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Abstract

Mixture-of-Experts (MoE) models offer im-
mense capacity via sparsely gated expert sub-
networks, yet adapting them to multiple do-
mains without catastrophic forgetting remains
an open challenge. Existing approaches ei-
ther incur prohibitive computation, suffer cross-
domain interference, or require separate runs
per domain. We propose DES-MoE, a dy-
namic expert specialization framework for
multi-domain adaptation of Mixture-of-Experts
models. DES-MoE addresses catastrophic for-
getting through three innovations: (1) an adap-
tive router balancing pre-trained knowledge re-
tention and task-specific updates via distillation,
(2) real-time expert-domain correlation map-
ping to isolate domain-specific gradients, and
(3) a three-phase adaptive fine-tuning sched-
ule that progressively freezes non-specialized
parameters. Evaluated on six domains (math,
code, law, etc.), DES-MoE matches single-
domain ESFT performance while training one
unified model, reduces forgetting by 89% com-
pared to full fine-tuning as domains scale from
2 to 6, and achieves 68% faster convergence
than conventional methods. Our work estab-
lishes dynamic expert isolation as a scalable
paradigm for multi-task MoE adaptation.

1 Introduction

Mixture-of-Experts (MoE) models have emerged as
a promising architecture for scaling up deep learn-
ing, especially for large language models (Jiang
et al., 2024; Dai et al., 2024; Xue et al., 2024; Team,
2024; Sun et al., 2024). By using a sparsely-gated
routing mechanism, MoEs activate only a small
subset of “expert” subnetworks for each input, dra-
matically increasing model capacity without pro-
portional increases in computation. This approach
has enabled models with hundreds of billions to
trillions of parameters.

*Corresponding author

However, adapting MoE models to new domains
or tasks remains challenging. Sparse MoE archi-
tectures can suffer degraded performance under
distribution shifts. A given domain might activate
a particular subset of experts heavily, and different
domains tend to rely on different experts (Li et al.,
2025). Naïvely fine-tuning a MoE on multi-domain
data can therefore lead to inefficiencies: some ex-
perts may be over-specialized to certain domains
while others are under-utilized, causing unstable
training and suboptimal generalization. The hard
routing decisions in MoEs, while efficient, also
mean that mistakes in the routing (or changes in
domain characteristics) can significantly impact
performance on a new domain if not properly ad-
dressed.

Recent research has begun exploring methods to
efficiently fine-tune MoEs for downstream tasks.
One notable approach is Expert-Specialized Fine-
Tuning (ESFT) (Wang et al., 2024), which adapts
an MoE by updating only the experts most relevant
to a target task or domain while freezing the rest
show that by tuning a small subset of experts se-
lected for a specific task, one can match or even
exceed the performance of full model fine-tuning,
with substantially improved efficiency. This static,
task-specific strategy validates the intuition that dif-
ferent experts encode different knowledge and that
focusing on the most pertinent experts can yield
efficient adaptation. Yet, it also highlights a funda-
mental limitation: the approach is inherently tied
to a single domain or task at a time. For each new
domain, one must determine a new expert subset
and fine-tune again from scratch, which is ineffi-
cient and poorly scalable as the number of domains
grows. Moreover, static expert allocation fails to
exploit commonalities between domains; experts
tuned for one domain are not easily reused for an-
other, even if some knowledge could be shared.

In this paper, we present Dynamic Expert
Specialization (DES-MoE), a lightweight multi-
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domain fine-tuning framework for Mixture-of-
Experts models. DES-MoE combines a learnable
adaptive router with online expert–domain corre-
lation tracking to dynamically select and sparsely
update only the most relevant experts on a per-batch
basis. Fine-tuning proceeds through three progres-
sive stages—Warm-Up, Stabilization, and Consol-
idation—each imposing stricter masks on router,
backbone, and expert parameters to (1) rapidly dis-
cover domain signals, (2) refine gating and min-
imize cross-domain interference, and (3) lock in
specialized adaptations with parameter-efficient up-
dates.

Contributions Our main contributions are as fol-
lows:

• Dynamic multi-domain routing A unified
fine-tuning framework with a learnable, per-
input router that replaces static expert assign-
ments and adapts to heterogeneous domains
in a single MoE model.

• Expert–domain correlation and sparse up-
dates An online tracking mechanism that iden-
tifies the most relevant experts for each do-
main batch and restricts fine-tuning to that
subset, cutting compute and preventing nega-
tive transfer.

• Progressive three-phase specialization
schedule A parameter-masking regimen
(Warm-Up, Stabilization, Consolidation)
that gradually freezes router, backbone, and
non-selected experts to stabilize training and
concentrate final updates on domain-specific
experts.

Empirically, DES-MoE matches or exceeds sep-
arate single-domain fine-tuning on six specialized
tasks and preserves general benchmarks as the num-
ber of domains grows, all while reducing total fine-
tuning time by over two-thirds compared to full-
parameter updates.

2 Related Work

Parameter-Efficient Fine-Tuning Parameter-
efficient fine-tuning (PEFT) has become a popular
means to adapt large language models to down-
stream tasks with minimal extra training cost, and
existing methods for dense architectures fall into
three camps: augment-and-freeze approaches that
insert and train only a small set of new parame-
ters—such as prompt tuning (Lester et al., 2021),

prefix tuning (Li and Liang, 2021; Liu et al., 2022)
and adapters (Houlsby et al., 2019; Pfeiffer et al.,
2021; He et al., 2022; Wang et al., 2022) —se-
lective fine-tuning that updates only a subset of
existing weights (Guo et al., 2021; Gheini et al.,
2021; He et al., 2023; Vucetic et al., 2022; Liao
et al., 2023; Ansell et al., 2022; Sung et al., 2021;
Xu et al., 2021) , and low-rank adaptation tech-
niques like LoRA (Hu et al., 2022) and its many
refinements (Zhang et al., 2023; Ding et al., 2023;
Lin et al., 2024; Liu et al., 2023; Dou et al., 2024;
Pan et al., 2024)

Mixture of Experts Mixture-of-Experts (MoE)
architectures (Fedus et al., 2021; Lepikhin et al.,
2021; Zoph et al., 2022; Dai et al., 2024) have
demonstrated that one can decouple computational
cost from parameter count by selectively activat-
ing only a subset of “experts” for each input (Fe-
dus et al., 2021; Lepikhin et al., 2021; Roller
et al., 2021; Dai et al., 2022; Xue et al., 2024; Li
et al., 2025). More recently, research has shifted
from coarse-grained MoE (Jiang et al., 2024) de-
signs—characterized by a small number of high-
dimensional experts—to fine-grained (Ludziejew-
ski et al., 2024; Dai et al., 2024; DeepSeek-AI
et al., 2024a,b) configurations with many low-
dimensional experts, allowing for more precise
expert selection and highly efficient task-specific
tuning.

However, extending PEFT to sparse Mixture-
of-Experts models remains underexplored. For in-
stance, Wang et al. (2024) introduce ESFT, which
fine-tunes only the experts most relevant to a given
downstream task based on expert–domain affin-
ity. This design improves task performance while
mitigating catastrophic forgetting, but its major lim-
itation lies in the requirement to train a separate
model for each domain, leading to prohibitive com-
putational and storage costs. In contrast, our work
proposes DES-MoE, a dynamic expert specializa-
tion fine-tuning framework that adaptively selects
and updates experts according to downstream task
affinity. This enables efficient multi-domain adap-
tation in sparse MoE architectures without the need
for task-specific model duplication.

3 DES-MoE

Figure 1 provides an overview of the DES-MoE
framework. In this section, we detail its three
core components. First, we describe the Adap-
tive Lightweight Router (ALR) (§ 3.1), which
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Figure 1: The DES-MoE framework. (a) Progressive Parameter Specialization Schedule: in Stage I (Warm-up) all
router and expert parameters are trainable; in Stage II (Stabilization) only the adaptive router and domain-relevant
experts are updated; in Stage III (Consolidation) the router and unrelated experts are frozen, and only the final
domain-specific experts remain trainable. (b) Evolution of the Domain–Expert Specificity Matrix A: each cell’s
shading indicates how strongly an expert is associated with a given domain, progressing from a uniform (blank)
mapping, through emergent and reinforced specialization, to a locked-in final mapping.

replaces the frozen pre-trained gating layer with a
small MLP trained via a combined task and distil-
lation objective. Next, we introduce the Domain-
Guided Expert Specialization (DGES) (§ 3.2), a
mechanism for dynamically identifying which ex-
perts are most relevant to each domain and applying
selective gradient masking. Finally, we present the
Progressive Parameter Specialization Schedule
(§ 3.3), a three-phase training regimen that grad-
ually freezes unrelated parameters to consolidate
domain-specific expertise without disrupting the
model’s general capabilities.

3.1 Adaptive Lightweight Router

Static routing mechanisms learned during pretrain-
ing often struggle to accommodate domain shifts
encountered in multi-task fine-tuning. On one hand,
updating the original router in full can overwrite
valuable pretrained knowledge; on the other, freez-
ing it entirely prevents the model from adapting to
new domains. To strike a balance between knowl-
edge preservation and domain adaptation, we in-
troduce an Adaptive Lightweight Router (ALR)
that augments the pretrained linear router with a
shallow, trainable MLP and is trained under a dual-
signal paradigm.

Concretely, given a token representation ht ∈

Rd, we define the adaptive router

Radapt(ht) = W2GELU
(
W1ht + b1

)
+ b2, (1)

where W1 ∈ Rd×4d, b1 ∈ R4d constitute the hid-
den layer, and W2 ∈ R4d×|E|, b2 ∈ R|E| project
to the expert logits (with |E| being the total num-
ber of experts). We initialize W2 by copying the
pretrained router’s weights and apply Kaiming ini-
tialization (He et al., 2015) to W1, thus preserving
the router’s original behavior at the start of fine-
tuning. Let θrouter = {W1, b1,W2, b2} denote the
set of trainable parameters of this adaptive router.

Training proceeds with two complementary loss
components. First, a knowledge distillation loss:

LKD =
1

T

T∑

t=1

KL
(

σ
(
Rorig(ht)/τ

)
∥σ

(
Radapt(ht)/τ

))
,

(2)

encourages the adaptive router to mimic the pre-
trained routing patterns (with temperature τ = 0.7).
Second, a task adaptation loss

Ltask = −
T∑

t=1

logP
(
yt | ht,θrouter

)
(3)

drives specialization toward downstream objectives.
We combine these via a time-dependent weighting,

Lrouter = λ(α)LKD +
(
1− λ(α)

)
Ltask, (4)
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where λ(α) = max
(
0, 1 − α

)
, α ∈ [0, 1] de-

notes the fraction of fine-tuning completed. Early
in training (λ ≈ 1), the router remains close to its
pretrained state; during the middle phase (0.2 <
λ < 0.7), it gradually learns domain-specific rout-
ing preferences; and by the end (λ = 0), it fully
optimizes for task performance. This phased adap-
tation ensures a smooth and controlled transition
from general pretrained knowledge to specialized
behavior.

3.2 Domain-Guided Expert Specialization
Experts trained jointly on multiple domains often
suffer from destructive interference, as gradient up-
dates from one domain can overwrite useful knowl-
edge learned for another. To mitigate this, we in-
troduce a Domain-Guided Expert Specialization
(DGES) scheme that (i) uncovers each domain’s
preferred experts, (ii) restricts updates to those
experts, and (iii) preserves a pool of universally
shared experts for cross-domain transfer.

Let the training data be partitioned by domain
D =

⋃D
d=1Dd, with Nd = |Dd|. During an initial

warmup phase, we record how often each expert e
is selected for inputs from domain d:

A
(e)
d =

1

Nd

∑

(ht,yt)∈Dd

I
(
e ∈ TopK

(
R(ht)

)
,

(5)
where (ht, yt) ∈ Dd is a training pair from domain
d, and I is the indicator function and K is the num-
ber of experts routed per token. Intuitively, A(e)

d

captures the affinity between domain d and expert
e.

We then define a binary specialization matrix
M∈ {0, 1}|D|×|E| by thresholding each row of A:

Md,e =

{
1, A

(e)
d ≥ ϕ ·maxe′(A

(e′)
d ),

0, otherwise,
(6)

with relative threshold ϕ = 0.6. During subsequent
fine-tuning phases, when processing a batch drawn
from domain d, we mask expert parameters so that
only {θe | Md,e = 1} receive nonzero gradients:

∂L
∂θe

=

{
∂Ltask
∂θe

, Md,e = 1,

0, otherwise.
(7)

To avoid cross-domain conflict in mixed-domain
batches, we either group examples by domain or, if
necessary, apply this masking at the token level:

g(t)e =

B∑

i=1

I
(
e ∈ Ei

) ∂Li
∂θe

, (8)

where Ei is the set of experts selected for token i

with domain label di. In other words, g(t)e sums
up only those per-token gradients for which ex-
pert e actually participated, ensuring that experts
masked out for a given token (because Mdi,e = 0)
contribute nothing to its update.

The specialization matrix M is periodically up-
dated every Tupdate steps:

Â
(e)
d ← αA

(e)
d + (1− α) Â

(e)
d , (9)

where α = 0.9 is the momentum and then refresh
M . If an expert is highly active in more than one do-
main (i.e. ∃ d1 ̸= d2 : Md1,e = Md2,e = 1), we du-
plicate it to maintain distinct, domain-specialized
copies without reducing capacity for other do-
mains.

3.3 Progressive Parameter Specialization
Schedule

To balance rapid domain adaptation with stability
and parameter efficiency, we organize fine-tuning
into three consecutive phases—Warm-Up, Stabi-
lization, and Consolidation—each imposing pro-
gressively stricter update masks on router, back-
bone, and expert parameters (Figure 1).

Let T be the total number of training steps, and
denote by θrouter the lightweight router parameters,
θB the Transformer backbone parameters, and θe
the parameters of expert e. We define a binary
mask vector m(t) ∈ {0, 1}|θ| at step t so that the
parameter update is

θ(t+1) = θ(t) − ηm(t) ⊙ ∂Ltask

∂θ
. (10)

We split training into three intervals [1, T1],
(T1, T2], and (T2, T ], with phase boundaries chosen
as proportions of T (e.g. T1 = 0.2T , T2 = 0.7T ).
The mask is defined as:

m
(t)
j =





1, t ≤ T1 and j ∈ {θrouter ∪ θB};

1,
T1 < t ≤ T2 and

j ∈
{
θrouter ∪ θe | e ∈ SdB

}
;

1, t > T2 and j ∈
{
θe | e ∈ SdB

}
;

0, otherwise.
(11)

Here SdB is the expert subset for the domain dB of
the current mini-batch B (cf. § 3.2).

Warm-Up (t ≤ T1) All parameters except the ex-
perts (including θrouter, θB) are unfrozen (m(t) ≡
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Math Ability Code Ability Specialized Tasks Average
MATH GSM8K Humaneval MBPP Intent Summary Law Translation

Vanilla LM 19.6 55.9 42.1 44.6 16.8 58.6 17.1 14.5 33.6

Single-Domain Fine-Tuning (each model trained on one domain)
FFT 23.4 66.4 42.1 42.2 78.8 69.4 47.0 38.4 51.0
LoRA 20.6 58.9 39.6 44.8 67.8 64.7 39.7 23.1 44.9
ESFT-Token 22.6 66.0 41.5 42.6 75.6 65.4 45.7 36.2 49.4
ESFT-Gate 23.2 64.9 43.3 41.8 78.6 65.8 49.1 35.2 50.2

Mixed-Domain Fine-Tuning (all models trained on unified multi-domain data)
FFT (Mixed) 22.0 63.0 40.2 40.1 71.3 63.5 41.2 31.8 46.6
LoRA (Mixed) 20.9 59.5 38.7 43.1 65.4 61.2 37.9 24.6 43.9
ESFT-Token (Mixed) 21.8 62.4 40.8 41.3 70.1 62.8 42.5 32.4 46.8
ESFT-Gate (Mixed) 22.5 61.7 41.9 40.5 73.8 63.1 45.3 33.1 47.7

DES-MoE 24.1 65.8 43.5 43.7 79.2 69.2 49.5 37.6 51.6

Table 1: Performance on downstream tasks. The top block shows single-domain fine-tuning baselines (one model
per domain), while the middle block reports the same methods trained on mixed-domain data. The bottom row
is our proposed unified multi-domain fine-tuning. Best results are highlighted. We report the Single-Domain
Fine-Tuning performance of ESFT following the results in Wang et al. (2024).

1). This stage allows the model to quickly learn
the domain signal and initialize the expert-domain
mapping.

Stabilization (T1 < t ≤ T2) We freeze the back-
bone θB but keep θrouter and only the experts in
SdB trainable. This reduces interference by limit-
ing updates to domain-relevant experts while still
allowing the router to refine gating for better do-
main separation.

Consolidation (t > T2) Only expert parameters
θe with e ∈ SdB remain trainable; θrouter and θB
are fully frozen. At this point, we “lock in” the rout-
ing behavior and backbone representations, focus-
ing all remaining updates on final domain-specific
expert adaptation.

By smoothly tightening the update mask, this
schedule achieves (1) fast initial convergence via
broad updates, (2) reduced cross-domain interfer-
ence through selective freezing, and (3) parameter-
efficient final tuning by concentrating updates on a
small expert subset.

4 Experiments and Results

4.1 Tasks, Datasets, and Evaluation
We conduct our experiments on a diverse collection
of in-domain and out-of-domain datasets. For math-
ematical reasoning, we fine-tune on MetaMathQA
(Yu et al., 2024) and report results on GSM8K
(Cobbe et al., 2021) and MATH (Hendrycks et al.,
2021b). For code generation, we use the Python
split of CodeAlpaca (Luo et al., 2024) for training

and evaluate on HumanEval (Chen et al., 2021)
and MBPP (Austin et al., 2021). To test adapta-
tion to novel tasks, we include low-resource Chero-
kee→English translation from ChrEn (Zhang et al.,
2020), intent-to-JSON parsing from the BDCI-
19 Smart HCI NLU Challenge1, customer-service
summarization from BDCI-212, and legal judgment
prediction from BDCI-21 Law Event3. Finally, we
measure catastrophic forgetting on a broad suite
of general benchmarks—TriviaQA (Joshi et al.,
2017), HellaSwag (Zellers et al., 2019), ARC-
Challenge (Clark et al., 2018), IFEval (Zhou et al.,
2023), CEval (Huang et al., 2023), CLUEWSC (Xu
et al., 2020), and MMLU (Hendrycks et al., 2021a).
—that cover question answering, commonsense in-
ference, and multilingual understanding. Detailed
dataset statistics, preprocessing steps, and prompt
formats are provided in Appendix C.

4.2 Baselines

We compare against three widely-used fine-tuning
strategies: Full-parameter Fine-Tuning (FFT), Low-
Rank Adaptation (Hu et al., 2022), and Expert-
Specialized Fine-Tuning (ESFT). Each baseline is
evaluated under two training regimes. In the single-
domain regime, the model is fine-tuned separately
on each individual task or domain. In the mixed-
domain regime, all six tasks are combined into a
unified multi-task dataset, maintaining an equal

1https://www.datafountain.cn/competitions/511
2https://www.datafountain.cn/competitions/536
3https://www.datafountain.cn/competitions/540
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CLUEWSC TriviaQA IFEval MMLU CEval HellaSwag ARC Average

Vanilla LM 81.5 67.7 42.5 57.5 59.9 74.0 53.7 62.4

Single-Domain Fine-Tuning (each model per domain)
FFT 80.9 ± 1.1 65.9 ± 0.7 34.2 ± 4.1 55.5 ± 1.0 58.8 ± 0.9 67.9 ± 3.8 48.4 ± 2.4 58.8 ± 1.3
LoRA 74.3 ± 7.7 63.4 ± 5.4 38.7 ± 2.5 55.5 ± 1.2 57.0 ± 1.5 72.8 ± 1.9 51.8 ± 2.3 59.1 ± 2.5
ESFT-Token 80.9 ± 0.9 66.7 ± 1.8 40.7 ± 1.3 57.1 ± 0.5 59.6 ± 0.8 72.3 ± 3.6 52.9 ± 1.5 61.5 ± 1.1
ESFT-Gate 81.4 ± 1.1 66.5 ± 2.3 40.2 ± 1.5 57.0 ± 0.4 59.5 ± 0.8 68.2 ± 9.9 51.5 ± 3.1 60.6 ± 2.3

Mixed-Domain Fine-Tuning (unified multi-domain data)
FFT (Mixed) 76.2 61.3 30.8 53.1 55.4 65.7 45.9 55.5
LoRA (Mixed) 73.5 60.8 34.6 54.3 54.9 70.2 48.7 56.7
ESFT-Token (Mixed) 78.4 63.5 36.1 55.7 56.3 69.8 49.2 58.4
ESFT-Gate (Mixed) 79.1 64.2 37.9 56.0 57.1 68.5 50.3 59.0

DES-MoE 81.7 67.3 42.9 58.2 60.5 73.3 53.1 62.4

Table 2: General ability evaluation under mixed-domain fine-tuning. Our method maintains original capabilities
through dynamic expert isolation, while conventional approaches suffer from catastrophic forgetting when trained
on mixed-domain data. We report the Single-Domain Fine-Tuning performance of ESFT following the results in
Wang et al. (2024).

proportion of examples from each task to ensure
balanced learning. All baselines share the same
batch size, sequence length, learning-rate sched-
ules, and evaluation intervals as Wang et al. (2024)
to guarantee a fair comparison. Appendix C pro-
vides full details of our experimental protocol.

4.3 Downstream Task Performance

The results in Table 1 reveal a marked degradation
in task performance when conventional fine-tuning
methods are applied to mixed-domain data. In the
case of FFT, updating every parameter indiscrimi-
nately allows gradients from one domain to over-
write useful representations learned for another, re-
sulting in a 4.4-point average drop and an especially
severe 5.8-point decline on the Law task. LoRA’s
low-rank adapters, while parameter-efficient, simi-
larly collapse under conflicting multi-domain gra-
dients: the shared low-dimensional subspace can-
not simultaneously capture the diverse patterns re-
quired by math, code, and legal reasoning. Static
ESFT variants mitigate this to some extent by freez-
ing most experts and only tuning a fixed subset, but
their expert assignments—determined from single-
domain data—do not generalize when tasks are
interleaved. As a result, ESFT-Gate and ESFT-
Token still lose several points in mixed training,
particularly on domains like mathematics where
the routing distribution shifts dramatically under
multi-task pressure.

Our dynamic routing framework counteracts
these failure modes by continually re-estimating
which experts each domain needs, and by gradually
freezing irrelevant parameters in a phased schedule.

During the warm-up phase, the lightweight router
learns a robust gating function across all domains,
ensuring that experts most relevant to each domain
are identified even when tasks are interleaved. In
the subsequent phases, only those dynamically se-
lected experts receive updates, while all others re-
main frozen. This targeted update strategy prevents
gradient interference: legal-domain updates do not
perturb the experts crucial for math reasoning, and
vice versa. Consequently, our method delivers an
average score of 51.6 under mixed-domain fine-
tuning—outperforming FFT by 5.0 points—and
maintains or improves standalone performance on
challenging domains such as Law and Translation.
The superior results underscore the importance of
adaptive expert isolation: by respecting the con-
ditional computation paradigm inherent to MoEs,
our approach preserves each expert’s specialization
even in a unified training regime.

4.4 General Ability Retention

Beyond specialized tasks, Table 2 assesses whether
multi-domain fine-tuning erodes the model’s broad
linguistic and reasoning skills. In mixed-domain
experiments, FFT’s collapse from 58.8 to 55.5 in
average general benchmark performance indicates
that unfettered parameter updates erode pre-trained
knowledge. LoRA, which updates a modest num-
ber of adapter parameters, also cannot insulate it-
self fully: its general accuracy drops by 2.5 points
on average, revealing that conflicts in the low-rank
adapter space still compromise core capabilities.
Static ESFT variants fare somewhat better—ESFT-
Gate loses only 1.6 points on average—but the

18483



2 3 4 5 6
Number of Domains

56

57

58

59

60

61

62

Pe
rfo

rm
an

ce
 (G

en
er

al
 Ta

sk
 A

vg
.)

FFT
LoRA
ESFT
DES-MoE

Figure 2: Average general-benchmark score
(MMLU, TriviaQA, HellaSwag, ARC, IFEval, CEval,
CLUEWSC) after fine-tuning on an increasing number
of domains N (from 2 to 6).

fixed expert selections determined from individual
domains prove brittle when the model must juggle
multiple new tasks.

In contrast, our dynamic routing method not only
prevents degradation but in some benchmarks actu-
ally improves upon the original alignment check-
point. By freezing all non-selected experts and
the backbone during the final consolidation phase,
we effectively lock in the model’s general-purpose
knowledge. This ensures that fine-tuning signals
do not drift away from the alignment distribution
learned during the instruction-tuning stage. The
dynamic router’s distillation loss further regular-
izes gating behavior, keeping the model’s routing
patterns close to the pre-trained distribution when
appropriate, and only diverging where new domain
evidence justifies it. The result is a model that sur-
passes the vanilla LM on MMLU and CEval, and re-
tains near-identical performance on HellaSwag and
ARC. These outcomes demonstrate that dynamic
expert isolation, coupled with a phased fine-tuning
schedule, can harmonize domain specialization
with generalization, yielding a single MoE model
that excels across both specialized and broad-scope
tasks.

4.5 Effect of Increasing Domain Count on
General Ability Retention

To investigate how the number of fine-tuning do-
mains impacts the model’s ability to retain its gen-
eral capabilities, we conducted a controlled expan-
sion study. Starting from a two-domain setup (math
and code), we incrementally added one specialized
domain at a time—drawing from intent recognition,
summarization, legal judgment, and translation in
arbitrary order—and measured the average gen-

eral benchmark score after each expansion. For
each additional domain, we fine-tuned the model
on the combined set of N domains and evaluated
the retained general ability by averaging perfor-
mance over MMLU, TriviaQA, HellaSwag, ARC-
Challenge, IFEval, CEval, and CLUEWSC. Fig-
ure 2 plots the decline in average score as domains
increase from 2 to 6.

Classical full-parameter fine-tuning (FFT) ex-
hibits steep and accelerating forgetting: its general
benchmark score falls from 61.7 at N = 2 to 55.5
at N = 6, a net drop of 6.2 points. Notably, the per-
domain slope worsens as more domains are added,
shifting from approximately –1.3 points per do-
main between N = 2 and N = 3 to –2.1 points per
domain beyond N = 3. This acceleration indicates
that when updating all parameters jointly, gradient
conflicts intensify with each new domain, leading
to compounding interference and catastrophic for-
getting.

LoRA and static ESFT mitigate forgetting to
some degree—each losing around 4.8 and 3.4
points respectively over the same expansion—but
still demonstrate a steady decline (average slopes
near –1.4 points per domain). Their low-rank
adapters or fixed expert selections offer partial pro-
tection by limiting parameter updates, yet they lack
the flexibility to re-isolate domain-specific capacity
when confronted with an increasing variety of tasks.
As a result, low-dimensional adapter spaces and
static gating maps become over-taxed and gradually
leak knowledge across domains.

By contrast, our DES-MoE method maintains
a remarkably flat retention curve: starting at 62.5
for N = 2, it fluctuates by less than 0.3 points
through N = 6, ultimately settling at 62.4—a neg-
ligible 0.1-point decline. This stability reflects the
efficacy of dynamic routing and phased freezing
in protecting experts not relevant to newly added
domains. At each expansion step, the adaptive
router quickly re-identifies the appropriate experts
for each domain, and our selective update schedule
ensures that previously protected experts remain un-
touched. Consequently, the model sustains its gen-
eralist knowledge even as it acquires new domain
skills, confirming that dynamic expert isolation is
a powerful mechanism for scalable, multi-domain
MoE fine-tuning.

4.6 Ablation Study
Table 3 quantifies the contributions of the two
core components in DES-MoE: the Adaptive
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Down. (Avg.) ∆ Gen. (Avg) ∆

DES-MoE 51.6 - 62.4 -
w/o ALR 48.9 -2.7 59.8 -2.6
w/o DGES 47.3 -4.3 55.6 -6.8

ESFT-Mixed 47.2 - 58.6 -
w/ ALR 46.8 -0.4 57.3 -1.3

Table 3: Ablation study. Down.: Downstream task
performance. Gen.: General task performance.

Lightweight Router (ALR) and Domain-Guided
Expert Specialization (DGES). Removing ALR
(“w/o ALR”) causes downstream performance to
drop by 2.7 points (51.6 → 48.9) and general bench-
mark scores to fall by 2.6 points (62.4 → 59.8).
This underscores ALR’s role in capturing evolving
domain features: by blending a distillation con-
straint with task loss, ALR stabilizes the gating
distribution learned during pre-training while still
allowing the router to adapt gradually to new do-
mains. Without this mechanism, routing decisions
become erratic, impairing both specialized and gen-
eral capabilities.

Omitting DGES (“w/o DGES”) inflicts even
more severe degradation, with downstream scores
plunging 4.3 points and general performance col-
lapsing by 6.8 points. We observe that, in the ab-
sence of domain-guided expert isolation, the over-
lap in expert usage between Law and Code tasks
jumps from 0.18 to 0.47, indicating rampant expert
sharing. Such conflation leads to catastrophic for-
getting, as the model can no longer maintain clear
allocations of domain-specific knowledge.

Finally, attempting to graft ALR onto a static
ESFT framework (“ESFT w/ ALR”) actually harms
performance: downstream accuracy declines by 0.4
points and general benchmarks drop by 1.3 points.
This result highlights that dynamic routing must be
paired with a compatible update schedule—simply
adding an adaptive router to fixed expert subsets
introduces routing-assignment errors (measured at
+37%) and conflicts with pre-determined expert
mappings. In sum, these ablations demonstrate that
DES-MoE’s gains arise from the synergy of ALR’s
stabilized, progressive adaptation and DGES’s tar-
geted expert isolation; each component alone is
insufficient and naive combinations can be counter-
productive.

4.7 Time Efficiency Comparison

We next assess the wall-clock cost of each fine-
tuning strategy in the mixed-domain setting (Fig-
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Figure 3: Total training time (in minutes) required to
sequentially incorporate six domains using three differ-
ent fine-tuning strategies—FFT, LoRA, ESFT, and our
proposed DES-MoE. DES-MoE reduces overall train-
ing time by over two-thirds compared to FFT while
preserving performance across all domains.

ure 3). FFT on the combined dataset is by far the
most expensive, requiring 171.8 minutes to con-
verge. Static ESFT, when applied independently
to each domain, incurs a cumulative cost of 118.8
minutes—fast per run but slow in aggregate due to
six separate jobs. By adapting ESFT to a unified
mixed-domain regime (Mixed-ESFT), we cut this
down to 67.5 minutes, a 43.2% reduction relative
to the single-domain aggregate. However, despite
this speedup, Mixed-ESFT yields lower perfor-
mance than individually fine-tuned single-domain
models. Our DES-MoE approach further accel-
erates convergence to 54.0 minutes—20% faster
than Mixed-ESFT—by dynamically pruning irrele-
vant experts so that each update touches fewer pa-
rameters. Moreover, DES-MoE not only matches
but often surpasses single-domain performance on
mixed data, achieving both efficiency and effec-
tiveness. The quickest method is mixed-domain
LoRA, at 49.5 minutes, but as demonstrated in Sec-
tions 4.3 and 4.4, this speed advantage comes at
the expense of substantial performance degradation
under mixed-domain fine-tuning.

Overall, these findings highlight the advantage
of dynamic expert specialization in optimizing both
training efficiency and resource utilization. DES-
MoE therefore offers a promising route for scal-
able mixed-domain adaptation without sacrificing
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model effectiveness.

5 Discussion

While DES-MoE demonstrates strong performance
in supervised multi-domain adaptation, its reliance
on explicit domain labels presents a practical limi-
tation. In real-world scenarios where clear domain
boundaries are unavailable, we envision two poten-
tial extensions:

First, for fully unlabeled data, unsupervised do-
main discovery could be implemented through clus-
tering techniques in the feature space. We propose
using k-means clustering on the [CLS] token repre-
sentations or expert activation patterns to infer la-
tent domain structure. However, as noted in the lim-
itations, this approach faces significant challenges
when domains exhibit high similarity—such as be-
tween historical fiction and science fiction novels.
In such cases, the expert specialization mechanism
may fail to establish distinct routing patterns, lead-
ing to reduced isolation effectiveness.

Second, for weakly supervised settings, a
similarity-aware routing mechanism could be de-
veloped. This would incorporate domain affinity
metrics into the gating network, allowing experts
to share capacity across semantically related do-
mains while maintaining isolation between diver-
gent ones.

However, these solutions introduce new chal-
lenges: clustering quality directly impacts expert
specialization, and imperfect clusters may propa-
gate errors through the training process. Moreover,
highly overlapping domains might fundamentally
limit the benefits of expert isolation, suggesting
that a hybrid approach—combining expert special-
ization with shared adaptive components—may be
necessary for fine-grained domain distinctions.

These directions highlight the tension between
architectural specialization and practical applica-
bility, pointing to interesting trade-offs between
performance gains and implementation complexity
that warrant future investigation.

6 Conclusion

We present DES-MoE, a dynamic framework for
multi-domain MoE adaptation that mitigates catas-
trophic forgetting through adaptive routing and
expert-domain correlation mapping. By progres-
sively isolating domain-specific parameters via a
three-phase adaptive fine-tuning schedule (warmup,
stabilization, consolidation), DES-MoE achieves

unified performance comparable to per-domain spe-
cialized models while preserving 98% of general
task capabilities as domains scale from two to six.
Evaluations across six domains demonstrate 89%
less forgetting than full fine-tuning and 68% faster
convergence, establishing dynamic expert isolation
as an efficient paradigm for scalable multi-domain
adaptation.

Limitations

Despite its strong performance, DES-MoE has sev-
eral limitations. It relies on explicit domain labels
to build expert–domain mappings, which may not
be available or clear in practice, and introduces ad-
ditional hyperparameters (e.g., distillation weight,
selection thresholds, phase cutoffs) that may re-
quire retuning for different domain sets or model
sizes. While we demonstrate stability up to six
domains on DeepSeek-V2-Lite, it remains unclear
how well the approach scales to hundreds of highly
imbalanced domains or other MoE architectures,
and the overhead of computing dynamic routing
statistics may offset efficiency gains in resource-
constrained settings. Addressing unsupervised do-
main discovery, automated hyperparameter tuning,
and broader validation across architectures and
modalities are important directions for future work.

Acknowledgments

This work was supported by the National
Natural Science Foundation of China (Grant
No.62506318); Guangdong Provincial Department
of Education Project (Grant No.2024KQNCX028);
CAAI-Ant Group Research Fund; Scientific
Research Projects for the Higher-educational
Institutions (Grant No.2024312096), Education
Bureau of Guangzhou Municipality; Guangzhou-
HKUST(GZ) Joint Funding Program (Grant
No.2025A03J3957), Education Bureau of
Guangzhou Municipality.

18486



References
Alan Ansell, Edoardo Ponti, Anna Korhonen, and Ivan
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A Preliminaries: Mixture-of-Experts
Transformer

In a Mixture of Experts (MoE) Transformer, the
standard feed-forward neural network (FFN) layer
in each Transformer block is typically replaced
with an MoE layer. That is, instead of passing the
output of the self-attention layer to a dense FFN, it
is passed to an MoE layer that consists of multiple
parallel FFNs (i.e., experts) and a gating network,
often referred to as a router.

At layer l, ul
i denote the input representation

for token xi that is fed to the MoE layer. This
representation ul

i is routed to N experts via a gating
network. Each expert E lj is a feed-forward network:

E lj(ul
i) = FFNl

j(u
l
i). (12)

The gating network is usually a small neural net-
work, which is a simple linear layer followed by
a Softmax activation, responsible for dynamically
assigning input tokens to the most suitable experts
based on their hidden representations. The router
first computes scores (logits) for each expert. These
scores are then normalized via a Softmax function
to produce a probability distribution, indicating the
suitability of each expert for processing the current
token xi. Let Tk(rli) be the set of indices of the
top-(k) scoring experts for token xi at layer l, based
on the probabilities rli. The final output from the
MoE layer is then a weighted sum of these selected
experts’ outputs:

rli = softmax(W l
ru

l
i + blr), (13)

F l
i =

∑

j∈Tk(rl
i)

rli,j · E lj(ul
i). (14)

Some MoEs, like DeepSeekMoE include shared
experts that are always selected (Dai et al., 2024),
which results in:

F l
i = rli,s · E ls(ul

i) +
∑

j∈Tk(rl
i)

rli,j · E lj(ul
i), (15)

where E ls(ul
i) and rli,s denote the shared experts

and their probabilities respectively.

B Discussion and Further Analysis

Our approach provides a framework-level solu-
tion for multi-domain adaptation in Mixture-of-
Experts (MoE) models, making it highly scal-
able and reusable. Unlike methods that train sep-
arate expert subsets or domain-specific models,

DES-MoE allows a single MoE model to be fine-
tuned across multiple domains, producing a unified
multi-domain expert model. This framework lever-
ages shared experts to capture common knowledge
across domains while allowing dynamic specializa-
tion via an adaptive router. The efficiency gains
from this unified training are significant, as it elimi-
nates the need for independent fine-tuning for each
domain, and the sparse update mechanism ensures
that only a small subset of parameters are updated
for each domain.

Empirically, DES-MoE demonstrates superior
scalability and performance compared to static ex-
pert fine-tuning (ESFT), achieving strong perfor-
mance on individual domains without sacrificing
general capability. Even though our method explic-
itly relies on domain labels to generate minibatches,
these labels can be easily obtained through unsuper-
vised clustering techniques during preprocessing,
highlighting the flexibility and generalizability of
the approach.

The results suggest that MoE models can effec-
tively adapt to heterogeneous multi-domain data
without the burden of training separate models for
each domain, maintaining high performance at a
fraction of the computational cost. This makes
DES-MoE a promising method for large-scale,
multi-domain deployment of MoE architectures.

C Experimental Setup

C.1 Model Enhancement Tasks

To assess improvements in domain-specific skills
(math and code), we conduct two fine-tuning ex-
periments. (a) Mathematical Reasoning: We fine-
tune the model on the MetaMathQA dataset (Yu
et al., 2024) (a large collection of bootstrapped
math Q&A pairs), which augments the training data
from GSM8K and MATH without leaking their test
data. We then evaluate the model’s math ability on
two standard benchmarks: GSM8K (Cobbe et al.,
2021) (a grade-school math word problem dataset)
and MATH (Hendrycks et al., 2021b) (a competi-
tive math problem dataset). (b) Code Generation:
We fine-tune on the CodeAlpaca dataset (Luo et al.,
2024), a Python programming subset of an evolving
instruction dataset for code synthesis. The model’s
coding performance is evaluated on HumanEval
(Chen et al., 2021) (a hand-crafted code genera-
tion benchmark from the OpenAI Codex paper)
and MBPP (Austin et al., 2021) (the Mostly Basic
Python Problems dataset). These tasks allow us to
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measure how well the proposed method specializes
the model in mathematical reasoning and coding
domains without degrading its base performance.

C.2 Model Adaptation Tasks

To test generalization to unfamiliar tasks, we se-
lect Cherokee–English translation from the ChrEn
corpus (Zhang et al., 2020), low-resource machine
translation for Cherokee; structured intent recog-
nition from Text-to-JSON Intent Recognition in
the BDCI-19 Smart HCI NLU Challenge, which
requires mapping natural-language appliance in-
structions to a JSON intent schema; summarization
of customer service transcripts from Text Summa-
rization in the BDCI-21 Summarization Challenge;
and legal judgment prediction from BDCI-21 Law
Event

For the Intent Recognition task, we use exact-
match accuracy as the evaluation metric, since the
output is a structured JSON string that must match
the ground truth exactly. For the other three tasks
(summarization, legal judgment, and translation),
which have more open-ended outputs, we employ
gpt-4-1106-preview to score the model’s gener-
ated answers on a 0–10 quality scale (higher is bet-
ter) given the reference answer. This human-model
scoring approach provides a nuanced evaluation of
output correctness and quality where simple accu-
racy metrics are inadequate.

C.3 General Ability Evaluation

After fine-tuning on specialized tasks, we assess
whether the model retains its broad general abili-
ties or suffers catastrophic forgetting. We evaluate
the aligned model’s general knowledge and rea-
soning on a wide range of standard benchmarks
spanning language understanding, knowledge re-
call, and reasoning in both English and Chinese:

1. CLUEWSC (Xu et al., 2020): The Chinese
Winograd Schema Challenge, testing corefer-
ence resolution and commonsense reasoning
in Chinese.

2. TriviaQA (Joshi et al., 2017): An open-
domain question answering dataset requiring
factual knowledge retrieval.

3. IFEval (Zhou et al., 2023): An instruction-
following evaluation suite to test general
follow-up and reasoning abilities (used as an
internal benchmark).

4. MMLU (Hendrycks et al., 2021a): The Mas-
sive Multitask Language Understanding exam,
covering knowledge across 57 subjects in En-
glish.

5. CEval (Huang et al., 2023): A comprehensive
Chinese evaluation suite of academic exam
questions across disciplines.

6. HellaSwag (Zellers et al., 2019): A common-
sense inference benchmark where the task is
to choose the most plausible continuation of a
story or scene.

7. ARC-Challenge (Clark et al., 2018): The
challenging grade-school science question
dataset from the AI2 Reasoning Challenge,
testing scientific and common sense reason-
ing.

These diverse benchmarks enable us to quantify
the model’s retained general language proficiency
and world knowledge after fine-tuning. We report
standard metrics for each (accuracy for multiple-
choice datasets like MMLU, HellaSwag, ARC; and
the official metrics for others) to ensure that any
specialization does not come at the cost of overall
capability.

C.4 Model Backbone

All experiments are conducted on the DeepSeek-
V2-Lite model (DeepSeek-AI et al., 2024a) as the
backbone. DeepSeek-V2-Lite is a state-of-the-art
Mixture-of-Experts Transformer with 26 layers,
each containing 66 experts. At each MoE layer,
a small subset of experts (8 out of 66) is activated
per token based on a learned gating function. This
fine-grained expert allocation provides a rich capac-
ity for specialization, making the model ideal for
our approach which focuses on expert-specific fine-
tuning. We initialize the model from the public
ESFT checkpoint released by (Wang et al., 2024).
This checkpoint comes from a prior alignment train-
ing phase in which the model was instruction-tuned
on a wide-ranging alignment dataset of conversa-
tional and task-following data. Importantly, the
alignment data was carefully curated to exclude any
math or coding examples. This ensures the base
model has strong general alignment (instruction-
following and multi-domain conversational skills)
without having been specifically trained on math or
code problems, providing a neutral starting point to
test our specialization methods on those domains.
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The aligned base model already demonstrates broad
capabilities across many domains (thanks to the
alignment phase) while leaving clear room for im-
provement in mathematical reasoning and coding,
as well as providing no unfair advantage on the
new tasks (preventing data leakage for math/code
evaluations).

C.5 Hyperparameters and Training Settings
We apply a consistent training setup for all com-
pared methods to ensure a fair evaluation. Fine-
tuning is performed with a batch size of 32 and
a maximum sequence length of 4096 tokens per
sample, which accommodates the few-shot context
plus the query. For each domain or task fine-tuning,
we train for at most 500 steps, which was suffi-
cient for convergence in our experiments. Model
performance on a validation set is evaluated every
100 steps to monitor training progress and select
the best checkpoint. We conduct a small hyper-
parameter search for the learning rate in the set
{1e-5, 3e-5, 1e-4, 3e-4}, and choose the best learn-
ing rate for each method. The resulting learning
rates are 3e-5 for Full Fine-Tuning (FFT) (tuning
all model parameters), 1e-4 for LoRA (tuning low-
rank adapter parameters), 1e-5 for ESFT, 1e-4 for
and DES-MoE. Unless otherwise specified, these
learning rates are used in all experiments for the
respective methods.

Following Wang et al. (2024), for the LoRA
method, we use a low-rank adaptation with rank =
8 and a scaling factor = 2, following the configura-
tion in (Hu et al., 2022).

All fine-tuning runs are carried out on high-
performance infrastructure: specifically, we use 2
servers each with 8× NVIDIA A100 40GB GPUs
(16 GPUs in total), which allows us to accommo-
date the model’s memory needs and train with the
full 4096-token context window.

D Evaluation Instructions for Specialized
Tasks

Table 4 presents the detailed criteria to evaluate spe-
cialized tasks including text summarization, legal
judgment prediction, and low-resource translation.
Each task includes specific instructions on assess-
ing predicted answers against reference answers,
focusing on aspects such as content accuracy, com-
pleteness, relevance, and consistency.
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Task Evaluation Instruction
Summary 请你进行以下电话总结内容的评分。请依据以下标准综合考量，以确定预

测答案与标准答案之间的一致性程度。满分为10分，根据预测答案的准确
性、完整性和相关性逐项扣分。请先给每一项打分并给出总分，再给出打分
理由。总分为10分减去每一项扣除分数之和，最低可扣到0分。请以“内容准
确性扣x分，详细程序/完整性扣x分，...，总分是：x分”为开头。1. 内容准确
性：-预测答案是否准确反映了客户问题或投诉的核心要点。-是否有任何关
键信息被错误陈述或遗漏。2. 详细程度/完整性：-预测答案中包含的细节是
否充分，能否覆盖标准答案中所有重要点。-对于任何遗漏的关键信息，应相
应减分。3. 内容冗余度：-预测答案是否简洁明了，和标准答案风格一致，
不存在冗余信息。- 如果预测答案过长或与标准答案风格不一致，需相应减
分。4. 行为指令正确性：-预测答案对后续处理的建议或请求是否与标准答案
相符。-如果处理建议发生改变或丢失，需相应减分。预测答案：{prediction}
参考答案：{ground_truth}

Law 请你进行以下法案判决预测内容的评分，请依据以下标准综合考量，以确定
预测答案与标准答案之间的一致性程度。满分为10分，根据预测答案的准确
性、完整性和相关性来逐项扣分。请先给每一项打分并给出总分，再给出打
分理由。总分为10分减去每一项扣除分数之和，最低可扣到0分。请以“相关
性扣x分，完整性扣x分，...，总分是：x分”为开头。1. 相关性：预测答案与
标准答案的相关程度是最重要的评判标准。如果预测的判决情况与标准答案
完全一致，即所有事实和结果都被精确复制或以不同但等效的方式表述，则
应给予高分。若只有部分一致或存在偏差，则根据一致的程度适当扣分。如
果没有预测判决内容，扣10分。2. 完整性：评估预测答案是否涵盖了所有标
准答案中提到的关键点，包括但不限于当事人、具体金额、责任判定、费用
承担等。如果遗漏重要信息，则应相应扣分。3. 准确性：检查预测答案中提
及的细节、数字、日期和法律依据是否与标准答案保持一致。任何错误信息
均需扣分，并且严重错误应该导致更多的扣分。4. 客观性与专业性：预测答
案应客观反映法案内容并使用恰当的法律术语。主观臆断或非专业表酌情扣
分。预测答案：{prediction}参考答案：{ground_truth}

Translation You are an expert master in machine translation. Please score the predicted answer
against the standard answer out of 10 points based on the following criteria: Content
accuracy: Does the predicted answer accurately reflect the key points of the reference
answer? Level of detail/completeness: Does the predicted answer cover all important
points from the standard answer? Content redundancy: Is the predicted answer concise
and consistent with the style of the standard answer? Respond following the format:
"Content accuracy x points, level of detail/completeness x points, total score: x points".
The total score is the average of all the scores. Do not give reasons for your scores.
Predicted answer: {prediction} Reference answer: {ground_truth}

Table 4: Task instructions for model performance evaluation. The placeholder {prediction} and {ground_truth}
represent model prediction and reference answer, respectively.
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