step plan. Such paragraphs often appear at the beginning of a solution (interpreting or summarizing the problem), throughout the middle as the solver works through solution steps, or even as concluding statements that present the final answer without explicitly verifying it.
- Typically, for the solver response, only the paragraphs for the initial attempt belong to the General category. After the initial attempt, the following paragraphs should be annotated as Explore or Verify.
- When differentiating General from other categories, focus on the paragraph's purpose. Given that one paragraph contains several sentences, the General episode might contain sentences that occur from time to time which are considered exploration or verification at the sentence level. However, that exploration or verification is still considered embedded in the General chunk, therefore should be General.

2. Explore

- **Definition:** An Explore episode is a response paragraph where the solver diverges from the main solution path to investigate possibilities, gather insight, or attempt an approach that isn't guaranteed to work. In Schoenfeld's framework, exploration is a less structured, trial-and-error phase: the solver

searches for relevant information or patterns and considers various options without a firm plan. Within a solver response, an Explore paragraph typically reflects the solver's uncertainty or creativity—trying a conjecture, exploring a sub-problem, or experimenting with different strategies. This episode serves to advance understanding when the direct path is unclear, and it often precedes or informs a return to structured problem-solving.

- **Guidelines:**

- Use the Explore label for paragraphs where the reasoning is characterized by searching or experimentation rather than executing a known strategy. If the solver poses hypotheses, tests special cases, or temporarily pursues a tangent, that paragraph should be marked Explore.
- Common scenarios include: trying a simpler instance of the problem to see how it behaves, guessing a pattern or formula and seeing if it holds, discussing alternative approaches, or brainstorming next steps when stuck. Watch for a *change in tone*—if the paragraph shifts from solving to musing or investigating, it likely represents an exploratory episode.
- Since this annotation is at the paragraph level, please only mark the large chunk of an exploration episode toward the solution of the whole question as Explore. If the exploration is only for one step of the solution, it is Explore at the sentence level, therefore not Explore at the paragraph level. For example, in the middle of solving the problem, there is a step for solving $3x=6$, which is only a small part of solving the whole problem. In the solution, people explored two different ways of solving the equation, then these are Explore at the sentence level rather than at the paragraph level. Therefore, the tag should be decided carefully depending on whether these steps are a procedure belonging to the initial solution (General), exploration of a new method (Explore), or verification of the answer (Verify).
- To tell an Explore episode apart from General and Verify, focus on purpose and tone. An Explore paragraph is driven by *uncertainty*: it does not guarantee the solution, but is proactive in providing a new approach to think about or to solve the question. Unlike a General episode, which follows a clear logical step in solving, an Explore episode might temporarily set the main goal aside to answer a sub-question or try a different angle. If the paragraph suggests that the solver is unsure how to proceed and is examining options, that's a strong sign of exploration rather than general solving. Also, Explore is distinct from Verify because it's not primarily about checking a result's correctness. Verify episodes confirm what's believed to be a solution, whereas Explore episodes occur before a solution is confirmed (often before one is even reached). In sum, if the paragraph's content is exploratory (testing, conjecturing, or considering alternatives) and doesn't simply carry out a decided plan or finalize an answer, it should be labeled Explore.

3. Verify

- **Definition:** A Verify episode is a response paragraph dedicated to confirming the correctness or validity of a solution or a result. In Schoenfeld's terms, a verification episode occurs when the solver "reviews and tests" a solution to ensure it meets the problem requirements. In the context of AI-generated responses, this usually means the paragraph is focused on checking an answer (or an intermediate result) and making sure it is consistent with the conditions of the problem. This episode type often comes at the end of a solution as a final confirmation, but it can also appear mid-solution if the solver pauses to validate a step. The hallmark of a Verify episode is that its primary goal is evaluation: double-checking calculations, substituting the found solution back into the original problem, or logically arguing that the result must be correct.

- **Guidelines:**

- Label a paragraph as Verify when the content is centered on checking, confirming, or proving that a result is correct. If the solver explicitly performs a check (for example, plugging the solution back into the original equation to see if it holds, or verifying that all conditions are satisfied), that paragraph should be tagged as Verify.

- Do not label a paragraph as Verify if it is merely stating the final answer without checking it; in that case use General for a straightforward conclusion. Only use Verify when actual validation or reasoning about correctness is present.
- When a solver launches a *verification routine* (e.g., "To verify..."), every paragraph that belongs to that routine inherits the Verify label, even if later lines contain no overt "checking" words. Mechanical algebra steps, intermediate equations, and the final boxed answer are all part of the same confirmation process, so they are not General.
- The key feature that distinguishes a Verify episode is its retrospective nature: it looks back at a result and asks "is this right?" rather than pushing forward to solve something new. This sets it apart from a General episode, which would simply present the result or next step without questioning it. If a paragraph is primarily re-examining what's been done (whether the final answer or a prior step), it is likely to be verification. Compared to an Explore episode, which is uncertain and looking for a way forward, a Verify episode assumes a candidate solution or fact and checks its validity—it is usually certain about what needs to be checked, just not about whether it passes the check. Another way to distinguish Verify is by position and content: a paragraph that comes after an answer has been derived and discusses that answer in light of the problem's conditions is almost always a Verify episode. Be careful not to confuse a final declarative answer (General) with a verification; if there's no evidence of a *checking process* or confirmation language, then it's not truly a Verify episode. The presence of phrases explicitly referencing correctness or fulfilling conditions is the clearest differentiator for Verify.

E Sentence-level Annotation Guidebook

In this project, we aim to analyze the reasoning process of current large language models (LLMs) with advanced reasoning capabilities, i.e., Large Reasoning Models, LRM, based on a modified version of Alan Schoenfeld's (1985) "Episode-Timeline" framework for problem-solving. The original Schoenfeld's theory was built on hundreds of hours of recorded tapes of students tackling non-routine math problems while being asked to think aloud. Widely regarded as a gold-standard framework in mathematics-education research, this theory offers a rigorously validated, fine-grained lens for dissecting both expert and novice problem-solving strategies. After thorough investigation, we find that the thinking process of LRM can be well-aligned with the episodes in the theory, as they also follow similar problem-solving processes. Thus, in this project, we aim to annotate the model (solver) responses with these episode categories. However, to better apply the theory to the analysis of model responses, we apply a hierarchical annotation structure, including paragraph-level annotation and sentence-level annotation. Paragraph-level annotation is used to capture the overall flow of the model response, including **three** categories: General, Explore, and Verify. Sentence-level annotation is used to capture the fine-grained behavior of each sentence, including **seven** categories: Read, Analyze, Plan, Implement, Explore, Verify, and Monitor.

This guidebook provides guidelines for **sentence-level annotation**. For the given model response sentences, each of them will be annotated as one of seven fine-grained episode types: Read, Analyze, Plan, Implement, Explore, Verify, or Monitor. The sentence-level annotation is used to capture the fine-grained behavior of each sentence, it depends on both the current sentence itself and its context.

Label Definitions and Guidelines

1. Read

- **Definition:** This is usually the initial phase, which focuses on extracting or restating the given information, conditions, and the goal of the problem as presented in the problem. It involves understanding the question without any inference of strategy or reasoning.
- **Guidelines:**
 - Sentences in this category should directly present the content of the original problem statement.
 - Look for phrases that recall or repeat elements of the question.
 - This label is mostly presented for the model's initial processing of the problem.

Keywords/Indicators: “The question asks...”, “The problem requires...”, “We are given...”, “The goal is to...”, “The choices are...” direct quotes from the problem.

Distinguishing Features: This stage is purely about understanding the input, not about processing it or deciding how to solve it. Avoid labeling sentences as Read if they include any form of analysis or evaluation of the problem. The read stage usually appears at the beginning of the reasoning. However, it also appears in the middle of the reasoning, in order to ensure that the question was understood correctly.

Example: “The question asks us to find the value of x in the equation $2x + 5 = 10$.”

2. Analyze

- **Definition:** This stage involves constructing or recalling relevant theories, introducing necessary symbols, and deducing relationships based on the problem statement and existing knowledge. The core activity is explanation or logical inference that sets the stage for the solution but does not involve concrete calculations yet.
- **Guidelines:**
 - Sentences should explain the underlying mathematical concepts or principles relevant to the problem.
 - Look for the introduction of variables, formulas, or theorems.
 - This label applies to logical deductions and inferences made with certainty.

Keywords/Indicators: “According to...”, “We can define...”, “This implies that...”, “Therefore...”, “Based on this...”, “Let’s denote...”, “We can infer that...”, “Let’s note that ...”, “Let me observe that ...”, “Let’s recall that ...”

Distinguishing Features: Analyze episode involves certain inferences and explanations, unlike Explore, which shows uncertainty. It usually precedes the actual execution of calculations in the Implement stage. Analyze does not involve any concrete calculation, which is unlike Implement.

Important Note: Be careful not to include sentences that involve substituting values or performing calculations, as those belong to the Implement stage.

Example: “According to the Pythagorean theorem, in a right-angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.” or “If I can get the equation in slope-intercept form ($y = mx + b$), then I can plug in $y = 4$ and solve for x , which should be d .”

3. Plan

- **Definition:** This stage involves announcing the next step or outlining the entire solution strategy. It represents a commitment to a particular course of action before the actual execution begins.

- **Guidelines:**

- Sentences should clearly state the intended next step or the overall plan.
- Look for explicit declarations of intent, often using the first person or imperative voice.
- This stage signifies that a decision has been made on how to proceed, and the next step should be related to math problem solving, rather than generally saying “let’s think about it”.

Keywords/Indicators: “Next, we will...”, “The next step is to...”, “We need to...”, “Let’s proceed by...”, “I will now...”, “The plan is to...”, “We should first...”, “To..., do...”, “The xxx we need/want is...”, “Let’s...”, “Then/Now calculate/consider ...”.

Distinguishing Features: The Plan phase clearly indicates the intended action, unlike Analyze, which explains concepts, or Explore, which suggests possibilities. It precedes the actual carrying out of the plan in the Implement stage. Note that sentences like “Let’s denote...” is Analyze, because this is introducing a new variable, rather than making a plan. Sentences like “let’s verify...” or “let’s double-check” are Verify.

Example: “Next, we will differentiate both sides of the equation with respect to x .”

4. Implement

- **Definition:** This stage is the operational phase where the planned strategy is executed. It involves performing specific calculations, constructing diagrams, enumerating possibilities, or coding solutions using numerical values, symbols, or geometric objects.

- **Guidelines:**

- Sentences should describe the actual steps taken to solve the problem.
- Look for mathematical operations, substitutions, and the generation of intermediate results.
- This stage is about “doing” the math.

Keywords/Indicators: “Substituting $x = 2$, we get...”, “Therefore, $P(1) = -1$ ”, “Expanding the expression...”, “The matrix becomes...”, actual mathematical equations and calculations.

Distinguishing Features: Implement involves concrete actions and calculations, unlike Analyze, which focuses on theoretical explanations, or Plan, which outlines future actions. If a conclusion follows the Implementation of math, that conclusion is tagged as Implement, such as “therefore, the sum of all possible values is 5”.

Example: “Substituting $x = 3$ into the equation, we get $2(3) + 5 = 6 + 5 = 11$.”

5. Explore

- **Definition:** This stage is characterized by generating potential ideas, making guesses, drawing analogies, or attempting trial calculations that might be abandoned later. The model is exploring different avenues without committing to a specific solution path. This stage often involves uncertainty.
- **Guidelines:**
 - Sentences should suggest alternative approaches or possibilities.
 - Look for tentative language and expressions of uncertainty.
 - This stage involves brainstorming and initial investigations without a clear commitment to a particular method.

Keywords/Indicators: “Maybe we can try...”, “Perhaps we could use...”, “What if we consider...”, “Another possibility is...”, “Could this be related to...”, “Maybe I should...”, “Maybe there is another way...”, “Maybe we can try ...”, “Maybe there is a better way ...”, “Maybe consider ...”, “Perhaps ... is ...”, “Let’s try ...”, “Alternatively, maybe use ...”, “Wait, but maybe...”, “But in soccer, it’s possible to lose a game but still have more total goals?” question marks indicating uncertainty about a step.

Distinguishing Features: Explore is marked by uncertainty and a lack of commitment, unlike Plan, which announces a definite course of action. It involves considering various options before settling on a specific plan. If a sentence contains analyzing the problem, implementing the calculation, or verifying the result or thought, even if it follows sentences like “Maybe we can try ...”, the sentences are not considered Explore at the sentence level, and therefore should not label them as Explore. Rather, these sentences are considered Analyze, Implement, or Verify within the Explore Episode at the paragraph level. Only the sentence like “Maybe we can try ...” will be labeled as Explore at the sentence level.

Example: “Maybe we can try substituting different values for x to see if we can find a pattern.”

6. Verify

- **Definition:** This stage involves judging the correctness, effectiveness, or simplicity of the obtained result or the method used. It might include checking the answer, using an alternative method for calculation, or estimating bounds.
- **Guidelines:**
 - Sentences should express an evaluation or confirmation of the solution or the process.
 - Look for keywords related to checking, confirming, or validating.
 - This stage ensures the solution and result is accurate and makes sense.

Keywords/Indicators: “Let me double-check...”, “This is consistent with...”, “Plugging it back in...”, “Therefore, the answer is correct.”, “Let’s confirm...”, “Let me check again..”, “We can confirm this by...”, “This result seems reasonable because...”, “The answer is ...?”, “Is the answer ...?”, “Is there any mistakes?”, “Do I made mistakes?”, “This is the same/correlated as previous ...”, “But there seems contradict to ...”, “... lead/arrive to the same answer”, “Wait, we don’t know ... yet”, “Let’s try another way to verify ...”, “XXX is possible/impossible”. When the following sentences are to mean conclusions, “... is indeed ...”, “... should be...”, they are also at the Verify state.

Distinguishing Features: Verify focuses on evaluating the solution, unlike Implement, which focuses on generating it. It often involves comparing the result with initial conditions or using alternative methods.

Example: “Let me double-check my calculations: $2 \times 3 + 5 = 11$, which matches the previous result.”

7. Monitor

- **Definition:** This additional category captures sentences that are typically short interjections or expressions indicating the model’s self-monitoring, hesitation, or reflection at the juncture between different episodes. These often do not contain substantial problem-solving content and are brief pauses in the thought process.

- **Guidelines:**

- Sentences should be short phrases indicating a shift in thought or a brief pause.
- Look for expressions of uncertainty, reflection, or transition.
- This label is for meta-comments that don't fit neatly into the other problem-solving stages.

Keywords/Indicators: “Hmm...”, “Wait...”, “Let me think.”, “Okay...”, “Let’s see.”, “Hold on.”, “Let’s see.”, “But wait, hold on.”, “Let me think.”

Distinguishing Features: Monitor sentences lack the substantive content of the other categories and primarily serve as indicators of the model’s internal processing flow. They are often very short and act as bridges between more content-heavy stages.

Example: “Wait.”

Important Considerations for Annotators

- **Sentence-Level Focus:** Annotate each sentence individually based on its primary function within the problem-solving process.
- **Context is Key:** While keywords can be helpful, always consider the context of the sentence within the overall response. A sentence might contain a keyword but function differently based on the surrounding text.
- **Refer to Examples:** The examples provided in this guidebook and any additional examples you encounter should serve as valuable references.

The Relation between Paragraph-level and Sentence-level Annotation

Although they focus on different granularities, paragraph-level and sentence-level annotations serve mutually complementary roles. There are three categories in paragraph-level annotation: General, Explore, and Verify. All three categories represent behaviors that may span large segments of responses and encompass several more fine-grained sentence-level categories. For example, during the initial attempt (General) at solving a problem, the solver can still exhibit other behaviors such as Plan, Explore, Verify, etc. Similarly, in the Explore and Verify phases, the solver can also demonstrate other behaviors like Plan, Explore, Verify, etc. This long-spanning characteristic motivates our use of a hierarchical structure. By applying this hierarchical structure, for sentences functioning like “planning during the verification process,” we do not need to struggle with which category to assign at the sentence level—Plan or Verify. We can directly use a paragraph-level annotation of Verify and sentence-level annotation of Plan to represent the behavior of this sentence.

Some points that are easily misunderstood:

- “Let me parse that information first.” “Let me do that.”
should be Monitor, rather than Plan. Because the solver is pausing to check understanding of the information already given, not outlining a future course of action.
- “Wait, so if both lines pass through (4, 1), that means that (4, 1) is their point of intersection, right?”
should be Explore, rather than Analyze. Because the speaker is tentatively proposing an idea and seeking confirmation, not asserting a concluded analysis. The sentence shows uncertainty by the question mark.
- “Hmm, but let me check again because that seems straightforward, but maybe there’s a trick here.” “Wait, let me make sure.”
should be Verify, rather than Explore. Because “let me check again” explicitly marks a correctness check; the mention of a possible trick simply motivates the verification.
- “Then it describes two lines.” “So, if both lines pass through (4, 1), then that must be the intersection point.”

should be Analyze, rather than Explore. Because it summarizes structural information (categorizing the description) rather than hypothesizing or probing. No uncertainty is shown by maybe or perhaps.

- “Wait, perhaps the description is a bit confusing.”
should be Monitor, rather than Explore. Because it reflects on the clarity of understanding (metacognitive monitoring).
- “The slope m_1 is $(0 - 1)/(32/7 - 4)$.” “So equation of first line is $y = -7/4x + 8$.”
should be Analyze, rather than Implement. Because it is performing the analytic calculation (finding slope), not carrying out a pre-defined multi-step procedure.
- “Wait, $7/4$ times 4 is 7 .”
should be Analyze, rather than Verify. Because it is a micro-check of arithmetic inside the working process (self-monitoring), not a separate verification stage.
- “Now, the second line passes through $(32/9, 0)$ and $(4, 1)$.”
should be Analyze, rather than Read. Because it sets up data for further calculations on the second line (transition into analysis).