
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 18494–18507
November 4-9, 2025 ©2025 Association for Computational Linguistics

RRInf: Efficient Influence Function Estimation via Ridge Regression for
Large Language Models and Text-to-Image Diffusion Models

Zhuozhuo Tu1, Cheng Chen2,3* , Yuxuan Du4

1 The University of Sydney, Australia
2 CFAR, Agency for Science, Technology and Research, Singapore
3 IHPC, Agency for Science, Technology and Research, Singapore

4 College of Computing and Data Science, Nanyang Technological University, Singapore
tuzhuoz@gmail.com, chengchen.martin@gmail.com, yuxuan.du@ntu.edu.sg

Abstract

The quality of data plays a vital role in the de-
velopment of Large-scale Generative Models.
Understanding how important a data point is
for a generative model is essential for explain-
ing its behavior and improving the performance.
The influence function provides a framework
for quantifying the impact of individual train-
ing data on model predictions. However, the
high computational cost has hindered their ap-
plicability in large-scale applications. In this
work, we present RRInf, a novel and princi-
pled method for estimating influence function
in large-scale generative AI models. We show
that influence function estimation can be trans-
formed into a ridge regression problem. Based
on this insight, we develop an algorithm that is
efficient and scalable to large models. Exper-
iments on noisy data detection and influential
data identification tasks demonstrate that RRInf
outperforms existing methods in terms of both
efficiency and effectiveness for commonly used
large models: RoBERTa-large, Llama-2-13B-
chat, Llama-3-8B and stable-diffusion-v1.51.

1 Introduction

Large Language Models (LLMs) and Text-to-
Image models have achieved remarkable perfor-
mance across a variety of tasks such as reading
comprehension, natural language inference and im-
age editing (Brown et al., 2020; Chowdhery et al.,
2023; Dubey et al., 2024; Rombach et al., 2022a).
The dominant approach to developing large gen-
erative models utilises unsupervised pre-training
followed by supervised fine-tuning, both of which
require collecting a large and diverse corpus of
data. A major factor in the development process
is the quality of data, which significantly impacts
the performance of generative models on down-
stream tasks. Despite that, cleaning and filtering

*Corresponding author.
1The code is available at https://github.com/

tuzz0210/RRInf.

techniques could help address data quality issues,
even state-of-the-art models can generate incorrect
answers or biased outputs (Weidinger et al., 2021;
Abid et al., 2021; Ferrara, 2023). This raises a
question of whether a training point is beneficial or
detrimental to model performance.

Influence function provides a method for an-
swering this question by quantifying the impact
of a training point on model predictions (Ham-
pel, 1974; Cook and Weisberg, 1980; Martin and
Yohai, 1986). Despite being well-grounded in ro-
bust statistics, calculating the influence function
is expensive because of the intensive operation of
inverting the Hessian matrix, which limits its ap-
plicability in modern machine learning problems.
To tackle this difficulty, Koh and Liang (2017) pro-
poses to use second-order optimisation techniques
(Agarwal et al., 2017a) to approximate the influ-
ence function, which avoids explicitly computing
the Hessian inverse. Schioppa et al. (2022) con-
siders a diagonalised form of the Hessian based
on Arnoldi iteration to simplify the matrix inver-
sion in the influence function. Grosse et al. (2023)
propose to use the Eigenvalue-corrected Kronecker-
Factored Approximate Curvature to approximate
Hessian matrix inversion by applying eigenvalue
decomposition. These existing methods require
additional complex operations and thus can not
readily scale to very large models. Recently, Kwon
et al. (2024) proposed a closed-form expression
for approximating the influence function. While
their algorithm can be applied to LLMs and dif-
fusion models, the approximation error depends
on the number of learnable model parameters and
is thus only suitable for parameter-efficient fine-
tuning like LoRA.

In this work, we propose a new method called
RRInf for computing the influence function, which
is computationally efficient and can easily be ap-
plied to large-scale machine learning models. In
particular, we consider computing the influence

18494

https://github.com/tuzz0210/RRInf
https://github.com/tuzz0210/RRInf

function of each training data simultaneously in the
form of a vector-matrix-matrix product. Then, we
formulate a Ridge Regression problem and show
that the influence function is the solution to that re-
gression problem. This way, the complex Hessian
matrix inversion step is bypassed, and computing
the influence function is transformed into solving
an optimisation problem. A key advantage of this
re-formulation is that Ridge Regression is a strongly
convex optimisation problem which has been well-
studied in the optimisation literature, with a variety
of optimisation methods developed as well as their
convergence guarantees. We propose a stochastic
gradient-based algorithm to solve the Ridge Regres-
sion problem, which is easy to implement and very
efficient in large-scale settings, making it attractive
for use in large models like LLMs and diffusion
models. Our main contributions are summarised as
follows.

• We propose a new method for estimating the
influence function. In particular, we formu-
late a ridge regression problem and prove its
equivalence to the influence function.

• We develop a normalised stochastic gradient
algorithm for solving the ridge regression,
which is efficient in terms of both computa-
tional and memory complexity and can be
applied to LLMs and diffusion models.

• RRInf achieves superior efficiency and perfor-
mance over existing methods. For instance,
improving mislabeled data detection by 4.9%
on SST2 and reducing runtime from 1123.98s
(DataInf) to 141.07s on text generation with
Llama-2-13B-chat.

The remainder of this paper is structured as follows.
Section 2 defines the influence function and nota-
tions. In Section 3, we present our Ridge Regres-
sion formulation and the corresponding algorithm.
The experimental results are provided in Section
4. Section 5 describes the related work, and we
conclude and discuss future directions in Section
6.

2 Preliminaries

We consider a standard statistical learning frame-
work. Let X and Y denote the input and la-
bel space, respectively. We assume that training
data Strain = {(xtraini , ytraini)}ni=1 is drawn i.i.d.
from some unknown distribution P over X × Y .

Given a loss function l : Y × Y → R+ and a
model space fθ : X → Y where model param-
eters θ ∈ Θ, the empirical risk minimizer is de-
fined as θ̂ := argminθ∈Θ 1

n

∑n
i=1 l(θ, i) where

we write l(θ, i) := l(fθ(x
train
i), ytraini) for no-

tational convenience. The quality of the predic-
tion made by a model fθ can be measured on a
set of test sample Stest = {(xtestj , ytestj)}mj=1 by
L(θ, Stest) = 1

m

∑m
j=1 l(fθ(x

test
j), ytestj).

2.1 Influence Function
Our goal is to understand the impact of individ-
ual training points on a model’s prediction. This
can be formalized by influence function as follows
(Hampel, 1974; Cook and Weisberg, 1980; Mar-
tin and Yohai, 1986; Koh and Liang, 2017; Kwon
et al., 2024). For training point (xtraink , ytraink) and
ϵ ∈ R, consider a ϵ-weighted risk minimization
problem: θ̂k,ϵ := argminθ∈Θ 1

n

∑n
i=1 l(θ, i) + ϵ ·

l(θ, k). If the loss function l(fθ(x), y) is twice-
differentiable and strongly convex in θ, the influ-
ence of the k-th training point on prediction loss is
defined as the derivative of L(θ̂k,ϵ, Stest) at ϵ = 0:

I(k) := dL(θ̂k,ϵ, S
test)

dϵ

∣∣∣∣
ϵ=0

=
dL(θ̂k,ϵ, S

test)

dθ̂k,ϵ

∣∣∣∣
T

θ̂k,ϵ=θ̂

dθ̂k,ϵ
dϵ

∣∣∣∣
ϵ=0

,

= −(1
m

∑m
j=1∇θl(fθ̂(x

test
j), ytestj))TH−1

θ̂
∇θl(θ̂, k)

where ∇θ denotes the gradient with respect to θ
and Hθ̂ :=

1
n

∑n
i=1∇2

θl(θ̂, i) is the Hessian matrix
of empirical loss.

While the influence function I(k) provides
an intuitive interpretation of how a training
point affects the prediction loss, its computa-
tion in general is expensive due to the Hes-
sian matrix. Luckily, for the negative log-
likelihood loss function, the second-order Hes-
sian enjoys a simplified form (Bartlett, 1953).
To be more specific, suppose that l(fθ(x), y) =
−log p(y|fθ(x)) where p(y|fθ(x)) is a probability
density function of (x, y) at θ, Bartlett’s second
identity implies that E(x,y)∼p[∇2

θl(fθ(x), y)] =

E(x,y)∼p[∇θl(fθ(x), y)∇θl(fθ(x), y)
T]. Thus, the

Hessian matrix Hθ̂ can be replaced by the sec-
ond moment of first-order gradient, i.e., Gθ̂ :=
1
n

∑n
i=1∇θl(θ̂, i)∇θl(θ̂, i)

T , yielding the follow-
ing influence function (Kwon et al., 2024)

−
(

1
m

∑m
j=1∇θl(fθ̂(x

test
j), ytestj)

)T
G−1

θ̂
∇θl(θ̂, k).

(1)

18495

In the paper, we focus on the negative log-
likelihood loss function, which is equivalent to
cross-entropy loss and used for training many large
language models. However, there are practical chal-
lenges in applying the influence function (1). When
the model size is larger than the sample size, which
is usually the case for large-scale machine learning
models, the matrix Gθ̂ is not invertible as the rank
is at most n and not full-rank. To address this issue,
a damping Hessian approach is employed where
a small positive constant is added to the diagonal
entries of Gθ̂ to ensure positive definiteness, giving
the following influence function:

−
(

1
m

∑m
j=1∇θl(fθ̂(x

test
j), ytestj)

)T (
Gθ̂ + λI

)−1∇θl(θ̂, k)

(2)
where λ is some positive constant and I is the iden-
tity matrix. The influence function (2) stabilises the
computation and has become the standard estimand
in the literature (Grosse et al., 2023; Kwon et al.,
2024). In the rest of the paper, we aim to calculate
the influence function (2) efficiently for large-scale
models like LLMs.

3 Methodology

In this section, we first show that the influence func-
tion (2) can be formulated as a Ridge Regression
problem. Then we propose algorithms for solv-
ing the regression problem, which are efficient and
easy to implement.

3.1 Ridge Regression Formulation
Before introducing the formulation, we define a
few notations. Let θ ∈ Rd, i.e., d-dimensional
model, where the ι-th component of model is given
by θι. We collect all training data gradient of
loss ∇θl(θ̂, 1),∇θl(θ̂, 2), · · · ,∇θl(θ̂, n) ∈ Rd as
a matrix denoted by Φ where Φ ∈ Rd×n. The
ι-th row of the matrix Φ is denoted by ∇ιl(θ̂, :
) := (∇θι l(θ̂, 1),∇θι l(θ̂, 2), · · · ,∇θι l(θ̂, n))

T ∈
Rn where ∇θι represents the gradient with
respect to θι. We also define υ :=
− n

m

∑m
j=1∇θl(fθ̂(x

test
j), ytestj) ∈ Rd. Instead of

calculating the influence function (2) for each train-
ing data one by one, we consider computing them
simultaneously by concatenating all influence into
a vector I := (I(1), I(2), · · · , I(n))T ∈ Rn.
Then, using the notations, the influence function (2)
can be rewritten in a vector-matrix-matrix product
form:

IT = υT (ΦΦT + nλId)−1Φ, (3)

where Id ∈ Rd×d is the identity matrix of size d.
Computing the influence function in equation (3)

is prohibitively expensive for large-scale machine
learning models as it requires solving the inverse of
the huge matrix ΦΦT + nλI ∈ Rd×d. To address
this issue, we propose a Ridge Regression problem
J(ω) defined as follows:

minω∈Rn J(ω) :=
1

d
||Φω − υ||22 + λ̃||ω||22

=
1

d

∑d
ι=1(∇ιl(θ̂, :)

Tω − υι)
2 + λ̃||ω||22

, (4)

where ω is the parameter to be optimized, λ̃ :=
nλ/d and || · ||2 denotes the Euclidean norm, and
show the equivalence between the influence func-
tion (3) and the Ridge Regression problem (4) in
the following theorem.

Theorem 1. Let ω̂ be a solution to the Ridge Re-
gression problem (4). Then, the influence function
I = ω̂.

Proof. First, by calculation, we have

J(ω) =
1

d
||Φω − υ||22 + λ̃||ω||2,

=
1

d
(ωT (ΦTΦ+ nλIn)ω − 2υTΦω + υTυ)

where In ∈ Rn×n is the identity matrix of size n,
and the Hessian matrix of J(ω)

∇2J(ω) =
2

d
(ΦTΦ+ nλIn) .

It can be verified that ∇2J(ω) is positive definite
from the definition, and thus J(ω) is a strongly
convex function. By the optimality condition, the
minimiser of a differentiable and convex func-
tion should cancel the gradient (Boyd and Van-
denberghe, 2004), i.e., ω̂ satisfies

∇J(ω̂) =
2

d
((ΦTΦ+ nλIn)ω̂ − ΦTυ) = 0 ,

which is equivalent to

(ΦTΦ+ nλIn)ω̂ = ΦTυ.

We now prove the above equality holds for the influ-
ence function I. Taking transpose and multiplying
by (ΦTΦ + nλIn) on both sides of (3) yield the
following:

(ΦTΦ+ nλIn)I
= (ΦTΦ+ nλIn)(ΦT (ΦΦT + nλId)−1υ)
= ΦT (ΦΦT + nλId)(ΦΦT + nλId)−1υ
= ΦTυ

,

18496

where the second equality uses InΦT = ΦT Id.
Thus, the influence function (3) is also a solution
to Ridge Regression problem (4). Furthermore,
a strongly convex function is strictly convex, im-
plying that the solution is unique (Boyd and Van-
denberghe, 2004). Therefore I must be ω̂, which
completes the proof.

Remark 1. The Ridge Regression formulation (4)
can be extended to multiple test sample case,
e.g., estimating the influence of training data
on C test samples {Stestc}Cc=1 where Stestc =
{(xtestcj , ytestcj)}mc

j=1. Rather than replacing υ in
(4) with υc := − n

mc

∑mc
j=1∇θl(fθ̂(x

testc
j), ytestcj)

and solving C different Ridge Regression prob-
lems, an equivalent and more efficient approach
is to concatenate these υcs into a matrix Υ :=
[υ1, · · · , υC] ∈ Rd×C and solve the following
problem:

minΩ∈Rn×C J(Ω) :=
1

d
||ΦΩ−Υ||2F + λ̃||Ω||2F ,

where matrix Ω = [ω1, ω2, · · · , ωC] is the optimi-
sation variable, each column of which corresponds
to the influence vector on one test sample, and ||·||F
represents the Frobenius norm.

Theorem 1 shows that computing the influence
function is equivalent to finding a solution to a
ridge regression problem. In the following subsec-
tion, we propose algorithms for solving (4) which
bypass the need for complex matrix inversion.

3.2 Influence Estimation
Ridge Regression is a popular method for solving
the least squares problem by including a squared
l2-norm regularisation. The method is first intro-
duced by Hoerl and Kennard (1970) as a means
to mitigate the problem of collinearity in regres-
sion analysis and has become a widely used tech-
nique in machine learning to prevent overfitting
and improve generalisation performance (Kuhn
et al., 2013; Goodfellow et al., 2016). The main
approaches for optimising ridge regression involve
forming a system of linear equations (also known
as normal equations) and solving these equations
using techniques like Cholesky decomposition (Tre-
fethen and Bau, 2022), QR factorisation (Golub
and Van Loan, 2013) and Singular Value Decompo-
sition (Golub and Reinsch, 1971). However, these
methods require expensive matrix decomposition
operations and become impractical when applied
to large models like LLMs.

To overcome this challenge, we propose a
stochastic gradient method for solving Ridge Re-
gression problem (4) which makes use of approx-
imate gradient information to refine a solution re-
peatedly and has been used for a variety of optimi-
sation problems. The stochastic gradient method is
simple and efficient, making it attractive for large-
scale problems, and has become the dominant opti-
misation method for modern machine learning. In
particular, the Ridge Regression problem J(ω) is
strongly convex, and the stochastic gradient method
is guaranteed to converge to the solution of the
problem (Bottou et al., 2018; Bubeck, 2014).

Let us begin with the basic gradient descent
method. To apply gradient descent to (4), we initi-
ate at some point ω0, e.g., ω0 = 0, then recursively
updates:

ωt+1 = ωt − ηt∇ωJ(ωt)

= ωt −
ηt
d
(2ΦTΦωt − 2ΦTυ + 2dλ̃ωt),

= ωt −
2ηt
d

d∑

ι=1

(∇ιl(θ̂, :)(∇ιl(θ̂, :)
Tωt − υι) + λ̃ωt),

where ηt is the learning rate parameter. With care-
fully chosen learning rate ηt, ωt converges to ω̂ as t
increases (Nesterov et al., 2018; Boyd and Vanden-
berghe, 2004). In practice, it is often assumed that
gradient descent runs for a reasonable number of
iterations. When the number of iterations is finite,
the total computational complexity for gradient de-
scent is O(dn)2. However, for very large models,
it can be very expensive to go through all model pa-
rameters every iteration to do ∇ωJ(ωt) calculation.
Moreover, deep neural networks are typically over-
parameterised and have a large number of duplicate
neurons. This redundancy in neural networks sug-
gests that using gradients of all model parameters
in gradient descent is inefficient.

This motivates us to consider a stochastic gradi-
ent (SG) approach3. Instead of employing full gra-
dient information, the stochastic gradient approach
uses an unbiased estimator of ∇ωJ(ωt) which sam-
ples only a small subset of model parameters per
iteration, resulting in significant speedups. More
precisely, at each iteration t, SG takes a sum over

2Each iteration requires one n-dimensional vector-vector
product ∇ιl(θ̂, :)

Tωt and one scalar multiplication (∇ιl(θ̂, :

)Tωt − υι)∇ιl(θ̂, :) for every model parameter θι, which
costs O(n) time. Since there are d parameters, the total time
is O(dn) which is the same as (Kwon et al., 2024).

3Also referred to as mini-batch in the optimisation litera-
ture.

18497

a small subset denoted by Dt of model parame-
ter which are randomly chosen from {1, 2, · · · , d}:
ωt+1 = ωt− 2ηt

|Dt|
∑

ι∈Dt
(∇ιl(θ̂, :)(∇ιl(θ̂, :)

Tωt−
υι) + λ̃ωt), where |Dt| is the size of Dt. Despite
that SG approach improves efficiency, it faces some
challenges in practice. First, the learning rate ηt is
hard to choose and often requires substantial tun-
ing or carefully designed schedules for achieving
good performance. Second, the model gradient
∇ιl(θ̂, :) varies significantly across the parameters,
especially in large models, making the algorithm
unstable. To address these issues, we propose a nor-
malised stochastic gradient descent method called
RRInf in which the gradient is normalised with the
squared norm of ∇ιl(θ̂, :):

ωt+1 =

ωt −
2η

|Dt|
∑

ι∈Dt

(∇ιl(θ̂, :)

||∇ιl(θ̂, :)||2
(
∇ιl(θ̂, :)

Tωt − υι

)
+ λ̃ωt

)
,

(5)
where the learning rate η now is fixed. We see that
RRInf may be viewed as an adaptive SG method
in which ηt = η

||∇ιl(θ̂,:)||2
. RRInf has important

advantages over gradient descent. First, RRInf per-
forms d

|Dt| updates for one sweep through all model
parameters while gradient descent performs only
one step, which is more efficient. Second, each
iteration of RRInf is very cheap, involving only the
gradient corresponding to a small subset of model
parameters, which takes O(|Dt|n) time. The value
of |Dt| is typically many times smaller than d. As
will be shown in Section 4, for most models, RRInf
behaves well by using |Dt| = 1. For this case,
the time cost is O(n), which is independent of the
dimension of a model. Therefore, RRInf is particu-
larly well-suited for very large models like LLMs
and diffusion models.
Remark 2. The RRInf algorithm can be easily ex-
tended to the multiple test sample case in Remark 1
as follows:

Ωt+1 =

Ωt −
2η

|Dt|
∑

ι∈Dt



∇ιl(θ̂, :)⊗

(
ΩT
t ∇ιl(θ̂, :)−Υι

)

||∇ιl(θ̂, :)||2
+ λ̃Ωt)


 ,

where Ωt is the influence matrix at iteration t, ⊗
denotes outer product and Υι ∈ RC corresponds to
the ι-th row of Υ.

4 Experiments

We validate our proposed method, RRInf, on two
key tasks: Mislabeled Data Detection and Influ-
ential Data Identification. In addition, we conduct

an ablation study to examine the impact of different
batch size (stochastic or full gradient) and sampling
strategies (sampling a layer or a subset of neurons)
on the performance of RRInf. Overall, RRInf con-
sistently demonstrates superior performance and
robustness across all datasets for both tasks.

Experimental set-up. In this section, we present
our experimental findings and key observations
on the performance of the proposed RRInf algo-
rithm relative to the following baselines: Hessian-
free which calculates υT∇θl(θ̂, k)/n (Pruthi et al.,
2020), DataInf (Kwon et al., 2024), and LiSSA
(Agarwal et al., 2017b). We consider publicly avail-
able and widely used LLMs and diffusion models:
RoBERTa (Liu et al., 2019), Llama-2-13B-chat
(Touvron et al., 2023), Llama-3-8B (Grattafiori
et al., 2024) and stable-diffusion-v1.5 (Rombach
et al., 2022b) where the first is used for mislabeled
data detection task and the other three are for the
influential data identification. In all experiments,
we first fine-tune a model and then compute the
influence function. For LLMs, we simply sam-
ple a single neuron at each iteration in RRInf, i.e.,
|Dt| = 1, which is sufficient to achieve good per-
formance. For diffusion models, we propose to
sample an entire layer per iteration from the total
set of layers which is shown to be more efficient
than randomly choosing a subset of parameters in
the ablation study. See more implementation de-
tails in Appendix A. As summarised in Table 1 and
2, RRInf consistently outperforms every baseline
on all models.

4.1 Mislabeled Data Detection

Mislabeled samples are known to degrade model
performance, and including such samples during
training often increases the loss. As a result, their
influence values tend to be higher than those of cor-
rectly labeled samples. In this experiment, we eval-
uate the performance of RRInf alongside baseline
influence computation methods, including DataInf,
Hessian-Free, and LiSSA, on the task of mislabeled
data detection using five public GLUE benchmark
datasets: QNLI (Wang et al., 2018), MRPC (Dolan
and Brockett, 2005), QQP (Iyer et al., 2017), SST-
2 (Socher et al., 2013), and RTE (Dagan et al.,
2006), all based on the RoBERTa backbone (Liu
et al., 2019). Following prior work, we syntheti-
cally generate mislabeled training data by flipping
the binary label for 20% randomly chosen training
data points and use the ground truth annotations of

18498

Dataset Hessian-free DataInf LiSSA RRInf

SST2 45.60%± 5.59% 83.62%± 8.15% 45.38%± 5.52% 88.52% ± 4.64%
QQP 63.85%± 0.89% 70.43%± 2.35% 63.86%± 0.90% 73.39% ± 2.28%
MRPC 67.60%± 0.98% 70.02%± 2.61% 67.57%± 0.96% 75.67% ± 0.74%
RTE 50.78%± 0.68% 49.74%± 1.17% 50.45%± 0.85% 52.01% ± 0.59%
QNLI 50.06%± 0.78% 53.55%± 1.94% 50.04%± 0.76% 58.36% ± 1.79%

Table 1: AUC comparison of Hessian-free, DataInf, LiSSA and RRInf(Our) on Mislabeled Data Detection tasks.
Mislabeled Data Detection Performance Comparison Across Tasks and Methods (Mean AUC ± Standard Deviation),
where higher values indicate better performance.

Text Generation Method Class detection (AUC) ↑ Class detection (Recall) ↑
LLaMA-2-13B-chat Hessian-free 60.0%± 7.6% 33.0%± 8.3%
LLaMA-2-13B-chat DataInf 65.7%± 9.1% 39.0%± 9.9%
LLaMA-2-13B-chat RRInf 67.5%± 8.4% 41.9%± 9.1%
LLaMA-3-8B Hessian-free 51.6%± 9.3% 27.1%± 9.8%
LLaMA-3-8B DataInf 59.3%± 11.0% 35.1%± 11.0%
LLaMA-3-8B RRInf 66.3%± 9.1% 40.4%± 11.0%

Text-to-Image Style Generation Method Class detection (AUC) ↑ Class detection (Recall) ↑
Stable-Diffusion-v1.5 Hessian-free 58.8%± 7.5% 43.7%± 6.8%
Stable-Diffusion-v1.5 DataInf 62.6%± 11.5% 49.0%± 10.4%
Stable-Diffusion-v1.5 RRInf 64.3%± 11.1% 50.6%± 9.8%

Text-to-Image Subject Generation Method Class detection (AUC) ↑ Class detection (Recall) ↑
Stable-Diffusion-v1.5 Hessian-free 62.4%± 18.4% 14.1%± 19.2%
Stable-Diffusion-v1.5 DataInf 61.4%± 21.6% 23.6%± 23.4%
Stable-Diffusion-v1.5 RRInf 63.9%± 20.9% 28.3%± 24.9%

Table 2: AUC and Recall Comparison of Hessian-Free and DataInf on Influential Data Identification Tasks. LiSSA
is omitted from the experiments due to poor model stability. The results report for AUC and recall across the test
dataset, shown as "average ± standard deviation", where higher values indicate better performance.

mislabeled samples (one for mislabeled data and
zero for clean data) for assessing the quality of the
influence estimates. We adopt the Area Under the
ROC Curve (AUC) as the evaluation metric, which
measures the probability that a randomly selected
mislabeled sample receives a higher influence score
than a clean sample. Thus, a well-performing influ-
ence function is expected to assign higher scores
to mislabeled instances, resulting in higher AUC
values.

Results RRInf consistently outperforms all other
methods across all datasets, demonstrating signif-
icantly better detection performance—for exam-
ple, +4.9% on SST2, +2.96% on QQP, +5.65% on
MRPC, +2.27% on RTE, and +4.81% on QNLI
compared to DataInf. This indicates that RRInf
not only surpasses the baselines on relatively easier
tasks such as SST2, QQP, and MRPC, but also on
more challenging tasks like RTE, on which DataInf
is worse than Hessian-Free and LiSSA. In terms
of runtime efficiency, RRInf demonstrates perfor-
mance comparable to DataInf, further highlighting

that it is both effective and efficient when applied
to large language models such as RoBERTa. For
example, on SST2 dataset, RRInf takes 10.2 sec-
onds while DataInf and LiSSA take 10.7 and 57.1
seconds respectively. For a detailed runtime com-
parison of RRInf and the baselines, please refer to
Table 4 in the Appendix.

4.2 Influential Data Identification
To further demonstrate the effectiveness of RRInf,
we evaluate its performance in identifying influen-
tial data points across two tasks: text generation
and text-to-image generation. We use Llama-2-
13B-chat (Touvron et al., 2023) and Llama-3-8B
model (Grattafiori et al., 2024) for the text gener-
ation and stable-diffusion-v1.5 model (Rombach
et al., 2022b) for text-to-image generation tasks.
All models are open-source and widely adopted
within the research community.

Text Generation We use the SVAMP dataset (Pa-
tel et al., 2021) which consists of English math
word problems with grade level up to 4. SVAMP
comprises four classes: Addition, Subtraction, Mul-

18499

tiplication and Division. For each class, we select
75 examples for training and 25 examples for test-
ing.

Text-to-Image Generation We consider two sub-
tasks: style generation and subject generation. The
style generation task includes three publicly avail-
able image-text pair datasets, each representing a
distinct style: Cartoons (Adler, 2023), Pixel-art
(Jain, 2023) and Line sketches (Chowdhury et al.,
2022). For each style, we use 200 training image-
text pairs and 50 test image-text pairs, totalling 600
training and 150 test data points. For subject gener-
ation, we use the DreamBooth dataset (Ruiz et al.,
2022), which includes 30 different subjects. Fol-
lowing Kwon et al. (2024), we choose 3 data points
from each subject for training, and the remaining
as validation. We add a unique random string to
each subject in the prompt. For example, we use "a
AXNkV dog" and "a DxE3K dog" to differentiate
two different dogs.

To evaluate the influence estimate, we use two
metrics: AUC and Recall, following Kwon et al.
(2024). For each test data, a pseudo label is as-
signed to every training data which is one if its
class is the same as the test data’s class, and zero
otherwise. Then, the AUC between the negative
influence function values and the pseudo labels is
calculated. We also compute the Recall for each
test data which is the percentage of training data
with the same class as the test data among the s
smallest influential training point where s is the
number of training example per class. Intuitively,
if a training point has the same class as the test
data, adding it in the training will decrease the loss,
meaning its influence function should be negative,
and these two metrics intend to assess whether an
influence estimate can identify training data having
the same class as a test data to be more helpful
than one that belongs to a different class. We re-
port average AUC and average Recall across all
test points as class detection AUC and Recall re-
spectively. Note that this is the multiple test sample
case discussed in Remark 1 where we compute
the influence function of training data on each test
point.

Results RRInf outperforms both DataInf and
Hessian-free methods on text and text-to-image
generation. For text generation task, RRInf
achieves best identification across all metrics on
both Llama-2-13B-chat and Llama-3-8B models.
In particular, when changing the model from

Llama-2-13B-chat to Llama-3-8B, RRInf still per-
forms well, while the performance of Hessian-
free and DataInf drops significantly. On the style
generation task, RRInf achieves the highest AUC
(64.3%) and recall (50.6%), outperforming DataInf
by +1.7% (AUC) and +1.6% (Recall), and Hessian-
free by +5.5% (AUC) and +6.9% (Recall). It
also exhibits lower standard deviation, indicating
greater stability and further demonstrating the ef-
fectiveness of our normalised algorithm. It is worth
noting that on the subject generation task RRInf
performs best on both AUC and Recall, while
DataInf achieves a higher Recall at a cost of lower
AUC than Hessian-free. In terms of runtime effi-
ciency, we highlight that RRInf computes the in-
fluence function for all test data simultaneously, as
noted in Remark 1. Consequently, on the style gen-
eration task using the stable-diffusion-v1.5 model,
our method completes the task in 74.94 seconds,
compared to 1950.18 seconds for DataInf—making
our approach approximately 26× faster. Similarly,
for the text generation task trained on Llama-2-
13B-chat, our method achieves a 8× improvement
in computational efficiency, requiring only 141.07
seconds. In contrast, DataInf takes 1123.98 sec-
onds to complete.

4.3 Ablation Studies

In this section, we conduct a thorough ablation
study on batch size and sampling strategies on the
effectiveness of RRInf.

4.3.1 Stochastic vs. Full Gradient
In this subsection, we empirically compare RRInf
with its full gradient version denoted by RRInffull
on the style generation task (see Table 7). Specif-
ically, RRInffull uses all model parameters, i.e.,
|Dt| = d, whereas RRInf samples an entire layer
from the total set of layers at each iteration. Al-
though RRInffull achieves moderately higher AUC
(+0.015) and recall (+0.013), it does so at the ex-
pense of significantly greater computational re-
sources due to full-batch updates across entire lay-
ers. In contrast, RRInf uses a single layer out of the
entire set of layers. While the stochastic version
incurs only a slight drop in performance, it dramat-
ically reduce computational cost, making it more
practical for large-scale or resource-constrained
scenarios, such as in large language models and
diffusion models. These empirical results are con-
sistent with the theoretical advantages of the SG
method for high-dimensional models, which shows

18500

that SG is more computationally efficient than gra-
dient descent under limited resources (Bottou et al.,
2018). This supports our motivation for proposing
RRInf as a more feasible alternative for large-scale
models like LLMs to gradient descent, which ap-
plies full-batch gradient update with entire model
parameters.

4.3.2 Sampling Strategy
In this subsection, we conduct an ablation study on
different sampling strategies on the performance
of RRInf. We consider a variant of RRInf denoted
by RRInfmb, which randomly picks a small subset
of neurons instead of a layer on the text-to-image
style generation task. We also use various sam-
ple sizes ranging from 1 to 2048. The results are
shown in Figure 1. AUC increases from 60.3% to
63.4% (+3.1%) when increasing batch size from
1 to 64. The improvement plateaus at batch size
between 64-128. Recall gains from 45% to 50.1
%(+5.1%) over the same batch size range. The
results indicate that small batches (1-32) are more
prone to unstable updates that undermine perfor-
mance. Later increases (up to 2048) show less than
0.3% changes in AUC score and recall score. From
the results, we can see that RRInfmb even with the
optimal batch size is slightly inferior to RRInf, sug-
gesting that a layer-level sampling may be more
suitable than neuron-level sampling in diffusion
models.

Figure 1: Convergence of the performance of RRInfmb

with respect to sampling batch size. The performance
converges at a batch size of 64. For further details, refer
to Table 8 in the Appendix.

5 Related Work

Data valuation has emerged as an active research
area in machine learning that quantifies the value
and importance of individual data points on a
model’s prediction (Jia et al., 2019; Sim et al.,
2022; Hammoudeh and Lowd, 2024). One widely
used class of data valuation methods is based on

retraining models with and without specific sam-
ples and computing the influence of a data point
as model outputs, including Leave-One-Out (Cook,
1977), downsampling (Feldman and Zhang, 2020),
Shapley value methods (Ghorbani and Zou, 2019;
Ghorbani et al., 2020; Kwon and Zou, 2021; Gar-
rido Lucero et al., 2024) and Out-of-bag (Kwon and
Zou, 2023). Gradient-Based Approaches is another
family of methods for data valuation which use
training gradients to calculate an importance score.
The influence function studied in this work falls
into this category. Compared to retraining-based
methods, influence function eliminates the need
for repeated retraining, making it more applicable
to very large models. There are other gradient-
based approaches which exploit gradient informa-
tion during the training of the model, including
tracing gradient descent (Pruthi et al., 2020; Park
et al., 2023), measuring gradient similarity(Evans
et al., 2024) and dynamically self-weighting (Wibi-
ral et al., 2024). Finally, some model-agnostic data
valuation approaches have been proposed that do
not rely on any specific machine learning model
and are based solely on the data (Xu et al., 2021;
Just et al., 2023). For a comprehensive review of
these methods, we refer the reader to Wibiral et al.
(2024).

The early notion of influence emerges out of
robust statistics, with a focus on analysing the ef-
fects of perturbations on linear regression models
(Cook, 1977; Cook and Weisberg, 1980; Cook et al.,
1982). Despite its rich history, the influence func-
tion has not been widely used in modern machine
learning until the work of Koh and Liang (2017).
Since then, there have been substantial efforts in
developing different influence estimation methods,
and they have shown promising results on many
real-world applications (Han et al., 2020; Han and
Tsvetkov, 2020; Joaquin et al., 2024; Lin et al.,
2024b,a). Calculating influence functions is com-
putationally expensive as it involves inverting the
Hessian matrix. To improve scalability, numerous
speed-ups have been proposed, such as applying
influence function only to the model’s last layer
(Barshan et al., 2020), using parallelizability (Guo
et al., 2021) and projecting gradients onto a low-
dimensional space (Choe et al., 2024). However,
these methods either are too slow to be used in very
large models or cause accuracy degradation. More
recently, Kwon et al. (2024) proposes a closed-
form influence approximation method and applies
it to LLMs and diffusion models. But their method

18501

incurs an approximation error which increases with
model dimension. While this paper focuses on the
influence function (2), there are other variants of
influence function in the literature. For example,
Mlodozeniec et al. (2025) formulates an influence
function based on a generalised Gauss-Newton ma-
trix specifically tailored to diffusion models and
estimates the influence function using Kronecker-
Factored Approximate Curvature method akin to
Grosse et al. (2023).

6 Conclusion

In this paper, we propose RRInf, a new method for
estimating the influence function. We introduce a
ridge regression formulation and show an equiva-
lence between the ridge regression problem and the
influence function. We then develop a normalised
stochastic gradient algorithm for solving that prob-
lem, which is easy to implement and well-suited for
large-scale generative AI models like LLMs and
diffusion models. Experimental results show that
RRInf can gain significant benefits in terms of both
efficiency and effectiveness. There remain many
avenues for future direction. Our algorithm is a
modification of the SG method. It is well known
that the SG method enjoys theoretical guarantees
for strongly convex optimisation problems. Ex-
tending such a result to our algorithm might be an
interesting topic for future work.

Limitations

This paper proposes a method for estimating the
influence function and demonstrates its advantages
through various experiments. Nevertheless, several
limitations must be considered. First, our experi-
ments focus primarily on fine-tuning task-specific
datasets, despite the fact that our method also ap-
plies to pre-training. Assessing the impact of each
data point on the pre-training stage is critical for
improving the model’s general capabilities, which
are left for future research.

Evaluating the influence is hard given the lack of
a ground truth. In the experiments, we use a metric
assuming that mislabeled data would have a large
influence value and data in the same class would
have a negative influence score. Despite intuition,
an objective and quantitative evaluation criterion is
necessary for real-world applications.

In addition, we use a simple arithmetic math
word problem dataset for text generation. While
our method achieves the best performance, more

complex tasks like commonsense and symbolic
reasoning can be considered in future work.

Ethical and Broader Impact

This study proposes an algorithm for improving the
efficiency of influence function estimation in large-
scale generative models, potentially contributing
to greater accessibility and energy savings in AI
systems. It highlights the importance of training
large language models (LLMs) more efficiently
by selecting informative and representative corpus
samples. This targeted approach not only enhances
computational efficiency during both pretraining
and fine-tuning but also contributes to better model
interpretability and transparency. Efficient models
can be more easily deployed, which raises concerns
about their potential misuse (e.g., generating harm-
ful or misleading content). Ethical deployment
must be coupled with safeguards and responsible
usage policies.

References
Abubakar Abid, Maheen Farooqi, and James Zou. 2021.

Persistent anti-muslim bias in large language models.
In Proceedings of the 2021 AAAI/ACM Conference
on AI, Ethics, and Society, pages 298–306.

Doron Adler. 2023. Cartoon blip captions dataset. Ac-
cessed: 2025-05-18.

Naman Agarwal, Brian Bullins, and Elad Hazan. 2017a.
Second-order stochastic optimization for machine
learning in linear time. Journal of Machine Learning
Research, 18(116):1–40.

Naman Agarwal, Brian Bullins, and Elad Hazan. 2017b.
Second-order stochastic optimization for machine
learning in linear time. Journal of Machine Learning
Research, 18(116):1–40.

Elnaz Barshan, Marc-Etienne Brunet, and
Gintare Karolina Dziugaite. 2020. Relatif:
Identifying explanatory training samples via relative
influence. In International Conference on Artificial
Intelligence and Statistics, pages 1899–1909. PMLR.

MS Bartlett. 1953. Approximate confidence intervals.
Biometrika, 40(1/2):12–19.

Léon Bottou, Frank E Curtis, and Jorge Nocedal. 2018.
Optimization methods for large-scale machine learn-
ing. SIAM review, 60(2):223–311.

Stephen P Boyd and Lieven Vandenberghe. 2004. Con-
vex optimization. Cambridge university press.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda

18502

Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Sébastien Bubeck. 2014. Theory of convex opti-
mization for machine learning. arXiv preprint
arXiv:1405.4980, 15.

Sang Keun Choe, Hwijeen Ahn, Juhan Bae, Kewen
Zhao, Minsoo Kang, Youngseog Chung, Adithya
Pratapa, Willie Neiswanger, Emma Strubell, Teruko
Mitamura, et al. 2024. What is your data worth to
gpt? llm-scale data valuation with influence func-
tions. arXiv preprint arXiv:2405.13954.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, et al. 2023. Palm: Scaling language
modeling with pathways. Journal of Machine Learn-
ing Research, 24(240):1–113.

Pinaki Nath Chowdhury, Aneeshan Sain, Ayan Kumar
Bhunia, Tao Xiang, Yulia Gryaditskaya, and Yi-Zhe
Song. 2022. Fs-coco: Towards understanding of
freehand sketches of common objects in context. In
ECCV.

R Dennis Cook. 1977. Detection of influential obser-
vation in linear regression. Technometrics, 19(1):15–
18.

R Dennis Cook and Sanford Weisberg. 1980. Char-
acterizations of an empirical influence function for
detecting influential cases in regression. Technomet-
rics, 22(4):495–508.

RDWS Cook et al. 1982. Residuals and influence in
regression.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2006. The pascal recognising textual entailment chal-
lenge. In Machine Learning Challenges, Lecture
Notes in Computer Science.

William B. Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Proceedings of the Third International Workshop
on Paraphrasing.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Nathaniel J Evans, Gordon B Mills, Guanming Wu,
Xubo Song, and Shannon McWeeney. 2024. Data val-
uation with gradient similarity. ArXiv, pages arXiv–
2405.

Vitaly Feldman and Chiyuan Zhang. 2020. What neural
networks memorize and why: Discovering the long
tail via influence estimation. Advances in Neural
Information Processing Systems, 33:2881–2891.

Emilio Ferrara. 2023. Should chatgpt be biased? chal-
lenges and risks of bias in large language models.
arXiv preprint arXiv:2304.03738.

Felipe Garrido Lucero, Benjamin Heymann, Maxime
Vono, Patrick Loiseau, and Vianney Perchet. 2024.
Du-shapley: A shapley value proxy for efficient
dataset valuation. Advances in Neural Information
Processing Systems, 37:1973–2000.

Amirata Ghorbani, Michael Kim, and James Zou. 2020.
A distributional framework for data valuation. In In-
ternational Conference on Machine Learning, pages
3535–3544. PMLR.

Amirata Ghorbani and James Zou. 2019. Data shapley:
Equitable valuation of data for machine learning. In
International conference on machine learning, pages
2242–2251. PMLR.

Gene H Golub and Christian Reinsch. 1971. Singular
value decomposition and least squares solutions. In
Handbook for Automatic Computation: Volume II:
Linear Algebra, pages 134–151. Springer.

Gene H Golub and Charles F Van Loan. 2013. Matrix
computations. JHU press.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and
Yoshua Bengio. 2016. Deep learning, volume 1.
MIT press Cambridge.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,
Alex Vaughan, et al. 2024. The llama 3 herd of mod-
els. arXiv preprint arXiv:2407.21783.

Roger Grosse, Juhan Bae, Cem Anil, Nelson El-
hage, Alex Tamkin, Amirhossein Tajdini, Benoit
Steiner, Dustin Li, Esin Durmus, Ethan Perez, et al.
2023. Studying large language model general-
ization with influence functions. arXiv preprint
arXiv:2308.03296.

Han Guo, Nazneen Rajani, Peter Hase, Mohit Bansal,
and Caiming Xiong. 2021. Fastif: Scalable influence
functions for efficient model interpretation and de-
bugging. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 10333–10350.

Zayd Hammoudeh and Daniel Lowd. 2024. Training
data influence analysis and estimation: A survey. Ma-
chine Learning, 113(5):2351–2403.

Frank R Hampel. 1974. The influence curve and its
role in robust estimation. Journal of the american
statistical association, 69(346):383–393.

Xiaochuang Han and Yulia Tsvetkov. 2020. Fortifying
toxic speech detectors against veiled toxicity. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 7732–7739.

18503

Xiaochuang Han, Byron C Wallace, and Yulia Tsvetkov.
2020. Explaining black box predictions and unveil-
ing data artifacts through influence functions. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 5553–
5563.

Arthur E Hoerl and Robert W Kennard. 1970. Ridge re-
gression: Biased estimation for nonorthogonal prob-
lems. Technometrics, 12(1):55–67.

Shankar Iyer, Nikhil Dandekar, and Kornél
Csernai. 2017. First quora dataset release:
Question pairs. https://data.quora.com/
First-Quora-Dataset-Release-Question-Pairs.

Rahul Jain. 2023. Diffusiondb-pixelart dataset. Ac-
cessed: 2025-05-18.

Ruoxi Jia, David Dao, Boxin Wang, Frances Ann
Hubis, Nezihe Merve Gurel, Bo Li, Ce Zhang,
Costas Spanos, and Dawn Song. 2019. Efficient
task-specific data valuation for nearest neighbor al-
gorithms. Proceedings of the VLDB Endowment,
12(11):1610–1623.

Ayrton Joaquin, Bin Wang, Zhengyuan Liu, Philippe
Muller, Nicholas Asher, Brian Lim, and Nancy Chen.
2024. In2core: Leveraging influence functions for
coreset selection in instruction finetuning of large
language models. In Findings of the Association
for Computational Linguistics: EMNLP 2024, pages
10324–10335.

Hoang Anh Just, Feiyang Kang, Tianhao Wang, Yi Zeng,
Myeongseob Ko, Ming Jin, and Ruoxi Jia. 2023.
Lava: Data valuation without pre-specified learning
algorithms. In The Eleventh International Confer-
ence on Learning Representations. OpenReview.

Pang Wei Koh and Percy Liang. 2017. Understanding
black-box predictions via influence functions. In
International conference on machine learning, pages
1885–1894. PMLR.

Max Kuhn, Kjell Johnson, et al. 2013. Applied predic-
tive modeling, volume 26. Springer.

Yongchan Kwon, Eric Wu, Kevin Wu, and James Zou.
2024. Datainf: Efficiently estimating data influence
in loRA-tuned LLMs and diffusion models. In The
Twelfth International Conference on Learning Repre-
sentations.

Yongchan Kwon and James Zou. 2021. Beta shap-
ley: a unified and noise-reduced data valuation
framework for machine learning. arXiv preprint
arXiv:2110.14049.

Yongchan Kwon and James Zou. 2023. Data-oob: Out-
of-bag estimate as a simple and efficient data value.
In International conference on machine learning,
pages 18135–18152. PMLR.

Huawei Lin, Yingjie Lao, and Weijie Zhao. 2024a.
Dmin: Scalable training data influence estimation for
diffusion models. arXiv preprint arXiv:2412.08637.

Huawei Lin, Jikai Long, Zhaozhuo Xu, and Weijie Zhao.
2024b. Token-wise influential training data retrieval
for large language models. In Proceedings of the
62nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
841–860, Bangkok, Thailand. Association for Com-
putational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, and et al. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

R Douglas Martin and Victor J Yohai. 1986. Influence
functionals for time series. The annals of Statistics,
pages 781–818.

Bruno Kacper Mlodozeniec, Runa Eschenhagen,
Juhan Bae, Alexander Immer, David Krueger, and
Richard E. Turner. 2025. Influence functions for scal-
able data attribution in diffusion models. In The Thir-
teenth International Conference on Learning Repre-
sentations.

Yurii Nesterov et al. 2018. Lectures on convex optimiza-
tion, volume 137. Springer.

Sung Min Park, Kristian Georgiev, Andrew Ilyas, Guil-
laume Leclerc, and Aleksander Madry. 2023. Trak:
Attributing model behavior at scale. arXiv preprint
arXiv:2303.14186.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021. Are nlp models really able to solve simple
math word problems? In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 2080–2094.

Garima Pruthi, Frederick Liu, Satyen Kale, and Mukund
Sundararajan. 2020. Estimating training data influ-
ence by tracing gradient descent. Advances in Neural
Information Processing Systems, 33:19920–19930.

Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. 2022a. High-
resolution image synthesis with latent diffusion mod-
els. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages
10684–10695.

Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. 2022b. High-
resolution image synthesis with latent diffusion mod-
els. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR),
pages 10684–10695.

Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael
Pritch, Michael Rubinstein, and Kfir Aberman. 2022.
Dreambooth: Fine tuning text-to-image diffusion
models for subject-driven generation. arXiv preprint
arXiv:2208.12242.

Andrea Schioppa, Polina Zablotskaia, David Vilar, and
Artem Sokolov. 2022. Scaling up influence functions.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 36, pages 8179–8186.

18504

https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs
https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs
https://openreview.net/forum?id=9m02ib92Wz
https://openreview.net/forum?id=9m02ib92Wz
https://doi.org/10.18653/v1/2024.acl-long.48
https://doi.org/10.18653/v1/2024.acl-long.48
https://openreview.net/forum?id=esYrEndGsr
https://openreview.net/forum?id=esYrEndGsr

Rachael Hwee Ling Sim, Xinyi Xu, and Bryan
Kian Hsiang Low. 2022. Data valuation in machine
learning:" ingredients", strategies, and open chal-
lenges. In IJCAI, pages 5607–5614.

Richard Socher, Alex Perelygin, Jean Wu, and et al.
2013. Recursive deep models for semantic composi-
tionality over a sentiment treebank. In Proceedings
of EMNLP.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Lloyd N Trefethen and David Bau. 2022. Numerical
linear algebra. SIAM.

Alex Wang, Amanpreet Singh, Julian Michael, and et al.
2018. Glue: A multi-task benchmark and analysis
platform for natural language understanding. In Pro-
ceedings of the EMNLP Workshop on BlackboxNLP.

Laura Weidinger, John Mellor, Maribeth Rauh, Conor
Griffin, Jonathan Uesato, Po-Sen Huang, Myra
Cheng, Mia Glaese, Borja Balle, Atoosa Kasirzadeh,
et al. 2021. Ethical and social risks of harm from
language models. arXiv preprint arXiv:2112.04359.

Tim Wibiral, Mohamed Karim Belaid, Maximilian
Rabus, and Ansgar Scherp. 2024. Lossval: Efficient
data valuation for neural networks. arXiv preprint
arXiv:2412.04158.

Xinyi Xu, Zhaoxuan Wu, Chuan Sheng Foo, and Bryan
Kian Hsiang Low. 2021. Validation free and replica-
tion robust volume-based data valuation. Advances
in Neural Information Processing Systems, 34:10837–
10848.

Xinyu Zhou, Simin Fan, and Martin Jaggi. 2024. Hy-
perinf: Unleashing the hyperpower of the schulz’s
method for data influence estimation. arXiv preprint
arXiv:2410.05090.

A Experimental Details

Datasets The five GLUE benchmark datasets for
Mislabeled Data Detection are available at Hug-
gingFace Datasets library, and we use the train-
ing split for fine-tuning the model and validation
split for computing the prediction loss. Follow-
ing DataInf, we randomly choose 4500 and 500
samples from the original training and validation
splits respectively for QNLI, QQP and SST-2. The
SVAMP dataset for text generation task consists
of 4 different types of math word problems, with
a total of 700 training data and 300 test data. The
number of sample in each type varies, we take 75

(resp., 25) examples from each type as the train-
ing (resp., test) set. The text-to-image style gen-
eration dataset contains three different styles of
images. Each style has 200 training image-text
pairs and 150 validation image-text pairs, and the
text prompt follows the structure: "Generate an
image in a specific {custom} style. {A text se-
quence of the original dataset which describes an
image}", where {custom} is substituted with ei-
ther “cartoon”, “pixelart”, or “black and white line
sketch”. The DreamBooth dataset for subject gen-
eration includes 30 different subjects. Each subject
has 4 to 6 examples, and 3 data points from each
subject are used for training with the remaining
as validation. We add a unique random string to
each subject in the prompt. For example, we use "a
AXNkV dog" and "a DxE3K dog" to differentiate
two different dogs.

Fine-tuning Setup We use Low-Rank Adapta-
tion (LoRA) for fine-tuning. For RoBERTa model,
the training is performed for 10 epochs with a batch
size of 32 and a learning rate of 3 × 10−4. The
LoRA rank is r = 4 and α is set to be r. For Llama-
2-13B-chat and Llama-3-8B, we use a learning rate
of 3 × 10−4, LoRA hyperparameters r = 8 and
α = 32, in 4-bit quantization, with a batch size
of 64 across 10 training epochs. We fine-tune the
stable-diffusion-v1.5 model with a batch size of 4
for 10000 training steps, using a learning rate of
1× 10−4 and LoRA hyper-parameters r = 8 and
α = 8.

Influence Estimation We report the hyperparam-
eters for RRInf in Table 5. For LLMs including
RoBERTa, Llama-2-13B-chat and Llama-3-8B, we
sample a single neuron at each iteration. For stable-
diffusion-v1.5 model, we sample an entire layer
from the total set of layers. The learning rate is set
to 0.01 across all tasks.

B Additional Experimental Results

Mislabeled Data Detection We compare the
time efficiency of different influence estimation
methods on Mislabeled Data Detection task in Sec-
tion 4. The average computation time (in seconds)
along with the standard deviation is presented in
Table 4. While Hessian-free is the fastest in all
datasets (1.19 seconds to 2.42 seconds), it trades
off accuracy. RRInf achieves identical (slightly bet-
ter) runtime to DataInf and is significantly faster
than LiSSA which is the slowest and takes 45–57

18505

Figure 2: Detection rate and data inspected across sst2, qqp, mrpc, qnli, and rte (RRInf is shown in red. Hessian-free
is shown in blue. DataInf is shown in orange. LiSSA is shown in green).

Method RTE QNLI QQP MRPC SST2
Hessian-free 48.3%± 2.8% 68.4%± 4.2% 71.3%± 1.7% 71.9%± 1.3% 82.0%± 4.2%
DataInf 48.8%± 4.4% 73.4%± 4.4% 75.0%± 4.4% 73.0%± 0.1% 91.1%± 0.2%
LiSSA 49.1%± 3.4% 67.4%± 4.0% 69.9%± 2.0% 71.4%± 1.0% 81.9%± 6.9%
HyperINF 49.1%± 4.6% 76.7%± 3.4% 77.2%± 2.3% 72.7%± 1.0% 92.8%± 0.4%
RRInf 56.1%± 2.8% 81.6%± 2.8% 77.7%± 1.4% 75.9%± 0.9% 93.5%± 0.8%

Table 3: Accuracy Comparison on Data Selection Task (%).

Dataset Hessian-free DataInf LiSSA RRInf
SST-2 2.1406 ± 0.2955 10.7444 ± 0.4890 57.0686 ± 1.4048 10.2276 ± 0.0064
QQP 2.0230 ± 0.0360 10.9016 ± 0.5941 57.8501 ± 0.8990 10.2285 ± 0.0086
QNLI 2.4201 ± 0.8299 10.7237 ± 0.4375 56.7970 ± 1.9614 10.2294 ± 0.0073
MRPC 1.7183 ± 0.1267 8.6888 ± 0.8272 45.5788 ± 1.0792 8.4108 ± 0.0093
RTE 1.1905 ± 0.1450 5.6884 ± 0.2116 30.6206 ± 0.7600 6.2483 ± 0.9192

Table 4: Comparison of Algorithmic Computation Time
(Run Time in Seconds) on Mislabeled Data Detection
Task

Task Batch size #Iter LR

MRPC/RTE/QNLI/QQP/SST2 neuron 1000 0.01
LLAMA 2 Text Generation neuron 1000 0.01
LLAMA 3 Text Generation neuron 1000 0.01
SD Style Generation layer 2000 0.01
SD Subject Generation layer 2000 0.01

Table 5: Hyperparameter Settings for RRInf.

seconds depending on the dataset. This aligns with
our analysis in the paper that the complexity of our
normalized stochastic gradient algorithm does not
depend on the model size, making it particularly
well-suited for large scale models. We also report
results on the Mislabeled Data Detection task, with
a different evaluation metric which measures the
fraction of mislabeled data detected (i.e., detec-
tion rate) when using influence values to pick data
points to inspect. Figure 2 shows that RRInf iden-

LoRA Rank AUC (Mean ± Std) Recall (Mean ± Std)

2 62.0% ± 9.6% 46.9% ± 8.8%
8 64.3% ± 11.1% 50.6% ± 9.8%
12 62.9% ± 10.5% 49.4% ± 9.3%
24 63.4% ± 10.5% 50.3% ± 9.1%

Table 6: Performance Metrics of RRInf Across Ranks.
AUC and Recall metrics in % (mean ± std) for different
ranks. The rank r = 8 is used in the main results.

tifies a larger fraction of mislabelled training data
(y-axis) regardless of the fraction of the training
data set that is examined (x-axis), demonstrating its
superior ability to detect harmful data points across
all benchmark datasets.

Style Generation Task Additional experiments
on the style generation task using varying ranks
r = 2, 8, 12, 24 are presented in Table 6, illustrat-
ing the impact of LoRA rank on the final perfor-
mance of RRInf. The results suggest that while
the rank can influence performance to some degree,
it does not lead to any significant differences in
overall performance.

We provide the additional results on Style Gen-
eration Task used in the Ablation Studies. Ta-
ble 7 shows that the full gradient variant RRInffull
achieves slightly higher AUC and Recall than

18506

Metric / RRInffull Mean ± Std
AUC 65.8%± 13.3%
Recall 51.9%± 11.8%

Metric / RRInf Mean ± Std
AUC 64.3%± 11.1%
Recall 50.6%± 9.8%

Table 7: Performance comparison between RRInf vari-
ants using full gradient descent (RRInffull) and layer-
wise sampling (RRInf). Reported results are mean ±
standard deviation.

Batch Size AUC Recall

1 60.3%± 8.5% 45.0%± 8.0%
8 62.5%± 9.9% 48.7%± 8.9%
16 62.8%± 10.4% 49.1%± 9.1%
32 63.1%± 10.5% 49.7%± 9.3%
64 63.4%± 10.6% 50.1%± 9.2%
128 63.4%± 10.7% 50.2%± 9.4%
256 63.4%± 10.7% 50.3%± 9.3%
512 63.4%± 10.7% 50.4%± 9.3%
1024 63.4%± 10.7% 50.3%± 9.3%
2048 63.4%± 10.7% 50.3%± 9.3%

Table 8: Performance of RRInfmb by varying Sampling
Batch Size (Mean ± Std).

RRInf which samples a layer at each iteration. Ta-
ble 8 report the performance of RRInfmb which
randomly samples a subset of neurons. The results
show that RRInfmb is slightly inferior to RRInf,
suggesting that a layer-level sampling may be more
suitable than neuron-level sampling in diffusion
models.

C Data Selection Task

We add experiments for Data Selection Task on the
same noisy GLUE datasets used in Mislabeled Data
Detection. The experimental setting is the same as
the one in Table 1. After computing the influence
function, the top 70% most beneficial data points
are selected. We then retrain a model from scratch
with the selected subset and evaluate the model’s
classification accuracy on the holdout test dataset.
In addition to DataInf, LiSSA and Hessian-free, we
include a recent baseline method HyperINF (Zhou
et al., 2024). As shown in Table 3, RRInf consis-
tently outperforms all baseline influence estimation
methods and achieves the best accuracy across all
five datasets, demonstrating the effectiveness of our
method in data selection tasks.

18507

