
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 1778–1818
November 4-9, 2025 ©2025 Association for Computational Linguistics

SwarmAgentic: Towards Fully Automated Agentic System Generation via
Swarm Intelligence

Yao Zhang 1,3 Chenyang Lin 2 Shijie Tang 1 Haokun Chen1

Shijie Zhou 2 Yunpu Ma 1,3 Volker Tresp1,3

1 LMU Munich 2 Technical University of Munich
3 Munich Center for Machine Learning

yzhang@dbs.ifi.lmu.de tresp@dbs.ifi.lmu.de

Abstract

The rapid progress of Large Language Mod-
els has advanced agentic systems in decision-
making, coordination, and task execution. Yet,
existing agentic system generation frameworks
lack full autonomy, missing from-scratch agent
generation, self-optimizing agent functional-
ity, and collaboration, limiting adaptability and
scalability. We propose SwarmAgentic, the
first framework that fully automates agentic
system generation, optimization, and collabo-
ration, constructing agents from scratch and
jointly refining functionality and coordination
via language-driven exploration. To enable
efficient search over system-level structures,
SwarmAgentic maintains a population of can-
didate systems and evolves them via feedback-
guided updates, drawing inspiration from Par-
ticle Swarm Optimization (PSO). We evalu-
ate our method on six real-world, open-ended,
and exploratory tasks involving high-level plan-
ning, system-level coordination, and creative
reasoning. Given only a task description and
an objective function, SwarmAgentic outper-
forms all baselines, achieving a +261.8% rel-
ative improvement over ADAS on the Trav-
elPlanner benchmark, highlighting the effec-
tiveness of full automation in structurally un-
constrained tasks. This framework marks a sig-
nificant step toward scalable and autonomous
agentic system design, bridging swarm intelli-
gence with fully automated system multi-agent
generation. Our code is publicly released at
github.com/SwarmAgentic.

1 Introduction

The advancement of Large Language Models
(LLMs) (Achiam et al., 2023; Guo et al., 2025)
has substantially advanced the capabilities of agen-
tic systems (Du et al., 2023; Shinn et al., 2024;
Wang et al., 2024), enabling autonomous decision-
making (Li et al., 2025), coordination (Qian et al.,
2024), and complex task execution (Xi et al., 2024;

Zhang et al., 2025). Nonetheless, current agen-
tic system generation frameworks lack full auton-
omy, missing from-scratch agent generation, self-
optimizing functionality, and collaboration (Wu
et al., 2023; Li et al., 2023; Hong et al., 2023).
These design rigidities limit adaptability and scal-
ability, suppress the emergence of self-optimizing
system behaviors, and impose significant engineer-
ing overhead. As a result, such systems struggle to
accommodate diverse and complex task specifica-
tions without substantial manual intervention.

This challenge becomes even more pronounced
in open-ended, exploratory tasks that require
high-level planning and system-level coordination,
where manually designing agents and their collab-
oration strategies is prohibitively complex, labor-
intensive, and hard to scale. Addressing this re-
quires a practical framework equipped with three
core capabilities: From-Scratch Agent Genera-
tion, Self-Optimizing Agent Functionality, and Self-
Optimizing Agent Collaboration, together enabling
scalable and fully autonomous agentic system con-
struction. While recent work has explored agentic
system automation (Khattab et al., 2023; Zhang
et al.; Wang et al., 2023), no existing framework
satisfies all three autonomy criteria, as shown in
Tab. 1. SPP (Wang et al., 2023) lacks from-scratch
agent generation, behavior adaptation, and collabo-
ration restructuring. EvoAgent (Yuan et al., 2024)
and AgentSquare (Shang et al., 2024) support func-
tionality optimization but rely on fixed structures.
AutoAgents (Chen et al., 2023a), AFlow (Zhang
et al., 2024a), Agent Symbolic Learning (Zhou
et al., 2024), and ADAS (Hu et al., 2024) depend
on templates or seed agents, and thus fail to gener-
ate agents from scratch.

To address this gap, we introduce SwarmAgen-
tic, a fully automated framework for agentic system
generation that explores a language-driven, sym-
bolic design space to instantiate agents from scratch
and jointly optimize their functionalities and col-

1778

https://yaoz720.github.io/SwarmAgentic/

Framework From-Scratch
Agent Generation

Self-Optimizing
Agent Functionality

Self-Optimizing
Agent Collaboration

SPP (Wang et al., 2023) ✗ ✗ ✗

EvoAgent (Yuan et al., 2024) ✗ ✓ ✗

AgentSquare (Shang et al., 2024) ✗ ✓ ✗

AutoAgents (Chen et al., 2023a) ✗ ✓ ✓
AFlow (Zhang et al., 2024a) ✗ ✓ ✓
Agent Sym. Learning (Zhou et al., 2024) ✗ ✓ ✓
ADAS (Hu et al., 2024) ✗ ✓ ✓
SwarmAgentic ✓ ✓ ✓

Table 1: Comparison between SwarmAgentic and existing frameworks along three dimensions of agentic system
autonomy. SwarmAgentic is the only framework satisfying all three, enabling fully automated and scalable agentic
system generation without human intervention. See Appendix A for definitions and capability assessments.

laboration strategies, entirely without human in-
tervention. To support this search process, Swar-
mAgentic leverages a gradient-free, population-
based optimization scheme inspired by Particle
Swarm Optimization (PSO) (Kennedy and Eber-
hart, 2002), which is well-suited for navigating
non-differentiable, structurally diverse system con-
figurations through parallel exploration and itera-
tive refinement.

Specifically, SwarmAgentic represents each
agentic system as a particle, encoding agents and
their collaboration strategies in structured language.
Unlike traditional PSO, which optimizes numerical
vectors, SwarmAgentic employs language-based
transformations for velocity and position updates,
ensuring interpretable optimization. The process
begins with particle initialization to generate di-
verse agentic systems, followed by LLM-driven
flaw identification to detect inefficiencies. Velocity
updates integrate failure-driven adjustments, per-
sonal best guidance, and global best guidance to
balance self-learning and swarm-based improve-
ments. Position updates iteratively refine system
configurations until a stopping criterion is met.

We evaluate SwarmAgentic on six real-world,
open-ended, and exploratory tasks that demand
high-level planning, system-level coordination, and
creative reasoning. Given only a task description
and an objective function, SwarmAgentic achieves
a 261.8% relative gain over ADAS on TravelPlan-
ner, and outperforms all baselines across Trip Plan-
ning, Meeting Planning, Calendar Scheduling, Cre-
ative Writing, and MGSM. These results highlight
the effectiveness of fully automated agentic sys-
tem generation on structurally unconstrained tasks,
where no fixed templates or handcrafted agents can
be reused. This framework marks a significant step
toward scalable and autonomous agentic system

design, bridging swarm intelligence with fully au-
tomated system generation.

The key contributions of this work are:

1. We introduce SwarmAgentic, a fully auto-
mated framework for agentic system gener-
ation that requires no predefined agents or
human intervention. It leverages a language-
driven population-based search to jointly opti-
mize agent functionality and collaboration.

2. We reformulate PSO into a symbolic,
language-based optimization process, where
agents and their coordination strategies are
encoded as structured representations and
evolved in a non-differentiable design space.

3. We propose a Failure-Aware Velocity Update
mechanism, which incorporates LLM-guided
flaw identification to dynamically guide con-
figuration refinement, enabling targeted self-
optimization across iterations.

4. We demonstrate that SwarmAgentic outper-
forms strong baselines on six real-world, open-
ended tasks involving high-level planning and
multi-agent coordination, achieving state-of-
the-art performance with only task descrip-
tions and objective functions as input.

2 Related Work

2.1 Agentic System Generation

LLM-based multi-agent frameworks (Li et al.,
2023; Wu et al., 2023; Hong et al., 2023) enhance
task-solving through agent collaboration but rely
on fixed workflows and human intervention, lim-
iting adaptability. Recent approaches, such as
SPP (Wang et al., 2023) and AgentVerse (Chen

1779

et al., 2023b), automate large-scale agent genera-
tion—SPP simulates multi-persona collaboration,
while AgentVerse assembles expert teams. AutoA-
gents (Chen et al., 2023a) refines agents through
discussion-driven iteration, and EvoAgent (Yuan
et al., 2024) optimizes multi-agent configurations
via evolutionary algorithms. Despite progress in
automation, these methods treat agent collabora-
tion strategies as static templates, restricting adapt-
ability. In contrast, SwarmAgentic eliminates pre-
defined constraints by jointly optimizing agent
functionality and collaboration strategies through
a language-driven PSO framework, enabling fully
automated and scalable agentic system generation.

2.2 Agentic System Optimization

Optimizing agentic systems requires refining both
agent functionalities and collaboration strategies.
In single-agent settings, methods like Agent-
Pro (Zhang et al., 2024b) improve agent poli-
cies through trajectory-based updates, while multi-
agent approaches, such as GPTSwarm (Zhuge
et al., 2024) and DyLAN (Liu et al., 2024), fo-
cus on optimizing inter-agent coordination. AU-
TOACT (Qiao et al., 2024) refines agent decisions
through filtered trajectories, while AutoFlow (Li
et al., 2024) leverages reinforcement learning for
workflow optimization. ADAS (Hu et al., 2024)
and AgentSquare (Shang et al., 2024) further en-
hance adaptability by exploring diverse system
module compositions. Additionally, Agent Sym-
bolic Learning (Zhou et al., 2024) and GödelA-
gent (Yin et al., 2024) leverage text-based gradi-
ent optimization for recursive self-improvement.
However, these methods separately optimize agent
functionality and collaboration, limiting adaptabil-
ity. SwarmAgentic unifies both as interdependent
components, using language-driven PSO to dynam-
ically refine agentic systems.

3 Preliminary

3.1 Agentic System Optimization

An agentic system at generation t, denoted as
S(t)i , represents the i-th solution within the pop-
ulation. It comprises an agent set A(t)

i =

{A(t)
i,1, A

(t)
i,2, . . . , A

(t)
i,m} and a collaborative struc-

tureW(t)
i . Each agent A(t)

i,k, where k ∈ {1, . . . ,m},
is represented as: A(t)

i,k =
(
I
(t)
i,k , R

(t)
i,k, P

(t)
i,k

)
, where

I
(t)
i,k is the agent identifier, uniquely defining its

role within the system, R(t)
i,k is the responsibility,

specifying the tasks it is capable of performing,
and P

(t)
i,k is the execution policy, governing its

decision-making and task execution. Agents op-
erate within a collaborative structure, defined as:
W(t)

i = {W (t)
i,1 ,W

(t)
i,2 , . . . ,W

(t)
i,n}, where each step

W
(t)
i,l , l ∈ {1, . . . , n} assigns a specific agent A(t)

i,k

to execute the corresponding task. SwarmAgentic
iteratively refines the agent set A and collabora-
tive structures W to optimize the agentic system
S, aiming to maximize task performance, which
is quantitatively assessed by the fitness function
J(S). The Basic Structure of the Agentic System
is detailed in Appendix D.1.

3.2 Particle Swarm Optimization
PSO (Kennedy and Eberhart, 2002), inspired by
swarm intelligence, models the dynamic adapta-
tion processes observed in natural systems, such as
bird flocking and fish schooling. Each particle iter-
atively refines its position based on individual expe-
riences while incorporating shared knowledge from
the swarm, balancing exploration and exploitation.
This decentralized and self-organizing mechanism
makes PSO particularly well-suited for optimiza-
tion in complex search spaces. Each particle main-
tains a position x

(t)
i , representing a candidate solu-

tion, and a velocity v
(t)
i , which updates its move-

ment in the search space. The position and velocity
updates follow:

v
(t+1)
i = ωv

(t)
i + c1r1(p

∗
i − x

(t)
i) + c2r2(g − x

(t)
i), (1)

x
(t+1)
i = x

(t)
i + v

(t+1)
i , (2)

where p∗i is the personal best found by particle i,
and g is the global best in the swarm. The iner-
tia weight ω balances exploration and exploitation,
while the learning coefficients c1, c2 determine the
influence of personal and global bests. The stochas-
tic factors r1, r2 introduce randomness to enhance
diversity and prevent premature convergence. After
each iteration, each particle is evaluated using the
fitness function J , guiding the optimization pro-
cess until a predefined stopping criterion, such as
a fixed number of iterations, is met. Unlike tra-
ditional PSO on continuous vectors, our setting
optimizes discrete, structured configurations. We
reinterpret velocity and position updates as seman-
tic transformations over language-based represen-
tations, enabling swarm-based search in symbolic,
high-dimensional language spaces.

1780

Initialization Particle Position Update Search Result

Failu
re-D

riv
en Adjustm

ents

Global Best Guidance

Personal Best Guidance

&

Current Position
of i-th Particle

Personal Best

Global Best

New Position
of i-th Particle !!

(#$%)!!
(#)

Optimization Direction

&

: Add : Delete

: Modify : Reorder

Operators

"!
(#$%)

#("!#)

& − !!
(#)

(!∗ − !!
(#)

(!∗

&Best Found Particle

Initial Particles

&

Figure 1: Overview of SwarmAgentic. (1) Initialization: Generates a diverse population of agentic systems,
encoding agent sets, and collaboration structures in a structured language space. (2) Particle Position Update:
Iteratively refines agentic systems through failure-aware velocity updates and position updates, incorporating
failure-driven adjustments, personal best guidance, and global best guidance. Both velocity and position updates
operate on structured language representations, enabling interpretable transformations over agent functionality
and collaboration strategies (see Appendix E.1 for examples). (3) Search Result: Returns the best-performing
agentic system g, refined through structured updates that balance self-adaptation and swarm-based optimization for
enhanced coordination and efficiency. The pseudo code for SwarmAgentic is in Appendix D.2

4 SwarmAgentic

SwarmAgentic adapts PSO to a language-based
search space, optimizing agentic systems as struc-
tured textual representations. Unlike traditional
PSO in continuous vector spaces, it explores a
combinatorial space of agent functionalities and
collaboration strategies. Each particle encodes an
agentic system in language, and position updates
are realized as text-based transformations guided
by structural feedback, enabling population-based
search in discrete, non-numeric domains.

The optimization process begins with particle
initialization, where candidate agentic systems are
randomly synthesized from the task description
using an LLM. Unlike numerical optimization,
where position updates are directly guided by fit-
ness scores, SwarmAgentic first performs flaw iden-
tification by analyzing system performance against
the objective function, identifying inefficiencies
before making adjustments to ensure targeted opti-
mization. Building on flaw identification, SwarmA-
gentic generates optimization directions through
failure-aware velocity updates, integrating failure-
driven adjustments, personal best guidance (self-
learning), and global best guidance (swarm-based).
The refinements from velocity updates are applied
through position updates, modifying agent func-
tionalities and collaboration strategies. By trans-
lating optimization directions into concrete adjust-
ments, position updates iteratively refine agentic
system configurations until the predefined itera-
tion limit is met. The best-performing system g

is retained as the final solution. The following
sections detail each step, illustrating how SwarmA-
gentic transitions from numerical-based updates to
language-driven transformations for structured and
interpretable optimization.

4.1 Particle Initialization

SwarmAgentic initializes a diverse population of
candidate agentic system S(0)i each represented as
a particle in the PSO search space. A system com-
prises a collaborative structureW(0)

i and an agent
set A(0)

i , with its configuration encoded as an ini-
tial position x

(0)
i . The velocity v

(0)
i governs iter-

ative textual modifications, progressively refining
Ai andWi throughout the optimization process.

To enhance structural diversity, we employ a
temperature-controlled sampling strategy. Specif-
ically, low-temperature particles generate stable
configurations closely aligned with established pat-
terns. Medium-temperature particles introduce
moderate variability, balancing structural stability
and design innovation. High-temperature particles
maximize exploration, yielding unconventional ar-
chitectures that expand the search space. This strat-
ification balances exploitation of high-performing
structures with exploration of novel solutions.

Velocity initialization influences early search by
directing particles toward promising regions while
maintaining diversity. Initial velocities are assigned
based on estimated fitness, promoting convergence
while preventing stagnation in suboptimal config-
urations. The personal best of each particle is set

1781

to its initial position, with fitness evaluated using
predefined task-specific metrics. The global best
remains undefined until all particles are assessed,
after which the top-performing configuration serves
as a reference for subsequent optimization.

4.2 Flaw Identification

In language-driven optimization frameworks, iden-
tifying flaws is essential to ensure refinements are
targeted and effective. Unlike traditional PSO,
which updates positions based on scalar fitness
scores, SwarmAgentic detects system deficiencies
through an LLM-driven analysis of execution fail-
ures, enabling structured and interpretable updates.
Flaws in agentic systems can be categorized into
agent flaws and collaborative structures flaws, both
of which impact efficiency and reliability. Agent
flaws include missing agents that leave critical tasks
unassigned, redundant agents that introduce inef-
ficiencies, and ambiguous policies that hinder co-
ordination. Collaborative structures flaws encom-
pass missing steps that disrupt execution, redundant
steps that increase overhead, incomplete contextual
information that prevents agents from making in-
formed decisions, and misaligned task outcomes
that propagate errors to subsequent steps, leading to
cascading failures. SwarmAgentic systematically
identifies system deficiencies through structured
evaluation. Task performance is assessed based on
the objective function, producing an error set E(t)i .
Given E(t)i and the current system S(t)i , an LLM
analyzes failure patterns and derives flaw f

(t+1)
i ,

which consists of agent flaws and structures flaws.
This structured diagnosis ensures that velocity up-
dates are informed by actual performance bottle-
necks rather than arbitrary modifications, leading
to more effective system refinements.

4.3 Failure-Aware Velocity Update

SwarmAgentic enhances traditional PSO by incor-
porating memory-based adaptation and language-
driven velocity updates, structuring refinements as
textual transformations rather than numerical ad-
justments. SwarmAgentic leverages an LLM to per-
form failure-aware refinements, enabling precise
corrections rather than indiscriminately reinforcing
past configurations. By integrating failure-driven
adjustments, personal best guidance, and global
best guidance, SwarmAgentic systematically elim-
inates recurring flaws, ensuring that velocity up-
dates lead to meaningful structural improvements.

The velocity update follows:

v
(t+1)
i = LLMvel(cfrfF (v

(t)
i),

cprp(p
∗
i − x

(t)
i), cgrg(g − x

(t)
i)),

(3)

where cf , cp, cg represent the repulsion coefficient,
cognitive coefficient, and social coefficient, respec-
tively, governing failure-driven adjustments, per-
sonal best guidance, and global best guidance.
rf , rp, rg are stochastic exploration factors, intro-
ducing controlled randomness to enhance search
diversity. F (v

(t)
i) encapsulates failure-driven ad-

justments, identifying the failed component of the
previous velocity update.

Failure-Driven Adjustments. SwarmAgentic
records failed modifications and uses LLM-based
refinement to eliminate ineffective updates. The
failure experience term captures unsuccessful ve-
locity updates that did not improve task perfor-
mance. Integrated into the velocity update, this
memory mechanism prevents repeated suboptimal
adjustments. To refine updates, SwarmAgentic
provides the LLM with identified flaws from the
previous configuration f

(t)
i , current configuration

f
(t+1)
i , and prior update plan v

(t)
i . By analyzing

these inputs, the LLM detects persistent flaws and
ineffective corrections, refining velocity updates
as:

cfrfF (v
(t)
i) = LLMfail(v

(t)
i , f

(t)
i , f

(t+1)
i). (4)

Personal Best Guidance. Each particle retains
its highest-performing configuration as a personal
best p∗i . Instead of directly following p∗i , Swar-
mAgentic utilizes an LLM to compare the current
configuration x

(t)
i with p∗i , refining updates based

on the identified flaws f (t+1)
i to ensure precise cor-

rections. Formally,

cprp(p
∗
i − x

(t)
i) = LLMpers(x

(t)
i , p∗i , f

(t+1)
i). (5)

Global Best Guidance. Each particle references
the highest-performing configuration in the swarm
as the global best g, guiding updates while balanc-
ing exploration and exploitation to prevent prema-
ture convergence. Instead of directly following g,
SwarmAgentic employs an LLM to refine updates
by comparing the current configuration x

(t)
i with g

and identifying transferable improvements based
on detected flaws f (t+1)

i . Formally,

cgrg(g − x
(t)
i) = LLMglob(x

(t)
i , g, f

(t+1)
i). (6)

1782

Method Delivery Commonsense Hard Constraint Final
Rate Micro Macro Micro Macro

Direct 100.0 / 100.0 57.3 / 79.4 3.9 / 15.8 11.0 / 27.5 3.3 / 16.1 0.0 / 2.2
CoT (Wei et al., 2022) 100.0 / 100.0 61.0 / 76.7 2.8 / 11.7 10.0 / 22.4 3.3 / 12.8 0.0 / 2.2
Self-Refine (Madaan et al., 2024) 100.0 / 98.9 56.0 / 75.3 1.7 / 7.2 3.1 / 12.4 1.1 / 7.2 0.0 / 1.1
SPP (Wang et al., 2023) 99.4 / 96.7 54.6 / 70.6 1.7 / 5.6 3.8 / 11.4 1.1 / 7.8 0.0 / 0.6
EvoAgent (Yuan et al., 2024) 100.0 / 100.0 64.2 / 81.5 7.8 / 21.1 11.0 / 31.4 4.4 / 18.9 1.1 / 7.2
ADAS (Hu et al., 2024) 100.0 / 100.0 70.9 / 88.5 6.1 / 34.4 17.4 / 50.2 9.4 / 27.8 1.1 / 8.9

SwarmAgentic 100.0 / 100.0 70.9 / 92.9 12.8 / 56.1 21.0 / 66.7 9.4 / 52.8 3.3 / 32.2

Table 2: Performance on the TravelPlanner. Each cell shows results in the format: GPT-3.5 / GPT-4o. SwarmAgentic
outperforms all baseline methods, highlighting its effectiveness in automated agentic system generation.

4.4 Position Update
After updating velocity, each agentic system ap-
plies structural transformations to refine its config-
uration as follows:

x
(t+1)
i = LLMpos(x

(t)
i , v

(t+1)
i). (7)

SwarmAgentic optimizes agentic systems
through two key adaptation mechanisms: (1)
Agent-Level Adaptation: Modifies individual
agents A(t)

i,k by adjusting roles I(t)i,k , responsibility

R
(t)
i,k, and execution policies P

(t)
i,k to enhance per-

formance. New agents may be introduced, while
redundant ones are removed based on feedback.
(2) Collaborative Structures Reconfiguration:
Enhances the collaborative structures W(t)

i by
optimizing task sequencing, refining dependencies,
and improving inter-agent coordination. Steps
are reordered to streamline execution, redundant
ones eliminated to reduce overhead, and new
steps incorporated as necessary. Through iterative
refinement, SwarmAgentic continuously improves
agent functionality and collaborative structures,
ensuring efficiency, adaptability, and structural
coherence across generations.

5 Experiments

5.1 Experimental Setup
Tasks. We evaluate SwarmAgentic on six real-
world tasks spanning planning, collaboration, gen-
eration, and reasoning. Most are open-ended
and structurally unconstrained, requiring high-
level planning, system-level coordination. Specif-
ically, we consider: (1) TravelPlanner (TP) (Xie
et al., 2024), which tests long-horizon planning
under user-defined constraints; (2–4) Trip Plan-
ning, Meeting Planning, and Calendar Scheduling
from Natural Plan (NP) (Zheng et al., 2024), which

involve multi-agent scheduling with conflict min-
imization; (5) Creative Writing (CW) (Yao et al.,
2024), which requires coherent multi-paragraph
generation from unordered key points. These tasks
challenge predefined agent templates due to their
structural variability and open-ended semantics.
Additionally, we include (6) MGSM (Shi et al.,
2022), a structured math reasoning task where pre-
defined logic may suffice, to evaluate generaliza-
tion to template-compatible domains. Dataset de-
tails and evaluation metrics are in Appendix C.1

Baselines. We compare SwarmAgentic with both
standard prompting methods and automated ap-
proaches for agentic system generation. The
prompting baselines include: (1) Direct, where the
model responds with a fixed prompt; (2) CoT (Wei
et al., 2022), which improves reasoning via step-by-
step generation; and (3) Self-Refine (Madaan et al.,
2024), which iteratively refines outputs through
self-feedback. For automated agentic systems, we
select methods that minimize task-specific priors
to reduce human intervention and better expose the
underlying capacity for autonomous agent discov-
ery, including: (4) SPP (Wang et al., 2023), which
performs multi-turn self-collaboration across mul-
tiple personas; (5) EvoAgent (Yuan et al., 2024),
which evolves agent configurations via optimiza-
tion over roles, prompts, and behavior policies; and
(6)ADAS (Hu et al., 2024), which uses a meta agent
to discover agentic systems in code through itera-
tive generation and refinement. Detailed baseline
implementations are in Appendix C.2.

Models and Implementation Details. SwarmA-
gentic, following ADAS, employs distinct models
for optimization and execution. Specifically, we
use GPT-4o-mini-0718 (OpenAI, 2024b) as the op-
timizer, and select GPT-3.5-turbo-0125 (OpenAI,
2022), GPT-4o-0806 (OpenAI, 2024a), Claude-

1783

Method Natural Plan (NP) Creative Writing (CW) MGSM
Trip

Planning
Meeting
Planning

Calendar
Scheduling

Direct 7.3 / 3.7 19.0 / 45.0 19.9 / 43.0 5.0 / 6.3 28.1 / 87.3
CoT (Wei et al., 2022) 9.0 / 1.0 19.0 / 50.0 20.0 / 60.0 5.3 / 7.0 28.7 / 81.0
Self-Refine (Madaan et al., 2024) 4.4 / 4.4 12.0 / 41.0 13.0 / 63.0 5.2 / 6.2 30.5 / 86.4
SPP (Wang et al., 2023) 5.0 / 1.3 4.0 / 33.0 22.0 / 44.0 5.9 / 7.6 55.2 / 84.9
EvoAgent (Yuan et al., 2024) 5.6 / 1.9 4.0 / 38.0 21.6 / 52.0 6.1 / 7.1 57.3 / 87.0
ADAS (Hu et al., 2024) 1.9 / 3.1 11.0 / 43.0 21.0 / 66.0 6.2 / 7.3 29.0 / 87.0

SwarmAgentic 13.1 / 13.1 23.0 / 56.0 28.0 / 82.0 8.2 / 8.5 65.6 / 88.4

Table 3: Performance on Natural Plan, Creative Writing, and MGSM. Results are shown as GPT-3.5 / GPT-4o.
SwarmAgentic achieves the highest performance across all tasks, significantly outperforming baseline methods.

3.5-sonnet-0620 (Anthropic, 2024), DeepSeek-
V3 (DeepSeek-AI, 2024), Gemini-1.5-Pro (Pichai
and Hassabis, 2024) as executor models. Swar-
mAgentic is configured with 5 particles and 10
optimization iterations, while ADAS is run with a
maximum of 30 iterations.

5.2 Results
Tab. 2 and 3 report results across all tasks. Best
agentic systems discovered by SwarmAgentic for
each task are provided in Appendix F. We refer
the reader to Appendix C.3 for detailed cost and
latency analysis, where SwarmAgentic achieves
lower cost, more efficient system structures, and
reduced effective latency compared to ADAS.

SwarmAgentic achieves strong gains in open-
ended, structurally unconstrained tasks. Swar-
mAgentic consistently outperforms all baselines on
TP, NP, and CW—achieving a 261.8% gain over
ADAS on TP, leading all subtasks in NP, and gen-
erating more coherent outputs in CW. While prior
frameworks rely on varying degrees of task-specific
priors, SwarmAgentic operates solely based on a
task description and an objective function. These
results highlight the effectiveness of full autonomy
in real-world tasks where static templates fall short.
This underscores its generality across diverse tasks
without hand-crafted assumptions.

Full automation remains effective in structured,
template-compatible tasks. In MGSM, a math
reasoning task with minimal structural variability,
SwarmAgentic still achieves the best score. This
demonstrates strong generalization and confirms
that autonomy does not trade off performance even
when predefined logic suffices.

SwarmAgentic surpasses both manual and auto-
matic baselines through unified autonomy. Di-

rect, CoT, and Self-Refine rely on fixed workflows,
lacking adaptive structure. SPP, EvoAgent, and
ADAS offer partial automation, but fall short of
full autonomy: SPP depends on rigid persona tem-
plates, EvoAgent mutates fixed agent scaffolds, and
ADAS initiates its search from hand-crafted seed
agents. In contrast, SwarmAgentic constructs agent
functionalities, behaviors, and collaboration strate-
gies from scratch and jointly optimizes them with
interpretable, feedback-driven updates, enabling
scalable, task-specific agentic systems.

6 Analysis

6.1 Cross-Model Transferability Analysis

We first optimize the agentic system using GPT-4o-
mini and transfer the discovered system to other
LLMs to test whether the system found with one
model generalizes to others. As shown in Tab. 4,
the transferred SwarmAgentic system consistently
outperforms all baselines, demonstrating strong
cross-model generalizability. Notably, when Swar-
mAgentic is directly optimized and evaluated on
Gemini-1.5-Pro (Gemini-1.5*), the performance
further improves, indicating that model-specific op-
timization can yield additional gains. These results
suggest that while SwarmAgentic systems exhibit
robust transferability across foundation models, tai-
loring the optimization to the target LLM remains
beneficial for achieving optimal results.

6.2 Ablation Study

We assess the impact of key components in Swar-
mAgentic, along with the effects of varying itera-
tion counts and particle counts. A comprehensive
analysis is conducted on 20 instances of the CW
task, with results in Tab. 5.

1784

Method GPT-4o Claude-3.5-sonnet DeepSeek-V3 Gemini-1.5 Gemini-1.5*

Direct 6.3 5.6 6.4 5.4 -
CoT (Wei et al., 2022) 7.0 5.7 5.9 5.8 -
Self-Refine (Madaan et al., 2024) 6.2 5.8 6.1 5.4 -
SPP(Wang et al., 2023) 7.6 8.0 8.3 7.1 -
EvoAgent(Yuan et al., 2024) 7.1 7.9 8.8 6.8 -
ADAS(Hu et al., 2024) 7.3 7.9 7.8 7.1 6.6

SwarmAgentic 8.5 8.3 9.0 7.5 7.8

Table 4: Performance on Creative Writing when transferring the best agentic system discovered by GPT-4o-mini to
other LLMs. SwarmAgentic consistently outperforms all baselines across different LLMs, demonstrating strong
cross-model transferability. Details of the best-discovered system are provided in Appendix F. * indicates results
where the agent is both trained on Gemini-1.5-flash (Subramanya, 2024) and tested on Gemini-1.5-Pro.

Methods Score ∆

Direct 6.2 0%

Different Iteration Count
SwarmAgentic(3,1) 5.9 -4.8%
SwarmAgentic(3,5) 6.4 +3.2%
SwarmAgentic(3,10) 7.0 +12.9%

Different Particle Count
SwarmAgentic(1,5) 6.3 +1.6%
SwarmAgentic(3,5) 6.7 +8.1%
SwarmAgentic(5,5) 6.9 +11.3%

Different Design Settings
SwarmAgentic(5,10) w/o Collab. Struc. Reconfig. 6.7 +8.1%
SwarmAgentic(5,10) w/o Agent-Level Adapt. 7.3 +17.7%
SwarmAgentic(5,10) w/o Failure-Driven Adjust. 8.4 +35.5%
SwarmAgentic(5,10) 8.8 +41.9%

Table 5: Ablation Study on Creative Writing, evaluating
the impact of key components and hyperparameters in
SwarmAgentic. Removing Failure-Driven Adjustments,
Agent-Level Adaptation, or Collaborative Structures Re-
configuration degrades performance, confirming their
importance. Increasing iteration counts and particle
counts improves performance, highlighting the benefits
of iterative refinement and broader exploration. ∆ indi-
cates the differences compared with Direct.

Component Analysis. To analyze the optimiza-
tion dynamics of SwarmAgentic, we assess the im-
pact of its three core mechanisms: Failure-Driven
Adjustments, Agent-Level Adaptation, and Collab-
orative Structures Reconfiguration. As shown in
Tab. 5, removing failure-driven adjustments allows
errors to persist across iterations, significantly im-
pairing performance. Disabling agent-level adapta-
tion restricts role flexibility, reducing system adapt-
ability. Excluding collaborative structures reconfig-
uration disrupts task sequencing and dependency
management, leading to execution inefficiencies.

Impact of Iteration and Particle Count. Tab. 5
shows that increasing either training iterations or
particle count improves performance. More itera-

0 2 4 6 8 10

Iteration
0

5

10

15

20

25

30

35

Su
cc

es
s R

at
e

(%
)

Introduce the Quality Assurance Specialist role
and add a verification step for the
accommodations.

Add Verification step to
confirm accommodations meet
preferences and budget.

Update Quality
Assurance Specialist
to ensure budget
compliance.

Ours
Direct
CoT
Self-Refine
SPP
EvoAgent
ADAS

Figure 2: Search trajectory of SwarmAgentic on Trav-
elPlanner. The Success Rate (SR) improves iteratively
as specialized agents are introduced to refine constraint
handling and enhance plan feasibility.

tions enable progressive refinement through struc-
tured feedback, while a larger particle set enhances
exploration, yielding up to +11.3% improvement
over Direct. These results highlight the benefits of
both iterative optimization and population diversity
in generating high-quality agentic systems.

6.3 Case Study: Search Trajectory on TP

Fig. 2 illustrates the iterative optimization of Swar-
mAgentic on TP, refining both agent sets and col-
laborative structure. The process begins with intro-
ducing a Quality Assurance Specialist and a veri-
fication step for accommodations, boosting SR to
11%. Adding a dedicated verifier to check bud-
get and preference alignment raises performance
to 22%. Finally, the Quality Assurance Specialist
is updated to explicitly enforce budget compliance,
achieving a 33% SR and surpassing all baselines.
While the figure highlights agent evolution, col-
laborative structure optimization occurs in parallel,
reconfiguring task dependencies and execution or-
der to enhance coordination. See Appendix E.1

1785

for step-by-step illustrations of this evolution pro-
cess, and Appendix F.5 for representative agentic
systems found by SwarmAgentic and ADAS.

7 Conclusion

We proposed SwarmAgentic, a language-driven
PSO framework that enables fully automated, self-
optimizing agentic systems. By integrating LLM-
guided optimization, our method refines agent sets
and collaborative structures dynamically, overcom-
ing the rigidity of existing approaches. Extensive
experiments on complex, real-world tasks show
superior adaptability, constraint satisfaction, and
coordination. SwarmAgentic bridges swarm intelli-
gence and autonomous agent evolution, paving the
way for scalable, self-optimizing agentic systems.

Limitations

SwarmAgentic is designed for the automated con-
struction of agentic systems in settings that lack
predefined structural assumptions. While this
promotes generalization to open-ended tasks, the
framework does not incorporate inductive priors,
such as domain-specific templates, that could help
accelerate convergence in more structured environ-
ments. Future work may combine language-driven
initialization with constraint-guided search, offer-
ing a principled trade-off between efficiency and
open-ended flexibility.

Despite its effectiveness in automated agentic
system generation, SwarmAgentic inherits several
limitations intrinsic to LLMs, particularly in factual
reliability and grounded interaction. As SwarmA-
gentic relies on LLMs for structured reasoning and
decision-making, it remains susceptible to halluci-
nations—outputs that appear plausible but are factu-
ally incorrect. These errors can propagate through
optimization cycles, compromising agent configu-
rations and coordination structures. While iterative
refinement helps alleviate such issues, more robust
mitigation may require external knowledge ground-
ing or selective human-in-the-loop verification to
prevent error accumulation.

Additionally, operating purely in a text-based
environment, SwarmAgentic lacks perception and
action capabilities in real-world contexts. In con-
trast to embodied systems, it cannot process mul-
timodal inputs or interact with physical environ-
ments, which limits its applicability in dynamic,
sensor-rich scenarios. Extending the framework
with multimodal models or embodied agents repre-

sents a natural direction for broadening real-world
impact.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Anthropic. 2024. Claude 3.5 sonnet.
anthropic.com/claude-3.5. Accessed: 2024-05-
18.

Guangyao Chen, Siwei Dong, Yu Shu, Ge Zhang,
Jaward Sesay, Börje F Karlsson, Jie Fu, and Yemin
Shi. 2023a. Autoagents: A framework for automatic
agent generation. arXiv preprint arXiv:2309.17288.

Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang,
Chenfei Yuan, Chi-Min Chan, Heyang Yu, Yaxi Lu,
Yi-Hsin Hung, Chen Qian, et al. 2023b. Agentverse:
Facilitating multi-agent collaboration and exploring
emergent behaviors. In The Twelfth International
Conference on Learning Representations.

DeepSeek-AI. 2024. Deepseek-v3.
hf.co/deepseek-ai/v3. Accessed: 2025-05-
18.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenen-
baum, and Igor Mordatch. 2023. Improving factual-
ity and reasoning in language models through multia-
gent debate. arXiv preprint arXiv:2305.14325.

Shangbin Feng, Zifeng Wang, Yike Wang, Sayna
Ebrahimi, Hamid Palangi, Lesly Miculicich, Achin
Kulshrestha, Nathalie Rauschmayr, Yejin Choi, Yulia
Tsvetkov, et al. 2024. Model swarms: Collaborative
search to adapt llm experts via swarm intelligence.
arXiv preprint arXiv:2410.11163.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-r1: In-
centivizing reasoning capability in llms via reinforce-
ment learning. arXiv preprint arXiv:2501.12948.

Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng
Cheng, Jinlin Wang, Ceyao Zhang, Zili Wang, Steven
Ka Shing Yau, Zijuan Lin, Liyang Zhou, et al. 2023.
Metagpt: Meta programming for multi-agent collabo-
rative framework. arXiv preprint arXiv:2308.00352.

Shengran Hu, Cong Lu, and Jeff Clune. 2024. Au-
tomated design of agentic systems. arXiv preprint
arXiv:2408.08435.

James Kennedy and Russell Eberhart. 2002. Particle
swarm optimization. Proceedings of ICNN’95 - In-
ternational Conference on Neural Networks, 4:1942–
1948 vol.4.

1786

https://www.anthropic.com/news/claude-3-5-sonnet
https://huggingface.co/deepseek-ai/DeepSeek-V3
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1109/ICNN.1995.488968

Omar Khattab, Arnav Singhvi, Paridhi Maheshwari,
Zhiyuan Zhang, Keshav Santhanam, Sri Vard-
hamanan, Saiful Haq, Ashutosh Sharma, Thomas T
Joshi, Hanna Moazam, et al. 2023. Dspy: Compiling
declarative language model calls into self-improving
pipelines. arXiv preprint arXiv:2310.03714.

Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii
Khizbullin, and Bernard Ghanem. 2023. Camel:
Communicative agents for" mind" exploration of
large language model society. Advances in Neural
Information Processing Systems, 36:51991–52008.

Manling Li, Shiyu Zhao, Qineng Wang, Kangrui Wang,
Yu Zhou, Sanjana Srivastava, Cem Gokmen, Tony
Lee, Erran Li Li, Ruohan Zhang, et al. 2025. Embod-
ied agent interface: Benchmarking llms for embodied
decision making. Advances in Neural Information
Processing Systems, 37:100428–100534.

Zelong Li, Shuyuan Xu, Kai Mei, Wenyue Hua, Bal-
aji Rama, Om Raheja, Hao Wang, He Zhu, and
Yongfeng Zhang. 2024. Autoflow: Automated work-
flow generation for large language model agents.
arXiv preprint arXiv:2407.12821.

Zijun Liu, Yanzhe Zhang, Peng Li, Yang Liu, and Diyi
Yang. 2024. A dynamic llm-powered agent network
for task-oriented agent collaboration. In First Con-
ference on Language Modeling.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
et al. 2024. Self-refine: Iterative refinement with
self-feedback. Advances in Neural Information Pro-
cessing Systems, 36.

OpenAI. 2022. Introducing chatgpt.
openai.com/chatgpt. Accessed: 2025-05-18.

OpenAI. 2024a. Gpt-4o.
platform.openai.com/gpt-4o. Accessed:
2025-05-18.

OpenAI. 2024b. Gpt-4o mini: advancing cost-efficient
intelligence. openai.com/gpt-4o-mini. Accessed:
2025-05-18.

Sundar Pichai and Demis Hassabis. 2024.
Our next-generation model: Gemini 1.5.
blog.google/gemini-1.5. Accessed: 2025-
05-18.

Chen Qian, Zihao Xie, Yifei Wang, Wei Liu, Yu-
fan Dang, Zhuoyun Du, Weize Chen, Cheng Yang,
Zhiyuan Liu, and Maosong Sun. 2024. Scaling
large-language-model-based multi-agent collabora-
tion. arXiv preprint arXiv:2406.07155.

Shuofei Qiao, Ningyu Zhang, Runnan Fang, Yujie Luo,
Wangchunshu Zhou, Yuchen Eleanor Jiang, Chengfei
Lv, and Huajun Chen. 2024. Autoact: Automatic
agent learning from scratch via self-planning. arXiv
preprint arXiv:2401.05268.

Yu Shang, Yu Li, Keyu Zhao, Likai Ma, Jiahe Liu,
Fengli Xu, and Yong Li. 2024. Agentsquare: Au-
tomatic llm agent search in modular design space.
arXiv preprint arXiv:2410.06153.

Freda Shi, Mirac Suzgun, Markus Freitag, Xuezhi Wang,
Suraj Srivats, Soroush Vosoughi, Hyung Won Chung,
Yi Tay, Sebastian Ruder, Denny Zhou, et al. 2022.
Language models are multilingual chain-of-thought
reasoners. arXiv preprint arXiv:2210.03057.

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik Narasimhan, and Shunyu Yao. 2024. Re-
flexion: Language agents with verbal reinforcement
learning. Advances in Neural Information Process-
ing Systems, 36.

Amar Subramanya. 2024. Gemini gets 1.5
flash, a new related content feature and more.
blog.google/gemini-july. Accessed: 2025-05-
18.

Junlin Wang, Jue Wang, Ben Athiwaratkun, Ce Zhang,
and James Zou. 2024. Mixture-of-agents enhances
large language model capabilities. arXiv preprint
arXiv:2406.04692.

Zhenhailong Wang, Shaoguang Mao, Wenshan Wu, Tao
Ge, Furu Wei, and Heng Ji. 2023. Unleashing the
emergent cognitive synergy in large language mod-
els: A task-solving agent through multi-persona self-
collaboration. arXiv preprint arXiv:2307.05300.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824–24837.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu,
Shaokun Zhang, Erkang Zhu, Beibin Li, Li Jiang,
Xiaoyun Zhang, and Chi Wang. 2023. Auto-
gen: Enabling next-gen llm applications via multi-
agent conversation framework. arXiv preprint
arXiv:2308.08155.

Zhiheng Xi, Yiwen Ding, Wenxiang Chen, Boyang
Hong, Honglin Guo, Junzhe Wang, Dingwen Yang,
Chenyang Liao, Xin Guo, Wei He, et al. 2024.
Agentgym: Evolving large language model-based
agents across diverse environments. arXiv preprint
arXiv:2406.04151.

Jian Xie, Kai Zhang, Jiangjie Chen, Tinghui Zhu,
Renze Lou, Yuandong Tian, Yanghua Xiao, and
Yu Su. 2024. Travelplanner: A benchmark for real-
world planning with language agents. arXiv preprint
arXiv:2402.01622.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
2024. Tree of thoughts: Deliberate problem solving
with large language models. Advances in Neural
Information Processing Systems, 36.

1787

https://openai.com/index/chatgpt/
https://platform.openai.com/docs/models/gpt-4o
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://blog.google/technology/ai/google-gemini-next-generation-model-february-2024/
https://blog.google/products/gemini/google-gemini-new-features-july-2024/

Xunjian Yin, Xinyi Wang, Liangming Pan, Xiaojun
Wan, and William Yang Wang. 2024. G\" odel agent:
A self-referential agent framework for recursive self-
improvement. arXiv preprint arXiv:2410.04444.

Siyu Yuan, Kaitao Song, Jiangjie Chen, Xu Tan, Dong-
sheng Li, and Deqing Yang. 2024. Evoagent: To-
wards automatic multi-agent generation via evolution-
ary algorithms. arXiv preprint arXiv:2406.14228.

Jiayi Zhang, Jinyu Xiang, Zhaoyang Yu, Fengwei Teng,
Xionghui Chen, Jiaqi Chen, Mingchen Zhuge, Xin
Cheng, Sirui Hong, Jinlin Wang, et al. 2024a. Aflow:
Automating agentic workflow generation. arXiv
preprint arXiv:2410.10762.

Shaokun Zhang, Jieyu Zhang, Jiale Liu, Linxin Song,
Chi Wang, Ranjay Krishna, and Qingyun Wu. Offline
training of language model agents with functions as
learnable weights. In Forty-first International Con-
ference on Machine Learning.

Wenqi Zhang, Ke Tang, Hai Wu, Mengna Wang,
Yongliang Shen, Guiyang Hou, Zeqi Tan, Peng Li,
Yueting Zhuang, and Weiming Lu. 2024b. Agent-
pro: Learning to evolve via policy-level reflection
and optimization. Preprint, arXiv:2402.17574.

Yao Zhang, Zijian Ma, Yunpu Ma, Zhen Han, Yu Wu,
and Volker Tresp. 2025. Webpilot: A versatile and au-
tonomous multi-agent system for web task execution
with strategic exploration. Proceedings of the AAAI
Conference on Artificial Intelligence, 39(22):23378–
23386.

Huaixiu Steven Zheng, Swaroop Mishra, Hugh Zhang,
Xinyun Chen, Minmin Chen, Azade Nova, Le Hou,
Heng-Tze Cheng, Quoc V Le, Ed H Chi, et al. 2024.
Natural plan: Benchmarking llms on natural lan-
guage planning. arXiv preprint arXiv:2406.04520.

Wangchunshu Zhou, Yuchen Eleanor Jiang, Long Li,
Jialong Wu, Tiannan Wang, Shi Qiu, Jintian Zhang,
Jing Chen, Ruipu Wu, Shuai Wang, et al. 2023.
Agents: An open-source framework for autonomous
language agents. arXiv preprint arXiv:2309.07870.

Wangchunshu Zhou, Yixin Ou, Shengwei Ding, Long
Li, Jialong Wu, Tiannan Wang, Jiamin Chen, Shuai
Wang, Xiaohua Xu, Ningyu Zhang, et al. 2024. Sym-
bolic learning enables self-evolving agents. arXiv
preprint arXiv:2406.18532.

Mingchen Zhuge, Wenyi Wang, Louis Kirsch,
Francesco Faccio, Dmitrii Khizbullin, and Jürgen
Schmidhuber. 2024. Language agents as optimizable
graphs. arXiv preprint arXiv:2402.16823.

1788

https://arxiv.org/abs/2402.17574
https://arxiv.org/abs/2402.17574
https://arxiv.org/abs/2402.17574
https://doi.org/10.1609/aaai.v39i22.34505
https://doi.org/10.1609/aaai.v39i22.34505
https://doi.org/10.1609/aaai.v39i22.34505

Contents

1 Introduction 1

2 Related Work 2
2.1 Agentic System Generation . 2
2.2 Agentic System Optimization . 3

3 Preliminary 3
3.1 Agentic System Optimization . 3
3.2 Particle Swarm Optimization . 3

4 SwarmAgentic 4
4.1 Particle Initialization . 4
4.2 Flaw Identification . 5
4.3 Failure-Aware Velocity Update . 5
4.4 Position Update . 6

5 Experiments 6
5.1 Experimental Setup . 6
5.2 Results . 7

6 Analysis 7
6.1 Cross-Model Transferability Analysis . 7
6.2 Ablation Study . 7
6.3 Case Study: Search Trajectory on TP . 8

7 Conclusion 9

A Agentic System Generation Autonomy 13
A.1 Defining Autonomy: Three Core Properties . 13
A.2 Evaluation of Existing Agentic Frameworks . 13

B Comparison with MODEL SWARMS: From Model Fusion to Agentic System Generation 14

C Experimental Setup 15
C.1 Dataset Statistics and Evaluation . 15
C.2 Baselines and Configurations . 15
C.3 Computational Cost and Latency . 16

D SwarmAgentic Implementation 16
D.1 Basic Structure of Agentic System . 16
D.2 Pseudo Code for SwarmAgentic . 19
D.3 Prompt Repository . 20

E Case Study 31
E.1 Illustrative Optimization Process . 31

F Best-Discovered Agentic System 34
F.1 MGSM . 35
F.2 Creative Writing . 35
F.3 Meeting Scheduling . 36
F.4 TravelPlanner . 37
F.5 Comparison with ADAS-Discovered Agentic System 40

1789

A Agentic System Generation Autonomy

A.1 Defining Autonomy: Three Core Properties
We define three core properties to evaluate the level of autonomy in agentic system generation. These
properties are mutually exclusive and collectively reflect the system’s ability to construct, adapt, and scale
agent-based solutions.

• From-Scratch Agent Generation requires that the framework must dynamically synthesize complete
agent instances—including their roles, decision logic, and internal structure—without relying on
predefined functional modules, such as hard-coded operators, or task-specific behaviors. Minimal
task-agnostic scaffolding (e.g., I/O wrappers or abstract interface definitions) may be reused, but
all task-specific reasoning strategies, coordination flows, and behavioral compositions must be
newly generated based on the task context. This capability is essential for real-world, open-ended
tasks involving high-level planning, system-level coordination, and creative reasoning, where agent
functionalities and coordination patterns must be automatically derived from the task description and
objective function. Manual design or fixed generation pipelines impose structural priors that hinder
adaptability and prevent the system from generalizing to novel or diverse scenarios.

• Self-Optimizing Agent Functionality indicates whether an agent’s internal logic, such as its role,
responsibility, or execution policy, can be automatically refined by the system itself, during execution
or across iterations, in response to feedback or performance signals, without manual intervention.
This dynamic adaptation must target the agent’s own behavior (not merely global workflow wiring)
and go beyond a fixed, static prompt. This is particularly important in exploratory tasks where agents
often face ambiguous goals or unexpected failures. Without self-adjustment, the system would rely
on brittle static prompts and require external corrections, undermining its autonomy and scalability.

• Self-Optimizing Agent Collaboration indicates whether the framework can autonomously re-
configure collaborative structures, including task sequencing, dependency refinement, inter-agent
coordination, and the addition or removal of execution steps. This supports dynamic restructuring of
how agents interact to improve efficiency and adaptability. Effective collaboration in open-ended
multi-agent settings demands flexibility: task decomposition, role delegation, and information flow
often need to be revised mid-execution. Without the ability to restructure inter-agent workflows, the
system cannot recover from coordination failures or adapt to emergent task constraints.

A.2 Evaluation of Existing Agentic Frameworks
We evaluate each baseline framework against these autonomy properties defined above. Below we provide
justification for each binary assignment in Tab. 1.

• SPP (Wang et al., 2023) does not satisfy From-Scratch Agent Generation: it relies on a hard-
coded multi-persona prompt scaffold that prescribes the three-stage pattern (persona identification
→ brainstorm → revision) and embeds two hand-crafted examples. The agents’ roles, dialogue
order, and interaction protocol are therefore predefined rather than synthesised from the task. SPP
also fails Self-Optimizing Agent Functionality: the underlying prompts and decision policies are
frozen, so feedback only changes the answer text, not the agents’ own behaviour. It likewise fails
Self-Optimizing Agent Collaboration, because the interaction pattern cannot be expanded, pruned,
or reordered at run time.

• EvoAgent (Yuan et al., 2024) does not satisfy From-Scratch Agent Generation: evolution begins
from a hand-written specialist agent supplied by MetaGPT, AutoGen, or a similar template, and
merely mutates its roles, skills, and prompts, so the core logic is derived rather than synthesised
directly from the task. It does satisfy Self-Optimizing Agent Functionality, as LLM-guided
mutation plus fitness evaluation iteratively refines each agent’s internal behaviour. However, it
fails Self-Optimizing Agent Collaboration: the interaction topology is fixed by the underlying
framework—evolution can modify individuals but cannot reorder tasks, alter message routing, or
create new coordination flows.

1790

• AgentSquare (Shang et al., 2024) does not satisfy From-Scratch Agent Generation: search starts
from a fixed library of four standardised module types—planning, reasoning, tool-use, and mem-
ory—extracted from sixteen existing agents. New agents are only recombinations or mutations of
these predefined modules, so core behaviour is not synthesised solely from the task description.
It satisfies Self-Optimizing Agent Functionality, since each module can be mutated or rewritten
by the LLM and retained or discarded based on performance, allowing an agent’s internal logic to
evolve across iterations. It fails Self-Optimizing Agent Collaboration: the framework optimizes a
single-agent modular architecture and never reconfigures multi-agent interaction patterns or execution
topology.

• AutoAgents (Chen et al., 2023a) does not satisfy From-Scratch Agent Generation: the framework
is hard-wired with four manager roles—Planner, Agent-Observer, Plan-Observer, and a run-time
Action-Observer. These modules embed planning, evaluation, and dispatch logic, exceeding the
allowance for minimal task-agnostic scaffolding and anchoring core reasoning to a preset template
rather than synthesizing it solely from the task description. These human-designed interventions
limit their scalability and functionality (Yuan et al., 2024). Specifically, AutoAgents relies on these
four predefined manager roles, and all agent generation and collaboration processes must revolve
around them. The agent team structure and execution plan are not freely synthesized solely from
the task but are constrained within a fixed template. This restricts the system’s flexibility and
dynamic generation capability in adapting to complex and variable tasks. For example, it cannot
effectively handle highly open-ended tasks like TravelPlanner that require dynamic multi-role and
complex constraint coordination. It satisfies Self-Optimizing Agent Functionality: each task-
specific expert executes a THINK→PLAN→ACT→REFLECT loop that automatically rewrites its
own prompt, plan, and memory in response to feedback. It also satisfies Self-Optimizing Agent
Collaboration: the planner–observer dialogue can add or remove experts and resequence steps,
while the Action-Observer dynamically adjusts the plan during execution.

• AFlow (Zhang et al., 2024a) fails From-Scratch Agent Generation: it assembles workflows from a
fixed palette of hard-coded operators (Generate, Revise, Ensemble, Test), so task-specific logic
is selected rather than newly synthesized. It satisfies Self-Optimizing Agent Functionality, as
execution feedback triggers automatic prompt edits, control-flow tweaks, and operator replacement
without human input. It also satisfies Self-Optimizing Agent Collaboration, because the MCTS
search can dynamically reorder tasks, add or prune branches, and revise coordination strategies.

• Agent Symbolic Learning (Zhou et al., 2024) does not satisfy From-Scratch Agent Generation,
because it starts from a manually crafted pipeline inherited from prior work (Zhou et al., 2023) rather
than synthesising roles directly from the task description. It does meet Self-Optimizing Agent
Functionality: each node’s prompt and tool usage are refined via symbolic gradients driven by
language loss. The system also satisfies Self-Optimizing Agent Collaboration, since the pipeline
optimizer can add, delete or move nodes to restructure coordination.

• ADAS (Hu et al., 2024) fails From-Scratch Agent Generation: the search starts from seven hand-
written seed agents, so new agents are mutated variants of these seeds rather than being created
solely from the task description. It satisfies Self-Optimizing Agent Functionality, as the meta-agent
repeatedly rewrites each candidate’s code, prompts, and tool calls using performance feedback,
preserving only the best variants. It satisfies Self-Optimizing Agent Collaboration, since the
meta-agent can insert or remove internal roles and reorder their interactions, letting coordination
structures evolve across iterations.

B Comparison with MODEL SWARMS: From Model Fusion to Agentic System
Generation

MODEL SWARMS (Feng et al., 2024) is a collaborative optimization framework that adapts pretrained
LLM experts by searching in the model weight or token probability space. It applies particle swarm

1791

optimization (PSO) to iteratively interpolate and update a pool of existing models, guided by a task-specific
utility function. The goal is to discover a single adapted model that performs well under limited data
conditions, without requiring fine-tuning or strong assumptions about expert composition.

Despite sharing high-level inspiration from swarm intelligence, our approach differs fundamentally from
MODEL SWARMS in objective, search space, optimization strategy, and output structure. While MODEL
SWARMS optimizes model parameters within a fixed expert pool, our method explores a language-based
agentic system design space. We construct executable multi-agent systems from scratch—each comprising
dynamic roles, internal logic, tool usage, and coordination strategies—based solely on task descriptions.
Additionally, whereas MODEL SWARMS relies on interpolation and performance-based selection, we
introduce a Failure-Aware Velocity Update mechanism that performs symbolic, LLM-guided rewriting
of agent functionalities and collaboration flows. Finally, the outputs are categorically distinct: MODEL
SWARMS produces a single, opaque model optimized for static evaluation, while our framework generates
a modular, interpretable agentic system capable of reasoning, adapting, and evolving in complex, dynamic
environments. This marks a paradigm shift from model fusion to full-system generation.

C Experimental Setup

C.1 Dataset Statistics and Evaluation

MGSM. Following (Hu et al., 2024), we sample 128 training and 800 test questions.

Creative Writing. We use all 100 tasks, reserving the first 5 for training and the remaining 95 for
evaluation.

Natural Plan. We train on a difficulty-balanced subset of the Natural Plan dataset: one example per
difficulty level—cities-to-visit N ∈ [3, 10] for Trip Planning, friends-to-meet N ∈ [1, 10] for Meeting
Planning, and Calendar Scheduling with (i) one-day schedules (N ∈ [3, 7] meetings) and (ii) two-day
schedules (D ∈ [1, 5] days apart). This results in 8 Trip Planning and 10 Meeting and Calendar Scheduling
training examples. Evaluation is conducted on a held-out validation set comprising 10% of the full dataset,
sampled with the same difficulty distribution and disjoint from the training data to avoid leakage.

TravelPlanner. We follow the setup in (Yuan et al., 2024) and evaluate on 180 user queries. For training,
we use 9 representative queries from the original TravelPlanner training set, selected to match the difficulty
distribution of the validation set.

Evaluation Metrics. For all tasks, we follow the evaluation metrics established in the original setting.
(1) TP is assessed based on delivery rate, commonsense constraint pass rate, hard constraint pass rate, and
final pass rate, with micro and macro strategies providing a detailed analysis of constraint satisfaction;
(2) NP employs an exact match score, where generated plans are compared against ground truth using
regex-based parsing to extract key details; (3) CW is evaluated using LLM with a zero-shot prompt,
assigning scalar scores (1-10) and averaging five samples per output to enhance reliability; (4) MGSM
employs an exact match score, where the generated integer answer is compared directly with the reference
answer for correctness.

C.2 Baselines and Configurations

We detail the setup for all baselines to ensure a fair and representative comparison. For each method, we
follow the official implementation and apply task-specific adaptations where required, consistent with the
original design intent.

1. Direct. The LLM answers the input directly without intermediate reasoning or feedback.

2. CoT (Wei et al., 2022). The LLM is prompted to reason step by step before producing a final answer.

3. Self-Refine (Madaan et al., 2024). We adopt the iterative refinement pipeline proposed in the original
paper, using the official codebase and settings.

1792

4. SPP (Wang et al., 2023). We follow the structured persona prompting format from the original paper.
The persona pool and dialogue structure are fixed across tasks, reflecting its hard-coded multi-agent
interaction template.

5. EvoAgent (Yuan et al., 2024). We adopt the official mutation strategies and role initialization
schemes from the released implementation.

6. ADAS (Hu et al., 2024). We employ the full Meta Agent Search framework, including 7 pre-
written seed agents and meta-agent rewriting policies. Following the original setup, we update
task-specific information (e.g., constraints and formats) in the meta-agent prompt to reflect each
domain. Additionally, we adapted the role-based methods from the initial library to better fit each
task.

Prompt Adaptation. For all methods, we made necessary prompt word adjustments to fit each task
(e.g., "writing result" instead of "answer" for Creative Writing) while preserving each method’s logic. No
additional search or adaptation beyond the original algorithm was performed.

C.3 Computational Cost and Latency
We report API-based cost estimates (USD, based on official pricing at submission time) on TP. SwarmA-
gentic uses 5 particles and 10 optimization iterations, while ADAS follows prior work with 30 iterations.
As shown in Tab. 6, SwarmAgentic achieves lower training and validation costs. In addition to cost
savings, it discovers more structurally efficient systems (Appendix F), generating purposeful agents and
streamlined workflows, thereby avoiding the redundant execution patterns often observed in ADAS. These
inefficiencies account for the substantially higher inference cost of ADAS. For latency, we follow the
ADAS evaluation protocol for fair comparison: SwarmAgentic evaluates 5 particles in parallel over 10
sequential rounds, whereas ADAS requires 30 fully sequential rounds. This parallelized design yields
lower effective latency compared to ADAS.

Cost Type SwarmAgentic ADAS Cost Reduction vs. ADAS

Total Training Cost (GPT-4o-mini) $8.74 $11.10 ∼21.3% ↓
Validation Cost per task (GPT-4o) $0.567 $1.11 ∼48.9% ↓

Table 6: Comparison of computational cost on TravelPlanner. SwarmAgentic reduces training cost by 21.3% and
validation cost by 48.9% relative to ADAS.

D SwarmAgentic Implementation

D.1 Basic Structure of Agentic System
We implement a modular framework for role-based multi-agent collaboration. The system defines struc-
tured classes for dynamically instantiating callable functions, parsing inputs, and orchestrating multi-role
execution. The Role class serves as a structural placeholder for role-specific behavior, execution policies,
and responsibilities, which are dynamically instantiated and optimized via LLM-guided search during the
PSO process. The Team class manages inter-agent coordination and information flow. This architecture
supports flexible task delegation and compositional control, and is designed for automated agentic system
generation and refinement. This framework forms the structural backbone of SwarmAgentic, enabling
dynamic agent instantiation and coordination during the PSO-driven search process.

def set_forward(next_solution):
"""
Dynamically creates and returns a callable Python object defined by the input

code string.

Args:
next_solution (str): A string containing valid Python code that defines a

function or a callable object.

1793

Returns:
Callable: The function or callable object generated from the provided code.

"""
...
return func

class Role():
"""
Base class representing a role within an agentic system.

Attributes:
name (str): Name of the agent.
responsibility (str): Description of the agent’s responsibility.
policy (str): Operational policy or behavioral guideline for the agent.
llm (Any): Language model instance used for generating responses.
message (Any): Object that stores the agent’s most recent communication.

"""

def __init__(self , role: dict , llm) -> None:
...

def parse_inputs(self , inputs: List) -> str:
"""

Constructs a task prompt based on the provided inputs.

Args:
inputs (List): A list of inputs , typically including the task and

outputs from other agents.

Returns:
Tuple[str , str]: A tuple containing the current task instance and

combined outputs from other agents.
"""
...
return task_instance , others_outputs

def response(self , task_instance , others_outputs , output):
"""
Generates the agent’s response using LLM.
Args:

task_instance (str): The current task or instruction for this agent.
others_outputs (str): Outputs or messages received from other agents.
output (str): Desired output format or specification.

Returns:
str: The final response generated by the agent.

"""
return self.message.content

def __call__(self , inputs , output):
"""
Executes the agent’s full decision -making process: input parsing , response

generation , and return.

Args:
inputs (List): List of inputs , including task and other agents ’ outputs.
output (str): Output format specification.

Returns:
str: The response generated by the agent.

"""
task_instance , others_outputs = self.parse_inputs(inputs)
return self.response(task_instance , others_outputs , output)

class Team():
"""
class for a team , which consists of multiple agents and a workflow about how

they interact with each other. A particle consists of a team , composed of
multiple interacting agents defined by a workflow , and the executable code
generated by LLM_write_forward.

1794

Attributes:
- llm: LLM model to be used
- roles: List of agents in the team
- workflow: Workflow of the team
- task: Task to be solved by the team
- message_pool: Message pool for the team
"""
def __init__(self , llm , logger) -> None:

...
def call(self , required_role: str , inputs: List = [], output: str = ""):

"""call the role with the required agent name. The inputs are the outputs
from other agents.

Args:
required_role (str): name of the required agent.
inputs (List , optional): inputs for the agent. Defaults to [].
output (str , optional): output requirements for the agent. Defaults to "

".

Returns:
response: response of the role.

"""
...
return responses

1795

D.2 Pseudo Code for SwarmAgentic

Algorithm 1 Agentic System Search with Particle Swarm Optimization

Require: LLM temperatures {tempi}ni=1, fitness function J : x→ R; system initialization function
LLMinit_team; system code-generation function LLMwrite_forward; performance evaluation function
LLMeval; system flaw identification function LLMflaw; velocity initialization function LLMinit_vel;
failure identification function LLMidentify_fail; learning from failure function LLMfail; global best
guidance function LLMglob; personal best guidance function LLMpers; velocity update function
LLMvel; position update function LLMpos;
swarm size N , max iteration T

1: Input: dataset for training D
2: Output: global best checkpoint g
3: for i← 1 to N do
4: // LLMwrite_forward enables automatic code execution
5: Initialize position: x(0)i ← LLMinit_team(tempi)
6: Initialize fitness: j(0)i ← J(x

(0)
i , D)

7: Identify Problem: p(0)i ← LLMeval(x
(0)
i , j

(0)
i)

8: Refection Summarization: f (1)
i ← LLMflaw(x

(0)
i , p

(0)
i)

9: Initialize velocity: v(1)i ← LLMinit_vel(x
(0)
i , f

(1)
i))

10: Initialize personal best: p∗i ← x
(0)
i , jp,i ← j

(0)
i

11: Update Position: x(1)i ← LLMpos(x
(0)
i , v

(1)
i)

12: end for
13: Initialize global best: g ← argmaxi j

(0)
p,i , fg ← maxi j

(0)
p,i

14: for t← 1 to T do
15: for all i = 1, . . . , N (in parallel) do
16: Execution:
17: Update Fitness: j(t)i ← J(x

(t)
i , D)

18: Identify Problem: p(t)i ← LLMeval(x
(t)
i , j

(t)
i)

19: Refection Summarization: f (t+1)
i ← LLMflaw(x

(t)
i , p

(t)
i)

Update Global Best:
20: if j(t+1)

i > jg then
21: g ← x

(t+1)
i ; jg ← j

(t+1)
i

22: end if
Update Personal Best:

23: if j(t+1)
i > jp then

24: p∗i ← x
(t+1)
i ; jp,i ← j

(t+1)
i

25: end if
26: Update Velocity:
27: // LLMidentify_fail identify the previous failed adjustments
28: cfrfF (v

(t)
i) = LLMfail(v

(t)
i , f

(t)
i , f

(t+1)
i) ▷ Eq. (4)

29: cprp(p
∗
i − x

(t)
i) = LLMpers(x

(t)
i , p∗i , f

(t+1)
i) ▷ Eq. (5)

30: cgrg(g − x
(t)
i) = LLMglob(x

(t)
i , g, f

(t+1)
i) ▷ Eq. (6)

31: v
(t+1)
i = LLMvel(cfrfF (v

(t)
i), cprp(p

∗
i − x

(t)
i), cgrg(g − x

(t)
i)) ▷ Eq. (3)

32: Update Position: x(t+1)
i = LLMpos(x

(t)
i , v

(t+1)
i) ▷ Eq. (7)

33: end for
34: end for
35: return g

1796

D.3 Prompt Repository

We employ the following prompts to achieve the automated generation of agentic systems with PSO.
Specifically, we use LLMinit_team to initialize both the roles and the team for each particle at the start
of the process, ensuring consistency in team composition and task allocation. LLMwrite_forward is then
used to generate the corresponding code based on the initialized roles and the given workflow, enabling
forward progression of each particle’s function. To identify problems in the responses, we employ
performance evaluation LLMeval, which analyzes the workflow and task execution to reveal underlying
issues and explain their root causes in relation to the intended process. Once a problem is identified, flaw
identification LLMflaw is applied to trace it back to underlying issues in the role or team configuration.
This step helps uncover structural or logical flaws that may hinder performance.

Next, we initialize the velocity of each particle LLMinit_vel, considering the current team composition
and the identified design flaws. This initialization provides direction and momentum for adjustment
in future iterations. We then examine the failed adjustments LLMidentify_fail from the previous iteration
using a specialized prompt designed to extract and document ineffective changes. The Learning from
Failure prompt LLMfail is used to suggest improved strategies, leveraging past failures to guide more
effective future adjustments. To complement this, we use additional prompts to discover meaningful
adjustments inspired by both the global best team LLMglob and the personal best team LLMpers, promoting
convergence towards optimal configurations. Velocity is updated LLMvel by integrating suggestions from
global best guidance, personal best guidance, and failure-driven learning. This multi-source adjustment
balances exploration and exploitation. Finally, the team configuration is updated LLMpos according to the
plan generated during the velocity update phase, completing one full iteration of the optimization cycle
and preparing for the next.

Prompt Template for Agents

ROLE_PROMPT = ’’’You are {name}. You are working in a team solving the
following specific task:

<task instance >
{instance}
</task instance >

You are also provided with helpful information from other team members:
<helpful information >
{information}
</helpful information >

Instruction
Based on the <task instance > and <helpful information >, your responsibility is

: {responsibility}
Please follow the instructions step by step to give an answer:
<instruction >
{policy}
</instruction >

Output Guidance
Your answer only needs to include: {output}
Think step by step and limit your answer to 100 words.
’’’

Prompt for Agentic System Initialization LLMinit_team

You are an expert in designing a highly efficient , specialized , and
collaborative multi -agent team for a specific task.

** Requirements :**
- The team must break down the task into highly specialized , modular roles.
- Each role should have a focused domain of responsibility , handling only one

1797

primary aspect of the task.
- The information flow must be strictly modular , with each step primarily

receiving structured input from the outputs of previous steps. Steps can
refer to the initial task definition implicitly as needed , but it should
not be treated as a direct input for workflow dependencies.

- Each step ’s output must be structured and usable as a direct input for
subsequent steps , creating a clear , step -by-step workflow.

- Each step can only be assigned to a single role and cannot involve multiple
roles simultaneously.

- The resulting team structure should allow for easy scalability and clarity ,
ensuring that each module can be independently optimized or replaced
without affecting other parts of the system.

** Deliverables :**
1. Define Each Role:

- Name: A clear and descriptive title.
- Responsibility: A narrowly focused set of tasks aligned with that domain.
- Policy: Specific operational guidelines for fulfilling these tasks.

2. Collaboration Structure:
- Clearly outline how roles interact and pass information to one another.
- Ensure that information flows from one role to another in a well -defined

manner. Each role should clearly know which role ’s output it relies on ,
if any. If there is no upstream role , it operates independently (with

no input).
3. Sequential Workflow:

- Illustrate a concrete workflow from start to finish.
- For each step:

* Specify the single role responsible for that step.
* Define its input , which must come from previous roles ’ outputs or be

empty.
* Define its output , which will be used as input for subsequent steps.

- Ensure there is a designated role at the end to integrate all components
into the final deliverable.

Now , giving the following task: {task}

Please design a detailed multi -agent collaborative team that could efficiently
solve the task.

Prompt for System Compilation LLMwrite_forward

You are an expert Python programmer. You are tasked with writing
a function to organize available roles to solve a specific task.
{function description}

You are provided with the following available roles. Each role
can solve a subtask of the complex task:
<available roles >
{roles}
</available roles >

You are also given the workflow of these roles:
<workflow >
{workflow}
</workflow >

Your job is to design the function that represents how the roles
will work together to solve the task.
Use these guidelines when generating the function:
- ALWAYS use **role_response = team.call(role_name: str , inputs: List , output:

str)** to call a role. This will give inputs and required output
instructions to the role and return the role ’s response.
* role_name: The name of the role to call in this step. You can only call

roles in the current team. MUST NOT call a non -existent role from the
available roles.

* inputs: List of the outputs produced by one or more roles in the

1798

previous steps.
* output: What output is expected from the role in this step? Must be

enclosed in double quotation marks (" output ").
- Use the provided workflow instruction as a guide for designing the function ’

s structure.
- Create a well -organized function that represents how the roles will work

together to solve the task efficiently.
- MUST not make any assumptions in the code.
- Ensure that every variable declared in the function is utilized , with no

unused or redundant variables.
- Ensure the created function is complete and correct to avoid runtime

failures.

Examples

Here is an example to help you design the function:
<examples >
{examples}
</examples >

Prompt for Performance Evaluation LLMeval

You are an expert assistant. You are tasked with analyzing the given workflow
to identify where issues occurred , leading to the problem. You must
provide a detailed explanation of the cause of the error.

The team is solving the following tasks:
<task >
{task}
</task >

The roles are collaborative in the following workflow:
<workflow >
{workflow}
</workflow >

You are also provided with the problem in the team result:
<problem >
{evaluation}
</problem >

Please provide a detailed explanation of the root cause of the
<problem > at the identified step(s) with by referencing the
detail information of the <task >, while considering factors such
as incorrect execution , missing information , or deviations from the intended

process.

Prompt for Flaw Identification LLMflaw

You are an expert assistant tasked with reflecting on feedback and indicating
specific flaws in the current team.

Given the following feedback:
<feedback >
{feedback}
</feedback >

The team to optimize is as follows , including its roles and collaborative
workflow:

<current team >
{current team}
</current team >

1799

Instruction

Based on the <feedback >, identify the specific flaws in the roles or workflow
steps that directly contributed to the <feedback >. The flaw should be
within the following types:
1. Missing Role: Were there missing roles in the team that left certain

tasks inadequately addressed or overlooked? Clearly specify which role
may be needed.

2. Redundant Role: Were there redundant roles in the team that were
unnecessary? Clearly indicate the specific role that is redundant.

3. Role Policy Deficiency: If the policy of the role is sufficiently
instructive , clear , and effective. Are there gaps , ambiguities , or
contradictions in the policy that affect role performance? Clearly
specify the name of the role.

4. Missing Workflow Step: Were there missing steps in the workflow that
left certain tasks inadequately addressed or overlooked? Clearly
specify between which two steps the missing step should have occurred.

5. Redundant Workflow Step: Were there redundant steps in the workflow
that are unnecessary? Clearly indicate the specific role and the exact
step number that is redundant.

6. Insufficient Input: Were the inputs insufficient for the workflow steps
? Assess if it includes all the necessary information needed to get
the role ’s output with its responsibility effectively. Clearly specify
the role responsible for the step and the exact step number where the
input was insufficient.

7. Inappropriate Output: Before identifying an output as inappropriate ,
verify whether the requested output falls within the role ’s scope of
responsibility. If the requested output exceeds the role ’s
responsibility , reassign the task to an existing role better suited
for it or create a new role specifically responsible for the output if
no such role exists. Only when the required output is within the role

’s responsibility and still incorrect , missing , or incomplete should
it be classified as inappropriate output for that role. Clearly
specify the role responsible for the step and the exact step number
where the output was inappropriate.

Prompt for Velocity Initialization LLMinit_vel

You are tasked with optimizing a multi -agent team setup to enhance its
performance in solving a specific task.

The team to optimize is as follows , including its roles and collaborative
workflow:

<current team >
{current_team}
</current team >

However , the <current team >’s performance is insufficient and must be improved
based on the following feedback:

<feedback >
{feedback}
</feedback >

Instruction

Follow the instructions to generate your response:
- Use the following OPERATIONS to refine roles within the <current team >:

* Add Role: Introduce a new role when an existing subtask becomes overly
complex or burdensome , requiring a specialized responsibility that
cannot be integrated into current roles without disrupting their
primary responsibilities. Define the role ’s:
- Name: A clear name that reflects its specific responsibility.
- Responsibility: Specific tasks or functions the role will handle.
- Policy: Operational guidelines for fulfilling the role ’s duties.

* Modify Role: Adjust the policy of an existing role for improved role
execution , when the identified inefficiencies or gaps can be addressed

1800

through manageable refinements to its policy , ensuring the changes do
not overburden the role and are within the scope of its

responsibility.
* Delete Role: Remove roles that are redundant , unnecessary , or conflict

with the team ’s primary objectives.
- Use the following OPERATIONS to optimize the workflow of the <current team >:

* Add Step: Add a new step if a gap exists in the workflow that hinders
overall efficiency , coordination , or goal achievement. Ensure the new
step does not duplicate the functions of existing steps and adds clear
value to the process. Define the step ’s:
- Role: The role responsible for acting in this step.
- Input: The input for this step must be the output produced by one or

more roles in previous steps.
- Output: What output is expected from the role in this step?

* Modify Input: Adjust the input of an existing workflow step to ensure
that it comprehensively incorporates outputs from previous steps to
support the current step.

* Modify Output: Modify the output of an existing workflow step to ensure
that it fully aligns with the expected deliverables of the step and
supports the inputs of subsequent steps.

* Delete Step: Delete a step if it has become redundant , no longer
contributes to team goals , or overlaps with other steps in the
workflow. Ensure the removal of the step does not impact other steps ’
efficiency or completeness in achieving objectives.

* Re-order Steps: Re-order steps if their current sequence causes
inefficiencies or coordination issues within the workflow. Ensure the
new order improves logical flow without compromising the integrity or
dependencies of other steps.

- For each identified flaw in <feedback >, apply the following steps:
* Identified Flaw: Clearly outline the specific flaw identified in the <

feedback > section.
* Proposed Adjustment: Specify the exact OPERATIONS to address the **

Identified Flaw **.

Prompt for Failure Identification LLMidentify_fail

You are a strategic advisor focused on enhancing the team ’s performance. Your
role is to carefully analyze the feedback provided and identify failed
adjustments with the previous adjustment plan.

You are given the following feedback on areas for the team
improvement:
<feedback >
{feedback}
</feedback >

You are also provided with the previous adjustment plan , the measures taken to
enhance team performance:

<previous adjustment plan >
{velocity}
</previous adjustment plan >

Instruction

For each flaw in <feedback >, please apply the following steps:
1. Identified Flaw:

- Clearly outline the specific flaw identified in the <feedback > section.
2. Thought:

- Carefully think if there is any ** Proposed Adjustment ** in the <previous
adjustment plan > section for the exact same ** Identified Flaw **.

3. Failed Adjustment:
- Based on your ** Thought**, quote the exact ** Proposed Adjustment ** as

described in <previous adjustment plan > if there is any ** Proposed
Adjustment ** for the same kind of Identified Flaw in <previous
adjustment plan >. Otherwise , say ’None ’ here.

1801

Prompt for Learning from Failure LLMfail

You are a strategic advisor focused on enhancing the team ’s performance. Your
role is to carefully analyze the feedback provided and align team
improvements with previous adjustment directions.

The team to optimize is as follows , including its roles and collaborative
workflow:

<current team >
{team}
</current team >

You are given the following feedback , including every "Identified Flaw" and
its "Failed Adjustment ":

<feedback >
{feedback}
</feedback >

Instruction

Follow the instructions to generate your response:
- Use the following OPERATIONS to refine roles within the <current team >:

* Add Role: Introduce a new role when an existing subtask becomes overly
complex or burdensome , requiring a specialized responsibility that
cannot be integrated into current roles without disrupting their
primary responsibilities. Define the role ’s:
- Name: A clear name that reflects its specific responsibility.
- Responsibility: Specific tasks or functions the role will handle.
- Policy: Operational guidelines for fulfilling the role ’s duties.

* Modify Role: Adjust the policy of an existing role for improved role
execution when the identified inefficiencies or gaps can be addressed
through manageable refinements to its policy , ensuring the changes do
not overburden the role and are within the scope of its responsibility
.

* Delete Role: Remove roles that are redundant , unnecessary , or conflict
with the team ’s primary objectives.

- Use the following OPERATIONS to optimize the workflow of the <current team >:
* Add Step: Add a new step if a gap exists in the workflow that hinders

overall efficiency , coordination , or goal achievement. Ensure the new
step does not duplicate the functions of existing steps and adds clear
value to the process. Define the step ’s:
- Role: The role responsible for acting in this step.
- Input: The input for this step must be the output produced by one or

more roles in previous steps.
- Output: What output is expected from the role in this step?

* Modify Input: Adjust the input of an existing workflow step to ensure
that it comprehensively incorporates outputs from previous steps to
support the current step.

* Modify Output: Modify the output of an existing workflow step to ensure
that it fully aligns with the expected deliverables of the step and
supports the inputs of subsequent steps.

* Delete Step: Delete a step if it has become redundant , no longer
contributes to team goals , or overlaps with other steps in the
workflow. Ensure the removal of the step does not impact other steps ’
efficiency or completeness in achieving objectives.

* Re-order Steps: Re-order steps if their current sequence causes
inefficiencies or coordination issues within the workflow. Ensure the
new order improves logical flow without compromising the integrity or
dependencies of other steps.

- For each identified flaw in <feedback >, apply the following steps:
* Identified Flaw: Clearly outline the specific flaw identified in the <

feedback > section.
* Failed Adjustment: Quote the corresponding ** Failed Adjustment ** of the

** Identified Flaw** in <feedback >.
* Proposed Adjustment: Specify the exact OPERATIONS to address the **

Identified Flaw **. Do not reintroduce or reword the same solution in
** Failed Adjustment **.

1802

Prompt for Learning from the Global Best LLMglob

You are a strategic assistant tasked with improving a team ’s performance by
analyzing the strengths of a higher -performing example team. Your
objective is to understand the specific practices and configurations of
the more optimized team that are directly relevant to solving the current
team ’s issues. You will suggest practical improvements to the current team
without copying outright.

You are tasked with improving the current team ’s roles and collaborative
workflow:

<current team >
{current_team}
</current team >

This team is designed to solve the following types of tasks:
<task >
{task}
</task >

However , the <current team >’s performance is insufficient and must be improved
based on the following feedback:

<feedback >
{feedback}
</feedback >

You have been provided with details of a globally recognized high -performing
team , optimized specifically for solving the same type of <task > as the <
current team >:

<global best team >
{g_best}
</global best team >

Instruction

Follow the instructions to generate your response:
- Use the following OPERATIONS to refine roles within the <current team >:

* Add Role: Introduce a new role when an existing subtask becomes overly
complex or burdensome , requiring a specialized responsibility that
cannot be integrated into current roles without disrupting their
primary responsibilities. Define the role ’s:
- Name: A clear name that reflects its specific responsibility.
- Responsibility: Specific tasks or functions the role will handle.
- Policy: Operational guidelines for fulfilling the role ’s duties.

* Modify Role: Adjust the policy of an existing role for improved role
execution , when the identified inefficiencies or gaps can be addressed
through manageable refinements to its policy , ensuring the changes do
not overburden the role and are within the scope of its

responsibility.
* Delete Role: Remove roles that are redundant , unnecessary , or conflict

with the team ’s primary objectives.
- Use the following OPERATIONS to optimize the workflow of the <current team >:

* Add Step: Add a new step if a gap exists in the workflow that hinders
overall efficiency , coordination , or goal achievement. Ensure the new
step does not duplicate the functions of existing steps and adds clear
value to the process. Define the step ’s:
- Role: The role responsible for acting in this step.
- Input: The input for this step must be the output produced by one or

more roles in previous steps.
- Output: What output is expected from the role in this step?

* Modify Input: Adjust the input of an existing workflow step to ensure
that it comprehensively incorporates outputs from previous steps to
support the current step.

* Modify Output: Modify the output of an existing workflow step to ensure
that it fully aligns with the expected deliverables of the step and
supports the inputs of subsequent steps.

* Delete Step: Delete a step if it has become redundant , no longer
contributes to team goals , or overlaps with other steps in the

1803

workflow. Ensure the removal of the step does not impact other steps ’
efficiency or completeness in achieving objectives.

* Re-order Steps: Re-order steps if their current sequence causes
inefficiencies or coordination issues within the workflow. Ensure the
new order improves logical flow without compromising the integrity or
dependencies of other steps.

- For each identified flaw in <feedback >, apply the following steps:
* Identified Flaw: Clearly outline the specific flaw identified in the <

feedback > section.
* Thought: What can we learn from the <global best team >’s descriptions to

do better in the ** Identified Flaw **?
* Comparative Insights:

- Extract specific elements from the <global best team >’s descriptions
that demonstrate excellence in the ** Identified Flaw **.

- Present these elements as part of a structured sentence , explicitly
quoting the key phrases from their role responsibilities , role
policies , step inputs , step outputs , or step orders.

- Ensure the response integrates the quoted descriptions into a
coherent sentence without adding commentary , assumptions , or
analysis.

- If nothing helpful to solve the ** Identified Flaw**, say ’None ’.
* Proposed Adjustment: The adjustment must directly reflect and utilize

the specific phrases quoted in the ** Comparative Insights **. The
wording and content of the adjustment must align with these insights
without introducing unrelated suggestions , rephrased ideas , or
unquoted elements. The response must clearly demonstrate how the
adjustment directly incorporates the practices described in **
Comparative Insights **. If ** Comparative Insights ** is ’None ’, say ’
None ’ here.

Prompt for Learning from the Personal Best LLMpers

You are a strategic assistant tasked with improving a team ’s performance by
analyzing the strengths of a higher -performing example team. Your
objective is to understand the specific practices and configurations of
the more optimized team that are directly relevant to solving the current
team ’s issues and to suggest practical improvements to your team without
copying outright.

You are tasked with improving the current team ’s roles and collaborative
workflow:

<current team >
{current_team}
</current team >

This team is designed to solve the following types of tasks:
<task >
{task}
</task >

However , the <current team >’s performance is insufficient and must be improved
based on the following feedback:

<feedback >
{feedback}
</feedback >

You are provided with the following "personal best team", identified as the
most effective setup for addressing the <feedback > throughout the sequence
of adjustments made from the initial team setup to the <current team >.

This "personal best team" captures the optimal roles and workflow that
have proven most successful in solving similar <feedback >, serving as a
refined benchmark for guiding improvements to the <current team >’s
performance.

<personal best team >
{p_best}

1804

</personal best team >

Instruction

Follow the instructions to generate your response:
- Use the following OPERATIONS to refine roles within the <current team >:

* Add Role: Introduce a new role when an existing subtask becomes overly
complex or burdensome , requiring a specialized responsibility that
cannot be integrated into current roles without disrupting their
primary responsibilities. Define the role ’s:
- Name: A clear name that reflects its specific responsibility.
- Responsibility: Specific tasks or functions the role will handle.
- Policy: Operational guidelines for fulfilling the role ’s duties.

* Modify Role: Adjust the policy of an existing role for improved role
execution , when the identified inefficiencies or gaps can be addressed
through manageable refinements to its policy , ensuring the changes do
not overburden the role and are within the scope of its

responsibility.
* Delete Role: Remove roles that are redundant , unnecessary , or conflict

with the team ’s primary objectives.
- Use the following OPERATIONS to optimize the workflow of the <current team >:

* Add Step: Add a new step if a gap exists in the workflow that hinders
overall efficiency , coordination , or goal achievement. Ensure the new
step does not duplicate the functions of existing steps and adds clear
value to the process. Define the step ’s:
- Role: The role responsible for acting in this step.
- Input: The input for this step must be the output produced by one or

more roles in previous steps.
- Output: What output is expected from the role in this step?

* Modify Input: Adjust the input of an existing workflow step to ensure
that it comprehensively incorporates outputs from previous steps to
support the current step.

* Modify Output: Modify the output of an existing workflow step to ensure
that it fully aligns with the expected deliverables of the step and
supports the inputs of subsequent steps.

* Delete Step: Delete a step if it has become redundant , no longer
contributes to team goals , or overlaps with other steps in the
workflow. Ensure the removal of the step does not impact other steps ’
efficiency or completeness in achieving objectives.

* Re-order Steps: Re-order steps if their current sequence causes
inefficiencies or coordination issues within the workflow. Ensure the
new order improves logical flow without compromising the integrity or
dependencies of other steps.

- For each identified flaw in <feedback >, apply the following steps:
* Identified Flaw: Clearly outline the specific flaw identified in the <

feedback > section.
* Thought: What can we learn from the <personal best team >’s descriptions

to do better in the ** Identified Flaw **?
* Comparative Insights:

- Extract specific elements from the <personal best team >’s
descriptions that demonstrate excellence in the ** Identified Flaw
**.

- Present these elements as part of a structured sentence , explicitly
quoting the key phrases from their role responsibilities , role
policies , step inputs , step outputs , or step orders.

- Ensure the response integrates the quoted descriptions into a
coherent sentence without adding commentary , assumptions , or
analysis.

- If nothing helpful to solve the ** Identified Flaw**, say ’None ’.
* Proposed Adjustment: The adjustment must directly reflect and utilize

the specific phrases quoted in the ** Comparative Insights **. The
wording and content of the adjustment must align with these insights
without introducing unrelated suggestions , rephrased ideas , or
unquoted elements. The response must clearly demonstrate how the
adjustment directly incorporates the practices described in **
Comparative Insights **. If ** Comparative Insights ** is ’None ’, say ’
None ’ here.

1805

Prompt for Velocity Update LLMvel

You are tasked with optimizing a multi -agent team setup to enhance its
performance in solving a specific task.

The team to optimize is as follows , including its roles and collaborative
workflow:

<current team >
{team}
</current team >

This team is designed to solve the following types of tasks:
<task >
{task}
</task >

Objective

Develop a detailed adjustment plan focused on optimizing roles and the
collaborative workflow to maximize the <current team >’s performance in
addressing the specified <task >. The adjustments must be based on the
following feedback:

<feedback >
{feedback}
</feedback >

Instruction

Follow the instructions to generate your response:
- Use the following OPERATIONS to refine roles within the <current team >:

* Add Role: Introduce a new role when an existing subtask becomes overly
complex or burdensome , requiring a specialized responsibility that
cannot be integrated into current roles without disrupting their
primary responsibilities. Define the role ’s:
- Name: A clear name that reflects its specific responsibility.
- Responsibility: Specific tasks or functions the role will handle.
- Policy: Operational guidelines for fulfilling the role ’s duties.

* Modify Role: Adjust the policy of an existing role for improved role
execution , when the identified inefficiencies or gaps can be addressed
through manageable refinements to its policy , ensuring the changes do
not overburden the role and are within the scope of its

responsibility.
* Delete Role: Remove roles that are redundant , unnecessary , or conflict

with the team ’s primary objectives.
- Use the following OPERATIONS to optimize the workflow of the <current team >:

* Add Step: Add a new step if a gap exists in the workflow that hinders
overall efficiency , coordination , or goal achievement. Ensure the new
step does not duplicate the functions of existing steps and adds clear
value to the process. Define the step ’s:
- Role: The role responsible for acting in this step.
- Input: The input for this step must be the output produced by one or

more roles in previous steps.
- Output: What output is expected from the role in this step?

* Modify Input: Adjust the input of an existing workflow step to ensure
that it comprehensively incorporates outputs from previous steps to
support the current step.

* Modify Output: Modify the output of an existing workflow step to ensure
that it fully aligns with the expected deliverables of the step and
supports the inputs of subsequent steps.

* Delete Step: Delete a step if it has become redundant , no longer
contributes to team goals , or overlaps with other steps in the
workflow. Ensure the removal of the step does not impact other steps ’
efficiency or completeness in achieving objectives.

* Re-order Steps: Re-order steps if their current sequence causes
inefficiencies or coordination issues within the workflow. Ensure the
new order improves logical flow without compromising the integrity or
dependencies of other steps.

- For each Identified Flaw in <feedback >, apply the following steps:

1806

* Identified Flaw: Clearly outline the specific Identified Flaw in the <
feedback > section.

* Proposed Adjustment: Based on the ** Recommended Adjustment **, **Best
Team Insights**, and **Past Best Setup Reflection **, generate a final
adjustment plan that directly addresses the ** Identified Flaw**, while
avoiding any repetition of the ** Failed Adjustments **.

Prompt for Position Update LLMpos

You are an expert assistant and writer. You are tasked with generating a
refined team from an existing team according to the reflection.

You are given the roles within the current team:
<roles >
{roles}
</roles >

You are also provided with the workflow of the current team:
<workflow >
{workflow}
</workflow >

The team is solving the following types of tasks:
<task >
{task}
</task >

Instruction

Your job is to update the roles and workflow of the team based on the
following plan:

<plan >
{plan}
</plan >

Use these guidelines when generating the answer:
<system -guidelines >
1. If a role does not require modification in the plan , it must be retained in

the final "roles" list with its original "Name ," "Responsibility ," and "
Policy ."

2. If the plan specifies that a role should be modified , only update the "
Policy "; do not change the "Name" or "Responsibility ."

3. If the plan specifies that a role should be removed , then remove it from
the final "roles" list.

4. If the plan specifies adding a new role , include it in the final "roles"
list with its "Name ," "Responsibility ," and "Policy ."

5. When generating the final answer , verify the total number of roles to
ensure:
- All roles that do not require modification remain unchanged.
- Roles marked for removal are actually removed.
- Newly added roles appear in the final list.
- Modified roles are correctly updated.

6. The information flow must be strictly modular , with each step primarily
receiving structured input from the outputs of previous steps. Steps can
refer to the initial task definition implicitly as needed , but it should
not be treated as a direct input for workflow dependencies.

7. Each step ’s output must be structured and usable as a direct input for
subsequent steps , creating a clear , step -by-step workflow.

8. Each step can only be assigned to a single role and cannot involve multiple
roles simultaneously.

9. The final step in the workflow must produce the exact deliverable specified
in the <task > without referencing any intermediate steps.

</system -guidelines >

1807

E Case Study

E.1 Illustrative Optimization Process
The following example demonstrates how each component of the velocity update—Global Best, Personal
Best, and Failure-Driven Adjustments—contributes to system refinement during the optimization process.
The Global Best guidance led to the first major improvement by introducing a dedicated Quality Assurance
Specialist role, ensuring structural completeness and consistency across the generated travel plan. The
Personal Best guidance triggered the second improvement by identifying a missing verification step
between accommodation planning and downstream modules. To address this, a cross-validation step was
added, enabling the Accommodation Coordinator to verify constraints such as budget, minimum stays,
child suitability, and room availability before forwarding data. Finally, the Failure-Driven Adjustment
mechanism refined the Quality Assurance module by incorporating budget compliance checks, directly
addressing prior execution failures related to cost violations.

This example illustrates how each optimization signal enables targeted refinements, jointly driving
the emergence of well-structured, constraint-compliant agentic workflows. Personal Best Guidance
identified a missing verification step between accommodation planning and downstream tasks. Without
cross-checking accommodations against user requirements, there was a risk of passing forward incomplete
or non-compliant data. To resolve this, a new workflow step was added in which the Accommodation
Coordinator performs a cross-verification of accommodation options to confirm alignment with constraints
such as budget, minimum stays, child suitability, and room count.

Example optimization process of the Personal Best Guidance with LLMpers

// previous team
{

"roles": [
...

],
"workflow ": [

...,
{

"Step": "2",
"Role": "Accommodation Coordinator",
"Input ": "Transportation plan detailing the chosen mode of travel.",
"Output ": "Accommodation plan including the number of nights , recommended
hotels , confirmation of minimum stay requirements , suitability for children ,
and the number of rooms needed ."

},
{

"Step": "3",
"Role": "Restaurant Advisor",
"Input": "Accommodation plan including the number of nights and recommended
hotels , along with cuisine preferences and dietary restrictions from
travelers.",
"Output ": "Restaurant recommendations for each non -travel day."

}
]

}
// personal best guidance. Output of LLM_pers
{

"Identified Flaw": "Missing Workflow Step: There is a missing workflow step
between Step 2 and Step 3 that should involve a final review or
cross -verification of accommodation options against user requirements before
the Quality Assurance Specialist review.",
"Thought ": "Incorporating a cross -verification step can prevent oversights and
ensure accommodation options align with requirements before further review.",
"Comparative Insights ": "The personal best team includes a validation step to
’Verify minimum stay requirements for all accommodations ,’ ensuring a thorough
check before final approval.",
"Proposed Adjustment ": "Add a new workflow step after Step 2 where the
Accommodation Coordinator performs a cross -verification of accommodation
options against user requirements before proceeding to Quality Assurance
Specialist ."

}

1808

// updated team
{

"roles": [
...,
{
"Name": "Accommodation Coordinator",
"Responsibility ": "Plan accommodations for the trip , including the number

of nights and suitable hotels.",
"Policy ": "1. Review the travel itinerary and number of nights in each

city. 2. Research suitable accommodations based on budget and preferences. 3.
Verify minimum stay requirements for all accommodations. 4. Confirm the number
of rooms needed for all travelers and ensure accommodations align with user
constraints. 5. Provide a primary and a secondary accommodation option for each
city , explicitly stating whether the selected accommodations meet the minimum
stay requirements and suitability for children ."

}
...

],
"workflow ": [

...
{

"Step": "2",
"Role": "Accommodation Coordinator",
"Input ": "Transportation plan detailing the chosen mode of travel.",
"Output ": "Accommodation plan including the number of nights , recommended
hotels , confirmation of minimum stay requirements , suitability for children ,
and the number of rooms needed ."

},
{
"Step": "3",
"Role": "Accommodation Coordinator",
"Input": "Accommodation plan including the number of nights , recommended

hotels , and user constraints .",
"Output ": "Cross -verified accommodation options confirming adherence to all

specified constraints ."
},
{

"Step": "4",
"Role": "Restaurant Advisor",
"Input": "Accommodation plan including the number of nights and recommended
hotels , along with cuisine preferences and dietary restrictions from
travelers.",
"Output ": "Restaurant recommendations for each non -travel day."

}
]

}

In this case, Global Best Guidance identified a gap in the original workflow: the absence of a final
review step to ensure all travel constraints and requirements were met. While the Travel Plan Integrator
emphasized consistency, it lacked a dedicated validation phase. To resolve this, a new Quality Assurance
Specialist role was added. This role systematically reviews the entire travel plan—covering transportation,
accommodations, dining, and attractions—to catch errors and ensure compliance before finalization.

Example optimization process of the Global Best Guidance with LLMglob

// previous team
{

"roles": [
[
{

"Name": "Transportation Planner",
"Responsibility ": "..." ,
"Policy ": "..."

},
{

"Name": "Accommodation Coordinator",
"Responsibility ": "..." ,
"Policy ": "..."

1809

},
{

"Name": "Restaurant Advisor",
"Responsibility ": "..." ,
"Policy ": "..."

},
{

"Name": "Attraction Specialist",
"Responsibility ": "..." ,
"Policy ": "..."

},
{

"Name": "Travel Plan Integrator",
"Responsibility ": "..." ,
"Policy ": "..."

}
]
],
"workflow ": [

...
]

}
// global best guidance. Output of LLM_glob
{

"Identified Flaw": "The travel plan may lack a final review step to ensure all
constraints and requirements are fully met before confirmation .",
"Thought ": "The global best team incorporates a review process to ensure the
final travel plan is comprehensive and consistent , suggesting the potential
benefit of a dedicated Quality Assurance Specialist role.",
"Comparative Insights ": "The Travel Plan Integrator ’s policy emphasizes the
importance of a review: ’Review the entire plan for consistency and
completeness.’",
"Proposed Adjustment ": "Introduce a new Quality Assurance Specialist role
responsible for reviewing the entire travel plan to ensure compliance with all
constraints and requirements before finalization ."

}
// updated team
{

"roles": [
...

{
"Name": "Travel Plan Integrator",
"Responsibility ": "...",
"Policy ": "..."

},
{

"Name": "Quality Assurance Specialist",
"Responsibility ": "Review the entire travel plan to ensure compliance with all
constraints and requirements before finalization .",
"Policy ": "1. Examine the transportation plan for conflicts and alignment with
the itinerary. 2. Verify that accommodations meet all minimum stay and user
constraints. 3. Ensure restaurant recommendations align with traveler
preferences and dietary restrictions. 4. Confirm attraction selections fit
within the planned schedule. 5. Provide feedback for adjustments if necessary ."

}
],
"workflow ": [

...
]

}

In this case of Failure-Driven Adjustment, the system identified a recurring issue: the Quality Assurance
Specialist lacked explicit policy guidelines for verifying the accuracy of outputs from preceding roles. This
gap continued to result in budget discrepancies and incomplete itineraries, even after a prior adjustment.
The initial revision introduced a general review process, but it lacked a clear, enforceable structure
and proved ineffective. Building on this insight, the improved adjustment implemented a mandatory
verification process supported by a checklist, ensuring that all outputs are thoroughly reviewed for
accuracy and completeness before the finalization of the travel plan. This refinement transforms a vague

1810

recommendation into a structured and enforceable policy, significantly enhancing the integrity of the final
output.

Example optimization process of the Failure-Driven Adjustments with LLMfail

// previous team
{

"roles": [
...,
{

"Name": "Quality Assurance Specialist",
"Responsibility ": "Review the entire travel plan to ensure compliance with all
constraints and requirements before finalization .",
"Policy ": "1. Examine the transportation plan for conflicts and alignment with
the itinerary. 2. Verify that accommodations meet all minimum stay and user
constraints. 3. Ensure restaurant recommendations align with traveler
preferences and dietary restrictions. 4. Confirm attraction selections fit
within the planned schedule. 5. Provide feedback for adjustments if necessary ."
}

...
],
"workflow ": [

...
]

}
//Failure -Driven Adjustment. Output of LLM_fail.
{
"Identified Flaw": "Role Policy Deficiency: The policy for the Quality Assurance

Specialist lacks specific guidelines for verifying the accuracy of outputs from
previous steps , which could prevent budget discrepancies and incomplete
itineraries .",

"Failed Adjustment ": "Modify Role: Revise the Quality Assurance Specialist ’s policy
to include a review process for cross -verifying outputs from all roles before
finalizing the travel plan. The revised policy will state: ’3. Review all
outputs from previous roles for consistency and completeness before finalizing
the travel plan.’",

"Proposed Adjustment ": "Modify Role: Clarify the Quality Assurance Specialist ’s
policy to mandate a verification process that includes a checklist to ensure
all outputs from previous roles are accurate and complete before finalization ."

}
// updated team
{

"roles": [
...,
{

"Name": "Quality Assurance Specialist",
"Responsibility ": "Review the entire travel plan to ensure compliance with all
constraints and requirements before finalization .",
"Policy ": "1. Examine the transportation plan for conflicts and alignment with
the itinerary. 2. Verify that accommodations meet all minimum stay and user
constraints. 3. Ensure restaurant recommendations align with traveler
preferences and dietary restrictions. 4. Confirm attraction selections fit
within the planned schedule. 5. Provide feedback for adjustments if necessary.
6. Verification of all components , including accommodations , restaurants , and
attractions , to confirm alignment with user constraints and comply with
budgetary limits ."
}

...
],
"workflow ": [

...
]

}

F Best-Discovered Agentic System

In this section, we present the final agentic system discovered by SwarmAgentic. These optimized
systems—spanning MGSM, Creative Writing, Meeting Scheduling, and TravelPlanner—demonstrate the

1811

flexibility and generality of SwarmAgentic in generating task-adaptive agentic structures across diverse
domains.

F.1 MGSM

def forward(team):

Step 1: Problem Analysis Specialist analyzes the problem and produces a
structured summary of the problem components.

problem_summary = team.call(
’Problem Analysis Specialist ’,
[],
"Structured summary of the problem components.",

)

Step 2: Mathematical Operations Specialist uses the structured summary to
create a detailed outline of calculations needed to solve the problem.

calculation_outline = team.call(
’Mathematical Operations Specialist ’,
[problem_summary],
"Detailed outline of calculations required to solve the problem.",

)

Step 3: Quality Assurance Specialist reviews the detailed outline for accuracy
.

reviewed_outline = team.call(
’Quality Assurance Specialist ’,
[calculation_outline],
"Reviewed assumptions and interpretations ready for verification.",

)

Step 4: Quality Assurance Specialist verifies the reviewed outline for
execution readiness.

verified_operations = team.call(
’Quality Assurance Specialist ’,
[reviewed_outline],
"Verified operations ready for execution with corrections if necessary.",

)

Step 5: Calculation Execution Specialist executes the verified operations and
returns the final result.

final_result = team.call(
’Calculation Execution Specialist ’,
[verified_operations],
"Final result of the calculations.",

)

Step 6: Solution Integration Specialist formats the final result as the final
answer.

formatted_answer = team.call(
’Solution Integration Specialist ’,
[final_result],
"Formatted final answer.",

)

Return the final formatted answer
return formatted_answer

F.2 Creative Writing

def forward(team):
Step 1: Sentence Analyzer analyzes sentences for thematic connections.
categorized_sentences = team.call(’Sentence Analyzer ’, [], ’Categorized

sentences with themes and narrative roles.’)

Step 2: Narrative Architect creates a narrative framework based on the
categorized sentences.

1812

narrative_framework = team.call(’Narrative Architect ’, [categorized_sentences],
’Narrative framework outlining the placement of each sentence.’)

Step 3: Narrative Coherence Reviewer reviews the narrative framework for
thematic coherence.

coherence_feedback = team.call(’Narrative Coherence Reviewer ’, [
narrative_framework], ’Feedback on thematic coherence of the narrative
framework.’)

Step 4: Feedback Integrator revises the framework based on feedback received.
revised_narrative_framework = team.call(’Feedback Integrator ’, [

coherence_feedback], ’Revised narrative framework ready for paragraph
development , detailing how transitions have been integrated.’)

Step 5: Thematic Integration Specialist enhances the thematic integration of
the revised framework.

enhanced_thematic_integration = team.call(’Thematic Integration Specialist ’, [
revised_narrative_framework], ’Enhanced thematic integration of the
narrative framework.’)

Step 6: Integration Clarity Review confirms readiness for discussion with the
Paragraph Developer.

clarity_confirmation = team.call(’Integration Clarity Review ’, [
enhanced_thematic_integration], ’Confirmation of thematic continuity and
readiness for discussion.’)

Step 7: Integrated Feedback Review produces a comprehensive review document.
review_document = team.call(’Integrated Feedback Review ’, [

revised_narrative_framework , clarity_confirmation], ’Comprehensive review
document that captures all necessary adjustments.’)

Step 8: Feedback Review Discussion clarifies feedback integration details for
paragraph writing.

discussion_outcome = team.call(’Feedback Review Discussion ’, [review_document],
’Clarified feedback integration details for paragraph writing.’)

Step 9: Paragraph Developer writes the paragraphs based on the integrated
feedback.

final_paragraphs = team.call(’Paragraph Developer ’, [revised_narrative_framework
], ’Four concise paragraphs that demonstrate clear thematic coherence and
emotional depth.’)

Step 10: Final Integrator reviews the paragraphs and produces the final
cohesive narrative document.

final_narrative = team.call(’Final Integrator ’, [final_paragraphs], ’Final
cohesive narrative document , including a comprehensive evaluation of
coherence issues.’)

Return the final narrative as the answer.
return final_narrative

F.3 Meeting Scheduling

def forward(team):
Step 1: Friend Locator identifies and lists all friends , their locations , and

available times.
friends_list = team.call(

’Friend Locator ’,
[],
"[{ Friend: Name , Location: Place , TimePeriod: [Start , End]}, ...]",

)

Step 2: Travel Time Estimator calculates the travel time between each friend ’s
location.

travel_times = team.call(
’Travel Time Estimator ’,
[friends_list],
"[{From: LocationA , To: LocationB , TravelTime: Time}, ...]",

)

1813

Step 3: Travel Time Verifier verifies all travel and waiting times.
verified_travel_times = team.call(

’Travel Time Verifier ’,
[travel_times],
"Verified travel and waiting times list",

)

Step 4: Waiting Time Validator reviews validated data for waiting times.
validated_waiting_times = team.call(

’Waiting Time Validator ’,
[verified_travel_times],
"Validated list of waiting times.",

)

Step 5: Final Integrator ensures all travel and waiting times are adjusted
properly.

adjusted_times = team.call(
’Final Integrator ’,
[validated_waiting_times],
(

"Adjusted travel and waiting times list that resolves discrepancies
before scheduling."

),
)

Step 6: Meeting Time Optimizer develops a schedule to meet as many friends as
possible.

meeting_schedule = team.call(
’Meeting Time Optimizer ’,
[friends_list , adjusted_times],
(

"Finalized meeting schedule that incorporates all validated "
"travel and waiting times , including a detailed breakdown."

),
)

Step 7: Schedule Validator reviews the final meeting schedule for feasibility.
validated_schedule = team.call(

’Schedule Validator ’,
[meeting_schedule],
"Validated meeting schedule document.",

)

Return the final validated meeting schedule document.
return validated_schedule

F.4 TravelPlanner

def forward(team):
Step 1: Transportation Planner creates a transportation schedule.
transportation_schedule = team.call(

"Transportation Planner",
[],
(

"Transportation schedule detailing mode of transport "
"for each leg of the journey."

),
)

Step 2: Accommodation Coordinator creates an accommodation plan based on the
transportation schedule.

accommodation_plan_initial = team.call(
"Accommodation Coordinator",
[transportation_schedule],
"Accommodation plan including number of nights and recommended hotels.",

)

1814

Step 3: Accommodation Coordinator verifies transportation details and user -
specific requirements regarding accommodations.

verified_transportation_details = team.call(
"Accommodation Coordinator",
[transportation_schedule],
(

"Verified transportation details and user -specific requirements
regarding accommodations."

),
)

Step 4: Accommodation Coordinator finalizes the accommodation plan , including
user preferences and verified details.

accommodation_plan_final = team.call(
"Accommodation Coordinator",
[accommodation_plan_initial],
"Accommodation plan including user preferences and verified details.",

)

Step 5: Restaurant Advisor recommends restaurants for each non -travel day
based on the accommodation plan and user cuisine preferences.

restaurant_recommendations = team.call(
"Restaurant Advisor",
[accommodation_plan_final , verified_transportation_details],
"Restaurant recommendations for each non -travel day.",

)

Step 6: Attraction Specialist recommends attractions for each day of the trip.
attraction_recommendations = team.call(

"Attraction Specialist",
[accommodation_plan_initial],
"Attraction recommendations for each day of the trip.",

)

Step 7: Quality Assurance Specialist verifies all components , ensuring
constraints are met.

qa_verification = team.call(
"Quality Assurance Specialist",
[

accommodation_plan_final ,
restaurant_recommendations ,
attraction_recommendations ,

],
"Verification of all components ensuring constraints are met.",

)

Step 8: Travel Plan Integrator compiles all components into a comprehensive
travel plan.

comprehensive_travel_plan = team.call(
"Travel Plan Integrator",
[

transportation_schedule ,
accommodation_plan_final ,
restaurant_recommendations ,
attraction_recommendations ,
qa_verification

],
(

"Comprehensive travel plan including transportation , "
"accommodation , dining , and attractions."

),
)

Return the final comprehensive travel plan.
return comprehensive_travel_plan

1815

Task

 Transportation Planner

 Accommodation Coordinator

Transportation

Verified Transportation detail Accommodations

 Restaurant Advisor

Restaurant Recommendations

 Attraction Specialist

Attraction Recommendations

 Quality Assurance Specialist

QA Verification

 Travel Plan Integrator

Final Plan

Figure 3: Best agentic system generated by SwarmAgentic for the TravelPlanner task, illustrating the optimized
agent roles and coordination structure.

1816

Task

Itinerary Agent Budget Agent Dining Agent Activity Agent

Itinerary Info Budget Info Dining Info Activity Info

Itinerary Agent
（Collaborative negotiation）

Itinerary Info Budget Info Dining Info Activity Info

Meta Agent

Final Plan

Figure 4: Final agentic system generated by ADAS for the TravelPlanner task, illustrating the optimized agent roles
and coordination structure.

F.5 Comparison with ADAS-Discovered Agentic System

Because Meta Agent Search keeps every previously-generated workflow in its archive, each new prompt
handed to the language model must include a long, ever-growing list of full workflow definitions. The sheer
size and structural complexity of this archive, as well as the irrelevant details that inevitably accumulate
over many search iterations, quickly exhaust the model’s context window and muddle its reasoning. The
search algorithm itself prioritizes novelty over optimization, relying on a straightforward strategy aimed
at discovering new and potentially interesting designs. Consequently, the search process of ADAS tends
to enumerate limitless possibilities within the search space, making it difficult to identify the truly optimal
workflow.

As shown in Code 1, the ADAS-discovered workflow assigns distinct roles to specialized agents,
including itinerary, budget, dining, activity, and meta agents. However, a critical limitation is the absence of
a dedicated accommodation agent. As a result, the system fails to reliably address constraints such as room
type, minimum night stays, occupancy limits, and rule-specific conditions (e.g., pet-friendliness). These
constraints are central to many travel-related queries, yet no agent is explicitly responsible for enforcing
them. Furthermore, the system exhibits difficulty reasoning over multiple constraints jointly, while
individual agent proposals may satisfy some conditions, the final plan often violates global requirements
due to a lack of coherent integration by the meta-agent.

Code 1: Optimal workflow generated for TravelPlanner by ADAS
def forward(self , taskInfo):

Role definitions for specialized agents
itinerary_instruction = "Please create a detailed travel itinerary considering

the constraints and preferences."
budget_instruction = "Please analyze the budget and suggest accommodations and

activities that fit within the budget."
dining_instruction = "Please suggest restaurants or dining options that match

the user’s cuisine preferences."
activity_instruction = "Please recommend activities or attractions based on the

user’s interests and location."

1817

dialogue_instruction = "Discuss your proposals with other agents , highlighting
strengths and negotiating improvements."

Instantiate specialized agents
itinerary_agent = LLMAgentBase ([’thinking ’, ’itinerary ’], ’Itinerary Planner ’)
budget_agent = LLMAgentBase ([’thinking ’, ’budget ’], ’Budget Manager ’)
dining_agent = LLMAgentBase ([’thinking ’, ’dining ’], ’Dining Advisor ’)
activity_agent = LLMAgentBase ([’thinking ’, ’activity ’], ’Activity Coordinator ’)
meta_agent = LLMAgentBase ([’thinking ’, ’final_plan ’], ’Meta Decision Agent’)

Gather initial proposals from specialized agents
itinerary_info = itinerary_agent ([taskInfo], itinerary_instruction)[0]
budget_info = budget_agent ([taskInfo], budget_instruction)[0]
dining_info = dining_agent ([taskInfo], dining_instruction)[0]
activity_info = activity_agent ([taskInfo], activity_instruction)[0]

Collaborative negotiation phase among agents
proposals = [itinerary_info , budget_info , dining_info , activity_info]
for i, proposal in enumerate(proposals):

for j, other_proposal in enumerate(proposals):
if i != j:

dialogue = itinerary_agent ([taskInfo , proposal , other_proposal],
dialogue_instruction)

Update the proposal based on feedback from other agents
proposals[i] = dialogue [1] # Assuming the updated proposal comes in

the second position

Prepare responses for meta -agent
meta_instruction = "Evaluate the following proposals and create a cohesive final

travel plan:"
final_thinking , final_plan = meta_agent(proposals , meta_instruction)

return final_plan

1818

