
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 18289–18308
November 4-9, 2025 ©2025 Association for Computational Linguistics

THREAD: A Logic-Based Data Organization Paradigm for How-To
Question Answering with Retrieval Augmented Generation

Kaikai An1,2, Fangkai Yang2, Liqun Li2, Junting Lu1,2, Sitao Cheng2,3,
Shuzheng Si1, Lu Wang2, Pu Zhao2, Lele Cao2, Qingwei Lin2,

Saravan Rajmohan2, Dongmei Zhang2, Baobao Chang1

1 Peking University 2 Microsoft 3 Nanjing University
ankaikai@stu.pku.edu.cn,fangkaiyang@microsoft.com,chbb@pku.edu.cn

thread.github.io

Abstract

Recent advances in retrieval-augmented gen-
eration (RAG) have substantially improved
question-answering systems, particularly for
factoid ‘5Ws’ questions. However, significant
challenges remain when addressing ‘1H’ ques-
tions, specifically how-to questions, which are
integral for decision-making and require dy-
namic, step-by-step responses. The key limi-
tation lies in the prevalent data organization
paradigm, chunk, which commonly divides
documents into fixed-size segments, and dis-
rupts the logical coherence and connections
within the context. To address this, we propose
THREAD, a novel data organization paradigm
enabling systems to handle how-to questions
more effectively. Specifically, we introduce a
new knowledge granularity, ‘logic unit’ (LU),
where large language models transform docu-
ments into more structured and loosely inter-
connected LUs. Extensive experiments across
both open-domain and industrial settings show
that THREAD outperforms existing paradigms
significantly, improving the success rate of han-
dling how-to questions by 21% to 33%. Addi-
tionally, THREAD demonstrates high adaptabil-
ity across diverse document formats, reducing
retrieval information by up to 75% compared to
chunk, and also shows better generalizability to
‘5Ws’ questions, such as multi-hop questions,
outperforming other paradigms.

1 Introduction

Question answering (QA) is a foundational re-
search topic in human-machine interaction (Allam
and Haggag, 2012). Among the most advanced
techniques, retrieval-augmented generation (RAG)
enhances QA systems by organizing external docu-
ments into fixed-size chunks and retrieving relevant
knowledge (Shao et al., 2023; Trivedi et al., 2023;
Jiang et al., 2023; Asai et al., 2023). This rou-
tine is particularly effective in handling the ‘5Ws’
questions, such as ‘When is Shakespeare’s birth-

day?’, which typically require the data organiza-
tion paradigm providing chunks containing the rel-
evant knowledge, e.g. triples or documents about
the topic entity (Yang et al., 2018; Jiang et al.,
2019; Kwiatkowski et al., 2019; Stelmakh et al.,
2022). However, the ‘1H’ questions, derived from
Aristotle’s Nicomachean Ethics (‘how-to’ ques-
tions, Crisp 2014), remain largely underexplored1

These questions are in high demand in practical
applications such as teaching us how to write code
to achieve specific goals.

Central to problem-solving (Polya and Pólya,
2014) and human learning (Learn, 2000), how-
to questions inherently involve complex processes
that require interpretation and analysis (Deng et al.,
2023b). For example, answering the question in
Figure 1 ‘How to diagnose and fix a performance
issue in a web application?’ involves a step-by-
step decision-making process, i.e., first checking
server load and response time, followed by opti-
mizing server configuration based on user feedback.
This dynamic, stepwise nature necessitates RAG
systems to guide users through each step, adapting
to specific contexts and providing precise and logi-
cal information. However, prevalent chunk-based
data organization paradigm2 (Splitter, 2023; Chen
et al., 2023; Gao et al., 2023), which divides docu-
ments into fixed segments, disrupts the logical co-
herence of content. As a result, RAG systems (Asai
et al., 2023; Shao et al., 2023) struggle with how-to
questions, often generating excessive, fragmented
information that fails to maintain continuity be-
tween steps. To address this, a paradigm shift is
needed, one that preserves the logical structure and
stepwise nature of how-to questions.

In this paper, we propose THREAD, a new logic-
based data organization paradigm designed to han-

1The ‘5Ws’ represent What, Why, When, Where, and Who,
and the ‘1H’ stands for How.

2The term ‘chunk’ here refers to a general document split-
ting paradigm including chunks, sentences, phrases, etc.

18289

https://kkk-an.github.io/thread.github.io/

How to diagnose and fix a performance issue in a web application?
Step1 Check the server load and response time.

If the server load is high, then optimize server configuration or scale up resources.

If the response time is slow due to database queries, then optimize indexes and queries.

Step2.1 Optimize server configuration or scale up resources. Step2.2 Optimize indexes and queries.

If upgrading server version does not work...

If increasing memory allocation and thread…

If the performance does not improve,
then review query structure again
and consider alternative indexing…

… …

Figure 1: An example of how-to questions with its decision-making process. We omit details such as the actions to
check the server load and response time due to limited space.

dle how-to questions. The name THREAD evokes
the idea of ‘Pulling on the thread, the whole mys-
tery started to unravel like a sweater.’ (Garcia and
Stohl, 2011). Specifically, we introduce a new
knowledge granularity named ‘logic unit’, compris-
ing five key components and four different types
(see §2.1 and §2.2). We employ a two-stage process
(depicted in §2.3) to extract logic units (LUs) from
documents. The first, optional stage is reformulat-
ing the original documents depending on their for-
mat and style, and the second focuses on extracting
and merging LUs. In this way, THREAD captures
connections within the documents, breaking them
into more structured and loosely interconnected
logic units. When answering how-to questions, the
system integrated with THREAD enables a dynamic
interaction manner. First, it retrieves relevant LUs
based on their indexed headers. Then, the body
of the selected LU provides the necessary content
to generate responses for the current step. With
user feedback, the linker in LU dynamically con-
nects to other LUs, allowing the system to adapt its
responses until the how-to question is comprehen-
sively addressed.

We evaluate the effectiveness of THREAD

through experiments in two open-domain, Web
Navigation (Deng et al., 2023a), Wikipedia In-
structions (Koupaee and Wang, 2018), and one in-
dustrial setting, Incident Mitigation (Shetty et al.,
2022). Experimental results demonstrate that while
existing paradigms struggle with how-to questions,
THREAD excels at handling consecutive steps and
consistently outperforms them, particularly in real-
world incident mitigation scenario, with success
rate improvements ranging from 21.05% to 33.33%.
Additionally, THREAD shows great superiority in
processing diverse document formats, reducing
both the number of retrieval units and the token

length required for generation. Finally, we further
validate the generalizability of THREAD on open-
domain tasks, where it outperforms the chunk-
based paradigm in handling multi-hop questions.
The main contributions of this paper include:
• We highlight the challenges faced by current

RAG systems in addressing how-to questions. To
address the limitation of chunk-based paradigm,
we propose THREAD, a novel data organization
paradigm that transforms original documents into
structured, interconnected logic units.

• Integrated with THREAD, our system follows a
dynamic interaction manner, guiding users incre-
mentally through each step and adapting to their
specific circumstances. Our system also brings
more possibilities for an automation pipeline,
solving how-to questions more efficiently.

• Experimental results demonstrate that THREAD

significantly outperforms existing data organi-
zation paradigms across three scenarios. Fur-
thermore, THREAD efficiently handles various
document formats, reducing the retrieval burden,
and generalizes effectively to open-domain tasks.

2 Methodology

In this section, THREAD leverages the internal logic
and coherence of documents to construct the knowl-
edge base, making it especially effective for ad-
dressing how-to questions. When converting docu-
ments into logic units, we classify how-to questions
into two types: linear and dynamic. Linear how-
to questions involve a fixed sequence of steps that
do not require feedback or decision-making based
on intermediate results. In contrast, dynamic how-
to questions require decision-making at each step,
with the process adapting dynamically based on
previous actions, such as the example in Figure 1.

18290

Below we first introduce ‘logic unit’ (LU) with
its components and types, then explain how to ex-
tract LUs and construct the THREAD knowledge
base, followed by an illustration of how THREAD

integrates with existing systems.

2.1 Logic Unit: Retrieval Unit of Thread
Unlike the chunk-based paradigm, the logic unit
consists of specially designed components that
maintain the internal logic and coherence of a docu-
ment, particularly when bridging consecutive steps
in how-to questions. LUs serve as retrieval units
that replace traditional chunks in RAG systems, en-
suring a more structured and contextually relevant
approach to information retrieval. Examples of LU
in Table 9 further illustrate such structure.

Prerequisite. The prerequisite component acts
as an information supplement, providing the nec-
essary context to understand the LU. For example,
an LU may include domain-specific terminology
such as entities or abbreviations. The prerequisite
explains these terms and can generate new queries
to retrieve LUs with more detailed information.
Without this context, passing these LUs to an LLM-
based generator could lead to hallucinations. Ad-
ditionally, the prerequisite can function as an LU
filter, containing constraints that must be met be-
fore the LU is considered in answer generation.
This filtering ensures only

Header. The header summarizes the LU or de-
scribes the intention it aims to address, depending
on the type of LU (refer to §2.2). For example, the
header could be the name of a terminology if LU
describes a terminology; if the LU describes ac-
tions to resolve a problem, the header describes the
intent or the problem LU aims to resolve. Different
from chunk that indexes the entire content, we use
the header for indexing which serves as the key for
retrieving the LU based on a query.

Body. The body contains detailed information
on the LU, which is the core content fed into the
LLM-based generator to generate answers. It in-
cludes specific actions or necessary information
such as code blocks, detailed instructions, etc. This
detailed content helps resolve the query mentioned
in the header or provides a detailed explanation.

Linker. The linker acts as a bridge between logic
units, enabling the dynamic process of how-to ques-
tions. Unlike the chunk-based paradigm, which re-
lies on previous retrieval units that often lack direct
clues, the linker in THREAD provides necessary
information to generate new queries for subsequent

retrieval. Its format varies by LU type, serving as
either a query for retrieving other LUs (“If-Then"
condition) or an entity relationship. The edge of
knowledge graph in traditional factoid questions
is a special linker enabling navigation between re-
lated entities. When no further LUs are connected,
the linker remains empty, isolating the current LU.

Meta Data. The meta data includes information
about the source document from which the LU is
extracted, such as the document title, ID, date, and
other relevant details. This meta data is crucial for
updating LUs when the source documentation is
revised and reprocessed.

2.2 Logic Unit Type

When converting documents into logic units,
THREAD expands its scope beyond solving how-to
questions, as documents often contain more than
just solutions to these types of questions. Below
are the common LU types identified in our exper-
iments3, demonstrating THREAD’s versatility in
handling a wide range of document types:

Step. This is the most common type of LU for
resolving how-to questions. Each LU body encap-
sulates detailed actions, including code snippets
and resolution instructions. The LU prerequisite
specifies the conditions or actions that must be com-
pleted prior to executing the current LU, serving
a critical role in determining the appropriate entry
point for a solution. For instance, when encounter-
ing a problem, multiple resolution paths may exist
depending on the specific context. The prerequisite
functions as a filtering mechanism during the LU
selection process, eliminating candidates that do
not satisfy the required conditions. Samely, the
linker acts as a bridge between steps, directing the
flow to subsequent LUs based on the outcome of
the current step.

Terminology. This type provides detailed ex-
planations of domain-specific terminology. For
example, terms may share the same name or abbre-
viation in LU header but convey different meanings
in LU body. The prerequisites for terminology LUs
describe scenarios where the terminology typically
appears and linkers are usually empty unless refer-
encing extended terminology that depends on it.

3These LU types are summarized from our experiments
with both industrial and public datasets. Additional LU types
are provided in Appendix A.4, and more may emerge depend-
ing on the specific scenario.

18291

How-to Questions Retriever Selector

LLM

Manual Execution

Plugins
APIs

Execution Engine

Tools

Auto Execution

Executable
Action

Non-Executable
Action

Results

{Linker}

If … Then …

If … Then …

Query

{Linker}
{…}

{…}
JSON

Retrieval

ExecutionQuery Generation

{Header}
{…}

{…}
JSON {…}

{…}
JSON

{Body}{Prerequisite}
{…}

{…}
JSON

Original Documents Structured Documents

LLM

Domain Knowledge Web Search
Refine

Reformulate

(a) Reformulate and Refine (b) Construct Thread

Add to

Merge LUs Thread

Extract LUs

(c) RAG System
with Thread

Figure 2: The upper part shows the construction process of THREAD, a two-stage process including reformulating
documents into structured ones (a) and extracting and merging logic units (b). The bottom (c) illustrates the RAG
system integrated with THREAD. It retrieves relevant LUs based on query-Header similarity and filters out LUs that
do not meet the current Prerequisites. The selected LUs are passed to LLMs to generate actions based on Body for
execution. After execution, the Linker matches the results and generates a new query for the next retrieval iteration.

2.3 Thread: LU-based Knowledge Base
In practice, documentation is often unstructured
and varies in format and style. Our approach to
converting documentation into THREAD involves a
two-stage process to obtain LUs, as shown in the
upper part of Figure 2.
Documentation Reformulation. This stage is op-
tional, depending on the quality of the documenta-
tion. For example, in software engineering, Trou-
bleshooting Guides (TSGs) often vary in format,
include diverse types of information, and lack read-
ability and detail, negatively impacting productivity
and service health (Shetty et al., 2022). Due to such
format, where some are clearly outlined and others
are disordered, we avoid directly extracting LUs
from original documents.

Instead, we first reformulate these documents
into structured formats. By leveraging LLMs, we
enhance the LLMs’ in-domain understanding by
providing search capabilities and domain-specific
context. This is followed by a refinement step to
prevent overlooking details or hallucinating infor-

mation. Figure 2 (a) shows the reformulation stage.
But it is unnecessary for well-written documents
like product help docs, which typically follow a
linear how-to format. We instantiate this process
by example in Appendix A.5.

LU Extraction and Merge. After reformulation,
multiple LUs of varying types can be extracted
from a single structured document (shown in Fig-
ure 2 (b)). Unlike chunk-based data organization
commonly with fixed chunk sizes, LU granular-
ity depends on content. For example, solutions
to linear how-to questions typically form a single
path from start to completion, with interconnected
steps and no multiple execution outcomes encapsu-
lated in one LU, such as an FAQ LU. However, for
dynamic how-to questions with multiple possible
outcomes, it is better to have one step per LU (Step
LU), with Linkers navigating to the next LUs. Note
that in dynamic how-to questions, not every step
has multiple execution outcomes. If only one next
step exists, the LUs can be merged to include both
current and subsequent steps. Additionally, LUs

18292

Dataset #Docs #Tasks #Steps #Chunks #LUs Dynamic Executable

Mind2Web 490 252 2094 6210 1089 ✓ ✓
WikiHow 97 97 2140 4225 774 ✗ ✗
IcM 56 95 323 413 378 ✓ ✓

Table 1: The statistics and characteristics of datasets, including the number of documents, LUs, etc.

with similar Headers and Bodies should be merged,
extending the Prerequisite and Linker. More details
about merging are provided in Appendix B.2.1.
LU update. In industry, documentation is often up-
dated with each product version release. When this
happens, we redo the above steps only for the up-
dated documentation, identifying LUs in THREAD

with their Meta Data and replacing outdated LUs.
As we extract and merge LUs, the collection of
LUs from all documents forms the knowledge base,
which serves as an essential component compatible
with the current RAG system.

2.4 Integrate Thread with QA System

To demonstrate how THREAD works, we use dy-
namic how-to questions as an example. Figure 2 (c)
shows the RAG system incorporating our THREAD

data organization paradigm.
LUs are indexed by their Headers. When an

initial how-to question is submitted, the Retriever
identifies the top-K most relevant LUs based on
query-header similarity. The LLM-based Selec-
tor then checks the prerequisites of these LUs and
filters out those that do not meet the current pre-
requisites, derived from the initial question or any
available chat history. After selection, the body of
the LUs is fed into the LLM-based Generator to
produce an answer. If an execution engine is avail-
able, actions can be executed automatically; other-
wise, the answer/action is presented to the user for
manual execution. Once the action is executed, the
Linker matches one of the possible outcomes and
generates a new query for the next retrieval round.

Unlike traditional RAG systems, THREAD-
enabled systems can be potentially fully or semi-
automated when integrated with execution engines.
This integration offers greater automation and flex-
ibility, as updating LUs automatically updates the
system, compared to manually designed pipelines.

3 Experiments

3.1 Scenarios and Datasets

We evaluate THREAD on two open-domain scenar-
ios: Web Navigation, Wikipedia Instructions, and
one industrial setting: Incident Mitigation.

Web Navigation. Mind2Web (Deng et al., 2023a)
is a dataset designed for web agents to perform
complex tasks on real-world websites based on
language instructions. Each task is treated as a
multi-choice question. At each step, the input con-
sists of HTML code, an instruction, and a set of
choices, while the output is the selected choice,
operation, and an optional value. We treat each
one as a ‘dynamic how-to question’, with multiple
possible outcomes depending on executed actions.
Wikipedia Instructions. WikiHow (Koupaee and
Wang, 2018)4 provides step-by-step procedural
guides, each titled ‘How to’, with a fixed sequence
of steps. This dataset is used to evaluate THREAD

on linear how-to questions.
Incident Mitigation. IcM (Shetty et al., 2022;
An et al., 2024) is critical for managing large-
scale cloud services, where engineers rely on Trou-
bleshooting Guides (TSGs) to resolve incidents.
Each step can lead to different outcomes based on
system states, making this dataset suitable for test-
ing THREAD on dynamic how-to questions. Unlike
the open-domain datasets, we conduct a human
evaluation with twenty on-call engineers (OCEs)
responsible for incident mitigation. Each OCE mit-
igates five incidents, with baseline methods ran-
domly assigned per incident to prevent familiarity
bias. Our RAG system attempts automated miti-
gation, and if a failure occurs, an OCE intervenes
before the system resumes5.

We collect documents from open sources, enter-
prises, and LLMs across scenarios. Appendix A.1
outlines the collection process, Appendix A.2 pro-
vides dataset examples, and Table 1 summarizes
dataset statistics.

3.2 Baselines and Metrics

Previous work on the Mind2Web dataset, such
as MINDACT (Deng et al., 2023a), has not ap-
proached it as how-to questions, instead using
In-Context Learning (ICL) or Supervised Learn-
ing (SL). For fair comparison with our LLM end-

4https://www.wikihow.com
5Varying across new-hire and experienced OCEs. Note

that one OCE’s data was contaminated during the experiment,
so we removed that OCE’s data.

18293

https://www.wikihow.com

Mind2Web Cross-Task
Method Model Paradigm Ele. Acc Op. F1 Step SR SR

w/ GPT-3.5 ICL 40.69 49.66 33.91 1.59
w/GPT-4 ICL 62.80 60.37 51.81 10.32MINDACT (2023a)

w/ Flan-T5XL* SL 55.10 75.70 52.00 5.20

w/ GPT-4 Chunk 64.23 65.96 58.45 8.73
w/ GPT-4 Doc 63.80 65.89 58.36 11.51RAG
w/ GPT-4 THREAD 68.29 69.53 61.94 12.30

Table 2: Experimental results on Mind2Web. ‘*’ represents taking results from the original paper. Deng et al.
(2023a) formulate web navigation as a series of multiple-choice steps, where each step requires selecting the correct
HTML code and actions. SR refers to the overall Success Rate.

points,6 we re-implement MINDACT using the
same demonstrations and include chat history as
context. In this work, we treat Mind2Web as dy-
namic how-to questions and address them with our
RAG system (Appendix B.4 shows how we adapt
Mind2Web into how-to questions.). We compare
THREAD against document-based and chunk-based
data organization paradigms, also used as baselines
for the WikiHow and IcM datasets. Details on eval-
uation metrics, experimental setup (prompts, etc.),
and data organization paradigms are provided in
Appendix A.3, B, and C, respectively.

3.3 Main Results

Web Navigation Table 2 presents the overall per-
formance on Mind2Web, comparing our method
with baselines and both doc-based and chunk-based
RAG methods. We find that incorporating infor-
mative documents, regardless of the data organiza-
tion paradigm, significantly improves performance.
RAG methods outperform both ICL and SL ap-
proaches, with the doc-based RAG method achiev-
ing results comparable to MINDACT’s best perfor-
mance. Notably, THREAD surpasses all RAG base-
lines, improving Ele. Acc by 4.06%, Step SR by
3.49%, and SR by 3.57%. MINDACT-SL achieves
the highest Op. F1 due to label imbalance7, biasing
the model toward frequent operations.

Incident Mitigation Table 3 highlights the ad-
vantages of THREAD in handling complex dynamic
how-to questions. Both chunk-based and doc-based
RAG methods struggle with incident mitigation, as
their low SR and P.F. Step SR scores indicate dif-
ficulty in connecting subsequent steps based on
the current state. In contrast, THREAD achieves
the highest performance across all metrics, notably
improving SR from 21.02% to 33.33%. More im-

6We use GPT-3.5 and GPT-4 (version 1106-preview).
7Predicting all operations as “CLICK” results in an Op. F1

of 79.90%.

Incident Mitigation
Paradigm SR Step SR P.F. Step SR HI Turns

40.51 60.90 60.90 30.10 3.14Chunk 28.95 53.16 43.05 46.84 6.84

43.86 63.90 63.90 36.09 2.98Doc 31.58 57.89 42.11 42.11 6.53

77.19 88.72 84.21 11.28 2.56THREAD 52.63 84.21 68.95 15.79 5.74

Table 3: Experimental results on Incident Mitigation.
Incidents are divided into simple and hard groups. P.F.
Step SR: the perctenage of successful steps before the
first failure. HI: the steps requiring human intervention.

portantly, its superior P.F. Step SR demonstrates
its ability to dynamically link steps based on user
feedback, reducing human intervention. As a re-
sult, THREAD not only achieves the highest Step
SR but also minimizes interaction turns, effectively
mitigating both simple and complex incidents.

Wikipedia Instructions Table 4 compares dif-
ferent data organization paradigms on WikiHow
under two settings. For single-turn, where the
RAG system generates the entire plan in one step,
THREAD outperforms the doc-based by 5.15%, pro-
viding more concise and effective information. In
contrast, the chunk-based achieves a significantly
lower SR of 19.59%, highlighting the challenge of
retrieving relevant chunks without maintaining the
document’s logical flow. For multi-turn, iterative
retrieval improves performance over single-turn,
demonstrating the benefits of a step-by-step ap-
proach for how-to questions. The SR increases
from 58.76% to 68.04% for the doc-based and
from 63.91% to 72.16% for THREAD. As in single-
turn case, the chunk-based method disrupts internal
logic, resulting in a low SR of 20.62%. Overall,
THREAD achieves the highest SR of 72.16%, em-
phasizing its effectiveness in preserving and mod-
eling step dependencies. We also extend our exper-
iments to LLaMA3-70B to show the generalibity
of THREAD in Appendix B.4.

18294

WikiHow
Paradigm SR Precision Recall F1

Single-Turn
Chunk 19.59 60.20 25.16 35.49
Doc 58.76 77.71 57.93 66.37
THREAD 63.91 83.43 71.48 76.99

Multi-Turn
Chunk 20.62 52.95 25.54 34.45
Doc 68.04 87.10 70.65 78.02
THREAD 72.16 89.77 73.36 80.74

Table 4: Experimental results on WikiHow with differ-
ent interaction manners and paradigms.

Paradigm Ele. Acc Op. F1 Step SR

ICL 62.80 60.37 51.81
w/o. historical steps 56.97 59.09 50.38

Chunk 59.94 62.58 54.39
w/o. chunk selection 64.23 65.96 58.45

THREAD 68.29 69.53 61.94
w/o. LU selection 67.05 68.43 60.79

Table 5: Ablation study of integrating chat history and
retrieval unit selection on Mind2Web.

4 Analysis

4.1 Ablation on RAG System Settings

This section presents an ablation study on key com-
ponents of our RAG system, using the Mind2Web
dataset. While retriever and generator variants have
been explored in prior work (Gao et al., 2023), we
utilize text-embedding-ada-002 (OpenAI, 2022) for
retrieval and GPT-4 as the generator.
Multi-turn Interaction. As shown in Table 4, the
multi-turn setting outperforms the single-turn set-
ting in answering how-to questions. We adopt the
multi-turn setting for all scenarios.
Chat History. Chat history enables the system to
reference previous actions and results, improving
decision-making. Table 5 shows that excluding
chat history results in performance degradation.
Therefore, we include chat history for all RAG-
based methods in our experiments.
Retrieval Units Selector. As described in §2.4, the
Selector identifies the most relevant retrieval units
from the top-K retrieved units. Table 5 illustrates
the effect of the retrieval unit selector. Without
the selector, performance drops by 4.29% in Ele.
Acc and 3.38% in Op. F1. The selector improves
all metrics when applied to THREAD. Unlike LU
selection, which filters irrelevant LUs based on pre-
requisites, chunk selection ignores inter-chunk con-
nections and may exclude relevant chunks. Thus,
we activate the selector only for THREAD.

Paradigm Ele. Acc Op. F1 Step SR #Tokens in RU

Doc 63.80 65.89 58.36 663.84
Recursive 64.23 65.96 58.45 695.77
Semantic 65.14 67.30 59.93 1337.16
Proposition 62.37 64.78 56.78 790.14
GraphRAG 63.20 65.09 56.90 630.75

THREAD w/o. 67.05 68.43 60.79 772.67
THREAD 68.29 69.53 61.94 157.10

Table 6: Analysis of data organization paradigms.

4.2 Comparison with Different Paradigms
We compare several RAG data organization
paradigms (details in Appendix C), including
Semantic Chunking (Kamradt, 2024), Proposi-
tion (Chen et al., 2023), recursive chunking (Split-
ter, 2023) (chunk-based), entire document (doc-
based), and GraphRAG (Edge et al., 2024). As
shown in Table 6, THREAD outperforms all base-
lines across metrics. While Semantic and Propo-
sition merge semantically similar sentences us-
ing LLMs, they fail to capture logical relation-
ships. And GraphRAG underperforms on how-
to questions due to its focus on entity-level rela-
tions over document logic. In contrast, THREAD

retrieves smaller, logic-driven units, yielding higher
efficiency and accuracy. Appendix D.2 illus-
trates the difference when handling the question
in Table 9 between GraphRAG and THREAD,
with GraphRAG producing flawed outputs. Ap-
pendix D.3 analyzes THREAD ’s cost and scalabil-
ity, confirming its high performance at acceptable
costs and potential for large-scale datasets.

4.3 Superiority over Different Doc Formats
As real-world documents vary in format, we test
our LU extraction method on diverse structures,
including structured markdown, hierarchical guide-
lines, tabular checklists, and narrative documents
(details in Appendix B.2). Table 7 demonstrates
that THREAD consistently outperforms the chunk-
based paradigm across all metrics, improving Ele.
Acc by up to 9.61%, Op. F1 by up to 8.43%, and
Step SR by up to 8.51%. These results underscore
THREAD’s ability to effectively handle a variety of
real-world document resources. Notably, THREAD

achieves the highest performance with structured
documents, which facilitate the creation of a higher-
quality knowledge base.

4.4 Generalization to Open Domain Questions
To explore whether THREAD can be extended to
open-domain questions, we evaluate THREAD on

18295

Format Paradigm Ele. Acc Op. F1 Step SR

Chunk 64.23 65.96 58.45Structured THREAD 68.29 69.53 61.94

Chunk 60.60 63.46 55.06Hierarchical THREAD 66.57 67.89 60.08

Chunk 56.30 59.26 51.43Tabular THREAD 65.71 67.69 59.55

Chunk 56.63 60.39 51.66Narrative THREAD 66.24 68.22 60.17

Table 7: Analysis of different document formats.

F1 EM Acc0

10

20

30

40
Chunk
Thread

Figure 3: Experimental results on the generalization of
THREAD to 2WikiMultiHopQA.

multi-hop questions, 2WikiMultiHopQA (Ho et al.,
2020). Specifically, we sample 200 questions of
two types, ‘inference’ and ‘compositional’ type,
like “Who is the maternal grandfather of Abraham
Lincoln?” and “Who is the founder of the com-
pany that distributed La La Land film?” In our ex-
periment, we use the relations between entities as
‘Linker’. The findings from Figure 3 demonstrate
that THRED largely surpasses the chunk-based
paradigm on multi-hop questions, validating the
generalization of THREAD on diverse questions.

5 Related Work

Data Organization Paradigm in RAG The data
organization process is a critical pre-stage of RAG
methods where documents are segmented follow-
ing certain data organization paradigms. The most
common data organization paradigm is splitting
documents into retrieval units (Gao et al., 2023).
These retrieval units vary in granularity such as
phrases, sentences, propositions (Chen et al., 2023),
chunks (Kamradt, 2024), etc. Coarser-grained units
contain more information but introduce redundant
noise, while finer-grained units have lower seman-
tic integrity and often require retrieving more units
to gather comprehensive information. However, the
chunk-based data organization paradigm ignores
the logical and relational connections between
chunks, potentially disrupting the inherent logic
flow in documents. Another paradigm constructs
documents into knowledge graphs (KG), where

retrieval units include entities, triplets, etc. (Gaur
et al., 2022; Sen et al., 2023; He et al., 2024; Wang
et al., 2024). While these approaches emphasize
semantic and lexical similarities between retrieval
units, their effectiveness on how-to questions re-
mains limited. This is largely due to the inher-
ent difficulty in capturing the logical structure re-
quired by such questions. In particular, current
methods such as GraphRAG(Edge et al., 2024),
primarily model relationships between different
chunks, which fails to account for the more com-
plex, logic-driven connections between chunks that
go beyond entity-level similarity.

Information Retrieved by RAG The effective-
ness of RAG methods depends on the generator’s
ability to utilize retrieved information and the qual-
ity and quantity of that information. Insufficient
question-relevant information can cause halluci-
nations in LLM-based generators (Li et al., 2023;
Zhang et al., 2023), making it crucial to improve
the retrieval process. Traditional one-round re-
trieval methods (Guu et al., 2020; Lewis et al.,
2020) often fail to gather all necessary informa-
tion due to their reliance on the similarity between
query and retrieval units (Gan et al., 2024). Ad-
vanced RAG methods use query rewriting and ex-
pansion (Shao et al., 2023; Trivedi et al., 2023;
Kim et al., 2023) or iterative retrieval (Shao et al.,
2023; Jiang et al., 2023; Asai et al., 2023) to col-
lect more information. However, these approaches
still struggle with how-to questions, which require
making next-step decisions based on the current
retrieved units, unless the current retrieved units
contain clues that lead to the next step. The main
issue is the lack of connections between retrieval
units, which prevents effective retrieval and the
gathering of sufficient information.

6 Conclusion

In this paper, we address the overlooked cate-
gory of handling how-to questions in QA systems
by proposing THREAD, a novel data organization
paradigm that captures logical connections within
documents. By introducing a new knowledge gran-
ularity called ‘logic unit’, THREAD restructures
documents into interconnected logic units that are
compatible with RAG methods. Extensive exper-
iments show that THREAD significantly outper-
forms existing paradigms, improving performance
while reducing the knowledge base size and mini-
mizing the information needed for generation.

18296

Limitations

This work focuses on evaluating the effectiveness
of THREAD by designing how-to questions in three
specific scenarios, covering both linear and dy-
namic how-to questions. However, several limi-
tations point to future directions. First, as our logic-
based knowledge base can coexist with the original
chunk-based knowledge base, we only extend our
method to multi-hop questions, more open-domain
tasks should be considered. Next, while extracting
logic units involves an initial cost in terms of LLM
usage, this is a one-time process. Once the knowl-
edge base is constructed, it provides significant
advantages for industrial applications, particularly
in terms of subsequent updates and maintenance.

Acknowledgement

We thank all reviewers for their great efforts. This
work is supported by the National Science Foun-
dation of China under Grant No.61876004, which
covered personal research efforts, conference regis-
tration fees of K.K. An, S.Z. Si and B.B. Chang.

References
Ali Mohamed Nabil Allam and Mohamed Hassan Hag-

gag. 2012. The question answering systems: A sur-
vey. International Journal of Research and Reviews
in Information Sciences (IJRRIS), 2(3).

Kaikai An, Fangkai Yang, Liqun Li, Zhixing Ren, Hao
Huang, Lu Wang, Pu Zhao, Yu Kang, Hua Ding,
Qingwei Lin, and 1 others. 2024. Nissist: An in-
cident mitigation copilot based on troubleshooting
guides. arXiv preprint arXiv:2402.17531.

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and
Hannaneh Hajishirzi. 2023. Self-rag: Learning to
retrieve, generate, and critique through self-reflection.
CoRR, abs/2310.11511.

Tong Chen, Hongwei Wang, Sihao Chen, Wenhao Yu,
Kaixin Ma, Xinran Zhao, Hongming Zhang, and
Dong Yu. 2023. Dense X retrieval: What retrieval
granularity should we use? CoRR, abs/2312.06648.

Roger Crisp. 2014. Aristotle: nicomachean ethics.
Cambridge University Press.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen,
Samuel Stevens, Boshi Wang, Huan Sun, and Yu Su.
2023a. Mind2web: Towards a generalist agent for
the web. Preprint, arXiv:2306.06070.

Yang Deng, Wenxuan Zhang, Weiwen Xu, Ying Shen,
and Wai Lam. 2023b. Nonfactoid question answer-
ing as query-focused summarization with graph-
enhanced multihop inference. IEEE Transactions
on Neural Networks and Learning Systems.

Darren Edge, Ha Trinh, Newman Cheng, Joshua
Bradley, Alex Chao, Apurva Mody, Steven Truitt,
and Jonathan Larson. 2024. From local to global: A
graph rag approach to query-focused summarization.
arXiv preprint arXiv:2404.16130.

Chunjing Gan, Dan Yang, Binbin Hu, Hanxiao Zhang,
Siyuan Li, Ziqi Liu, Yue Shen, Lin Ju, Zhiqiang
Zhang, Jinjie Gu, and 1 others. 2024. Similarity is
not all you need: Endowing retrieval augmented gen-
eration with multi layered thoughts. arXiv preprint
arXiv:2405.19893.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia,
Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Qianyu Guo,
Meng Wang, and Haofen Wang. 2023. Retrieval-
augmented generation for large language models: A
survey. CoRR, arXiv:2312.10997.

Kami Garcia and Margaret Stohl. 2011. Beautiful
Chaos. Hachette UK.

Manas Gaur, Kalpa Gunaratna, Vijay Srinivasan, and
Hongxia Jin. 2022. Iseeq: Information seeking ques-
tion generation using dynamic meta-information re-
trieval and knowledge graphs. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 36, pages 10672–10680.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat,
and Ming-Wei Chang. 2020. Retrieval augmented
language model pre-training. In Proceedings of the
37th International Conference on Machine Learning,
ICML 2020, 13-18 July 2020, Virtual Event, volume
119 of Proceedings of Machine Learning Research,
pages 3929–3938. PMLR.

Xiaoxin He, Yijun Tian, Yifei Sun, Nitesh V Chawla,
Thomas Laurent, Yann LeCun, Xavier Bresson, and
Bryan Hooi. 2024. G-retriever: Retrieval-augmented
generation for textual graph understanding and ques-
tion answering. arXiv preprint arXiv:2402.07630.

Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara,
and Akiko Aizawa. 2020. Constructing a multi-hop
qa dataset for comprehensive evaluation of reasoning
steps. arXiv preprint arXiv:2011.01060.

Kelvin Jiang, Dekun Wu, and Hui Jiang. 2019. Free-
baseqa: A new factoid QA data set matching trivia-
style question-answer pairs with freebase. In Pro-
ceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, NAACL-
HLT 2019, Minneapolis, MN, USA, June 2-7, 2019,
Volume 1 (Long and Short Papers), pages 318–323.
Association for Computational Linguistics.

Zhengbao Jiang, Frank F. Xu, Luyu Gao, Zhiqing Sun,
Qian Liu, Jane Dwivedi-Yu, Yiming Yang, Jamie
Callan, and Graham Neubig. 2023. Active retrieval
augmented generation. In Proceedings of the 2023
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2023, Singapore, Decem-
ber 6-10, 2023, pages 7969–7992. Association for
Computational Linguistics.

18297

https://doi.org/10.48550/ARXIV.2310.11511
https://doi.org/10.48550/ARXIV.2310.11511
https://doi.org/10.48550/ARXIV.2312.06648
https://doi.org/10.48550/ARXIV.2312.06648
https://arxiv.org/abs/2306.06070
https://arxiv.org/abs/2306.06070
https://doi.org/10.48550/ARXIV.2312.10997
https://doi.org/10.48550/ARXIV.2312.10997
https://doi.org/10.48550/ARXIV.2312.10997
http://proceedings.mlr.press/v119/guu20a.html
http://proceedings.mlr.press/v119/guu20a.html
https://doi.org/10.18653/V1/N19-1028
https://doi.org/10.18653/V1/N19-1028
https://doi.org/10.18653/V1/N19-1028
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.495
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.495

Greg Kamradt. 2024. The 5 levels of text splitting for
retrieval.

Gangwoo Kim, Sungdong Kim, Byeongguk Jeon, Joon-
suk Park, and Jaewoo Kang. 2023. Tree of clarifica-
tions: Answering ambiguous questions with retrieval-
augmented large language models. In Proceedings of
the 2023 Conference on Empirical Methods in Natu-
ral Language Processing, EMNLP 2023, Singapore,
December 6-10, 2023, pages 996–1009. Association
for Computational Linguistics.

Mahnaz Koupaee and William Yang Wang. 2018. Wik-
ihow: A large scale text summarization dataset.
CoRR, abs/1810.09305.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur P. Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-
ton Lee, Kristina Toutanova, Llion Jones, Matthew
Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natu-
ral questions: a benchmark for question answering
research. Trans. Assoc. Comput. Linguistics, 7:452–
466.

How People Learn. 2000. Brain, mind, experience, and
school. Committee on Developments in the Science
of Learning.

Patrick S. H. Lewis, Ethan Perez, Aleksandra Pik-
tus, Fabio Petroni, Vladimir Karpukhin, Naman
Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih,
Tim Rocktäschel, Sebastian Riedel, and Douwe
Kiela. 2020. Retrieval-augmented generation for
knowledge-intensive NLP tasks. In Advances in Neu-
ral Information Processing Systems 33: Annual Con-
ference on Neural Information Processing Systems
2020, NeurIPS 2020, December 6-12, 2020, virtual.

Junyi Li, Xiaoxue Cheng, Xin Zhao, Jian-Yun Nie, and
Ji-Rong Wen. 2023. Halueval: A large-scale hal-
lucination evaluation benchmark for large language
models. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Process-
ing, EMNLP 2023, Singapore, December 6-10, 2023,
pages 6449–6464. Association for Computational
Linguistics.

OpenAI. 2022. https://openai.com/index/new-and-
improved-embedding-model/.

George Polya and George Pólya. 2014. How to solve
it: A new aspect of mathematical method, volume 34.
Princeton university press.

Priyanka Sen, Sandeep Mavadia, and Amir Saffari. 2023.
Knowledge graph-augmented language models for
complex question answering. In Proceedings of
the 1st Workshop on Natural Language Reasoning
and Structured Explanations (NLRSE), pages 1–8,
Toronto, Canada. Association for Computational Lin-
guistics.

Zhihong Shao, Yeyun Gong, Yelong Shen, Minlie
Huang, Nan Duan, and Weizhu Chen. 2023. En-
hancing retrieval-augmented large language models
with iterative retrieval-generation synergy. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2023, Singapore, December 6-10, 2023,
pages 9248–9274. Association for Computational
Linguistics.

Manish Shetty, Chetan Bansal, Sai Pramod Upad-
hyayula, Arjun Radhakrishna, and Anurag Gupta.
2022. Autotsg: learning and synthesis for incident
troubleshooting. In Proceedings of the 30th ACM
Joint European Software Engineering Conference
and Symposium on the Foundations of Software En-
gineering, ESEC/FSE 2022, Singapore, Singapore,
November 14-18, 2022, pages 1477–1488. ACM.

Text Splitter. 2023. Recursively split by character.

Ivan Stelmakh, Yi Luan, Bhuwan Dhingra, and Ming-
Wei Chang. 2022. ASQA: Factoid questions meet
long-form answers. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language
Processing, pages 8273–8288, Abu Dhabi, United
Arab Emirates. Association for Computational Lin-
guistics.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot,
and Ashish Sabharwal. 2023. Interleaving retrieval
with chain-of-thought reasoning for knowledge-
intensive multi-step questions. In Proceedings of
the 61st Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
ACL 2023, Toronto, Canada, July 9-14, 2023, pages
10014–10037. Association for Computational Lin-
guistics.

Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang,
Rangan Majumder, and Furu Wei. 2023. Improving
text embeddings with large language models. arXiv
preprint arXiv:2401.00368.

Yu Wang, Nedim Lipka, Ryan A Rossi, Alexa Siu, Ruiyi
Zhang, and Tyler Derr. 2024. Knowledge graph
prompting for multi-document question answering.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pages 19206–19214.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Ben-
gio, William W. Cohen, Ruslan Salakhutdinov, and
Christopher D. Manning. 2018. Hotpotqa: A dataset
for diverse, explainable multi-hop question answer-
ing. In Proceedings of the 2018 Conference on Em-
pirical Methods in Natural Language Processing,
Brussels, Belgium, October 31 - November 4, 2018,
pages 2369–2380. Association for Computational
Linguistics.

Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu,
Tingchen Fu, Xinting Huang, Enbo Zhao, Yu Zhang,
Yulong Chen, Longyue Wang, Anh Tuan Luu, Wei
Bi, Freda Shi, and Shuming Shi. 2023. Siren’s song
in the AI ocean: A survey on hallucination in large
language models. CoRR, abs/2309.01219.

18298

https://www.youtube.com/watch?v=8OJC21T2SL4
https://www.youtube.com/watch?v=8OJC21T2SL4
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.63
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.63
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.63
https://arxiv.org/abs/1810.09305
https://arxiv.org/abs/1810.09305
https://doi.org/10.1162/TACL_A_00276
https://doi.org/10.1162/TACL_A_00276
https://doi.org/10.1162/TACL_A_00276
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.397
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.397
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.397
https://openai.com/index/new-and-improved-embedding-model/
https://openai.com/index/new-and-improved-embedding-model/
https://doi.org/10.18653/v1/2023.nlrse-1.1
https://doi.org/10.18653/v1/2023.nlrse-1.1
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.620
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.620
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.620
https://doi.org/10.1145/3540250.3558958
https://doi.org/10.1145/3540250.3558958
https://python.langchain.com/v0.1/docs/modules/data_connection/document_transformers/recursive_text_splitter/
https://doi.org/10.18653/v1/2022.emnlp-main.566
https://doi.org/10.18653/v1/2022.emnlp-main.566
https://doi.org/10.18653/V1/2023.ACL-LONG.557
https://doi.org/10.18653/V1/2023.ACL-LONG.557
https://doi.org/10.18653/V1/2023.ACL-LONG.557
https://doi.org/10.18653/V1/D18-1259
https://doi.org/10.18653/V1/D18-1259
https://doi.org/10.18653/V1/D18-1259
https://doi.org/10.48550/ARXIV.2309.01219
https://doi.org/10.48550/ARXIV.2309.01219
https://doi.org/10.48550/ARXIV.2309.01219

A Scenarios and Datasets

A.1 Documents under Each Scenario

As the Mind2Web dataset lacks relevant documents,
we create retrieval documents tailored to the RAG
system. Assuming that each website has help docs
applicable across different tasks, we use the "Cross-
Task" test set, selecting examples from the training
set to craft informative documents for each website.
And we follow Wang et al. (2023) to brainstorm
different formats of documents. More details about
collecting documents are shown in Appendix B.2.

For the WikiHow dataset, we utilize publicly
available Windows Office Support Docs8 as re-
trieval documents. We select around 100 tasks
from WikiHow tagged with Microsoft products like
Word, PowerPoint, and Teams, each containing 10
to 40 steps related to Windows operations.

For the IcM dataset, we collect 56 TSGs from
an enterprise-level engineering team responsible
for a large-scale cloud platform. The selected inci-
dents in the IcM dataset can be resolved using the
knowledge provided in these TSGs.

A.2 Example of Each Dataset

We list one example of each dataset in Table 8,
and we distinguish how-to questions into ‘linear’
and ‘dynamic’ types, where linear how-to ques-
tions often involve a fixed sequence of steps that
do not require feedback or decision points based
on intermediate outcomes.

A.3 Evaluation Metrics under Each Dataset

We adapt the evaluation metrics from (Deng et al.,
2023a), which include: Element Accuracy (Ele.
Acc) to evaluate the chosen HTML element; Oper-
ation F1 (Op. F1) to calculate the token-level F1
score for predicted operations such as “CLICK”,
“TYPE IN”, etc.; Step Success Rate (Step SR),
where a step is successful if both the selected el-
ement and predicted operation are accurate; and
Success Rate (SR), where a task is successful only
if all steps are successful.

For the WikiHow dataset, which contains ground
truth steps, we leverage LLMs to extract “Ac-
tion Items” from each ground truth step and gen-
erated step, and we use the following metrics:
Precision (P = #matched_items

#total_generated_items); Recall

(R = #matched_items
#total_groundtruth_items); F1; and Success

8https://github.com/MicrosoftDocs/
OfficeDocs-Support

Rate (SR) to assess if the generated steps can suc-
cessfully complete the task, using LLMs to evaluate
(Appendix B.3 shows the evaluation prompt).

For the IcM dataset, which involves task execu-
tion, we perform evaluations with OCEs (refer to
§3.1) using five metrics: Success Rate (SR) indicat-
ing the percentage of incidents mitigated automat-
ically by the system without human intervention;
Step Success Rate (Step SR) representing the per-
centage of successful steps out of all task steps;
Pre-Failure Step Success Rate (P.F. Step SR) repre-
senting the percentage of successful steps before
the first failure; Human Intervention (HI) measur-
ing the percentage of steps requiring human inter-
vention; and Average Turns (Turns) to measure the
average interaction turns between OCEs and the
system during incident mitigation.

A.4 Remaining LU Types
FAQ. This type provides frequently asked ques-
tions, supplementing the knowledge base. These
LUs are typically isolated, with the LU body offer-
ing solutions through sequential steps that address
linear how-to questions not reliant on dynamic
states. They save time by avoiding the need for
sequentially retrieving LUs for common questions.
Appendix. This type provides additional informa-
tion relevant to the scenario of LUs, such as exam-
ples, background, lookup tables, etc. These LUs
serve as supplementary knowledge for LLMs when
generating responses or executable plans.

A.5 Instantiation of THREAD

In Table 9, we provide an example of the construc-
tion process of THREAD including the original doc-
ument, reformulated document, and its correspond-
ing logic unit.

18299

https://github.com/MicrosoftDocs/OfficeDocs-Support
https://github.com/MicrosoftDocs/OfficeDocs-Support

Dataset Example

Mind2web
(Dynamic) <html > ... </html >

Based on the HTML webpage above , try to complete the following task
Task: Book the lowest -priced and quickest flight for 5 adults and 1 child on May 20

from Mumbai to any airport near Washington.
Previous actions:
None
What should be the next action?
Please select from the following choices (If the correct action is not in the page

above , please select A. 'None of the above '):
A. None of the above
B. <div id=0> <input radio triptype roundtrip true /> <label >
C. <label id=1> Search flights one way One
D. <h3> Celebrate World Wish Day </h3 > <p> Support
E. <h2 id=3> Help </h2>
F.
C. Action: CLICK

WikiHow
(Linear) "Problem ": "How to Add Captions to Tables in Microsoft Word",

"Solution Steps ": [
"Select the table to which you want to add a caption.",
"Using your mouse , click and drag over the entire table to select it.",
"Right -click (or ctrl -click) the table and select Insert Caption.",
"Enter your caption.",
"Type the caption for this table into the \" Caption \" field.",
"Select a caption label.",
"Customize your caption numbers (optional).",
"Choose where to place your caption.",
"Click the \" Position \" drop -down menu , and choose whether to place the caption

above or below the table.",
"Click OK to add your caption to the table.",
"Format your captions ."

]

IcM
(Dynamic) How to Investigate Service A-To -Service B Connection?

Step 1: Check Pull Task Execution From the Cluster

The direct impact of connection failure is pull task execution will not work. If
Service A can continue to pull from Service B, then the incident can be dismissed
as false alarm , the feature owner can investigate further to see why Echo fails.
This can be visualized by pull task count over time in the last 8 hours in the

following query:
```kusto
<Code Block >
```

Disregard the last data point , if the data point is always above zero , then consider
the alert as false alarm. If the chart sometimes drops to zero one hour ago and
the number is low in general (for instance less than 20), it means the customer
traffic in the cluster is low. In this case , observe for a longer period of time.
If the data point is zero consistently in the past 30 minutes , then it is a real
problem , and please Check if Other Clusters In the Region are Impacted.

Otherwise , continue to observe since Service A is pulling Service B just fine.

Table 8: Examples of each dataset. For Mind2Web, although the test set has fixed options for each step, there are
different execution methods for the same task on each website, so it is essentially dynamic.

18300

Trouble Shooting Guide: How to Investigate Service A-To-Service B Connection?

Original ### Step 0: Determine the Region and Cluster Name
The region and cluster name can be found in the incident title.
Step 1: Check Pull Task Execution From the Cluster

The direct impact of connection failure is pull task execution will not work. If Service A can continue to
pull from Service B, then the incident can be dismissed as false alarm, the feature owner can investigate
further to see why Echo fails. This can be visualized by pull task count over time in the last 8 hours in
the following query: ***
Disregard the last data point, if the data point is always above zero, then consider the alert as false
alarm. If the chart sometimes drops to zero one hour ago and the number is low in general (for instance
less than 20), it means the customer traffic in the cluster is low. In this case, observe for a longer period
of time. If the data point is zero consistently in the past 30 minutes, then it is a real problem, and please
Check if Other Clusters In the Region are Impacted. Otherwise, continue to observe since Service A is
pulling Service B just fine.
...

Reformulated ## 1.Check Pull Task Execution From the Cluster.
Prerequisite
The region and cluster name can be found in the incident title.
Header
Check Pull Task Execution From the Cluster
Body
Run the following query to check pull task execution from the cluster (please use the cluster name from
the previous step) ***
Linker
- If the data point is always above zero, then consider the alert as false alarm.[MITIGATE]
- If the chart sometimes drops to zero one hour ago and the number is low in general, it means the
customer traffic in the cluster is low. In this case, observe for a longer period of time.[MITIGATE]
- If the data point is zero consistently in the past 30 minutes, then it is a real problem, and please Check
if Other Clusters In the Region are Impacted.[CONTINUE]
- Otherwise, continue to observe since Service A is pulling Service B just fine.[MITIGATE]
...

Logic Unit
{

"#type #": "step",
"#meta data #": {

"# title #": "How to Investigate Service A-To -Service B Connection",
"#id#: "",
"#date #": ""

},
"# prerequisite #": "The region and cluster name are given.",
"# header #": "Check Pull Task Execution From the Cluster.",
"#body #": "Run the following query to check pull task execution from the cluster (

please use the cluster name from the previous step):***" ,
"# linker #": "If the data point is always above zero , then consider the alert as

false alarm .[MITIGATE] If the chart sometimes drops to zero one hour ago and
the number is low in general , it means the customer traffic in the cluster is
low. In this case , observe for a longer period of time.[MITIGATE] If the

data point is zero consistently in the past 30 minutes , then it is a real
problem , and please Check if Other Clusters In the Region are Impacted .[
CONTINUE] Otherwise , continue to observe since Service A is pulling Service B
just fine.[MITIGATE]",

"# default_parameters #": {
"<TIME >": "",
"<CLUSTER NAME >": ""

}
}

...

Table 9: An example of reformulated TSG and its corresponding Logic Unit of THREAD.

18301

B Experimental Details

B.1 Incident Mitigation

We take the scenario of incident mitigation to show
the instructions about how to construct our knowl-
edge base, including document reformulation, code
template extraction, and logic unit selection9.

Instruction that formulates the original unstruc-
tured troubleshooting guide into structured
one.
[System]
You are a helpful troubleshooting guide assis-
tant who helps the user formulate the man-
ual unstructured troubleshooting guide <TSG>
into a structured one. The <TSG> is in mark-
down format, with the first level header de-
scribing the incident or problem, and the fol-
lowing second level header providing informa-
tion related to the incident or problem.
Each second-level subsection can be catego-
rized into the following types: Terminology,
FAQ, STEP, and Appendix. Your reformula-
tion should strictly comply with the following
definition:
- Terminology: firstly, it should be the relation-
ship or connection between terminology about
the incident, if not, it can be the explanation or
concept of the incident. Sometimes it should
be extracted and summarized by yourself.
- FAQ: frequently asked questions that help to
understand the incident.
- STEP: the processes to resolve the incident,
and you should make sure its completeness.
Usually, steps have causal inner connection,
the former step will trigger the next step.
- Appendix: the supplement of the incident
that is not important or labeled by TSG,
usually providing additional resources, data,
links and so on.

1. You need to identify each second-level
subsection, including third-level subsection if
needed, analyze its content or purpose, and cat-
egorize it accordingly. For those belonging to
Step, you should capture the inner connections,
such as Causality or Temporal relations, and
present them in the correct order.

9The selection strategy is the same for both chunk and LU
selections, which leverages LLMs to select the most relevant
retrieval element from the retrieved top-K retrieval elements.

2. Your returned formulated TSG should be in
JSON format. Make sure that the keys origi-
nate from these categories: Terminology, FAQ,
STEP ad Appendix. Each value should be a
list of dictionaries. The keys for them are "pre-
requisite", "header", "body", and "linker". All
values within the lists need to align with the
original context, with truthful meaning and
necessary **code block**.
3. Importantly, the "linker" is used to imply
the dual role of providing the action’s result
and connecting to the next step using the "if-
then" sentence format. You should formulate
each step’s linker to be "If any results are ob-
tained by executing the corresponding action
in the previous step, then **the true intent of
the following step** provided here". Implicit
linkers like "proceed to the next step." or "then
the intent of the following step should be taken
into consideration." should be avoided.
4. For each "if" condition at every step in
the STEP, it is necessary to add a special to-
ken behind the "then" condition within the
"linker". The options for these tokens are
"[CONTINUE]", "[CROSS]", and "[MITI-
GATE]". - The token "[CONTINUE]" indi-
cates that the actions corresponding to this "if"
condition are part of the continuum within the
same TSG’s STEPs. - The token "[CROSS]"
signifies that the subsequent actions require
a transition to a different set of steps that are
external to the current TSG’s STEPs. - The
token "[MITIGATE]" implies that the actions
following the "if" condition convey that the
incident is mitigated, or necessitate communi-
cation with on-call engineers or teams.
The use of this special token is instrumental
in verifying the completeness and structural
integrity of the STEP section.

<TWO EXAMPLES HERE>

[User]
Here is the <TSG> you need to formulate:
{TSG}

18302

Instruction that extracts code template and de-
fault parameters from the source code.

[System]
You are a helpful assistant that extracts the
code template and the default parameters
from the provided code instance in <CODE>.
<CODE> is a code block that contains
several parameters. You should replace those
parameters with placeholders and output the
code template with placeholders and default
parameters.

<ONE EXAMPLE HERE>

Your response should be in the JSON format
as below:
{

"# CODE_TEMPLATE #": where you replace the
parameters in <CODE > with placeholders
,

"# DEFAULT_PARAMETERS #": where you keep the
parameters in <CODE > as default values
.

}

[User]
Here is the <CODE> you need to extract:
{CODE}

Instruction that selects the most relevant logic
unit based on user query and chat history.

[System]
You are a helpful assistant that selects the most
relevant element from <LU_LIST> based on
the user’s query in <QUERY> and chat history
in <CHAT_HISTORY>. Please respond with
the JSON format.
Each element in <LU_LIST> is in json format
and contains the following fields:
{

"#type #": "the type of the element , select
from the following types: Terminology ,
FAQ , Step , and Appendix.",

"#meta data #": "the description of the
troubleshooting guide.",

"# prerequisite #": "The prerequisite of this
step , before taking the current step ,
the prerequisites should be finished

.",
"# header #": "The information describes the

intent of the <INFO >.",
"#body #": "The action is the content which

troubleshoots the incident or explain
the #header #. the action may contain
code blocks in markdown format , and
parameters are replaced with
placeholders",

"# linker #": "the expected output after
taking the #action #. It is defined in
the following format in markdown: -If
** condition **, then ** should_do **. It
can contain multiple if -then cases.",

"# default_parameters #": "the default
parameters that could fill in

placeholders in code blocks in #body
#."

}

- The elements in <LU_LIST> contain possible
information that can answer the user’s query
in <QUERY>. However, they may not be all
relevant to the query or useful to answer the
user’s query. You should select the most rele-
vant element from the <LU_LIST> based on
the user’s query in <QUERY>.
- In particular, you should focus on the follow-
ing fields in the element: #header#, #body#.
Most importantly, the <QUERY> needs to
match with the #intent# and the #body# has
to provide actions to reach the goal of the
<QUERY>, please ignore the #linker# and do
not map the <QUERY> with #linker#.
- As you choosing from <LU_LIST>, you need
to check if all the #prerequisite# are met in
previous history. If the #prerequisite# is not
finished, then it should not be chosen.
- Try to select only one element from
<LU_LIST>. If it is not possible to select only
one element, you can select multiple elements
from <LU_LIST>:
[

{
"INDEX": the index of the element in <

LU_LIST >.
"INTENT ": the #header# of the element ,

the index starts from 0.
"EXPLANATION ": justify why you select

this node.
}

]

- If there is no element in <LU_LIST> that can
answer the user’s query in <QUERY>, you
should try to select the most relevant element
to the user’s query considering that the user
might use the wrong terminology:
[

{
"INDEX": the index of the element in <

LU_LIST >.
"INTENT ": the #header# of the element ,

the index starts from 0.
"REPHRASED_QUERY ": the rephrased query

that you think the user is asking
about.

"EXPLANATION ": justify why you select
this node.

}
]

- Unless you are confident that there is no ele-
ment in <LU_LIST> that is even close to the
user’s query:
{

"NO_INFO_EXPLANATION ": where you give your
explanation.

}

18303

- Your answer should be in the JSON format in
a list after <RESPONSE>.

[User]
<LU_LIST>: {LU_LIST}
<QUERY>: {QUERY}
<CHAT_HISTORY>: {CHAT_HISTORY}

B.2 Mind2web

We show the details about the document genera-
tion instruction we use, the different formats of
documents, and the examples we generate.

Instruction that generates specific format of
document for Mind2web dataset.
[System]
You are adept at performing website navi-
gation tasks, and you will be provided with
simulation data from Mind2Web, designed for
developing and evaluating generalist agents
capable of following language instructions to
complete complex tasks on any website.

The data includes a step-by-step execution
process, each step encompassing HTML code,
Tasks, Previous Actions, and the Element and
Action of this step. Note that the Element
comes from the HTML code, and if the correct
action is not present on the current page, the
Element is None, and you should retrieve it
from next step’s Previous Actions.

Now your task is to write a comprehensive and
adaptable reference document that outlines the
general process for completing tasks like the
given task. This document should serve as a
guide for others to perform similar tasks on
the same website in the future. So it should
not be limited but can use this data to be the
example, and should be general enough.

Please return the complete reference document
that adheres to these guidelines.

[User]
The format of the documents should be as fol-
lows: {FORMAT}
The given execution process is as follows:
{EXAMPLE}

We follow Wang et al. (2024) to brainstorm di-
verse formats of documents for Mind2web dataset

used for retrieval, and the results are listed in Table
10.

B.2.1 Details about LU Merge

For LU merge, we first identify the similar logic
units by using the SpaCy library to calculate the
textual similarity of LU headers. Then we leverage
LLM to merge LUs with the following prompt:

Instruction that merges logic units with similar
header.
[System]
You are tasked with a set of Logic Units
that contain information about different
steps in web navigation task. Each unit
includes components like type, title, header,
prerequisite, body, and linker. Some units
have similar intents and can be merged to
streamline the process and reduce redundancy.

Your task is to merge logic units with similar
header into a single unit that combines their
prerequisite, body and linker in a logical and
coherent manner.

- Most importantly, as merging, you should
concentrate on the linker, you need to unite
the linker with similar intent, and carefully
compare their "if" conditions. These condi-
tions should now depend on the title specifics,
guiding the user to the appropriate next action
based on the context of the task.
- And for prerequisite, you should synthesize
the prerequisites from the individual units,
preserving the original logic and ensuring that
the merged unit sets the necessary conditions
for the subsequent steps.

The purpose of this merge is to create a more
efficient set of instructions that can handle
multiple scenarios without repeating steps.

Here is an example:

Please only return the merged unit in JSON
format, keeping the same structure with the
input.

[User]
The logic units you need to merge are as fol-
lows: {units}

18304

Format Description

Structured
Markdown

- The document must be structured into sections in markdown format.
- It should include a task overview, introduction, process steps, and conclusion.
- Each step in the process includes detailed explanations for Intent, Prerequisite, HTML Code Reference,
Action, Reason, and Result.
- The Prerequisite is to specify any conditions or prior actions that must be met or completed before
proceeding with the current step in the process.
- Ensure that each step is explicitly connected to the next one, and the result is written in the "if-then"
schema where the "Intent" of this step is completed, and the outcome "then" is the next step’s Intent.
- The HTML Code Reference gives hints of the Action like some ’<button>’, ’’, or other
elements or attributes. You need to use the given task as an example.
- The Action comes from "Click", "Type", "Hover", "Press Enter".

Hierarchical
Guideline

- A structured text document with numbered steps for each task.
- Each step includes a title, description, the HTML code involved, and the action to be taken.
- Previous actions are referenced where necessary, with hyperlinks to the relevant steps.
- Appendices for HTML code references, glossary of terms, and FAQs.

Tabular
Checklist

- A printable checklist with each task and subtask, including checkboxes for completion.
- Each checklist item includes a code snippet and the action required.
- A troubleshooting section that lists common problems and their solutions.
- Tips for what to do when the expected element or action is not available.
- References to more detailed instructions or external resources for complex tasks.

Narrative
Document

An entire description of the execution process without special structures.

Table 10: The description of different formats of documents on Mind2web.

B.3 Wikihow

Instruction that evaluates the generated answer
compared with ground truth for Wikihow.

[System]
You are a helpful and precise assistant for
checking the quality of the answer. We would
like to invite you to evaluate the performance
of the system in answering a user’s question
in <Question>.

I will give you the answer generated by the
system in <Generation> and the ground truth
answer in <Ground Truth> respectively. Your
evaluation will contain five sub-evaluation
tasks:

1. Both two answers contain a list of steps.
Your task is to extract action items from the
provided steps in both answers. The action
item is defined as a combination of action and
element. Compare the action items to identify
similarities. Output the similar action items.
Count the count of similar action items.

- Your answer should contain the extracted
two action item sets (in the format as a list of
strings).
- Your answer should contain a set of similar

action items (in the format of a list of strings).
Similar action items are those sharing similar
intent or achieving similar goals. Each similar
action pair in the list should be in the format
of "similar action item from action item set1
/ similar action item from action item set2"
- Your answer should contain the count of
similar action items.

2. Can <Generation> completely solve the
user’s question?
- Your answer should be "Yes" or "No".
- Your answer should contain the reason(s)
for your choice. You should not focus on
the length of the answer or the details of the
answer, but you should focus on whether the
steps could solve the user’s question and the
quality of the steps compared with the ground
truth.

Your output should be in the following format
in JSON:
{

"Subtask1 ": {
"Action items in Generation ": [" action

item 1", "action item 2", ...],
"Action items in Ground Truth: [" action

item 1", "action item 2", ...],
"Similar action items": [" similar

action item 1", "similar action
item 2", ...],

"Count of similar action items ": 2
},

18305

"Subtask2 ": {
"Choice ": "Yes" or "No",
"Reason ": "reason for your choice"

}
}

[User]
Here is the user’s question <Question>: {Ques-
tion}
The answer from system <Generation> is:
{Generation}
The ground truth answer <Ground Truth> is:
{Ground Truth}

B.4 Details about RAG System

We take the scenario of Mind2web to show the
instructions we use in our RAG-based QA system.

Instruction that is used for the baselines of
RAG system on Mind2web.

[System]
You are a helpful assistant who is great at
website design, navigation, and executing
tasks for the user. Now please proceed
with the <CURRENT_STEP> and make
your choice, remember that only based on
the helpful document information from
<DOC_CONTEXT> and the previous step
chat history between user and assistant in
<CHAT_HISTORY>.

Your response should be in the format of "An-
swer: C. Action: SELECT Value: Pickup".
The answer is A, B, C..., the Action comes
from [CLICK, TYPE, SELECT] and the Value
is not always needed.

[User]
<DOC_CONTEXT>: {DOC_CONTEXT}
<CHAT_HISTORY>: {CHAT_HISTORY}
<CURRENT_STEP>: {CURRENT_STEP}

Instruction that is used for the RAG system
utilizing THREAD Paradigm on Mind2Web.

[System]
You are a helpful assistant who is great at
website design, navigation, and executing
tasks for the user. Now please proceed with
the <CURRENT_STEP> and make your
choice, remember that only based on the
helpful structured document information
from <LOGIC_UNIT>, and the previous step

chat history between user and assistant in
<CHAT_HISTORY>.

Your response should be in the format of
JSON:
{

"CHOICE ": the choice you make from A B C
...,

"ACTION ": the corresponding action choosing
from ['CLICK ', 'TYPE ', 'SELECT '],

"VALUE ": the corresponding value if needed ,
"INTENT ": the intent of the next step ,

which should be retrieved and judged
from the "if" conditions in #output#
from <LU > according to the current
step and actions and choose the
corresponding "then" outcome , do not
guess it based on current Task in <
CURRENT_STEP > by yourself unless the <
LU > is irrelevant to <CURRENT_STEP >,

}

[User]
<LOGIC_UNIT>: {LOGIC_UNIT}
<CHAT_HISTORY>: {CHAT_HISTORY}
<CURRENT_STEP>: {CURRENT_STEP}

18306

SR P R F10

20

40

60

80

100 Chunk

SR P R F10

20

40

60

80

100 Doc

SR P R F10

20

40

60

80

100 Thread
GPT-4
LLama3-70B

Figure 4: Analysis of using different LLMs on WikiHow (GPT-4 v.s. LLaMA3-70B).

C Current Data Organization Paradigm

From Gao et al. (2023), current data organization
paradigms can be categorized into phrases, sen-
tences, propositions, chunks, and so on. In our
paper, we choose chunks 10 and propositions to
compare with our proposed THREAD11.
Recursive Chunk. This chunking method splits
the original documents using a list of separators,
then reassembles them according to specified chunk
sizes and overlap sizes. In our experiment, we
use different chunk sizes for each dataset: 1000
for Mind2Web, 2000 for IcM, and 300 for Wik-
iHow. The chunk overlap sizes also vary 50 for
Mind2Web, 100 for IcM, and 30 for WikiHow.
Entire Document. This method sends the entire
document directly into the model, constrained by
the document’s length and structure.
Semantic Chunk. Kamradt (2024) proposes split-
ting chunks based on semantic similarity. The hy-
pothesis is that semantically similar chunks should
be grouped together. By comparing the semantic
similarity between adjacent sentences, the method
identifies “break points”. If the similarity in the
embedding space exceeds a certain threshold, it
marks the start of a new semantic chunk.
Agentic Chunk (Proposition). Chen et al.
(2023)12 introduces the concept of the Proposition
Paradigm, which involves extracting independent
propositions from original documents. The Agen-
tic Chunk method is based on this paradigm. It
first splits the documents into paragraphs, then ex-
tracts propositions from each paragraph, and at last
merges similar propositions into chunks.

10We use the implementation by LangChain https://
python.langchain.com/v0.2/

11Note: For chunks, we retrieve the top-5 at each time, and
for documents, we only retrieve the top-1.

12For proposition paradigm, we use agentic chunker since
the input token of Flan-T5 is limited to 512, https://github.
com/FullStackRetrieval-com/RetrievalTutorials.

GraphRAG. GraphRAG (Edge et al., 2024) is
a data organization approach proposed for those
query-based summarization, e.g., ‘what is the
theme of this dataset’, which constructs KG by ex-
tracting entities from chunks and then constructing
relationships between them.

D Additional Experimental Results

In all our experiments, we set the temperature of
LLMs to 0 and top_p to 1 for results reproduction.

D.1 Different LLMs as backbone

We further conduct experiments on LLaMA3-70B,
as shown in Figure 4. Although LLaMA3-70B
is less powerful than GPT-4, it still demonstrates
competitive performance with the help of THREAD.
Results indicate that LLaMA3 struggles with Wiki-
How questions applying chunk-based or doc-based
paradigms. However, with the integration of
THREAD, LLaMA3 not only achieves much better
performance in SR, but also narrows the gap with
GPT-4. Specifically, LLaMA3 achieves SR and F1
scores of 60.82% and 72.84%, respectively, com-
pared to GPT-4’s scores of 72.16% and 80.74%.
This indicates that while a performance gap re-
mains, particularly with the chunk-based and doc-
based paradigms, our THREAD considerably re-
duces this disparity between GPT-4 and LLaMA3.
These findings highlight the value of our proposed
paradigm in enhancing the performance of different
LLMs, showcasing its generalizability, robustness,
and efficiency in handling how-to questions.

D.2 Case Study

We compare the outputs from systems equipped
with THREAD and GraphRAG that handles how-
to question given in Table 9, ‘How to Investigate
Service A-To-Service B Connection?’.

18307

https://python.langchain.com/v0.2/
https://python.langchain.com/v0.2/
https://github.com/FullStackRetrieval-com/RetrievalTutorials
https://github.com/FullStackRetrieval-com/RetrievalTutorials

Paradigm Chat Tokens
(I/O) / Doc

Embedding
Tokens / Doc Price / Doc ($) Chat Model API

Call / Doc Ele. Acc

Recursive (Chunk) - 838 0.000084 - 64.23
Semantic - 3802 0.00038 - 65.14
Proposition 61836 / 388 978 0.63 28.8 62.37
THREAD 2553 / 654 654 0.045 1 68.29

Table 11: Cost of different paradigms on Mind2Web.

Dataset Total Tokens Original
Tokens / Doc

Chat Tokens
(I/O) / Doc

Embedding
Tokens / Doc Price / Doc ($) ∆ Ele. Acc

Incident Mitigation 112K 2002 2814 / 1464 1464 0.072 23.68%-36.68% ↑
WikiHow 200K 2066 4608 / 778 778 0.069 44.3%-51.54% ↑
Mind2Web 410K 838 2553 / 654 654 0.045 4.06% ↑

Table 12: Scalability across different scenarios.

THREAD can progressively mitigate such questions
as follows:

Step1:
When investigating the connection between Service A

and Service B, the first step is to check pull
task execution from the cluster. Please run the
following query to check:

- If the data point is always above zero , then
consider the alert as false alarm.

- If the data point is zero consistently , then it is
a real problem , and please Check if Other

Clusters In the Region are Impacted.

(the outcome of step1: data point is zero
consistently)

Step2:
To determine the list of clusters , the quickest way

is to check IcM by running
the following query to get the incidents in the last

day:

- If the incident count is one , ..
- If the incident count is more than one , ..

Step3:
...

However, the response generated by GraphRAG
is highly flawed. It not only distorts the inter-
nal logic within the documents but also retrieves
chunks that contain the entities "Service A" and
"Service B". After that, it misuses this retrieved
information to generate steps that are entirely irrel-
evant, seemingly getting stuck at start.

To investigate a connection issue between Service A
and Service B, you can follow this step:

Verify if Service A is actually making a connection
call to Service B.

You can generally do this by checking the logs or
telemetry data where outbound requests are
recorded using a Kusto Query:

If the connection attempts are not present in the
logs , ensure that Service A is configured
correctly to make calls to Service B.

If attempts are recorded , you can investigate
further based on the `ResultCode ` to determine
if there are timeouts , rejections , or any other
issues that could indicate a problem with the

connection.

D.3 Cost and Scalability
We analyze the preprocessing overhead for con-
structing the final knowledge base using the
Mind2Web dataset and compare THREAD to other
paradigms that also leverage LLMs during pre-
processing. From Table 11, THREAD achieves
the highest element accuracy (68.29%) with a bal-
anced trade-off between cost and performance.
While its cost is higher than the Chunk and Se-
mantic paradigms, it is significantly lower than the
Proposition paradigm, making it suitable for real-
world applications. Additionally, in Figure 4, we
show that Llama3-70B achieves comparable perfor-
mance with GPT-4, further emphasizing THREAD’s
effectiveness and generability.

More importantly, to evaluate THREAD’s scal-
ability, we curate datasets by transforming exist-
ing datasets (e.g., Mind2Web) and collecting data
from the internet (e.g., WikiHow) and examined
its performance on three datasets with different
sizes. Table 12 shows that THREAD consistently
outperforms the Chunk paradigm across datasets
of varying scales, achieving higher element ac-
curacy while maintaining acceptable costs. This
demonstrates THREAD’s scalability in handling
both longer documents and larger corpora.

18308

