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Abstract
Concept editing aims to control specific con-
cepts in large language models (LLMs) and is
an emerging subfield of model editing. Despite
the emergence of various editing methods in
recent years, there remains a lack of rigorous
theoretical analysis and a unified perspective to
systematically understand and compare these
methods. To address this gap, we propose a
unified paradigm for concept editing methods,
in which all forms of conceptual injection are
aligned at the neuron level. We study four rep-
resentative concept editing methods: Neuron
Editing (NE), Supervised Fine-tuning (SFT),
Sparse Autoencoder (SAE), and Steering Vec-
tor (SV). Then we categorize them into two
classes based on their mode of conceptual infor-
mation injection: indirect (NE, SFT) and direct
(SAE, SV). We evaluate above methods along
four dimensions: editing reliability, output gen-
eralization, neuron level consistency, and math-
ematical formalization. Experiments show that
SAE achieves the best editing reliability. In
output generalization, SAE captures features
closer to human-understood concepts, while
NE tends to locate text patterns rather than true
semantics. Neuron-level analysis reveals that
direct methods share high neuron overlap, as
do indirect methods, indicating methodological
commonality within each category. Our unified
paradigm offers a clear framework and valu-
able insights for advancing interpretability and
controlled generation in LLMs.

1 Introduction

Large language models (LLMs) have developed
rapidly in recent years. However, as these mod-
els become more powerful and complex, there is
a growing need to better control their behaviors to
achieve specific objectives, such as personalized
generation, fairness and safety (Shen et al., 2023;
Shi et al., 2024). A promising approach to achiev-
ing this control is concept editing. As a branch of
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model editing (Mitchell et al., 2021), it focuses
on modifying the representations of specific con-
cepts within LLMs to guide their outputs, rather
than updating knowledge. Traditional model edit-
ing methods focus on updating the knowledge of
LLMs (Gupta et al., 2024), such as the classic ap-
proaches ROME (Meng et al., 2022a) and MEMIT
(Meng et al., 2022b). However, these are insuffi-
cient for addressing the problem of concept editing,
because concepts go beyond knowledge and are
a more sophisticated synthesis of knowledge that
cannot be exhaustively enumerated using discrete
knowledge units. Plenty of concepts have already
been learned and encoded within LLMs (Huben
et al., 2023; Xu et al., 2023; Dong et al., 2025).
Our goal is to identify and control them.

With the advancement of interpretability re-
search, various techniques for concept editing have
emerged such as Neuron Editing (NE) (Dai et al.,
2022), Steering Vector (SV) (Turner et al., 2023),
Probing (Li et al., 2024), Sparse Autoencoder
(SAE) (Huben et al., 2023) and so on. However,
these approaches differ significantly in implemen-
tation and performance, and there is still no unified
theoretical framework to compare or understand
them.

Upon careful examination of these methods, we
find that the common foundation of concept editing
methods is the injection of conceptual informa-
tion flow into a model. This flow corresponds to
a modification of the residual stream and is rep-
resented as a vector with the same dimension as
the hidden state. Based on whether this injection
is direct or indirect, we classify concept editing
methods into two categories: modifying model pa-
rameters (indirect injection), such as NE and SFT,
and altering the residual stream (direct injection),
such as SAE, SV and Probing. In addition, Neu-
rons, as the fine-grained units of analysis in inter-
pretability research, can serve as a unifying link
for these methods. On the one hand, neurons are
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associated with parameters, and operations on neu-
rons are equivalent to operations on the parameter
matrices that affect them. On the other hand, neu-
rons can also be viewed as a part of the residual
stream (Vaswani, 2017). So we introduce a unified
neuron-level paradigm for concept editing, which
aligns all methods at the level of neuron. In the pro-
cess of developing the paradigm, we have observed
that existing SAE-based concept editing methods
require large amounts of data and incur substantial
computational overhead to interpret features. To
address this limitation, we first propose an efficient
method to interpret and locate features in SAE.

To systematically compare these methods, we
propose a hierarchical evaluation framework along
four dimensions: editing reliability, output gen-
eralization, neuron-level consistency, and mathe-
matical formalization. We select “emotion” as a
representative concept to evaluate each method’s
ability to inject and preserve abstract semantic con-
tent. Experimental results show that direct meth-
ods, particularly SAE, achieve the most reliable
and semantically faithful concept control. From the
perspective of output generalization, we find that
NE primarily captures surface patterns: it increases
the probability of target concept words but does
not enhance the probabilities of their synonyms
or semantically related terms when reinforcing a
concept. In contrast, SAE captures underlying con-
cepts, raising the probabilities of all such words
and thereby shifting the overall semantics of the
output. Neuron-level analysis further reveals high
activation overlap within each class of methods,
suggesting a shared operational mechanism. Fi-
nally, our mathematical analysis illustrates that the
effectiveness of SAE stems from its precise and
disentangled conceptual information injection.

In summary, our contributions are threefold:

• We propose a unified neuron-level paradigm
for concept editing, which provides a general
framework to align diverse editing methods
by grounding conceptual interventions at the
neuron level.

• We conduct a systematic analysis of four rep-
resentative methods: Neuron Editing (NE),
Supervised Fine-tuning (SFT), Sparse Autoen-
coder (SAE), and Steering Vector (SV), reveal-
ing their structural similarities and differences
in terms of conceptual injection mechanisms,
editing reliability, semantic generalization be-

havior, neuron overlap and mathematical for-
malization.

• We further develop an efficient SAE-based
concept editing method to locate interpretable
features, which mitigates the high cost of
feature interpretation in existing approaches
while preserving strong editing reliability.

2 Background

We first introduce the four concept editing methods
separately.

Neuron Editing We adopt the method proposed
by (Dai et al., 2022) for locating knowledge neu-
rons. NE calculates an attribution score, denoted as
Attr(nl

i), which measures the contribution of each
neuron to the LLM’s generation, where nl

i repre-
sents the intermediate neuron at the i-th position in
the l-th FFN layer of the LLM, and its activation
value is denoted as w(l)

i .
We represent the target concept with an appropri-

ate word or phrase and use it as the golden answer
y∗ for the prompt x. We define Px

(
ŵ

(l)
i

)
as the

probability of y∗ when w
(l)
i is set to ŵ

(l)
i :

Py∗
(
ŵ

(l)
i

)
= p

(
y∗ | x,w(l)

i = ŵ
(l)
i

)
. (1)

First, we take the prompt as input, record the
activation of neuron nl

i and denote it as w(l)
i . Then,

we scale the neuron activation w
(l)
i from 0 to its

original value w
(l)
i using the parameter α, and inte-

grate the gradients along this path to compute the
attribution score:

Attr(n
(l)
i ) = w

(l)
i

∫ 1

α=0

∂Py∗(αw
(l)
i )

∂w
(l)
i

dα, (2)

which captures how changes in w
(l)
i affect the prob-

ability of the golden answer. A high attribution
score indicates a strong contribution to the con-
cept. We then select neurons whose scores exceed
a threshold t, filtering out those with low scores.

In order to enhance or weaken a certain concept,
we use a simple but effective approach:

w
(l)
i = βw

(l)
i , (3)

where β controls how strongly a concept is ex-
pressed.
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Figure 1: Illustration of our analytical framework. The upper part demonstrates the categorization of concept editing
methods. We zoom into a specific layer of a transformer-based LLM, where the green area represents Category 1
(modifying model parameters to indirectly inject concept information flow, e.g., NE and SFT) and the yellow area
denotes Category 2 (altering the residual stream to directly inject concept information flow, e.g., SAE and SV). The
lower part shows the outputs of the LLM after injecting the concept of “anger” using NE and SAE, respectively.
The specific related words and synonyms of “anger” are listed in Table 3.

Sparse Autoencoders SAE is a neural network
with a single hidden layer of size ds = Rd, where
d denotes the dimensionality of the LLM’s internal
activation vectors, and R is a hyperparameter that
controls the ratio of the feature dictionary size to
the model dimension (Huben et al., 2023). The
residual stream at a specific position is represented
as a vector h ∈ Rd. It operates as follows:

c = ReLU(W1h+ b1), (4)

hrec = W2c+ b2, (5)

where c ∈ Rds , represents the sparse representa-
tion of h , hrec is the reconstructed hidden state,
W1, W2, b1 and b2 are the trainable parameters.
Among them, the matrix W2 is our feature dictio-
nary, consisting of ds columns of dictionary fea-
tures f

(l)
i . SAEs are trained to minimize the re-

construction loss between h and hrec while also
controlling the sparsity of c.

Once trained, SAE provides an approximate de-
composition of the model’s activations into a linear
combination of feature directions W2, with coef-
ficients given by the sparse activations c. This
decomposition offers interpretability since the hid-
den state can be explained by a small set of active

features. Moreover, by directly modifying c, for
example adjusting a specific activation ck corre-
sponding to feature fk, we can selectively control
the influence of individual features on the output.

Steering Vectors First, we need to get concept
directions as steering vector. We use the difference
between the activation of the positive and negative
samples (Tigges et al., 2023):

v(l) =
1

N

∑
(h

(l)
pos − h

(l)
neg), (6)

where, N is the sample size, h(l)
pos and h

(l)
neg denote

the residual streams of positive and negative sam-
ples respectively, and v(l) is the concept direction.

Then, we add v(l) to the original residual stream
during the forward pass:

h
(l)
SV = h(l) + kv(l), (7)

where k controls the contribution of the vector to
the generation.

Supervised Fine-tuning We conduct full fine-
tuning of LLMs while keeping all parameters
frozen except for W l

down(the second FFN weight
matrix). This matrix, initially W ∈ Rdmodel×dffn ,
becomes Wsft ∈ Rdmodel×dffn after SFT.
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Figure 2: Feature interpretation and localization in SAE.

3 A Unified Paradigm of Concept Editing
Methods

Our analytical framework is illustrated in Figure 1.
We categorize these methods into two groups ac-
cording to the way conceptual information flow
is injected. During the construction of this frame-
work, we have observed that the current pipeline
for concept editing with SAE is highly inefficient.
Therefore, in Section 3.1, we first propose an ef-
ficient approach for locating and interpreting fea-
tures. In Section 3.2, we derive the neurons cor-
responding for each method, with the goal of ex-
amining the consistency of these two categories at
the neuron level. Without loss of generality, in all
derivations, we use “emotion” as the concept.

3.1 A Efficient Method to Locate
Interpretable Features through SAE

Existing methods for interpreting and locating fea-
tures in SAE suffer from low efficiency and high
cost. Therefore, we first propose a new method to
efficiently locate features in SAE. Figure 2 illus-
trates feature interpretation and localization.

Feature Interpretation How to interpret fea-
tures is a key question. Existing studies usually use
an automated approach introduced in (Bills et al.,
2023), which takes text samples where the target
feature activates and asks a LLM to generate a
human-readable interpretation (Huben et al., 2023).
However, this method requires a large amount of
corpus, and the cost of automated generation of
explanations is high. In order to solve this prob-
lem, we propose a simple yet efficient method –
Reinforcer. We have found that when the sparse
activation ck of a particular feature fk is signifi-
cantly large, the generation of LLMs tends to re-
peat a single word or a group of words. For exam-
ple, if the prompt is “You see a beautiful flower,
then you feel”, and we reinforce the feature “anger”

(ck = 100) when generating, the output of the
model would be “You see a beautiful flower, then
you feel anger anger anger anger...”. The token
“anger” is repeated over and over again and no more
content is generated. We take this consistently re-
peated token or a set of tokens as the interpretation
of the feature. Reinforcer achieves comparable per-
formance to the current method, while significantly
reducing computational cost. The mathematical
principles and performance of Reinforcer are pre-
sented in Appendix A.1.

Feature Localization Inspired by the idea of lo-
cating neurons and attribution patching (Syed et al.,
2024; Nanda, 2023), we shift the gradient compu-
tation from neurons to the sparse space of SAE
and propose a method to locate specific features
precisely:

Attr(f
(l)
i ) = c

(l)
i

∂Py∗(c
(l)
i )

∂c
(l)
i

, (8)

where f
(l)
i represents the feature at the i-th posi-

tion in the l-th layer of LLMs, c(l)i is the sparse
activation corresponding to f

(l)
i , y∗ denotes the

golden answer and Py∗(c
(l)
i ) is the probability of

the golden answer predicted by the model. This
equation shares a similar form with Eq (2), and
Attr(f

(l)
i ) similarly measures the contribution of

each feature to the generation. The difference is
that gradient accumulation is not used here, as we
found it has minimal effect on the results while
substantially increasing computational overhead.

During localization, we typically compute the
gradient of the sparse activation of the last token
in the prompt with respect to the probability of
the golden tokens. If the number of golden tokens
Tg exceeds one, the relationship between the later
golden tokens and the last prompt token becomes
weak, leading to extremely small gradient values.
This issue is not addressed in NE. To address this,
we use cross-entropy loss (Loss) instead of proba-
bilities of golden tokens to compute gradients:

Attr(f
(l)
i ) = −c

(l)
i

∂Loss

∂c
(l)
i

, (9)

because there is a negative correlation between
Loss and probabilities:

Loss = − 1

Tg

Tg∑

t=1

log Pyt(c
(l)
i ), (10)
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where yt represents the t-th token of the golden
answer. So in fact, Eq (8) and Eq (9) are equivalent
in variation trend, more details are shown in Ap-
pendix A.2. Since Loss considers all golden tokens
as a whole, it preserves the relationships among
them and improves localization performance. In-
tuitively, if a feature has a great influence on the
answer, Attr(f (l)

i ) will have a large value.
We can rank the features triggered by the prompt

based on Attr(f
(l)
i ). The target feature is usually

among the top ten features. Then, our “Reinforcer”
is used to interpret them, thereby identifying the
target feature. When editing features, we set the
sparse value of the feature to a constant c(l)i = C.
The larger the value, the stronger the concept.

Our pipeline significantly optimizes the process
of feature interpretation, localization and editing
using SAEs.

3.2 Unifying Different Concept Editing
Methods at the Neuron Level

Neurons Located by SAE According to the
structure of transformer (Vaswani, 2017), changes
to the residual stream of LLMs can correspond to
changes to the neurons:

W l
downn

(l) + h(l−1) + att(l) = h(l), (11)

where, W l
down is the second parameter matrix of

FFN module, n(l) represents the intermediate neu-
ron vector in the l-th FFN module, h(l−1) is resid-
ual stream from the previous layer, att(l) is the
output of self-attention module, and h(l) is residual
stream of the current layer.

When editing, h(l) is reconstructed to hrec, then:

W l
downn

(l)
rec

+ h(l−1) + att(l) = hrec, (12)

where, n(l)
rec

represents the value of neurons when
the residual stream is hrec. In this process, the rate
of neurons chage is

∆nSAE =
n(l)

rec
− n(l)

n(l)
, (13)

which indicates the multiplicative factor applied
to neurons to achieve the desired control over a
concept. Clearly, the larger the rate of change, the
more significant the role neurons play in controlling
this concept. We select the top J neurons with the
highest rates of change:

nSAE = argsort∆nSAE[−J :], (14)

where J is the amount of neurons located by SAE,
and nSAE denotes their indices.

Neurons Located by Steering Vector Steering
vector also constitutes a modification to residual
stream. Therefore, the localization of neurons is
similar to SAE. The detailed localization process
is provided in Appendix A.3.

Neurons Located by SFT We compute the rate
of change for each column of the weight matrix:

∆wj =
∥Wsft,j −Wj∥2

∥Wj∥2
, (15)

where, Wj and Wsft,jrepresent the j-th column of
W and Wsft, respectively, ∥ · ∥2 denotes the L2
norm. We then sort the columns based on ∆wj and
select the top J columns with the highest rates of
change; see Appendix A.3 for details.

4 Experiment

Using emotion as the concept, we analyzed the per-
formance of our interpretable feature localization
for SAE, editing reliability, output generalization
and neuron-level consistency, and also conducted
analysis at the mathematical level. This forms a
progressively deepening analytical paradigm for
concept editing methods.

4.1 Setup
Models We conducted experiments on Gemma-2-
2B (Rivière et al., 2024) and LLaMA-3-8B (Dubey
et al., 2024), which contains diverse parameter
scales. We choose their corresponding Sparse
Autoencoders: gemma-scope-2b-pt-res1(Lieberum
et al., 2024) and sae-llama-3-8b-32x.2

Dataset We used the emotion dataset introduced
in (Zou et al., 2023). The dataset contains six cat-
egories of emotions—happiness, sadness, anger,
fear, surprise, and disgust, and comprises 1,200
sentences, with each emotion category consisting
of 200 sentences. Based on this dataset, we utilized
GPT-4 to generate 200 sentences for each emotion
category (Long et al., 2024), thereby expanding
the original dataset to a total of 2400 sentences.
(More details are shown in Appendix A.4)

Metrics We employed GPT-4 to assess the emo-
tional intensity of the generated sentences (Zheng
et al., 2023). Specifically, GPT-4 was used to score
the emotional intensity of the generation before and

1https://huggingface.co/google/
gemma-scope-2b-pt-res

2https://huggingface.co/EleutherAI/
sae-llama-3-8b-32x
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Emotion Shallow Middle Deep
L8B G2B L8B G2B L8B G2B

anger - - 97546 - 57280 15538
happiness - - 36205 - 59512 12780
sadness - 3940 51331 4657 91978 8554
surprise - - 6699 - 121074 11874
disgust - - 120765 - 48255 4513
fear - - 55888 - 15606 8813

Table 1: The detected feature IDs in Llama-3-8B (L8B)
and Gemma-2-2B (G2B) with our proposed method.
The number represents the index of the feature in the
sparse activation space of SAE. “-” indicates that no cor-
responding features are found in that layer. L8B has 32
layers, with the 5th, 20th, and 30th layers representing
shallow, middle, and deep layers. G2B has 26 layers,
with the 5th, 15th, and 24th layers representing the same
(layer indices start from 0).

after concept editing, with scores ranging from 1
to 10. When performing the operation to enhance
a specific emotion, if the edited model generates
sentences with higher emotional scores, it indicates
that the editing method is effective. Additionally,
considering the positional bias in sentence scoring
by GPT-4 (Wang et al., 2024), we averaged the
scores of the original positions and the swapped
positions. The prompt used for this evaluation is
provided in Appendix A.5. In addition, we manu-
ally assessed the results, which were found to be
comparable to those of GPT-4. Further details are
provided in Appendix A.6.

4.2 Performance of Our Interpretable Feature
Localization for SAEs

Using the feature localization method we proposed
in Section 3.1, we detected the features correspond-
ing to the six emotions as shown in Table 1. Our
proposed method locates features with high accu-
racy. We sampled 100 sentences and ranked the
triggered features according to Attr(f

(l)
i ) for each

sentence. The target feature appears in the top 10
with a probability of 79.8%. Therefore, for any
target concept, constructing a minimal amount of
data in the prompt + golden answer format allows
us to identify the target feature.

From Table 1, it can be observed that not all lay-
ers are capable of identifying the target features.
For Llama-3-8B, target features are identifiable in
middle and deep layers, but not in shallow lay-
ers. In contrast, Gemma-2-2B can identify target
features in deep layers, with minimal presence in
middle and shallow layers. The reasons for this can
be summarized as follows.

NE SAE SV SFT
Llama-3-8B

layer-30 (Deep)
anger 36.95 76.35 46.80 15.27
happiness 51.50 65.00 84.00 47.00
sadness 51.23 67.00 59.61 43.35
surprise 49.50 69.00 55.50 45.00
disgust 36.95 78.82 59.11 24.63
fear 53.20 84.73 65.35 41.87
Average 46.56 73.48 61.73 36.19
layer-20 (Middle)
Average 34.48 97.54 82.76 25.62
layer-5 (Shallow)
Average 37.93 - 100 38.91

Gemma-2-2B
layer-24 (Deep)
Average 48.28 95.57 47.29 26.60
layer-15 (Middle)
Average 45.32 - 98.52 26.11
layer-5 (Shallow)
Average 45.81 - 100 33.50

Table 2: The editing effect (%) of NE, SAE, SV and
SFT. The numbers represent the percentage of data suc-
cessfully controlled in the test set. The “-” indicate
cases where SAE fails to locate features.

First, the concept formation varies across layers.
Shallow layers extract low-level lexical features,
making it difficult to capture complex semantics.
Middle layers begin integrating semantic informa-
tion, where meaningful features start to emerge,
while in deep layers, these features become mature.
As shown in Appendix A.7, the features in shallow
layers mainly consist of word fragments, auxiliary
words, symbols and simple words. As the layers
deepen, the features become complex.

Second, the model size and capacity on gen-
eration matter, as they significantly influence the
model’s ability to capture complex features. Larger
models, such as Llama-3-8B, exhibit superior per-
formance in modeling intricate semantic features
across layers. Conversely, smaller models, such
as Gemma-2-2B, often struggle to form complete
semantic representations across all layers, which
explains why Gemma-2-2B fails to capture relevant
concepts even in its middle layers.

4.3 Performance of Editing Reliability

Experimental details are shown in Appendix A.8.
The results are summarized in Table 2, and the
numbers represent the percentage of data success-
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Type Words

Synonyms rage, irritation, fury, mad
Antonyms calmness, joy, contentment, happy
Related frustration, argument, resentment, yelling
Unrelated banana, laptop, galaxy, violin

Table 3: The synonyms, antonyms, related words (words
that often appear with “anger”), and unrelated words of
“anger”.

fully controlled in the test set. The intuitive results
can be found in Appendix A.9.

We observe the following: First, for Llama-3-
8B, in deep layers, SAE can control 73.48% of
the emotions, SV can control 61.73%, while NE
and SFT can only control less than 50%. We can
see that SAE performs best, with SV following
closely behind. Both are one level higher than NE
and SFT. Similar trends are seen in other layers
and in Gemma-2-2B. It shows that methods based
on directly modifying the residual stream achieve
better performance, especially when applied to mid-
dle layers, which is resonated with previous studies
(Hase et al., 2024). In contrast, we find NE and SFT
are not sensitive to the layers being modified. Since
our work focuses on training-free editing methods
in low-resource scenarios, we adopt a relatively
simple dataset, which may partly explain the poor
performance of SFT. Therefore, in the analysis in
Section 4.4, we focus on NE within CAT1.

Second, SV exhibits significant effectiveness in
middle layers but experiences a severe performance
drop in deep layers. In comparison, SAE remains
maintaining relatively strong performance in deep
layers despite the increased semantic complexity,
suggesting that the stability of SAE is excellent.

Third, the “-” indicate cases where SAE fails
to locate relevant emotional features, as concepts
have not yet fully formed in shallow layers.

4.4 Performance of Output Generalization

SAE identifies concepts, while NE identifies pat-
terns. We applied various methods to enhance the
emotion of “anger” and observed the average prob-
abilities of the words in Table 3 over the next 20
generated time steps.

Taking the prompt “Your morning starts with
your favorite breakfast. You feel” as an example,
the results are presented in Table 4.

It can be seen that all methods lead to an in-
crease in the probability of the concept words, with
SAE showing the most significant effect. More-

Type Original NE SAE SV

Anger 9.12E-07 6.65E-06 ✓ 1.01E-03 ✓ 8.37E-06 ✓
Synonyms 2.57E-06 4.62E-06 × 5.66E-04 ✓ 2.26E-05 ✓
Antonyms 1.39E-03 4.24E-04 ✓ 5.67E-04 ✓ 1.62E-04 ✓
Related 6.12E-07 6.04E-07× 3.31E-05 ✓ 1.22E-05 ✓
Random 2.45E-06 9.14E-07 9.14E-07 1.07E-06

Table 4: The average probabilities of these words among
the 20 words generated by the model. ✓indicates that
the editing method is valid, while × indicates it is in-
valid.

over, they all exhibit some degree of suppression
for antonyms and have little impact on unrelated
words.

The focus is on synonyms and related words.
NE shows no probability increase for them, indi-
cating that it can only increase the probability of
the concept words and does not induce semantic
changes, which is clearly a pattern. Both SAE
and SV show probability increases for synonyms
and related words, but SAE exhibits a much larger
increase, precisely controlling the target concept.
We believe SAE can extract the target concept.

The complete generations are shown in Figure 1.
After enhancing the “anger” neurons, the semantics
of the output remains unchanged, still conveying
a “happy” meaning, but the word “happy” is re-
moved. This once again indicates that the neurons
identified by NE do not correspond to a concept,
but rather capture a pattern based on logits. It only
changes the occurrence probabilities of the concept
words and their antonyms. The success of NE in
other tasks is largely attributable to the strong cor-
relation between the task and the pattern, such as
knowledge (Dai et al., 2022) and privacy (Wu et al.,
2023, 2024). Essentially, these tasks only require
changing the output probability of target words.

4.5 Performance of Neuron-level Consistency

Based on the derivations in Section 3.2, we ob-
tained nNE, nSAE, nSV and nSFT. To ensure a fair
comparison, we controlled the number of neurons
in each set by setting J equal to the number of neu-
rons identified by NE, and then computed the over-
lap rates among them. As shown in Table 5, nSAE
and nSV exhibit a high degree of overlap (66.39%),
while nNE and nSFT show a low level of overlap
(6.09%). Although the overlap of nNE and nSFT is
relatively low, it is still significantly higher than
that of the other methods, showing some degree of
overlap. In contrast, the neurons identified by the
other pairs of methods do not overlap at all. This
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NE-SAE NE-SV NE-SFT SAE-SV SAE-SFT SV-SFT
Llama-3-8B
layer-30 (Deep)
anger 0.44 0.46 6.26 66.63 2.49 2.65
happiness 0.29 0.28 4.48 66.49 2.92 2.88
sadness 0.29 0.25 7.06 66.26 2.43 2.31
surprise 0.37 0.31 6.09 67.46 2.96 2.85
disgust 0.43 0.42 8.95 65.87 2.21 2.05
fear 0.57 0.53 3.69 65.60 3.02 2.89
Average 0.40 0.38 6.09 66.39 2.67 2.61
layer-20 (Middle)
Average 1.03 0.96 9.26 65.27 1.24 1.29
layer5 (Shallow)
Average - 0.08 4.93 - - 1.84

Gemma-2-2B
layer-24 (Deep)
Average 0.77 0.78 6.22 67.76 4.57 4.45
layer-15 (Middle)
Average - 0.60 5.01 - - 4.35
layer-5 (Shallow)
Average - 0.08 7.73 - - 3.33

Table 5: The overlap (%) of neurons located by NE,
SAE, SV and SFT. For example, 0.44 denotes that the
overlap of neurons located by NE and SAE is 0.44%.

result supports the validity of our classification phi-
losophy.

We analyze this variable ∆n to explain how dif-
ferent methods influence the generation process.
According to Eq (11), Eq (13) and Eq (22):

∆nSAE =
W+

down(h
(l)
rec − h(l))

n(l)
, (16)

∆nSV =
W+

downv
(l)

n(l)
, (17)

where, W+
down is pseudo-inverse matrix of Wdown,

the only variable that doesn’t change with time step
in the formula. ∆nSAE and ∆nSV are both the
basis for neuron localization and the multiplicative
factors for neuron manipulation. We know that
at each inference time, ∆nSAE and ∆nSV change
dynamically. However, since v is an invariable
vector, and h

(l)
rec − h(l) changes at each time step,

the neurons located by SAE and the manipulation
to them are more flexible compared to SV. This
explains why the editing effect of SAE is better. In
contrast, the methods of CAT1 are static, and their
performance tends to be inferior compared to the
dynamic methods in CAT2.

In addition, the identified neurons can serve as
a mechanism to continuously track the evolution
of a given concept throughout model optimization.
Upon detecting a conceptual shift, the locate-and-
edit procedure is automatically executed, thereby
ensuring the long-term robustness of concept edits.

4.6 Mathematical Analysis

In LLMs, the prediction of next token is performed
by projecting the hidden state h linearly onto the
vocabulary space. Therefore, the most effective
way to evaluate a concept editing method is to
analyze the information flow it injects into the
model, i.e., ∆h. To further clarify this perspective,
the mathematical analysis in Appendix A.10 illus-
trates how different concept editing methods can be
aligned and compared within a unified framework
based on residual streams and matrix operations.
This analysis highlights that the key advantage of
SAE over other methods lies in projecting hidden
states into a high-dimensional concept space, en-
abling the injection of richer and more precise in-
formation into the model.

4.7 General Abilities

To investigate whether concept editing methods im-
pairs the model’s general abilities, we conducted
evaluations on five widely-used benchmarks. The
specific benchmarks and evaluation results are pro-
vided in Appendix A.11, which reveals that these
methods rarely impacts the general ability of the
LLMs, no matter they are methods from our cat-
egory 1 or 2. Surprisingly, in some cases, it even
leads to a slight performance improvement.

5 Related Work

Concept editing is used to identify and modify con-
cepts within LLMs in order to control their outputs.
The commonly used methods can be categorized
as follows.

Neuron Editing Geva et al. (2021) show that
feedforward layers in transformer-based language
models operate as key-value memories, where each
key correlates with textual patterns in the training
examples, and each value induces a distribution
over the output vocabulary. Based on this find-
ing, a series of studies (Dai et al., 2022; Wu et al.,
2023; Chen et al., 2024; Leng and Xiong, 2025;
Shi et al., 2025) leverage knowledge neurons to
edit specific factual knowledge. Lai et al. (2024)
identify “styles” neurons and enhance the stylistic
diversity of the generated text. Wang et al. (2022)
find skill neurons and explore their applications.
Zhao et al. (2024) allow fine-tuning of language-
specific neurons, enhancing multilingual abilities
in a specific language.
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Sparse Autoencoders One of the roadblocks to
a deep understanding of neural networks’ internals
is polysemanticity (Elhage et al., 2022), where neu-
rons appear to activate in multiple and semantically
distinct contexts (Scherlis et al., 2022). Huben et al.
(2023) use sparse autoencoders to reconstruct the
internal activations of language models. These au-
toencoders learn sets of sparsely activating features
that are more interpretable and monosemantic. Sub-
sequently, multiple groups have open-sourced their
own trained SAEs, such as EleutherAI3, Openai
(Gao et al., 2024), Google (Lieberum et al., 2024)
and so on. Paulo et al. (2024) build an open-source
automated pipeline to generate and evaluate natu-
ral language explanations for the features of SAEs
using LLMs, but it requires substantial cost.

Steering Vector This concept involves the extrac-
tion and optimization of latent space representation
vectors from datasets. These vectors capture key
attributes and can be directly manipulated to con-
trol the attributes of the generated text (Liang et al.,
2024). Subramani et al. (2022) extract latent steer-
ing vectors from pretrained language models to
control text generation, these vectors are then in-
jected into the model’s hidden states. Tigges et al.
(2023) show that emotion is represented linearly
and capture directions of emotion.

6 Conclusion

This paper presents a unified neuron-level
paradigm for concept editing in large language
models, offering a common framework to under-
stand and compare diverse editing methods. By
analyzing how conceptual information is injected,
either indirectly through parameter modification
or directly via residual stream manipulation, we
classify representative methods such as NE, SFT,
SAE, and SV into two coherent categories. We
further conduct a systematic evaluation along four
dimensions: editing reliability, output generaliza-
tion, neuron-level consistency, and mathematical
formalization. Our findings show that direct meth-
ods, especially SAE, achieve superior performance
in both reliability and semantic alignment. To ad-
dress the computational limitations of existing SAE
approaches, we additionally propose an efficient
feature interpretation method that improves practi-
cality without compromising effectiveness. Over-
all, our work bridges fragmented concept editing

3https://blog.eleuther.ai/autointerp/

strategies, deepens the understanding of their inter-
nal mechanisms, and contributes practical advances
for controllable and interpretable LLMs.

Limitations

First, due to computational constraints and few
open-source SAEs available, this study could use
only two models for experiments so far. While
it covers both 2B and 8B sizes, examining more
models under the proposed framework would cre-
ate opportunities for more interesting findings and
insights. Second, we have selected 6 emotions as
example concepts for the empirical verification of
our framework. In the future, we would like to ex-
plore more concepts in a wide range of scenarios.
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A Appendix

A.1 Reinforcer

Mathematical Principles Our work introduces
SAE Reinforcer to interpret features. Its core idea
is to manually amplify a specific feature ck (cor-
responding to a concept like “anger”) by setting
its activation to an extremely large value C: c′k =
C, where c represents the sparse representation
of SAE, c′ is the modified sparse representation.
Other features remain unchanged:c′j = cj , ∀j ̸= k.
Then, the decoder processes this modified activa-
tion:

hrec = W2c
′ + b2

= W2,kC +
∑

j ̸=k

W2,jcj + b2 (18)

Since C is significantly larger than the original
activation, the reconstructed hrec is dominated by
W2,kC:

hrec ≈ W2,kC (19)

In a Transformer model, hidden states are ul-
timately projected onto the vocabulary space for
word prediction. As a result, the language model
is biased toward generating words that are strongly
associated with the feature ck. In extreme cases,
the model will repeatedly generate a single word or
phrase representing the concept, such as “anger”.

Performance of Reinforcer The explanation
obtained using the autointerpretability procedure
(Huben et al., 2023) and the explanation of the con-
cept obtained using our Reinforcer are consistent.

Taking the feature “anger” (#15538) in layer
24 of Gemma-2-2b as an example, We randomly
selected some texts from Wikipedia, segmented
them into sentences, and identified the sentences
corresponding to the 20 tokens with the highest
activations for this feature in the high-dimensional
sparse space of SAE (see Table 6). We then asked
GPT-4 to summarize the common characteristics
of these sentences and assign a name to Feature
#15538.

Answer by GPT-4: “A suitable name for Feature
15538 could be Emotional Intensity, capturing the
prominence of strong emotions such as anger, rage,
and the reactions they provoke in the characters.”
The results are consistent with those obtained using
the reinforcer in our work. Additionally, similar ex-
perimental results were observed for other models
and concepts, which are not elaborated here.

A.2 Feature Localization Details
We extend Eq (8) to the case where the length of
the golden answer is greater than one:

Attr(f
(l)
i ) =

c
(l)
i

Tg

Tg∑

t=1

∂Pyt(c
(l)
i )

∂c
(l)
i

. (20)

When our method shown in Eq (9) expanded to
the case where the length of the golden answer is
greater than one:

Attr(f
(l)
i ) = −c

(l)
i

∂Loss

∂c
(l)
i

=
c
(l)
i

Tg

∂
∑Tg

t=1 log P(yt)(c
(l)
i )

∂c
(l)
i

. (21)

In theory, the trend of value changes for these
two formulas is consistent. However, in Eq (20),

starting from t = 2, ∂Pyt (c
(l)
i )

∂c
(l)
i

becomes very small,

because the probability of subsequent tokens is
less related to c

(l)
i , which causes Eq (20) to fail

in accurately locating the feature. Therefore, Eq
(20) is actually only applicable to the case where
Tg = 1. In contrast, Eq (21) does not encounter
this issue and can accurately locate the feature.

A.3 Neurons Selection
Neurons Located by Steering Vector The rate
of change in the values of neurons identified by SV
is denoted as:

∆nSV =
n(l)

SV
− n(l)

n(l)
, (22)

where, n(l)
SV

represents the value of neurons when
the residual stream is hSV. We then sort the neu-
rons and select the top J neurons with the highest
rates of change:

nSV = argsort∆nSV[−J :], (23)

where J is the amount of neurons located by SV,
and nSV is the set of indices of the important neu-
rons identified by SV.
Supervised Fine-tuning We collect the change
scores into a vector ∆w = [∆w1, . . . ,∆wdffn ]

⊤.
We then rank the columns by their scores and se-
lect the top J with the largest changes:

nSFT = argsort∆w[−J :], (24)

where J indicates the amount of neurons located by
SFT, and nSFT is the set of indices of the important
neurons identified by SFT, since the columns of W
correspond one-to-one with the neurons.
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Activation Sentence
124.01 When Admetus angered the goddess Artemis by forgetting to give her the due

offerings, Apollo came to the rescue and calmed his sister.
116.42 According to another version, or perhaps some years later, when Zeus struck down

Apollo’s son Asclepius with a lightning bolt for resurrecting the dead, Apollo in
revenge killed the Cyclopes, who had fashioned the bolt for Zeus.

111.37 Rand was unimpressed by many of the NBI students and held them to strict standards,
sometimes reacting coldly or angrily to those who disagreed with her.

110.27 In one essay, political writer Jack Wheeler wrote that despite the incessant bombast
and continuous venting of Randian rage, Rand’s ethics are a most immense achieve-
ment, the study of which is vastly more fruitful than any other in contemporary
thought.

105.42 Cain then killed Abel out of jealousy.

Table 6: Activation scores and corresponding sentences.

A.4 Dataset Details

During our experiments, we reconstructed the data
using multiple prompt templates to ensure that the
identified neurons or features are independent of
any specific prompt. For example, “scenario, You
feel”, “The scenario is: scenario. The emotion in
the above scenario is” and so on. The scenario is
an item in dataset.

A.5 Prompt Format

You’re a good assistant at evaluating the emotion
of a text.
Now you have two sentences, you are asked to
assess the degree of “emotion” in both sentences.
Each sentences receives an overall score on a scale
of 0 to 10, where a higher score indicates higher
the level of emotion.
[The Start of Sentences 1]
A1
[The End of Sentences 1]
[The Start of Sentences 2]
A2
[The End of Sentences 2]
First, provide a comprehensive explanation of
your evaluation, avoiding any potential bias and
ensuring that the order in which the responses
were presented does not affect your judgment.
Then, give a overall score on a scale of 0 to 10 for
the two answers, and this score is an integer.
Output with the following format:
Evaluation evidence: <evaluation explanation
here>
The overall score of Sentence 1: <score>
The overall score of Sentence 2: <score>

A.6 Human Evaluations

We have re-sampled 10 sets of experimental results,
with 40% of the samples (80 data points) in each re-
sult manually verified. The number of cases where
the GPT-4 evaluation is consistent with the man-
ual review are: 78, 75, 70, 69, 73, 78, 75, 70, 72,
74. The average consistency rate is 91.75%, which
is highly consistent, so the experimental results
remain unchanged.

A.7 Features in Different Layers

Table 7 shows the features in shallow, middle and
deep layers.

A.8 Experiments Set

We divided the dataset into “localization”, “valida-
tion” and “test” in a ratio of 1:1:2. This partition
is based on the observation that getting neurons,
features, and steering vectors requires relatively
few data samples, while the primary focus lies in
evaluating the effect and general abilities of the
editing methods, necessitating a larger test set.

For NE, we utilized the localization set to iden-
tify neurons associated with a specific emotion.
Directly calculating continuous integrals in Eq
(2) is intractable. We use Riemann approxima-

tion Attr(w(l)
i ) =

w
(l)
i
m

∑m
k=1

∂Px(
k
m
w

(l)
i )

∂w
(l)
i

, where

m = 20 is the number of approximation steps. To
filter out irrelevant neurons, we set a threshold t
equal to 0.1 times the maximum attribution score
Attr(w(l)

i ) across all neurons. A neuron is retained
if its attribution score exceeds t. From the retained
set, we selected 400–500 neurons that exhibit a co-
occurrence frequency above a threshold q within
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Layer Feature

Deep layer grief, pressure, solid, artificial, empathy
Middle layer treat, smell, cave, play, anyway, ask, her
Shallow layer ://, gre, ant, pon, Dul, did, flo, klkl

Table 7: Features located at different layers.

the dataset, where q is a hyperparameter. During
the forward pass, we applied a scaling operation to
these selected neurons, following Eq (3), with β as
a hyperparameter.

For SAE, we ranked the triggered features by the
localization dataset and selected the top 10 features
for validation using a reinforcer to determine the
target feature. During the forward pass, we set the
sparse activation of the target feature to C, where
C is a hyperparameter.

For SV, we extracted the emotion direction vec-
tor using the localization dataset and applied a scal-
ing factor k to this vector, and added it to the origi-
nal residual stream during the forward pass, where
k is a hyperparameter.

These editing operations were applied at every
time step of the generation process. Since SFT re-
quires a larger dataset, we expanded each emotion
category to 1,200 samples using GPT-4.

The optimal parameters are selected based on the
best performance on the validation set, where “best
performance” not only reflects effective emotion
control but also ensures the quality of the generated
sentences. We incorporate mechanisms to detect
repeated words and sentences, as well as perplexity
(PPL) thresholds, to maintain a baseline quality of
the outputs. Stricter quality checks are then applied
during both LLM-based and human evaluations.
Cost comparison Our experiments of all meth-
ods can be run on a single A100 GPU with 80 GB
of memory. The duration required for these experi-
ments depends on the scale of model parameters,
the size of the dataset, and the length of examples
within the dataset. Overall, the time consumption
is entirely acceptable. The comparison results are
shown in Table 8. In summary, the cost required
for the methods mentioned in our work is minimal
and can be ignored.

A.9 Intuitive Edit Effect

Table 9 shows the edit results of different methods
using “anger” as an example.

A.10 Mathematical Analysis
The information flow injected into the model by
concept editing methods is essentially ∆h. Accord-
ing to Eq (11), Eq (18) and Eq (7), ∆h made by
NE, SAE, and SV:

∆hNE =
∑

j∈n
Wdown,j∆nj , (25)

∆hSAE = W2,k∆ck, (26)

∆hSV = kv(l), (27)

where n represents the neurons of NE, ck is the
sparse activation of fk. The key distinction is
that Wdown is not explicitly optimized for seman-
tic alignment, whereas W2 functions as an over-
complete feature dictionary whose dimensional-
ity far exceeds that of the model and is trained
to encode prior knowledge about features and the
underlying concept space, thereby supplying the
residual stream with richer and more informative
signals. Moreover, the activation vector c in this
high-dimensional space is sparse, effectively dis-
entangling features. As a result, SAE introduces
a more precise flow of information into the model.
In contrast, the information flow of SV is v, which
is derived from the residual itself and may contain
redundant information. For SFT, since parameter
updates affect the entire network, the change to ∆h
is difficult to locate, meaning the influence is more
diffuse and difficult to control.

A.11 General Abilities
These benchmarks are used in the widely-
recognized LLM leaderboards, including Hel-
laSwag (Zellers et al., 2019), ARC (Clark et al.,
2018), MMLU (Hendrycks et al., 2021), Wino-
grande (Sakaguchi et al., 2021) , and TruthfulQA
(Lin et al., 2022). The general abilities of models
after concept editing in deep layers is shown in
Table 10 .
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Method Train/Locate Inference (Additional computation and la-
tency)

NE An offline computation identifies relevant
neurons. In our experiment, locating 100
samples takes under 30 minutes for the 8B
model.

Reweight predetermined neuron activa-
tions (computation and latency can be ig-
nored).

SV Computing the steering vector for 200 data
points takes 25 seconds.

Add the locally stored steering vector to
the residual stream (computation and la-
tency can be ignored).

SAE The SAE used in our work is open-source,
so there is no need to consider its training
cost. The identification and interpretation
of features can also be completed quickly.

SAE, with just an encoder and a decoder,
occupies minimal storage space. It adds
three negligible steps during inference: en-
coding, sparse-space editing, and decod-
ing. (computation and latency can be ig-
nored)

SFT The training can be completed within 30
minutes.

None

Table 8: Cost comparison of concept editing methods.

Anger
Ori You discover an old family photo album you’ve never seen before. You feel a sense of

excitement and curiosity as you flip through the pages, wondering who these people are
and what their stories might be. As you continue to explore the album, you notice that
some of the photos

NE You discover an old family photo album you’ve never seen before. You feel a sense of
excitement and curiosity as you flip through the pages, wondering who these people are
and what their stories might be. As you look at each picture, you notice that some of them
have been

SAE You discover an old family photo album you’ve never seen before. You feel angry and
frustrated that your parents didn’t share this with you when you were younger. You’re
upset because you feel like you missed out on something important, but you don’t know
what it is.

SV You discover an old family photo album you’ve never seen before. You feel a strong
emotion, and then you begin to remember... the words that were directed at you, the tone
of those words, the tone of your response, the tone of the responses against you.

SFT You discover an old family photo album you’ve never seen before. You feel a strong
connection to the people in the photos, even though you don’t recognize anyone.

Table 9: The outputs of L8B before and after editing using NE, SAE, SV, and SFT (taking “anger” as an example).
“Ori” denotes the original output of the model. The italicized text represents the prompt.
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ARC HellaSwag MMLU TruthfulQA Winogrande Average

Gemma-2-2B
Original 0.8022 0.7303 0.4961 0.3623 0.6875 0.6157
NE 0.7988 0.7266 0.4945 0.3613 0.6898 0.6142
SAE 0.7572 0.7279 0.4937 0.3852 0.6701 0.6068
SV 0.7668 0.7099 0.4903 0.3697 0.6835 0.6040
SFT 0.8089 0.7335 0.4960 0.3469 0.6725 0.6116

Llama-3-8B
Original 0.7769 0.6017 0.6218 0.4390 0.7285 0.6336
NE 0.7551 0.7851 0.6184 0.4399 0.7277 0.6652
SAE 0.7340 0.7507 0.6216 0.4375 0.6701 0.6428
SV 0.7045 0.7490 0.6098 0.4828 0.7285 0.6549
SFT 0.7811 0.7898 0.6206 0.4290 0.7088 0.6659

Table 10: Results of general abilities of LLMs after concept editing in deep layers on widely-used benchmarks.
“Original” refers to the model’s output before any editing.
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