
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 18267–18288
November 4-9, 2025 ©2025 Association for Computational Linguistics

Understanding the Thinking Process of Reasoning Models: A Perspective
from Schoenfeld’s Episode Theory

Ming Li*, Nan Zhang*, Chenrui Fan*, Hong Jiao
Yanbin Fu, Sydney Peters, Qingshu Xu, Robert Lissitz, Tianyi Zhou

University of Maryland
{minglii,hjiao}@umd.edu, tianyidavidzhou@gmail.com

Project: https://github.com/MingLiiii/Schoenfeld_Reasoning

Abstract

While Large Reasoning Models (LRMs) gen-
erate extensive chain-of-thought reasoning, we
lack a principled framework for understand-
ing how these thoughts are structured. In this
paper, we introduce a novel approach by ap-
plying Schoenfeld’s Episode Theory, a clas-
sic cognitive framework for human mathe-
matical problem-solving, to analyze the rea-
soning traces of LRMs. We annotated thou-
sands of sentences and paragraphs from model-
generated solutions to math problems using
seven cognitive labels (e.g., Plan, Implement,
Verify). The result is the first publicly available
benchmark for the fine-grained analysis of ma-
chine reasoning, including a large annotated
corpus and detailed annotation guidebooks.
Our preliminary analysis reveals distinct pat-
terns in LRM reasoning, such as the transi-
tion dynamics between cognitive states. This
framework provides a theoretically grounded
methodology for interpreting LRM cognition
and enables future work on more controllable
and transparent reasoning systems.

1 Introduction

Large Reasoning Models (LRMs) such as Ope-
nAI GPT-o1 (OpenAI, 2024a) and the open-source
DeepSeek-R1 (DeepSeek-AI et al., 2025) exem-
plify a shift toward producing long, explicit, chain-
of-thought (CoT) (Wei et al., 2023) that boost per-
formance on demanding tasks (Xiong et al., 2025;
Xia et al., 2025; Liu et al., 2024; Wang and Zhao,
2023; Shao et al., 2024; Xu et al., 2024). These
extended and fine-grained reasoning trajectories
emerge either from reinforcement-learning opti-
mization (DeepSeek-AI et al., 2025) or from super-
vised fine-tuning on expert high-quality responses
(Li et al., 2024c,b,a; Ye et al., 2025; Muennighoff
et al., 2025), showcasing increasingly sophisticated
thinking patterns.

*Co-First Authors.

However, we still lack a principled understand-
ing of how these models organize their problem-
solving process. Are the thinking behaviors of these
advanced LRMs similar to Humans? Can we uti-
lize the existing cognitive theories for humans to
analyze the LRM reasoning behaviors? Some re-
searchers notice the extremely human-like thinking
token patterns such as “Hmmm.”, “Wait.”, “Let me
check.”, “Am I correct?” (Mitchell, 2025; Zhao
et al., 2025; Fan et al., 2025; Li et al., 2025), and
human-aligned meta-cognitive patterns (Steyvers
and Peters, 2025; Huang et al., 2025). In a more
quantitative way, Shan et al. (2025) and Musker
et al. (2025) utilized cognitive views on analyz-
ing the thinking process of LRMs. However, most
of them are from observation and summary rather
than grounded in solid theories (Gandhi et al., 2025;
Marjanović et al., 2025).

Motivated by the advanced theoretical analy-
sis on human behaviors in the area of cognitive
science, we propose to utilize the Schoenfeld’s
Episode Theory (Schoenfeld, 1985) as an analytical
framework to understand the thinking process of
LRMs. This theory was built on hundreds of hours
of recorded tape of students tackling non-routine
math problems while being asked to think aloud.
Widely regarded as a gold-standard framework in
mathematics-education research, this theory offers
a rigorously validated, fine-grained lens for dissect-
ing both expert and novice problem-solving strate-
gies. After thorough investigation, we find that
the thinking process of LRMs can be well-aligned
with the episodes in the theory: the 7 fine-grained
episode categories, including Read, Analyze, Plan,
Implement, Explore, Verify, and Monitor, are also
presented in the reasoning traces of LRMs, as they
also follow similar problem-solving processes. Ex-
amples for each episode are shown in Table 1.

In this paper, we apply Schoenfeld’s Episode
Theory to the reasoning traces generated by one
of the most representative open-sourced LRMs,

18267

https://github.com/MingLiiii/Schoenfeld_Reasoning


Category Reasoning Trace Example (Sentence)

Read “The question asks us to find the value of x in the equation 2x+ 5 = 10.”

Analyze “According to the Pythagorean theorem, the square of the hypotenuse is equal to ...”

Plan “Next, we will differentiate both sides of the equation with respect to x.”

Implement “Substituting x = 3 into the equation, we get 2(3) + 5 = 6 + 5 = 11.”

Explore “Maybe we can try substituting different values for x to see if we can find a pattern.”

Verify “Let me double-check my calculations: ... which matches the previous result.”

Monitor “But wait, hold on.”

Table 1: Representative examples for each episode category in the reasoning traces of LRMs.

DeepSeek-R1 (DeepSeek-AI et al., 2025), for both
paragraph-level and sentence-level annotation and
analysis. Specifically, we collect R1 responses on
1, 385 SAT Mathematics items retrieved from the
SAT®Suite Question Bank1, as it includes addi-
tional meta information, including the difficulty
level and the problem domain. Then the reason-
ing responses are annotated and analyzed at both
paragraph and sentence levels.

Specifically, in our annotation system, there are
3 general categories at the paragraph level, includ-
ing General, Verify, Explore, and 7 fine-grained
episode categories at the sentence level. The an-
notation procedure consists of two parts: Firstly,
human annotators are trained to manually annotate
the responses into proper categories, until the inter-
rater reliability reaches a certain level. Secondly,
all the generated reasoning traces are annotated by
the trained annotators. In total, 38 math problems,
including 915 paragraphs and 3, 087 sentences, are
mannuly annotated into episode categories. We
also leverage LLM-based and SLM-based meth-
ods for labeling and evaluate their efficiency and
consistency compared to human labeling, not only
formulating this as a well-defined task, but also pro-
viding a replacement for the labor-intensive anno-
tation process, making it a more scalable analytical
framework for analyzing the reasoning process of
LRMs. Our contributions are summarized:

• We propose the earliest exploration on applying
Schoenfeld’s Episode Theory to reasoning traces
of LRMs, providing a unified view between how
humans and LRMs solve math problems.

• We provide a theoretically grounded analytical
framework for understanding and analyzing LRM
thinking process from a cognitive view.

1https://satsuitequestionbank.collegeboard.org/

• We release the open annotation protocol and anno-
tated corpus with thousands of annotations for the
above-mentioned task, making it a well-defined
task for controllable analysis.

2 Cognitive Foundations

2.1 Large Reasoning Models

LRMs differ from earlier instruction-following
LLMs (Scao et al., 2022; Mishra et al., 2021; Wei
et al., 2022; Chung et al., 2022; OpenAI, 2023;
Touvron et al., 2023) by dedicating both their
training and inference budgets to explicit chain-of-
thought computation. For instance, GPT-o1 (Ope-
nAI, 2024b) is trained with reinforcement learn-
ing that rewards intermediate reasoning traces and
is allowed to “think longer” at inference, which
means that the thinking time and output are both
lengthened. This steadily improves accuracy as
additional test-time compute is spent. Following
a similar philosophy, DeepSeek-R1 (DeepSeek-AI
et al., 2025) directly optimizes a reward that in-
centivizes logically coherent multi-step solutions,
yielding strong performance. These designs con-
trast with earlier instruction-following models such
as GPT-4o, whose inference paths remain short and
lengths relatively fixed. Based on the open-sourced
thinking traces provided by R1, the communities
have noticed the flexible response lengths of R1
when targeting different problems, and the human-
like thinking token patterns on the explicit textual
thinking traces. These human-like behaviors and
human-readable thinking traces during problem-
solving make it possible to apply behavioral analy-
sis from a cognitive perspective in human research.

2.2 Schoenfeld’s Episode Theory

Schoenfeld’s Episode Theory (Schoenfeld, 1985,
2016) frames problem-solving as a temporally

18268



ordered sequence of “episodes” that reveal both
the solver’s evolving goal structure and the meta-
cognitive control. This theory was built on hun-
dreds of hours of recorded tape of students tack-
ling non-routine math problems while being asked
to think aloud. The original episodes include 6
categories, i.e., Read, Analyze, Plan, Implement,
Explore, and Verify. Crucially, the theory disentan-
gles what knowledge a solver possesses from how
it is strategically deployed, emphasizing that expert
performance hinges less on sheer domain knowl-
edge than on the dynamic orchestration of planning,
monitoring, and evaluation processes. Episode the-
ory has since become a foundational analytic lens
in mathematics-education research and in studies
of human reasoning, offering a fine-grained vocabu-
lary for tracing cognitive control and strategy shifts
(Harskamp and Suhre, 2007). All of the above char-
acteristics are directly pertinent when we scrutinize
the reasoning traces generated by contemporary
large language models. See Appendix A for a more
detailed discussion and comparison on different
cognitive theories used in human research.

2.3 Why Episode Theory Fits LRM Traces
Schoenfeld’s theory represents a natural framework
for understanding problem-solving processes, as it
was originally developed to capture how humans
naturally approach and resolve mathematical chal-
lenges. The theory encapsulates the organic flow
of cognitive processes that occur when individuals
encounter and work through math problems. After
through investigation on LRM generated reasoning
traces, we actually find their reasoning structures
are well-aligned with the theory: Typically, when
facing a given problem, the models will Read and
restate the problem in a form that they can under-
stand better, then Analyze the potential strategies
to solve the problem. After that, they will Plan for
the future steps right before they Implement the cal-
culation. Sometimes, when the problem cannot be
easily solved, LRMs will Explore other potential
methods and Verify their generated traces. Among
these categories, Explore and Verify further rep-
resent the current traned on test-time scaling and
the occurrence of the “aha moment” (DeepSeek-AI
et al., 2025) of LRMs.

Moreover, since LRMs externalize these transi-
tions between episodes in natural-language form,
which shows a better form for further analysis
than humans. LRM’s long reasoning traces can
be segmented clearly through paragraph-level and

sentence-level boundaries, and then annotated at
the same fine-grained episode categories used to
analyze human problem-solving sessions. This pro-
cess uncovers the system’s dynamic metacognitive
regulation rather than leaving it a black box. Con-
sequently, Episode Theory offers a uniquely well-
suited lens for analyzing the LRM reasoning be-
havior. Representative examples for each episode
category are shown in Table 1, and an fully anno-
tated reasoning trace is shown in Appendix C.

3 Dataset Construction

3.1 Data Source

Our experiments are conducted on 1, 385 SAT
Mathematics items retrieved from the SAT®Suite
Question Bank, which contains 19 fine-grained
skill categories. SAT serves as a nationwide college
admission test in the U.S., which is usually taken
by junior and senior high school students. There
are two types of questions in SAT Math: multiple-
choice (MC) items and student-produced response
(SPR) items. Each item consists of the following
parts of information: question text, skill, difficulty
level, and a step-by-step human solution (rationale).
Depending on the question type, choices, figures, or
tables could exist. For LRM-generated responses,
DeepSeek-R1 is selected since its thinking trajecto-
ries can be obtained during the inference. Specif-
ically, 38 responses, 2 for each fine-grained skill
category, including 915 paragraphs, and 3, 087 sen-
tences, are annotated.

3.2 Data Annotation

Annotation Strategy. We leverage Schoenfeld’s
Episode Theory to systematically annotate the rea-
soning processes of LRMs. Compared to the tra-
ditional “think aloud” protocols used for human
problem-solving, LRM-generated responses often
exhibit much finer granularity, with explicit steps
and monitoring indicators articulated in the output.
This increased granularity can sometimes make it
challenging to assign clear episode labels to every
sentence. For example, in some cases, all several
paragraphs in the response may be related to a
certain behavior like Verify. However, during the
whole verify process, the model might still conduct
more finegrained behaviors, such as Plan, (plan
on how to verify), etc. Thus, a better annotation
strategy is required to tackle these issues like “Plan
during Verify”.

To address this, we adopt a hierarchical annota-

18269



tion strategy that operates at both the paragraph and
sentence levels. At the paragraph level, we capture
broader, long-term behaviors, such as the initial
attempt to solve a problem or the process of verify-
ing an existing answer. At the sentence level, we
annotate more fine-grained strategies, for example,
the specific planning, implementation, or verifica-
tion steps that occur within a broader verification
episode. By leveraging contextual information and
this hierarchical approach, we are able to define
and label sentences more precisely, even in cases
where boundaries between categories are subtle.

For paragraph-level annotation, each response
is segmented into paragraphs following the orig-
inal formatting. Each paragraph is then assigned
one of three labels, General if the paragraph is
directly solving the math problem, Explore if the
paragraph diverges from the main solution to inves-
tigate possibilities or gather insights, or Verify if the
paragraph is checking a solution, according to the
dominant episode it represented. For sentence-level
annotation, we further split each response to isolate
individual sentences. Afterward, each sentence is
labeled into one of the seven episodes: Read if the
sentence is repeating the question; Analyze if the
sentence is recalling relevant theories, deducing re-
lationships, or introducing symbols; Plan if the sen-
tence is announcing the next step; Implement if the
sentence is executing a planned strategy; Explore
if the sentence is generating potential ideas or mak-
ing guesses; Verify if the sentence is judging the
correctness. An extra category Monitor was added
to serve as transitions between episodes, such as
self-monitoring or hesitation. Examples for each
episode are shown in Table 1. Since paragraphs and
sentences form an interwoven hierarchy, annotators
work in sequence for each item: they first label all
paragraphs, ensuring coherent episode-level cate-
gorization, and then label each extracted sentence,
capturing finer moves within those episodes.

Annotation Process. We first develop a prelim-
inary annotation guidebook grounded in Schoen-
feld’s Episode Theory. Next, two of the authors
each annotate 5 R1 responses using the initial guide.
This pilot annotation familiarizes the annotators
with the structure of the responses and highlights
areas of ambiguity or inconsistency in the guide
itself. Based on their annotation experience, the
annotation definitions and examples are further re-
fined. After the guidebook is determined, three
annotators are trained and complete all the reamin-

Re
ad

Ana
lyz

e
Pla

n

Im
ple

men
t

Ex
plo

re
Ve

rify

Mon
ito

r

To State

Read

Analyze

Plan

Implement

Explore

Verify

Monitor

Fr
om

 S
ta

te

0.34 0.29 0.11 0.05 0.04 0.09 0.07

0.07 0.54 0.07 0.10 0.06 0.14 0.04

0.16 0.21 0.16 0.40 0.04 0.01 0.03

0.02 0.06 0.06 0.63 0.02 0.18 0.04

0.06 0.25 0.09 0.04 0.34 0.12 0.10

0.12 0.13 0.04 0.08 0.07 0.51 0.05

0.20 0.21 0.08 0.11 0.10 0.15 0.15
0.1

0.2

0.3

0.4

0.5

0.6

Figure 1: The sentence-level state transition matrix for
our ground-truth annotation. A darker color represents a
higher probability of transfer from one state to another.

ing responses. See Appendix D and Appendix E
for the full guidebooks. An annotated example is
shown in Appendix C.

4 Experiments and Analysis

In this section, we explore the potential automated
annotation methods for our task.

4.1 Transition Matrix

Figure 1 presents the state transition matrix for
our ground-truth annotation. A darker color rep-
resents a higher probability of transfer from one
state to another. The darkest values aside from the
diagonal are Read-Analyze, Plan-Implement, and
Explore-Analyze, representing that these categories
have a higher probability of appearing continuously.
For example, Plan-Implement represents that Im-
plement has more chance to follow the Plan. This
matrix directly shows the relation between different
categories, which further shows a strong alignment
with human behaviors.

4.2 LLM-based Zero-shot Methods

In this section, we investigate how advanced LLMs
perform on Schoenfeld’s Episode Theory annota-
tions as shown in Table 2. In the table, we present
the results of using GPT-4.1, GPT-4o, and Gemini-
2.0-flash on different prompting techniques. Base
represents using LLM zero-shot prompting only.
Guidebook represents using our detailed guidebook
as the guidance. Example represents providing
some ground-truth examples for in-context learn-
ing. Ex+Guide represents using both of the men-

18270



Model Base Example Guidebook Ex+Guide

Para Sent Para Sent Para Sent Para Sent

GPT-4.1 0.444 0.595 0.559 0.604 0.740 0.676 0.757 0.681
Gemini-2.0 0.460 0.590 0.647 0.628 0.723 0.655 0.697 0.626
GPT-4o 0.388 0.475 0.537 0.504 0.656 0.577 0.714 0.609

Table 2: Comparison of paragraph-level accuracy (Para) and sentence-level accuracy (Sent) across models with
different prompting techniques. Base uses zero-shot prompting only; Example provides ground-truth in-context
examples; Guidebook adds our detailed guidebook; Ex+Guide combines both methods. The performance shows the
extraordinary performance improvement of using our detailed guidebook for automatic annotation.

GPT-4.1

Read Analyze Plan Impl. Expl. Verif. Monit.

Read 11.3 0.1 0.0 0.0 0.1 0.5 0.2
Analyze 0.8 16.6 0.3 0.2 2.3 4.8 0.6
Plan 0.1 0.0 5.7 0.1 0.2 0.5 0.6
Implement 0.0 0.5 0.5 17.1 0.4 3.2 0.1
Explore 0.0 0.0 0.1 0.0 6.1 0.4 0.1
Verify 0.0 0.4 0.1 0.3 0.3 18.5 0.7
Monitor 0.0 0.0 0.1 0.0 0.2 0.5 5.2

BERT

Read Analyze Plan Impl. Expl. Verif. Monit.

Read 9.0 2.6 0.2 0.2 0.2 0.1 0.0
Analyze 1.2 19.8 1.0 0.8 1.1 2.5 0.1
Plan 0.9 0.8 4.3 0.9 0.1 0.3 0.2
Implement 0.2 3.5 0.5 16.5 0.1 1.1 0.5
Explore 0.2 0.6 0.2 0.2 4.9 0.8 0.2
Verify 0.1 2.5 0.5 0.9 0.5 13.6 0.3
Monitor 0.0 0.2 0.3 0.0 0.1 1.0 4.2

Table 3: Sentence-level confusion matrices (percentage)
for GPT-4.1 (top) and BERT (bottom). Rows correspond
to true labels and columns to predicted labels.

tioned methods. These experiments are conducted
on all of our annotated data. The performance
shows the extraordinary performance improvement
of using our detailed guidebook for automatic an-
notation. Comparing the performances of different
LLMs, we notice that GPT-4.1 can obtain the best
performance most of the time. Gemini-2.0 can out-
perform others in the in-context learning scenarios.

4.3 Training-based methods

For the training-based method, we split all our an-
notated data into training (70%) and testing (30%)
subsets, and finetune BERT-level models, includ-
ing BERT (Devlin et al., 2019) and RoBERTa (Liu
et al., 2019). In addition, to investigate how pow-
erful embeddings help the task, we try stronger
embedding models, Gemini, and utilize its embed-
dings to train SVM and MLP for the classification.
Based on Gemini embedding, we also try KNN
method to see how it performs. As shown in Table
4, GPT-4.1 obtains the best results, with the highest

Model Accuracy Cohen’s κ

GPT-4.1 (Ex+Guide) 0.805 0.764

BERT 0.732 0.671
RoBERTa 0.730 0.670
SVM-Gemini 0.704 0.632
MLP-Gemini 0.684 0.613
KNN-Gemini 0.587 0.490

Table 4: Overall sentence-level accuracy and Cohen’s κ
for each model on the 30% test subset. GPT-4.1 obtains
the best results, while for training-based methods, the
BERT model obtains the best performance.

accuracy (0.805) and the highest κ (0.764). The
detailed confusion matrices on sentence-level ac-
curacy on both GPT-4.1 and BERT are shown in
Table 3. According to the confusion matrices, we
can find the highest values aside from the diagonal
are Analyze-Verify, Implement-Verify, and Verify-
Implement, which represent scenarios where even
the best model can not perform well.

5 Conclusion

In this work, we bridged a gap between cognitive
science and artificial intelligence by using Schoen-
feld’s Episode Theory to analyze the reasoning of
Large Reasoning Models. We demonstrated that
a framework designed for human problem-solving
can effectively decode machine-generated thought
processes, revealing a structured, episodic nature
in how LRMs tackle mathematical challenges. The
core of our contribution is a novel, large-scale an-
notated corpus and a reusable analytical protocol,
which we have made publicly available to foster
further research. This research not only offers ini-
tial insights into the thinking patterns of current
models but also establishes a foundational method-
ology for future investigations.

18271



Limitations

The main limitation of this version of the paper is
the scope. Currently, only SAT math data is taken
into account and labeled. To enhance the dataset’s
size and complexity, future iterations should incor-
porate data from additional sources. For example,
since the SAT is designed as a college admission
test in the U.S., the overall difficulty level is rel-
atively moderate. As a next step, we plan to in-
clude other datasets, which are derived from math-
ematical Olympiad competitions and features more
challenging items. Besides, the accuracy for auto-
matic annotation is not very high, further efforts
are needed to improve the accuracy.

References

Hyung Won Chung, Le Hou, S. Longpre, Barret Zoph,
Yi Tay, William Fedus, Eric Li, Xuezhi Wang,
Mostafa Dehghani, Siddhartha Brahma, Albert Web-
son, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun,
Xinyun Chen, Aakanksha Chowdhery, Dasha Val-
ter, Sharan Narang, Gaurav Mishra, and 13 others.
2022. Scaling instruction-finetuned language models.
ArXiv, abs/2210.11416.

Ellie Darlington. 2013. The use of bloom’s taxonomy
in advanced mathematics questions. In Proceedings
of the British Society for Research into Learning
Mathematics, volume 33, pages 7–12.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang,
Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang,
Xingkai Yu, and etc. 2025. Deepseek-r1: Incentiviz-
ing reasoning capability in llms via reinforcement
learning. Preprint, arXiv:2501.12948.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Asso-
ciation for Computational Linguistics.

Chenrui Fan, Ming Li, Lichao Sun, and Tianyi Zhou.
2025. Missing premise exacerbates overthinking:
Are reasoning models losing critical thinking skill?
arXiv preprint arXiv:2504.06514.

Kanishk Gandhi, Abhishek Chakravarthy, Ansh Singh,
Nik Lile, and Noah D. Goodman. 2025. Cogni-
tive behaviors that enable self-improving reasoners,
or, four habits of highly effective stars. Preprint,
arXiv:2503.01307.

Carole Greenes. 1995. Mathematics learning and know-
ing: A cognitive process. Journal of Education,
177(1):85–106.

E. Harskamp and C. Suhre. 2007. Schoenfeld’s problem
solving theory in a student controlled learning envi-
ronment. Computers & Education, 49(3):822–839.

Lulu Huang, Da Li, Hao Liu, and Lingxiao Cheng. 2025.
Beyond accuracy: The role of calibration in self-
improving large language models. arXiv preprint
arXiv:2504.02902.

David R. Krathwohl. 2002. A revision of bloom’s taxon-
omy: An overview. Theory into Practice, 41(4):212–
218.

Ana Kuzle. 2013. Patterns of metacognitive behavior
during mathematics problem-solving in a dynamic
geometry environment. International Electronic
Journal of Mathematics Education, 8(1):20–40.

Ming Li, Yanhong Li, and Tianyi Zhou. 2024a. What
happened in llms layers when trained for fast vs.
slow thinking: A gradient perspective. arXiv preprint
arXiv:2410.23743.

Ming Li, Zhengyuan Yang, Xiyao Wang, Dianqi Li,
Kevin Lin, Tianyi Zhou, and Lijuan Wang. 2025.
What makes reasoning models different? follow
the reasoning leader for efficient decoding. arXiv
preprint arXiv:2506.06998.

Ming Li, Yong Zhang, Shwai He, Zhitao Li, Hongyu
Zhao, Jianzong Wang, Ning Cheng, and Tianyi
Zhou. 2024b. Superfiltering: Weak-to-strong data
filtering for fast instruction-tuning. In Proceedings
of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long
Papers), pages 14255–14273, Bangkok, Thailand.
Association for Computational Linguistics.

Ming Li, Yong Zhang, Zhitao Li, Jiuhai Chen, Lichang
Chen, Ning Cheng, Jianzong Wang, Tianyi Zhou, and
Jing Xiao. 2024c. From quantity to quality: Boosting
LLM performance with self-guided data selection
for instruction tuning. In Proceedings of the 2024
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies (Volume 1: Long Papers),
pages 7595–7628, Mexico City, Mexico. Association
for Computational Linguistics.

Changshu Liu, Shizhuo Dylan Zhang, Ali Reza
Ibrahimzada, and Reyhaneh Jabbarvand. 2024. Code-
mind: A framework to challenge large language mod-
els for code reasoning. Preprint, arXiv:2402.09664.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. Preprint, arXiv:1907.11692.

18272

https://api.semanticscholar.org/CorpusID:253018554
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://arxiv.org/abs/2503.01307
https://arxiv.org/abs/2503.01307
https://arxiv.org/abs/2503.01307
https://doi.org/10.1177/002205749517700105
https://doi.org/10.1177/002205749517700105
https://doi.org/10.1016/j.compedu.2005.11.024
https://doi.org/10.1016/j.compedu.2005.11.024
https://doi.org/10.1016/j.compedu.2005.11.024
https://arxiv.org/abs/2504.02902
https://arxiv.org/abs/2504.02902
https://doi.org/10.1207/s15430421tip4104_2
https://doi.org/10.1207/s15430421tip4104_2
https://aclanthology.org/2024.acl-long.769
https://aclanthology.org/2024.acl-long.769
https://aclanthology.org/2024.naacl-long.421
https://aclanthology.org/2024.naacl-long.421
https://aclanthology.org/2024.naacl-long.421
https://arxiv.org/abs/2402.09664
https://arxiv.org/abs/2402.09664
https://arxiv.org/abs/2402.09664
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692


Sara Vera Marjanović, Arkil Patel, Vaibhav Adlakha,
Milad Aghajohari, Parishad BehnamGhader, Mehar
Bhatia, Aditi Khandelwal, Austin Kraft, Benno Kro-
jer, Xing Han Lù, and 1 others. 2025. Deepseek-r1
thoughtology: Let’s think about llm reasoning. arXiv
preprint arXiv:2504.07128.

John Mason, Leone Burton, and Kaye Stacey. 2010.
Thinking Mathematically, second edition. Pearson
Education, Harlow, England.

Swaroop Mishra, Daniel Khashabi, Chitta Baral, and
Hannaneh Hajishirzi. 2021. Cross-task generaliza-
tion via natural language crowdsourcing instructions.
arXiv preprint arXiv:2104.08773.

Melanie Mitchell. 2025. Artificial intelligence learns to
reason. Science, 387(6740):eadw5211.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xi-
ang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and
Tatsunori Hashimoto. 2025. s1: Simple test-time
scaling. Preprint, arXiv:2501.19393.

Sam Musker, Alex Duchnowski, Raphaël Millière, and
Ellie Pavlick. 2025. Llms as models for analogical
reasoning. Preprint, arXiv:2406.13803.

OpenAI. 2023. Gpt-4 technical report. Preprint,
arXiv:2303.08774.

OpenAI. 2024a. OpenAI o1 System Card.

OpenAI. 2024b. Openai o1 system card. https:
//openai.com/index/openai-o1-system-card/.
Accessed: 2025-08-12.

George Pólya. 1945. How to Solve It. Princeton Uni-
versity Press, Princeton.

Farzad Radmehr and Michael Drake. 2018. Re-
vised bloom’s taxonomy and major theories and
frameworks that influence the teaching, learning,
and assessment of mathematics: a comparison.
International Journal of Mathematical Education in
Science and Technology, 49(6):917–929.

Teven Le Scao, Angela Fan, Christopher Akiki,
Elizabeth-Jane Pavlick, Suzana Ili’c, Daniel Hesslow,
Roman Castagn’e, Alexandra Sasha Luccioni, Franc-
cois Yvon, Matthias Gallé, Jonathan Tow, Alexan-
der M. Rush, Stella Rose Biderman, Albert Web-
son, Pawan Sasanka Ammanamanchi, Thomas Wang,
Benoît Sagot, Niklas Muennighoff, Albert Villanova
del Moral, and 69 others. 2022. Bloom: A 176b-
parameter open-access multilingual language model.
ArXiv, abs/2211.05100.

Alan H. Schoenfeld. 1985. Mathematical Problem
Solving. Academic Press.

Alan H. Schoenfeld. 2016. Learning to think math-
ematically: Problem solving, metacognition, and
sense making in mathematics. Journal of Education,
196(2):1–38.

Lianlei Shan, Shixian Luo, Zezhou Zhu, Yu Yuan, and
Yong Wu. 2025. Cognitive memory in large language
models. Preprint, arXiv:2504.02441.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan
Zhang, Y. K. Li, Y. Wu, and Daya Guo. 2024.
Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. Preprint,
arXiv:2402.03300.

Mark Steyvers and Megan A. K. Peters. 2025.
Metacognition and uncertainty communication in
humans and large language models. arXiv preprint
arXiv:2504.14045.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models. Preprint,
arXiv:2302.13971.

Yuqing Wang and Yun Zhao. 2023. Gemini in reason-
ing: Unveiling commonsense in multimodal large
language models. Preprint, arXiv:2312.17661.

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M. Dai, and Quoc V Le. 2022. Finetuned lan-
guage models are zero-shot learners. In International
Conference on Learning Representations.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. 2023. Chain-of-thought prompting elic-
its reasoning in large language models. Preprint,
arXiv:2201.11903.

Shijie Xia, Xuefeng Li, Yixin Liu, Tongshuang Wu, and
Pengfei Liu. 2025. Evaluating mathematical reason-
ing beyond accuracy. Preprint, arXiv:2404.05692.

Wei Xiong, Hanning Zhang, Chenlu Ye, Lichang Chen,
Nan Jiang, and Tong Zhang. 2025. Self-rewarding
correction for mathematical reasoning. Preprint,
arXiv:2502.19613.

Xiaohan Xu, Ming Li, Chongyang Tao, Tao Shen,
Reynold Cheng, Jinyang Li, Can Xu, Dacheng
Tao, and Tianyi Zhou. 2024. A survey on knowl-
edge distillation of large language models. Preprint,
arXiv:2402.13116.

Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie
Xia, and Pengfei Liu. 2025. Limo: Less is more for
reasoning. Preprint, arXiv:2502.03387.

Joseph B. W. Yeo and Ban Har Yeap. 2010. Charac-
terising the cognitive processes in mathematical in-
vestigation. International Journal for Mathematics
Teaching and Learning, pages 1–10.

18273

https://doi.org/10.1126/science.adw5211
https://doi.org/10.1126/science.adw5211
https://arxiv.org/abs/2501.19393
https://arxiv.org/abs/2501.19393
https://arxiv.org/abs/2406.13803
https://arxiv.org/abs/2406.13803
https://arxiv.org/abs/2303.08774
https://cdn.openai.com/o1-system-card-20241205.pdf
https://openai.com/index/openai-o1-system-card/
https://openai.com/index/openai-o1-system-card/
https://doi.org/10.1080/0020739X.2018.1549336
https://doi.org/10.1080/0020739X.2018.1549336
https://doi.org/10.1080/0020739X.2018.1549336
https://doi.org/10.1080/0020739X.2018.1549336
https://api.semanticscholar.org/CorpusID:253420279
https://api.semanticscholar.org/CorpusID:253420279
https://arxiv.org/abs/2504.02441
https://arxiv.org/abs/2504.02441
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2504.14045
https://arxiv.org/abs/2504.14045
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2312.17661
https://arxiv.org/abs/2312.17661
https://arxiv.org/abs/2312.17661
https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=gEZrGCozdqR
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2404.05692
https://arxiv.org/abs/2404.05692
https://arxiv.org/abs/2502.19613
https://arxiv.org/abs/2502.19613
https://arxiv.org/abs/2402.13116
https://arxiv.org/abs/2402.13116
https://arxiv.org/abs/2502.03387
https://arxiv.org/abs/2502.03387
http://www.cimt.org.uk/journal/jbwyeo.pdf
http://www.cimt.org.uk/journal/jbwyeo.pdf
http://www.cimt.org.uk/journal/jbwyeo.pdf


Weixiang Zhao, Xingyu Sui, Jiahe Guo, Yulin Hu, Yang
Deng, Yanyan Zhao, Bing Qin, Wanxiang Che, Tat-
Seng Chua, and Ting Liu. 2025. Trade-offs in large
reasoning models: An empirical analysis of delibera-
tive and adaptive reasoning over foundational capa-
bilities. arXiv preprint arXiv:2503.17979.

18274

https://arxiv.org/abs/2503.17979
https://arxiv.org/abs/2503.17979
https://arxiv.org/abs/2503.17979
https://arxiv.org/abs/2503.17979


Table of Contents for Appendix

A Theories of Mathematical Problem Solving 10

B SAT Data Source 12

C Example 13

D Paragraph-level Annotation Guidebook 15

E Sentence-level Annotation Guidebook 18

18275



A Theories of Mathematical Problem Solving

Analyzing human problem-solving behaviors has long been central to cognitive psychology and math-
ematics education, informing theoretical models and annotation practices used extensively in research.
Early studies frequently employed broad cognitive taxonomies such as the revised Bloom’s Taxonomy
(Krathwohl, 2002), which categorizes cognitive processes hierarchically into Remember, Understand, Ap-
ply, Analyze, Evaluate, and Create. Although influential for setting educational objectives and evaluating
task complexity, Bloom’s framework was originally a classification system set for educational learning
objectives in the cognitive domain. Therefore, it failed to capture the nuanced cognitive strategies and
iterative processes inherent in mathematical problem-solving (Darlington, 2013; Radmehr and Drake,
2018) and was inconsistent with our analysis purpose.

To address these limitations, researchers developed domain-specific frameworks. One seminal model is
Pólya (1945) four-phase model, consisting of Understanding the problem, Devising a plan, Carrying out
the plan, and Reflecting (looking back). Pólya’s framework influenced both instructional practices and
subsequent theoretical developments. Teachers often use this model as an explicit guide to help students
structure their problem-solving approach in mathematics classrooms. In terms of coding and annotation
of behavior, Pólya’s phases provide a general partitioning of the problem-solving timeline. For instance,
early studies analyzed students’ think-aloud protocols or written solutions by tagging broad segments as
“understanding” versus “planning.” However, Pólya’s framework was intended as a prescriptive guide and
reflective tool, not a fine-grained analytical scheme. It captures the high-level structure of an ideal solving
process, but within each phase there can be a lot of cognitive action that Pólya’s labels don’t distinguish.

Similarly, Mason et al. (2010) introduced a three-phase model (i.e., Entry, Attack, and Review) that
sought to highlight both cognitive and emotional states during problem-solving. Mason’s framework
aimed primarily at helping students develop reflective habits in managing their thought processes. Later,
this model was refined by Yeo and Yeap (2010), who provided additional subtasks (such as Specializing,
Conjecturing, and Generalizing) within these broader phases and added additional phases Extension after
the Review phase. Despite this enhancement, these models still function mainly as instructional scaffolds,
explicitly intended to guide students through the cognitive and metacognitive aspects of problem-solving
rather than serving as rigorous empirical coding tools. In other words, while useful for teaching students
how to engage effectively with mathematical tasks, their application in systematic behavior annotation
and empirical cognitive analysis has been limited, primarily because their detailed subtasks were not fully
operationalized or validated for research annotation.

A more refined model explicitly emphasizing cognitive and metacognitive dimensions is Greenes
(1995) five-stage framework. Greene proposed a sequential but detailed cognitive approach to problem-
solving, consisting of: (1) Problem representation, clearly interpreting and formulating the problem’s
meaning; (2) Strategy design, identifying potential solution approaches; (3) Implementation, executing the
selected strategy or calculation steps; (4) Monitoring and evaluation, continuously checking progress and
strategy effectiveness; and (5) Reflection and consolidation, critically reviewing the final solution and
reflecting on problem-solving strategies and outcomes for future problem-solving situations. Greene’s
model particularly highlighted the critical role of metacognitive monitoring and evaluation, emphasizing
that successful problem-solving involves active self-assessment and the willingness to adapt strategies
dynamically. However, despite its strength in explicitly addressing metacognitive behaviors, Greene’s
sequential stage structure can be limiting when coding nonlinear, iterative problem-solving processes
typically observed in real-world mathematics tasks.

The most comprehensive and empirically validated framework available is Schoenfeld’s episode theory
(Schoenfeld, 1985). This model codes student behaviors into explicit problem-solving episodes such as
Reading, Analysis, Exploration, Planning, Implementation, and Verification. Schoenfeld’s episode theory
is empirically supported by using detailed protocol analyses, explicitly identifying strategic decisions
and critical moments of cognitive transition or failure, and distinguishing successful from unsuccessful
problem-solving attempts. By examining transitions between these episodes, Schoenfeld observed that
students often failed to solve problems not due to a lack of mathematical knowledge, but because of
ineffective metacognitive control. For instance, many students would read the problem and immediately

18276



begin exploring solutions without adequate analysis or planning. This premature transition often led
them down unproductive paths, highlighting the importance of strategic decision-making at episode
boundaries. Therefore, successful problem-solving is heavily influenced by the solver’s ability to monitor
and regulate their cognitive processes. Further empirical support comes from a study by Kuzle (2013),
who investigated the problem-solving behaviors of preservice teachers using dynamic geometry software.
Applying Schoenfeld’s framework, Kuzle identified that participants who engaged in thorough analysis and
planning before implementation were more successful in solving problems. Conversely, those who skipped
these critical phases often encountered difficulties, underscoring the role of strategic transitions between
episodes in effective problem-solving. Because of its rich granularity and robust empirical grounding,
Schoenfeld’s model facilitates detailed insights into both cognitive and metacognitive dimensions of
mathematical reasoning.

Recently, as artificial intelligence (AI) systems increasingly produce mathematical explanations, schol-
ars have begun applying human-based frameworks to AI-generated reasoning. While broad frameworks
(Bloom’s, Pólya’s) are limited by their lack of specificity in coding detailed cognitive actions, Schoen-
feld’s detailed cognitive-metacognitive structure is especially appropriate. His explicit focus on strategic
control and self-monitoring aligns closely with known challenges in AI reasoning, such as inadequate self-
regulation and verification steps, making his framework uniquely suitable for annotating and analyzing
AI-generated responses systematically.

In summary, although broad cognitive frameworks (i.e., Bloom’s Taxonomy) and general phase-based
models (Pólya, 1945; Mason et al., 2010; Greenes, 1995) historically provided foundational instructional
value, their limitations become evident when applied to detailed empirical research annotations. Schoen-
feld’s theory empirically robust, fine-grained cognitive-metacognitive model addresses these limitations,
effectively supporting detailed analysis and annotation of both human and AI-generated mathematical
reasoning, justifying its selection for the present study.

18277



B SAT Data Source

The SAT®Suite Question Bank (https://satsuitequestionbank.collegeboard.org/) math section assesses
students’ proficiency across four domains, comprising a total of 19 distinct skills. In the Algebra
domain, the skills include "Linear equations in one variable," "Linear equations in two variables," "Linear
functions," and "Systems of two linear equations." The Advanced Math domain includes "Equivalent
expressions," "Nonlinear equations in one variable," "Systems of equations in two variables," "Nonlinear
relationships," and "Functions." Within the Problem Solving and Data Analysis domain, the assessed skills
are "Ratios, rates, and proportions," "Percents," "Units," "Tables and data inferences," "Data collection
and conclusions," and "Probability and conditional probability." Lastly, the Geometry and Trigonometry
domain includes "Area and volume," "Lines, angles, and triangles," "Right triangles and trigonometry,"
and "Circles." These skills collectively reflect the mathematical knowledge and reasoning required for
college readiness.

Two types of items are available in SAT math. Multiple-choice (MC) items have four options, with each
item having one and only one correct or best answer. Some items on the Math Tests are student-produced
response (SPR) items, which require the student to solve a problem and then grid their response on the
answer sheet. Each item consists of the following parts of information: Question text, domain, skill,
difficulty level, and a step-by-step human solution (rationale). Depending on the question type, choices,
figures, or tables could exist. All of the information was collected from the SAT Suite Question Bank and
put into a JSON file. The JSON file has the following fields: Question ID, Assessment, Test, Domain,
Skill, Question Difficulty, Item Stem, Question, Choice A, Choice B, Choice C, Choice D, Correct Answer
Rationale, Table, Figure. Assessment means the specific assessment from the SAT Suite; test specifies the
subject of the assessment; domain and skill refer to the aspect of math knowledge tested by each item,
which was specified in the test specification of SAT; question difficulty is a three-level categorical variable
(i.e., easy, medium, hard), of which the calculation was provided in Appendix; Item Stem is the content of
the math problem without the question at the end, which was put in the Question field; all other json fields
represent what their names mean. Note that we converted the math language into LaTeX format for the
machine to understand.

18278



C Example

In this section, we present an example of an annotated reasoning process under the adapted Schoenfeld’s
Episode Theory as shown in Figure 2. Paragraph-level annotations are indicated by square brackets on the
left, while sentence-level annotations are color-coded by cognitive process categories.

18279



Figure 2: This figure presents an example of an annotated reasoning process under the adapted Schoenfeld’s Episode
Theory. Paragraph-level annotations are indicated by square brackets on the left, while sentence-level annotations
are color-coded by cognitive process categories.

18280



D Paragraph-level Annotation Guidebook

In this project, we aim to analyze the reasoning process of current large language models (LLMs) with
advanced reasoning capabilities, i.e., Large Reasoning Models, LRMs, based on a modified version of
Alan Schoenfeld’s (1985) "Episode-Timeline" framework for problem-solving. The original Schoenfeld’s
theory was built on hundreds of hours of recorded tapes of students tackling non-routine math problems
while being asked to think aloud. Widely regarded as a gold-standard framework in mathematics-education
research, this theory offers a rigorously validated, fine-grained lens for dissecting both expert and novice
problem-solving strategies. After thorough investigation, we find that the thinking process of LRMs can be
well-aligned with the episodes in the theory, as they also follow similar problem-solving processes. Thus,
in this project, we aim to annotate the model (solver) responses with these episode categories. However,
to better apply the theory to the analysis of model responses, we apply a hierarchical annotation structure,
including paragraph-level annotation and sentence-level annotation. Paragraph-level annotation is used to
capture the overall flow of the model response, including three categories: General, Explore, and Verify.
Sentence-level annotation is used to capture the fine-grained behavior of each sentence, including seven
categories: Read, Analyze, Plan, Implement, Explore, Verify, and Monitor.

This guidebook provides guidelines for paragraph-level annotation. For the given model response
paragraphs, each of them will be annotated as one of three broad episode types: General, Explore, or
Verify. Please remember, the paragraph-level annotation is used to capture the overall flow of the model
response, thus we should take the context into consideration to decide the correct category.

Label Definitions and Guidelines
1. General
• Definition: A General episode is a response paragraph where the solver carries out the initial attempt

and main line of problem-solving. This category encompasses all general problem-solving actions that
are NOT explicitly exploratory trials (Explore) or verification checks (Verify). It typically includes un-
derstanding the problem, devising and following a plan, executing solution steps, and making transitions
between ideas in a coherent way. In essence, whenever the response is proceeding methodically toward
solving the problem (stating facts, applying formulas, deriving results) without digressing into off-plan
explorations or checking of results, it falls under a General episode.

• Guidelines:

– Assign the General label to any paragraph that focuses on direct progress toward the solution using
established methods or known information. And that progress should not be a part of the verification
or exploration process.

– This can range from restating the problem in the solver’s own words, setting up equations, systemati-
cally carrying out computations, to explaining a step-by-step plan. Such paragraphs often appear at
the beginning of a solution (interpreting or summarizing the problem), throughout the middle as the
solver works through solution steps, or even as concluding statements that present the final answer
without explicitly verifying it.

– Typically, for the solver response, only the paragraphs for the initial attempt belong to the General
category. After the initial attempt, the following paragraphs should be annotated as Explore or Verify.

– When differentiating General from other categories, focus on the paragraph’s purpose. Given that
one paragraph contains several sentences, the General episode might contain sentences that occur
from time to time which are considered exploration or verification at the sentence level. However,
that exploration or verification is still considered embedded in the General chunk, therefore should be
General.

2. Explore
• Definition: An Explore episode is a response paragraph where the solver diverges from the main

solution path to investigate possibilities, gather insight, or attempt an approach that isn’t guaranteed
to work. In Schoenfeld’s framework, exploration is a less structured, trial-and-error phase: the solver

18281



searches for relevant information or patterns and considers various options without a firm plan. Within a
solver response, an Explore paragraph typically reflects the solver’s uncertainty or creativity—trying a
conjecture, exploring a sub-problem, or experimenting with different strategies. This episode serves
to advance understanding when the direct path is unclear, and it often precedes or informs a return to
structured problem-solving.

• Guidelines:

– Use the Explore label for paragraphs where the reasoning is characterized by searching or experimen-
tation rather than executing a known strategy. If the solver poses hypotheses, tests special cases, or
temporarily pursues a tangent, that paragraph should be marked Explore.

– Common scenarios include: trying a simpler instance of the problem to see how it behaves, guessing
a pattern or formula and seeing if it holds, discussing alternative approaches, or brainstorming next
steps when stuck. Watch for a change in tone—if the paragraph shifts from solving to musing or
investigating, it likely represents an exploratory episode.

– Since this annotation is at the paragraph level, please only mark the large chunk of an exploration
episode toward the solution of the whole question as Explore. If the exploration is only for one step
of the solution, it is Explore at the sentence level, therefore not Explore at the paragraph level. For
example, in the middle of solving the problem, there is a step for solving 3x=6, which is only a small
part of solving the whole problem. In the solution, people explored two different ways of solving the
equation, then these are Explore at the sentence level rather than at the paragraph level. Therefore,
the tag should be decided carefully depending on whether these steps are a procedure belonging to
the initial solution (General), exploration of a new method (Explore), or verification of the answer
(Verify).

– To tell an Explore episode apart from General and Verify, focus on purpose and tone. An Explore
paragraph is driven by uncertainty: it does not guarantee the solution, but is proactive in providing
a new approach to think about or to solve the question. Unlike a General episode, which follows a
clear logical step in solving, an Explore episode might temporarily set the main goal aside to answer
a sub-question or try a different angle. If the paragraph suggests that the solver is unsure how to
proceed and is examining options, that’s a strong sign of exploration rather than general solving. Also,
Explore is distinct from Verify because it’s not primarily about checking a result’s correctness. Verify
episodes confirm what’s believed to be a solution, whereas Explore episodes occur before a solution
is confirmed (often before one is even reached). In sum, if the paragraph’s content is exploratory
(testing, conjecturing, or considering alternatives) and doesn’t simply carry out a decided plan or
finalize an answer, it should be labeled Explore.

3. Verify
• Definition: A Verify episode is a response paragraph dedicated to confirming the correctness or validity

of a solution or a result. In Schoenfeld’s terms, a verification episode occurs when the solver "reviews
and tests" a solution to ensure it meets the problem requirements. In the context of AI-generated
responses, this usually means the paragraph is focused on checking an answer (or an intermediate result)
and making sure it is consistent with the conditions of the problem. This episode type often comes at
the end of a solution as a final confirmation, but it can also appear mid-solution if the solver pauses to
validate a step. The hallmark of a Verify episode is that its primary goal is evaluation: double-checking
calculations, substituting the found solution back into the original problem, or logically arguing that the
result must be correct.

• Guidelines:

– Label a paragraph as Verify when the content is centered on checking, confirming, or proving that a
result is correct. If the solver explicitly performs a check (for example, plugging the solution back
into the original equation to see if it holds, or verifying that all conditions are satisfied), that paragraph
should be tagged as Verify.

18282



– Do not label a paragraph as Verify if it is merely stating the final answer without checking it; in
that case use General for a straightforward conclusion. Only use Verify when actual validation or
reasoning about correctness is present.

– When a solver launches a verification routine (e.g., "To verify. . . "), every paragraph that belongs to
that routine inherits the Verify label, even if later lines contain no overt "checking" words. Mechanical
algebra steps, intermediate equations, and the final boxed answer are all part of the same confirmation
process, so they are not General.

– The key feature that distinguishes a Verify episode is its retrospective nature: it looks back at a result
and asks "is this right?" rather than pushing forward to solve something new. This sets it apart from
a General episode, which would simply present the result or next step without questioning it. If a
paragraph is primarily re-examining what’s been done (whether the final answer or a prior step), it is
likely to be verification. Compared to an Explore episode, which is uncertain and looking for a way
forward, a Verify episode assumes a candidate solution or fact and checks its validity—it is usually
certain about what needs to be checked, just not about whether it passes the check. Another way to
distinguish Verify is by position and content: a paragraph that comes after an answer has been derived
and discusses that answer in light of the problem’s conditions is almost always a Verify episode. Be
careful not to confuse a final declarative answer (General) with a verification; if there’s no evidence
of a checking process or confirmation language, then it’s not truly a Verify episode. The presence
of phrases explicitly referencing correctness or fulfilling conditions is the clearest differentiator for
Verify.

18283



E Sentence-level Annotation Guidebook

In this project, we aim to analyze the reasoning process of current large language models (LLMs) with
advanced reasoning capabilities, i.e., Large Reasoning Models, LRMs, based on a modified version of
Alan Schoenfeld’s (1985) "Episode-Timeline" framework for problem-solving. The original Schoenfeld’s
theory was built on hundreds of hours of recorded tapes of students tackling non-routine math problems
while being asked to think aloud. Widely regarded as a gold-standard framework in mathematics-education
research, this theory offers a rigorously validated, fine-grained lens for dissecting both expert and novice
problem-solving strategies. After thorough investigation, we find that the thinking process of LRMs can be
well-aligned with the episodes in the theory, as they also follow similar problem-solving processes. Thus,
in this project, we aim to annotate the model (solver) responses with these episode categories. However,
to better apply the theory to the analysis of model responses, we apply a hierarchical annotation structure,
including paragraph-level annotation and sentence-level annotation. Paragraph-level annotation is used to
capture the overall flow of the model response, including three categories: General, Explore, and Verify.
Sentence-level annotation is used to capture the fine-grained behavior of each sentence, including seven
categories: Read, Analyze, Plan, Implement, Explore, Verify, and Monitor.

This guidebook provides guidelines for sentence-level annotation. For the given model response
sentences, each of them will be annotated as one of seven fine-grained episode types: Read, Analyze, Plan,
Implement, Explore, Verify, or Monitor. The sentence-level annotation is used to capture the fine-grained
behavior of each sentence, it depends on both the current sentence itself and its context.

Label Definitions and Guidelines

1. Read
• Definition: This is usually the initial phase, which focuses on extracting or restating the given informa-

tion, conditions, and the goal of the problem as presented in the problem. It involves understanding the
question without any inference of strategy or reasoning.

• Guidelines:

– Sentences in this category should directly present the content of the original problem statement.
– Look for phrases that recall or repeat elements of the question.
– This label is mostly presented for the model’s initial processing of the problem.

Keywords/Indicators: “The question asks...”, “The problem requires...”, “We are given...”, “The goal
is to...”, “The choices are. . . ” direct quotes from the problem.

Distinguishing Features: This stage is purely about understanding the input, not about processing
it or deciding how to solve it. Avoid labeling sentences as Read if they include any form of analysis or
evaluation of the problem. The read stage usually appears at the beginning of the reasoning. However, it
also appears in the middle of the reasoning, in order to ensure that the question was understood correctly.

Example: “The question asks us to find the value of x in the equation 2x+ 5 = 10.”

2. Analyze
• Definition: This stage involves constructing or recalling relevant theories, introducing necessary

symbols, and deducing relationships based on the problem statement and existing knowledge. The
core activity is explanation or logical inference that sets the stage for the solution but does not involve
concrete calculations yet.

• Guidelines:

– Sentences should explain the underlying mathematical concepts or principles relevant to the problem.
– Look for the introduction of variables, formulas, or theorems.
– This label applies to logical deductions and inferences made with certainty.

18284



Keywords/Indicators: “According to...”, “We can define...”, “This implies that...”, “Therefore...”,
“Based on this...”, “Let’s denote...”, “We can infer that...”, “Let’s note that ...”, “Let me observe that ...”,
“Let’s recall that ...”

Distinguishing Features: Analyze episode involves certain inferences and explanations, unlike Explore,
which shows uncertainty. It usually precedes the actual execution of calculations in the Implement stage.
Analyze does not involve any concrete calculation, which is unlike Implement.

Important Note: Be careful not to include sentences that involve substituting values or performing
calculations, as those belong to the Implement stage.

Example: “According to the Pythagorean theorem, in a right-angled triangle, the square of the
hypotenuse is equal to the sum of the squares of the other two sides.” or “If I can get the equation in
slope-intercept form (y = mx+ b), then I can plug in y = 4 and solve for x, which should be d.”

3. Plan

• Definition: This stage involves announcing the next step or outlining the entire solution strategy. It
represents a commitment to a particular course of action before the actual execution begins.

• Guidelines:

– Sentences should clearly state the intended next step or the overall plan.

– Look for explicit declarations of intent, often using the first person or imperative voice.

– This stage signifies that a decision has been made on how to proceed, and the next step should be
related to math problem solving, rather than generally saying “let’s think about it”.

Keywords/Indicators: “Next, we will...”, “The next step is to...”, “We need to...”, “Let’s proceed by...”,
“I will now...”, “The plan is to...”, “We should first...”, “To. . . , do. . . ”, “The xxx we need/want is. . . ”,
“Let’s. . . ”, “Then/Now calculate/consider ...”.

Distinguishing Features: The Plan phase clearly indicates the intended action, unlike Analyze, which
explains concepts, or Explore, which suggests possibilities. It precedes the actual carrying out of the plan
in the Implement stage. Note that sentences like “Let’s denote. . . ” is Analyze, because this is introducing
a new variable, rather than making a plan. Sentences like “let’s verify. . . ” or “let’s double-check” are
Verify.

Example: “Next, we will differentiate both sides of the equation with respect to x.”

4. Implement

• Definition: This stage is the operational phase where the planned strategy is executed. It involves
performing specific calculations, constructing diagrams, enumerating possibilities, or coding solutions
using numerical values, symbols, or geometric objects.

• Guidelines:

– Sentences should describe the actual steps taken to solve the problem.

– Look for mathematical operations, substitutions, and the generation of intermediate results.

– This stage is about “doing” the math.

Keywords/Indicators: “Substituting x = 2, we get...”, “Therefore, P (1) = −1”, “Expanding the
expression...”, “The matrix becomes...”, actual mathematical equations and calculations.

Distinguishing Features: Implement involves concrete actions and calculations, unlike Analyze, which
focuses on theoretical explanations, or Plan, which outlines future actions. If a conclusion follows the
Implementation of math, that conclusion is tagged as Implement, such as “therefore, the sum of all
possible values is 5”.

Example: “Substituting x = 3 into the equation, we get 2(3) + 5 = 6 + 5 = 11.”

18285



5. Explore
• Definition: This stage is characterized by generating potential ideas, making guesses, drawing analogies,

or attempting trial calculations that might be abandoned later. The model is exploring different avenues
without committing to a specific solution path. This stage often involves uncertainty.

• Guidelines:

– Sentences should suggest alternative approaches or possibilities.
– Look for tentative language and expressions of uncertainty.
– This stage involves brainstorming and initial investigations without a clear commitment to a particular

method.

Keywords/Indicators: “Maybe we can try...”, “Perhaps we could use...”, “What if we consider...”,
“Another possibility is...”, “Could this be related to...”, “Maybe I should...”, “Maybe there is another way...”,
“Maybe we can try ...”, “Maybe there is a better way ...”, “Maybe consider ...”, “Perhaps ... is ...”, “Let’s
try ...”, “Alternatively, maybe use ...”, “Wait, but maybe...”, “But in soccer, it’s possible to lose a game but
still have more total goals?” question marks indicating uncertainty about a step.

Distinguishing Features: Explore is marked by uncertainty and a lack of commitment, unlike Plan,
which announces a definite course of action. It involves considering various options before settling on a
specific plan. If a sentence contains analyzing the problem, implementing the calculation, or verifying
the result or thought, even if it follows sentences like “Maybe we can try . . . ”, the sentences are not
considered Explore at the sentence level, and therefore should not label them as Explore. Rather, these
sentences are considered Analyze, Implement, or Verify within the Explore Episode at the paragraph level.
Only the sentence like “Maybe we can try . . . ” will be labeled as Explore at the sentence level.

Example: “Maybe we can try substituting different values for x to see if we can find a pattern.”

6. Verify
• Definition: This stage involves judging the correctness, effectiveness, or simplicity of the obtained result

or the method used. It might include checking the answer, using an alternative method for calculation,
or estimating bounds.

• Guidelines:

– Sentences should express an evaluation or confirmation of the solution or the process.
– Look for keywords related to checking, confirming, or validating.
– This stage ensures the solution and result is accurate and makes sense.

Keywords/Indicators: “Let me double-check...”, “This is consistent with...”, “Plugging it back in...”,
“Therefore, the answer is correct.”, “Let’s confirm...”, “Let me check again..”, “We can confirm this
by...”, “This result seems reasonable because...”, “The answer is ...?”, “Is the answer ...?”, “Is there
any mistakes?”, “Do I made mistakes?”, “This is the same/correlated as previous ...”, “But there seems
contradict to ...”, “... lead/arrive to the same answer”, “Wait, we don’t know ... yet”, “Let’s try another
way to verify ...”, “XXX is possible/impossible”. When the following sentences are to mean conclusions,
“... is indeed ...”, “... should be...”, they are also at the Verify state.

Distinguishing Features: Verify focuses on evaluating the solution, unlike Implement, which focuses
on generating it. It often involves comparing the result with initial conditions or using alternative methods.

Example: “Let me double-check my calculations: 2× 3 + 5 = 11, which matches the previous result.”

7. Monitor
• Definition: This additional category captures sentences that are typically short interjections or expres-

sions indicating the model’s self-monitoring, hesitation, or reflection at the juncture between different
episodes. These often do not contain substantial problem-solving content and are brief pauses in the
thought process.

18286



• Guidelines:

– Sentences should be short phrases indicating a shift in thought or a brief pause.
– Look for expressions of uncertainty, reflection, or transition.
– This label is for meta-comments that don’t fit neatly into the other problem-solving stages.

Keywords/Indicators: “Hmm...”, “Wait...”, “Let me think.”, “Okay...”, “Let’s see.”, “Hold on.”, “Let’s
see.”, “But wait, hold on.”, “Let me think.”

Distinguishing Features: Monitor sentences lack the substantive content of the other categories and
primarily serve as indicators of the model’s internal processing flow. They are often very short and act as
bridges between more content-heavy stages.

Example: “Wait.”

Important Considerations for Annotators
• Sentence-Level Focus: Annotate each sentence individually based on its primary function within the

problem-solving process.

• Context is Key: While keywords can be helpful, always consider the context of the sentence within the
overall response. A sentence might contain a keyword but function differently based on the surrounding
text.

• Refer to Examples: The examples provided in this guidebook and any additional examples you
encounter should serve as valuable references.

The Relation between Paragraph-level and Sentence-level Annotation
Although they focus on different granularities, paragraph-level and sentence-level annotations serve
mutually complementary roles. There are three categories in paragraph-level annotation: General, Explore,
and Verify. All three categories represent behaviors that may span large segments of responses and
encompass several more fine-grained sentence-level categories. For example, during the initial attempt
(General) at solving a problem, the solver can still exhibit other behaviors such as Plan, Explore, Verify,
etc. Similarly, in the Explore and Verify phases, the solver can also demonstrate other behaviors like
Plan, Explore, Verify, etc. This long-spanning characteristic motivates our use of a hierarchical structure.
By applying this hierarchical structure, for sentences functioning like “planning during the verification
process,” we do not need to struggle with which category to assign at the sentence level—Plan or Verify.
We can directly use a paragraph-level annotation of Verify and sentence-level annotation of Plan to
represent the behavior of this sentence.

Some points that are easily misunderstood:
• “Let me parse that information first.” “Let me do that.”

should be Monitor, rather than Plan. Because the solver is pausing to check understanding of the
information already given, not outlining a future course of action.

• “Wait, so if both lines pass through (4, 1), that means that (4, 1) is their point of intersection, right?”
should be Explore, rather than Analyze. Because the speaker is tentatively proposing an idea and
seeking confirmation, not asserting a concluded analysis. The sentence shows uncertainty by the
question mark.

• “Hmm, but let me check again because that seems straightforward, but maybe there’s a trick here.”
“Wait, let me make sure.”
should be Verify, rather than Explore. Because “let me check again” explicitly marks a correctness
check; the mention of a possible trick simply motivates the verification.

• “Then it describes two lines.” “So, if both lines pass through (4, 1), then that must be the intersection
point.”

18287



should be Analyze, rather than Explore. Because it summarizes structural information (categorizing
the description) rather than hypothesizing or probing. No uncertainty is shown by maybe or perhaps.

• “Wait, perhaps the description is a bit confusing.”
should be Monitor, rather than Explore. Because it reflects on the clarity of understanding (metacogni-
tive monitoring).

• “The slope m1 is (0− 1)/(32/7− 4).” “So equation of first line is y = −7/4x+ 8.”
should be Analyze, rather than Implement. Because it is performing the analytic calculation (finding
slope), not carrying out a pre-defined multi-step procedure.

• “Wait, 7/4 times 4 is 7.”
should be Analyze, rather than Verify. Because it is a micro-check of arithmetic inside the working
process (self-monitoring), not a separate verification stage.

• “Now, the second line passes through (32/9, 0) and (4, 1).”
should be Analyze, rather than Read. Because it sets up data for further calculations on the second line
(transition into analysis).

18288


