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Abstract

In this paper, we propose a novel, auto-
matic tree-based evaluation metric for LLM-
generated step-by-step assembly instructions,
that more accurately reflects spatiotemporal as-
pects of construction than traditional metrics
such as BLEU and BERT similarity scores. We
apply our proposed metric to the domain of
sewing instructions, and show that our metric
better correlates with manually-annotated error
counts as well as human quality ratings, demon-
strating our metric’s superiority for evaluating
the spatiotemporal soundness of sewing instruc-
tions. Further experiments show that our met-
ric is more robust than traditional approaches
against artificially-constructed counterfactual
examples that are specifically constructed to
confound metrics that rely on textual similarity.

1 Introduction

Creating consistent, high quality instructions in any
domain can be a difficult process. Much research
has investigated the ability of Large Language Mod-
els (LLMs) to generate such instructions, most com-
monly in the domain of cooking recipes (e.g. Li
et al., 2024; Salvador et al., 2019).

High quality instructions make it as easy as possi-
ble for the reader to connect the textual instructions
to the required actions in the physical world. For
the instructions to make sense with regard to the
physical world, the LLM that is generating them
needs an understanding of the current world state.
This necessitates spatial (where objects are located)
and temporal (when objects change their location)
awareness: although LLMs have continuously im-
proved on a wide variety of benchmarks, they still
have difficulties with consistency in the area of
spatiotemporal reasoning (Aghzal et al., 2025).

In particular, the generation of textual sewing in-
structions is a multimodal reasoning problem that
necessitates spatiotemporal awareness of multiple

1. sew the side seam of the over skirt (A) to form a complete
circle.
2. Sew the side seam of the under skirt (B) to form a complete
circle.

#### Attach Over skirt to Under Skirt

3. Align the waist edges of the Over skirt (A) and Under Skirt
(B) and sew them together.

Rit## Waistband Attachment

4. Sew the short ends of the waistband (C) together to form a
loop.

5. Attach the waistband (C) to the combined waist edge of the
Over skirt (A) and Under Skirt (B), ensuring the seams are
aligned.

s Finishing

6. Hem the bottom edge of the oOver skirt (A).
7. Hem the bottom edge of the Under Skirt (B).
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Figure 1: Illustration of our tree-based evaluation met-
ric. Instructions are automatically converted a tree that
encodes the order and components of each step. These
automatically-extracted trees are then compared to gold
trees to yield a score.

objects and their surroundings, as well as knowl-
edge of the current world state: specifically, the
current assembly state of the garment at each step
of the instructions.

This task is similar to other instruction gen-
eration tasks such as cooking recipe generation
and Minecraft instruction generation (e.g. Narayan-
Chen et al., 2019), in that the generation task
consists of generating procedural textual instruc-
tions, including explicit or implicit representa-
tions/descriptions of the current world state.
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However, generating sewing instructions differs
from these more widely-researched tasks, due to
the more complex operations that need to be per-
formed.

The complexity of this process lends to sensi-
tivity to even slight errors: incorrect use of ter-
minology or ambiguous explanations of assembly
operations can lead to catastrophic misunderstand-
ings between writer and the reader. While this
can also be the case for other instruction genera-
tion tasks, the increased complexity involved in the
physical manipulation of fabric pieces leads to a
far more spatiotemporally sensitive process than
(for example) stacking blocks.

Since the quality of sewing instructions heavily
depends on their ability to capture the correct way
to assemble the pieces, evaluating generated sewing
instructions in meaningful way is not a trivial task.
Common evaluation metrics such as BLEU (Pap-
ineni et al., 2002) and BERT-Score (Zhang et al.,
2020) only focus on superficial similarities between
the generated instructions and a given set of gold
reference instructions (see Sections 2 and 5).

In this paper, we introduce an automatic, tree-
based evaluation metric (Section 4), that mitigates
the shortcomings of traditional evaluation met-
rics with respect to the task of instruction genera-
tion. We compare our evaluation metric to BLEU,
ROUGE-L (Lin, 2004), and BERT-Score on sewing
instructions generated via a range of prompting
strategies, demonstrating the versatility and robust-
ness of our approach with respect to varying meth-
ods of instruction generation (Section 5).

We show that our metric better correlates with
manually-annotated error counts in the model-
generated instructions, indicating that our approach
better reflects spatiotemporal correctness than com-
peting metrics.

To further highlight the sensitivity of our ap-
proach to correctness, we construct an artificial
dataset in which the steps of the model-generated
instructions are randomly permuted: while our met-
ric is highly sensitive to these nonsensical instruc-
tions, the traditional metrics fail to meaningfully
reflect any difference between the original and per-
muted instructions.

Additionally, we find that our metric is weakly
positively correlated with subjective human ratings,
while all other, traditional similarity measures are
negatively correlated.

All prompts, generated instructions, input im-
ages, code files, and data required to replicate these

experiments are available on GitHub'.

2 Related Work

Multimodal Reasoning. Liu et al. (2024b) evalu-
ate a range of Multimodal LLMs (MLLMs) across
a variety of web tasks, and find that many mod-
els do not exceed random-chance performance on
action prediction and grounding tasks, speaking
to these models’ limited reasoning and grounding
abilities—both critical skills for sewing instruction
generation (as discussed in Section 1). Although
GPT-4V (Achiam et al., 2023) and Claude (An-
thropic, 2024) outperform their open-source coun-
terparts by a notable margin, GPT-4V—the best-
performing model they evaluate—only achieves an
average score of 64.6 out of 100, indicating that
there is still much room for improvement, even
among closed-source MLLMs.

Ji et al. (2022) investigate human and LLM ab-
tract visual reasoning abilities through the use of
tangram puzzles (Hawkins et al., 2020): both mod-
els that they evaluate—CLIP (Radford et al., 2021)
and ViLT (Kim et al., 2021)—demonstrate limited
abstract reasoning abilities in comparison to hu-
man participants. However, Ji et al. (2022) find that
explicit descriptions and color-coded highlights of
various tangram components improve performance
for both humans and MLLMs, suggesting that sim-
ilar knowledge-augmentation can be leveraged to
improve model-generated sewing instructions.

Textual Spatiotemporal Reasoning and Plan-
ning. Although the findings of Lyu et al.
(2020) indicate that fine-tuning and careful data-
engineering can improve the common-sense rea-
soning abilities of then-SoTA LMs—i.e. BERT
(Devlin et al., 2019), XLNet (Yang et al., 2019),
RoBERTa (Liu et al., 2019), and GPT-2 (Radford
et al., 2019)—to near-human performance, Aghzal
et al. (2025) suggest that the capabilities of LLMs
are limited when it comes to long-term planning
and spatial reasoning. Specifically, Aghzal et al.
(2025) find that in-context learning (ICL) does not
help GPT-4 avoid obstacles—although ICL does
improve the model’s ability to reach the goal—in
textual grid-navigation environments. While chain-
of-thought (CoT; Wei et al., 2022) prompting does
improve obstacle-avoidance abilities, these abilities
still degrade as obstacle number and distance to the
goal increase.

1https: //github.com/coli-saar/
generatingsewinginstructions

18509


https://github.com/coli-saar/generatingsewinginstructions
https://github.com/coli-saar/generatingsewinginstructions

Of particular concern to the topic at hand are
Wu et al.’s (2024) findings that LLM’s reasoning
performance degrades substantially when they are
presented with counterfactual instances: reasoning
problems in which well-known rules are altered,
such as chess puzzles in which the piece types’
valid moves are modified. This indicates that LLMs
may struggle to accomplish a task such as sewing-
instruction generation—examples of which are un-
likely to occur frequently in the models’ training
data.

Cooking Recipe Generation. Given the similar-
ities between the two tasks, it stands to reason that
many findings in the area of cooking-recipe gen-
eration—a far more well-researched task—should
translate to sewing-instruction generation.

Salvador et al. (2019) propose an approach
for generating cooking recipes under which the
model first predicts ingredients before generating a
recipe. The authors find that their method generates
higher quality recipes—and improves in ingredient
prediction—over previous baselines, and creates
more compellingly written recipes than retrieval
methods, according to human judgment. Simi-
larly, (Chandu et al., 2019) improve over baseline
cooking-generation approaches via a storyboard-
ing approach that imposes hierarchical structure
on the model’s step-by-step instruction-generation
reasoning process.

On the other hand, Liu et al. (2024a) use Re-
trieval Augmented Generation (RAG) to address
the common problem of hallucination in cooking-
recipe generation with text generation.

Evaluation Metrics. Evaluation metrics for
LLM-generated text broadly fall into one of three
categories (Celikyilmaz et al., 2021): (i) human-
centric, which focus on manual evaluation of gen-
erated text; (ii) untrained and automatic, which
typically compute the similarity between the gener-
ated text and a reference text (e.g. Papineni et al.,
2002); and (iii) machine-learned, which also com-
pute the similarity between the generated text and
a reference text, but via a neural model (e.g. Zhang
et al., 2020).

Although—by definition—it most accurately re-
flects human judgment, manual text evaluation is
very time-consuming and expensive, hindering its
employment at scale. On the other hand, automatic
evaluation metrics rely purely on surface-level sim-
ilarity with the reference text, which is not always
applicable for instruction-generation tasks: for ex-

1

Figure 2: Example of a sewing pattern (right; edges
colored in this figure to illustrate attachment loca-
tion) and a mannequin wearing the completed gar-
ment built from the pattern (left). (Left-hand im-
age generated by ChatGPT; front bodice pattern from
https://www.moodfabrics.com/blog/; sleeve and

front pant leg patterns from https://sewguide.com/
princess-seams/)

waistline

ample, task-oriented text generation allows for a
large degree of diversity in the generated texts, in
which case the usefulness of such similarity metrics
is limited.

Furthermore, Ostmeier et al. (2024) note that
common textual-similarity evaluation metrics such
as BLEU (Papineni et al., 2002) and ROUGE (Lin,
2004) lack the ability to measure factual correct-
ness, which is critical for evaluating a wide variety
of tasks.

To address this deficiency in the medical domain,
the authors introduce the GREEN metric, a quan-
titative metric derived from LLM-as-judge evalua-
tion (Ostmeier et al., 2024, use GPT-4). Although
they find that GREEN scores are highly correlated
with human expert evaluations for radiology re-
ports, the critical weakness of this approach lies
in its reliance on an LLM to evaluate factual cor-
rectness: in a domain where the model lacks fac-
tual knowledge—such as sewing-instruction gen-
eration—it is not feasible to rely on an LLM as a
critical component of the evaluation metric.

3 Task and Dataset

In this section, we provide a brief overview of
sewing patterns in general (Section 3.1), and the
particular sewing-pattern dataset that we employ in
this work (Section 3.2).

3.1 Sewing Patterns

Sewing patterns are templates used to guide the
construction of a garment while sewing. These
paper patterns are placed on top of fabric, in order
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Instruction: With back pant legs (right sides of fabric
facing) sew down the center back seam.

Figure 3: Example of sewing instructions in our dataset.

to cut out the individual pieces: the fabric pieces
are then assembled into a garment (see Figure 2).

Since garments are typically symmetrical, many
patterns are made to show only the left or the right
half—for example, Figure 2 shows pattern pieces
for the left half of the bodice, the left sleeve, and the
left front pant leg. To create a symmetrical garment,
those pieces are either cut multiple times or “on the
fold”: i.e. by folding the fabric in half and placing
the paper pattern piece near the folded edge so that
the pattern cutter cuts through two layers of fabric,
resulting in a perfectly symmetrical piece when it
is unfolded (see Figure 7 in the Appendix). For a
bodice piece such as that in Figure 2, it is common
to place the center front on the folded edge of the
fabric, so that the center front acts as the mirror
axis and the resulting piece covers both the left and
the right front side of the torso.

3.2 Dataset

The website moodfabrics.com? features free
sewing patterns and instructions. The instructions
for each pattern describe the different steps re-
quired to go from the pattern pieces to the finished
garment. Each step is illustrated with a picture of
the current state of the process (see Figure 3).

To construct our dataset, we sampled 22 pat-
terns spanning five garment types: five shirts, five
dresses, five pants, five skirts, and two jumpsuits.
Each of these patterns contains an overview picture
and a description of each piece (see Figure 4).

The pattern pieces in the overview are labeled
from A to Z, allowing one to refer to the individual
pieces when writing instructions.

2https://www.moodfabrics.com/blog/

OVER SKIRT
FABRIC - CUT 1 ON FOLD

B UNDER SKIRT
FABRIC - CUT 1 ON FOLD

C WAISTBAND
FABRIC: CUT 1 (SEE CHART BELOW)

Figure 4: Example of a sewing pattern (left), with corre-
sponding descriptions of each of its component pieces
(right).

In order to obtain symmetrical pieces for the left
and right half of the body, pieces on the overview
image have to be cut out of fabric twice (as dis-
cussed in Section 3.1). In such cases, the pattern
piece description gives the instructions to cut a
“mirrored pair” of the piece X: the pattern cutter
cuts a left (X1) and a right (Xr) piece out of the
fabric. When the pattern piece descriptions men-
tion cutting multiples of a piece without mirroring
them, we refer to these pieces as X1, X2, X3, etc.

4 Tree-Based Evaluation Metric

As discussed in Sections 1 and 2—and further
demonstrated below in Section 5—traditional eval-
uation metrics used for text generation are poor
measures of spatiotemporal consistency. To rem-
edy this deficiency, we introduce a tree-based eval-
uation metric that is designed to reflect the order of
and constituent pieces involved in assembly steps.

We first annotate each pattern with sets of gold
trees (see e.g. Figure 5), each of which encodes a
valid assembly order for the garment in question
(see Section 4.1). We then employ an automatic
tree-extraction procedure over the model-generated
instructions, which constructs trees encoding the
order in which the pieces of the garment are as-
sembled together in the instructions (see Section
4.2). These automatically-extracted trees are com-
pared to their corresponding patterns’ gold trees
to yield the tree score (see Section 4.3), a measure
of the spatiotemporal consistency of the generated
instructions.

4.1 Gold Instruction Annotation

As discussed above, our tree-based evaluation met-
ric requires the manual annotation of gold trees
for each pattern in the dataset. As each garment
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Garment Type | Annotated Patterns | Mean Trees per Pattern

Shirt/Top 5 5,017.2
Dress 5 417.2
Pants 5 1,685.2
Skirt 5 3.6
Jumpsuit 2 991.0
Total 22 1,709.0

Table 1: Overview of the annotated patterns in our
dataset.

permits multiple possible assembly orders to arrive
at the same end product (see Figure 9 in the Ap-
pendix), each pattern is annotated with a set of gold
trees, each of which corresponds to a valid order of
assembly for the garment.

There is a large number of gold trees required for
each pattern (see Table 1): in practice, we annotate
each pattern with a set of Context-Free Grammar
(CFG) rules—which then generate the set of gold
trees for the pattern—in order to semi-automate the
annotation process.

4.1.1 Gold Tree Structure

For each valid assembly order, we construct a cor-
responding tree ¢ (see Figure 5). Each constituent
piece in the garment is represented by a leaf node in
t, and each intermediate component is represented
by a node higher in the tree. For each assembly step
that joins two pieces « and (3, there is a node a3
and edges a8 — «, aff — [ in t: the completed
garment is represented by the root node S.

Each node in each gold tree is only permitted
at most two daughter nodes. This restriction to
unary- (see Section 4.1.2) and binary-branching
trees is imposed to facilitate the predicted tree ex-
traction procedure (see Section 4.2): we impose
this constraint on the gold trees to permit one-to-
one comparison with the predicted trees.

We further require that the constituent piece
names within the node names be in alphabeti-
cal order with respect to the root node labels, re-
gardless of the daughter node to which each root
node belongs: for example, A < AB — B and
AC < ABCD — BD are valid subtrees, while
A + BA — B and AC < ACBD — BD are not.

Lowercase labels “I” and “r” indicating direction-
ality (see Section 3) stay with the label that they
modify, and only serve as tie-breakers to decide the
ordering between two labels with the same capital
letter piece label. For example, ABI < ABIBr —
Br is a valid subtree, while ABl <~ ABBIr — Br
is not.

These constraints are again intended to permit
one-to-one comparison with the predicted trees, in
which parent node labels are automatically derived
from their daughter nodes (see Section 4.2).

4.1.2 Self-Attachment

Aside from attaching two pieces to each other,
sewing instructions often require attaching a
piece to itself—for example, a sleeve can be
assembled by rolling up a rectangular piece of
fabric, and sewing the two connected edges
together—including repeated self-attachment in
more complex garments.

To account for this phenomenon, we append a
subscriped, integer-valued self-attachment counter
n to the label of each node o in each assembly tree
t: an. In cases where the assembly requires the
attachment of v, to itself, we include a node av,+1
and an edge a1 — a, in t. Note that for the
sake of representational simplicity, we often omit
the self-attachment counter when n = 0 in this
work.

When two pieces are attached to one another, the
parent node inherits the larger self-attachment num-
ber of its daughter nodes, resulting in subtrees of
the form: oy, < aBuu(nm) — Bm- As a con-
sequence, each parent node label contains only
one self-attachment counter, appended to the far-
right edge of the node label: for example, ABy <
ABCD3 — CD3 and A1 — ABC1 — BCO are
valid subtrees, while ABy + ABoCD3 — CDj3
and A, < A;BCy — BCj are not.

We again impose this constraint to facilitate com-
parison with the predicted-instruction-derived trees
(see Section 4.2). Although this self-attachment-
inheritance procedure does result in parent node
labels that forget information regarding the self-
attachment levels of their daughter nodes, this does
not impair evaluation, as this information is still
encoded within the respective subtrees that they
dominate.

4.2 Prediction Postprocessing

For each pattern P in the dataset, the model in
question is prompted to generate corresponding
instructions /: in order to facilitate the tree con-
struction procedure described in this section, we
prompt the model to combine no more than two
pieces in one step in /. We then employ a Piece-
Extraction LLM, which is prompted to extract the
piece labels mentioned in each step of I.
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Figure 5: Step-by-step illustration of the assembly of a skirt (middle), and the corresponding tree (top). The bottom

row indicates the remaining pattern pieces at each step.

Note that the instruction-generating model of-
ten does not mention intermediate pieces in the
instructions, but rather single components of those
pieces: for example “attach the pocket (A) to the
front piece of the skirt (B)”, when the front piece
has already been attached to the rest of the skirt
in prior steps. Naively extracting the pieces men-
tioned in such a step would result in a subtree of the
form A < AB — B, when the desired outcome is
of the form A < ApB — [, where 3 denotes the
skirt to which B is attached.

To account for this problem, we employ a rule-
based procedure that replaces each mentioned piece
label B with the label /3 of the larger, intermediate
piece to which B is attached (if applicable).

From the pieces extracted from each step s of
I, we derive a subtree ¢, of the form ¢, = a,, +
ABax(n,m) — Pm if two pieces ay,, B were ex-
tracted from sy, or t;, = a1 — ap if one piece
«y, 1s extracted. These extracted subtrees are con-
structed to conform to the assembly-tree constraints
described in Section 4.1.

Finally, we derive a tree> T'(I) from the dis-
joint union of the extracted subtrees t; by gluing
together nodes with the same label.

This pipeline is illustrated in Table 2.

3T(I) may not necessarily be a tree, but rather a forest:
for example, when the model forgets to attach a piece to the
final garment.

4.3 Tree Score

Let P be some pattern in the dataset, with a set of
associated gold trees G(P) (see Section 4.1). For
a given model-generated instruction [ for P, we
compute its tree score with respect to P (Sp(I))
as the maximum £ score between 7'(I) and each
of the gold trees g € G(P) (Equation 1). As each
g € G(P) is represents a valid assembly order for
P, we return the maximum F3j score in order to ac-
count for the multitude of possible valid assembly
orders for a given pattern.

Sp(l)= max Fi(T(I),q) (1)

geG(P)

We compute the F) score with respect to sub-
trees: for each non-leaf node o € T'() and 3 € g,
we extract the subtrees T'(1)q, gg spanning o/f3
and their immediate respective daughter nodes.
We then compute the exact-match F; score be-

tween {T(I)a}aEparents(T(I)) and {gﬁ}ﬂeparents(g)
to yield F1(T'(1), g).

S Experiments

We evaluated our proposed tree-based evalua-
tion metric against three existing metrics—BLEU,
ROUGE-L, and BERT-Score—on a set of sewing
instructions generated from a variety of prompting
strategies (Section 5.1). Specifically, we compared

18513



Instructions ‘ Extracted Pieces ‘ Extracted Subtree
1. Align the Over Skirt (A) and Under Skirt (B) at the side seams. 1: [A, B] AB—A B
Sew the left side seam of the Over Skirt (A) to the left side seam

of the Under Skirt (B).

2. Sew the right side seam of the Over Skirt (A) to the right side 2: [A, B] AB1 — AB
seam of the Under Skirt (B).

3. Align the Waistband (C) with the top edge of the joined Over 3: [C, A, B] S—AB; C

Skirt (A) and Under Skirt (B). Sew the Waistband (C) to the top

edge, ensuring the seams are evenly distributed.

4. Fold the Waistband (C) over to the inside of the skirt, enclosing

the raw edge. Stitch in place to secure.

4: ]

5. Hem the bottom edge of the Over Skirt (A) and Under Skirt

(B) to the desired length.

5: 1

Table 2: Subtree extraction, side-by-side comparison.

our metric to the existing approaches with respect
to correlation with error count (Section 5.2) and
sensitivity to random permutations (Section 5.3).

5.1 Data Generation

We employed GPT-4V (model = gpt4o, seed = 1,
temperature = 0.0, max_tokens = 3000) to generate
step-by-step instructions given an image overview
and a description of each of the 22 patterns in our
dataset (see e.g. Figure 4), and as the Piece Extrac-
tion model for our evaluation metric (see Section
4.2). To assess the robustness of our evaluation
metric, we evaluated four prompting strategies:

* Baseline: A zero-shot prompted model. The
model is instructed to explicitly mention all
connecting seams—including those that occur
twice on mirrored pieces (e.g. sleeves)—in
order to accurately reflect the assembly pro-
cess. As required by our evaluation metric,
the model is instructed to include at most one
connecting seam in each step. For the same
reason, we require that the instructions explic-
itly mention the labels of each piece that is
included in a given step.

* Few-Shot: A few-shot prompted model that
is presented with three example instructions.

* Generalized Instructions: A model that is
few-shot prompted with archetypical exam-
ples of instructions of each of the five garment
types (without images), to serve as a guide for
instruction generation.

¢ Intermediate Representations: A model that
is prompted after each generated step to gener-

ate an intermediate representation of the cur-
rent state of the garment assembly process:
the used pieces, the current intermediate gar-
ment(s), and the unused pieces in the assembly
process.

Example prompts for these strategies are located
in Figures 12-14 in the Appendix.

Instruction Generation. We evaluated all pos-
sible combinations of these prompting strategies:
few-shot prompting, few-shot prompting with gen-
eralized instructions, etc. Including the baseline
approach, this results in eight possible combina-
tions across the 22 patterns in our dataset, yielding
176 generated sets of instructions.

To enable an accurate, one-to-one comparison
to BLEU, ROUGE-L, and BERT-Score, we hand-
crafted gold instructions for each of the patterns in
our dataset, that align with the style and constraints
imposed by the tree-based evaluation metric: i.e.
always mentioning piece labels, connecting at most
one seam per step, etc.

5.2 Error Reflection

We first compare our metric to existing approaches
with respect to their capacity to reflect errors of
spatiotemporal reasoning in generated instructions.

5.2.1 Experimental Setup

For each of the 176 model-generated instructions,
we computed BLEU, ROUGE-L, and BERT-Score
with respect to the gold text, and computed our tree-
score between the extracted tree and the annotated
gold trees (see Section 4).

We manually annotated the model-generated in-
structions for errors, counting errors across four
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Metric Corr. P
BLEU -0.111  .1432
ROUGE-L -0.179 < .05
BERT-Score -0.080 .2915
Tree Score (ours) | -0.5399 <.001

Table 3: Pearson’s correlation of evaluation metrics with
the number of errors per number of steps (df = 174).

categories: (i) incorrect assembly operations, (ii)
missing assembly operations, (iii) incorrect order
of assembly operations, and (iv) conflicting infor-
mation/incorrect use of terminology. We then com-
puted the correlation between error count and score
for each of the four evaluation metrics.

5.2.2 Results

There is a significant, moderate negative correla-
tion between tree score and number of errors (see
Table 3)—substantially lower than that observed
for BLEU, ROUGE-L, and BERT-Score. In fact,
BLEU and BERT-Score are not significantly corre-
lated with error rate at all: these metrics are entirely
unable to detect such errors.

These results clearly demonstrate our evaluation
metric’s superior ability to reflect errors of spa-
tiotemporal reasoning.

5.3 Robustness to Permutation

Next, we evaluated the robustness of the four evalu-
ation metrics with respect to artificially-constructed
counterfactual examples that are designed to dis-
rupt spatiotemporal correctness.

5.3.1 Experimental Setup

In this experiment, we randomly permuted the steps
of each of the 22 instructions generated by the base-
line prompting approach (see Section 5.1): this con-
structs a set of instructions that is stylistically and
lexically similar to the gold instructions, but en-
tirely unexecutable due to the nonsensical ordering
of the instruction steps.

We then computed the BLEU, ROUGE-L, BERT-
Score, and tree score for each of the permuted in-
structions, and compared these scores to each of
the metrics respective scores for the original, un-
permuted baseline-approach instructions.

5.3.2 Results

The results of this experiment (Table 4) clearly
demonstrate that our metric is more sensitive to
errors of spatiotemporal reasoning than existing

Metric Baseline Shuffled A

BLEU 0.127 0.126 -0.001
ROUGE-L 0.377 0.322 -0.055
BERT-Score 0.881 0.878 -0.003
Tree Score (ours) | 0.512 0.272 -0.240

Table 4: Mean evaluation scores across the baseline and
randomly-permuted instructions.

evaluation metrics. The average tree score drops
by almost 50% from the baseline to the permuted
examples, reflecting the decrease in correctness of
the artificially-constructed instructions.

In comparison, ROUGE-L score decreases by
only 15%, while BLEU and BERT-Score fail to
decrease by any meaningful amount: these metrics
entirely fail to capture any difference in terms of
correctness between the actual model-generated in-
structions and the randomly-permuted instructions.

5.4 Alignment with Human Judgment

To evaluate the degree to which our tree score met-
ric aligns with human judgment, we recruited 20
participants with experience in sewing garments
to rate the model-generated instructions of Section
5.1. All human evaluations were conducted on the
LingoTurk platform (Pusse et al., 2016).

5.4.1 Experimental Setup

Data Each participant was asked to evaluate 4
sets of sewing instructions since a brief pilot study
showed that 4 sets can be completed in about 30
minutes. We collected ratings 110 sets of instruc-
tions, a subset of the dataset that we used in previ-
ous experiments (spanning all 22 patterns).

Task We provided the participants with the
overview image/description of the pattern
pieces—the same context available to the
generation model—and the model-generated
instructions.

We employed a step-by-step evaluation: partici-
pants were presented with one step of the instruc-
tions at a time, and gave individual ratings for each
step. This method reduces the mental load on the
participants and results in more detailed ratings,
enabling a more fine-grained analysis.

At each step, the participants answered the fol-
lowing questions with a rating on a 5-point Likert
Scale:

S1. Does this step make sense with regard to the
picture?
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Figure 6: Proportion of below-3-ratings for S3, plotted
against tree score.

S2. Does this step make sense with regard to the
pattern piece descriptions?

S3. Does this step make sense with regard to the
previous step?

S4. Is this step clear enough to follow?

S5. Is the terminology in this step used correctly
(e.g. seam names)?

Once the ratings were provided, the next step
was displayed on the screen—the previous steps
always remained visible. An example of the partici-
pant interface is given in Figure 8 in the Appendix.

After rating each step, the participants were
asked to give two ratings (also on a 5-point Likert
Scale) of the instructions as a whole:

I1. Is it possible to assemble the pieces following
the given instructions?

I2. This pattern was designed to be a <garment
type>. Do you think the assembly steps lead
to the correct outcome?

Data Aggregation For each step-level question,
we aggregated the step-by-step ratings into three
instruction-level summarized ratings (5 X 3 = 15
summarized ratings per instruction): the mean rat-
ing across steps, the proportion of ratings above 3,
and the proportion of ratings below 3.

5.4.2 Results

Mean step-level ratings from each rating category
are weakly, positively correlated with tree score
(Table 5), although only the correlation with S3 is
significant (r(78) = 0.23, p < .05). In addition,
there is a significant, weak negative correlation
between tree score and the proportion below 3 for
S3 (r(78) = —0.29, p < .01; see Figure 6).

For the traditional evaluation metrics, we ob-
serve a negatively correlated relationship with hu-
man judgment (see Table 3) suggesting that these

st 2 83 s4 85 | D2
Tree (ours) [ 0.14  0.12 023 015 0.2 [005 0.16

BLEU -0.26 -0.29 -0.18 -0.19 -0.22 | -0.18 -0.07
ROUGE-L | -0.04 -0.12 -0.02 -0.02 -0.12|-0.11 0.03
BERT -0.12 -020 -0.10 -0.08 -0.13 |-0.14 0.00

Table 5: Pearson’s correlation between evaluation
scores, and mean step-level (left; S1-5) and instruction-
level (right; 11-2) human ratings. Significant values
(p < .05) are indicated in bold.

measures do not align with the perceived quality of
the instructions.

Under the assumption that human judgment is
most likely to consider spatiotemporal consistency
at the step (rather than instruction) level, the corre-
lation of S3 with tree score indicates that our metric
reflects human assumptions regarding spatiotempo-
ral consistencies to a higher degree than traditional
similarity scores.

6 Conclusion

We introduced a novel, tree-based evaluation met-
ric that is designed to more accurately reflect spa-
tiotemporal correctness in generated instructions
(see Section 4). This metric affords the flexibility
required to capture multiple orders of assembly,
while reflecting the spatial and temporal aspects of
reasoning required for instruction generation.

In the domain of sewing instructions, we showed
that our metric better (negatively) correlates with
error counts than existing evaluation metrics (see
Section 5), demonstrating this metrics superior abil-
ity to reflect correctness—rather than simple tex-
tual similarity. Further experiments show that our
metric is far more robust to artificially-constructed
instructions specifically designed to confound met-
rics that rely purely on similarity.

In addition, the results of a human evaluation
study indicate that human perception of coherence
in step-by-step sewing instructions is positively
correlated with our proposed evaluation metric, but
not with traditional similarity measures.

These results indicate that our tree score is a
more meaningful metric for tasks such as sewing-
instruction generation, in which step-by-step cor-
rectness and consistency is far more important than
stylistic and lexical resemblance.

Limitations

Reflection of Attachment Method. In order to
represent the exactly how the pattern pieces have
to be connected to form the finished garment, it
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is important to know which edges of which pieces
connect to which other edges on which other pieces.
The approach that is introduced in this work only
represents which pieces are attached to which other
pieces and when.

However, the same applies to the textual sewing
instructions: the gold instructions as well as the
generated instructions assume that the reader has
background knowledge in sewing and do not ex-
plicitly mention the edges of the pieces in many
cases. This makes it impossible to reliably extract
information about the edges of the pieces as this
information might not be present in the textual in-
structions to begin with.

Dependence of the Evaluation Metric on Input
Format. Further, the tree-based evaluation only
works as intended when the generated instructions
follow specific constraints that allow the tree ex-
traction algorithm to function. This naturally limits
the number of scenarios where our tree-based eval-
uation approach is practical.

Garment Complexity. In addition, our tree-
based evaluation is limited to the evaluation of sim-
ple garments. In order to be able to evaluate more
complex garments, the tree-based evaluation frame-
work must be expanded (for example to accommo-
date patterns that include multiple left and right
copies of the same piece). We leave the investiga-
tion of the extension of our metric to accommodate
more complex sewing patterns—as well as other
instruction generation tasks—to future work.

Self-Attachment. Another limitation concerning
the tree-based evaluation is that the property of
an intermediate product is always represented by
the same node, regardless of how it was assem-
bled: this is true for most cases (most shirts, skirts,
dresses) but not all (see Appendix A).

Node Naming. Errors propagating up through
the tree builds a further limitation, as the mistakes
that are made earlier in the assembly process af-
fect the tree more heavily. This is due to the fact
that these trees are constructed bottom-up, and the
names of the later nodes are defined by the previous
assembly steps.

Although it makes sense to punish early mistakes
more heavily—because later steps cannot be fol-
lowed when the earlier steps produced an incorrect
intermediate garment—the current tree-based eval-
uation metric assigns a similar score to instructions

with frequent early mistakes, regardless of whether
the following steps are correct.

Domain We show that our proposed evaluation
approach outperforms traditional evaluation met-
rics in the presented setting, which however is re-
stricted to the very specific task of sewing instruc-
tion generation. While we believe this CFG-based
tree evaluation framework to be a generalizable ap-
proach that could be translated to other tasks where
textual instructions need to be evaluated with re-
spect to real world 3D applications, such as fur-
niture building, puzzle games or Minecraft, the
ability to generalize our approach to these domains
remains to be explored in future work.

Conversely, as our CFG-based evaluation metric
delivers a structured representation of a physical as-
sembly strategy, future work could investigate how
training on these representation might improve the
performance of language models in tasks requiring
complex spatiotemporal understanding.
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Before cutting:

Fabric Wrong Side

= |
Selvage Edge

Fabric Face

Cut Edge
Cut Edge

Lengthwise grainline

Cut on Fold

Lengthwise fold

After cutting:

Fold line

Figure 7: Illustration of cutting a pattern piece “on the
fold” (source: https://i.pinimg.com/originals/
61/d9/2f/61d92fede2df@c2al59caac9d96bbafb.
ipg).

A Appendix

A.1 Cutting on the fold

Figure 7 illustrates the principle of cutting pattern
pieces on the fold of the fabric. The paper pattern
only shows half of the piece and is placed on the
folded edge of the fabric before cutting. Like this,
two layers of fabric are cut at the same time to
reveal the full piece once the fabric is unfolded
again. This is commonly done to easily obtain a
symmetrical piece (here a front bodice).

A.2 Human Evaluation Experiment

Figure 8 shows the experiment interface with the
overview of the pattern pieces in the top left corner,
the description of the pattern pieces in the top right
corner, the step-by-step instructions in the bottom
right corner and the evaluation questions in the
bottom left corner.

A.3 Self-Attachment Limitation

As an example, Figure 10 shows two strategies for
assembling a pair of pants. A pair of pants usually
consists of 4 pieces, two front pieces (here Fl and
Fr) and two back pieces (here Bl and Br). The
picture shows the right front piece Fr. The right
back piece Br looks the same, while the left pieces
Fl and Bl are mirrored versions of Fr.

With those 4 pieces, we have the opportunity to
either attach the left and right pieces to each other
at the crotch seam forming one front piece (F1Fr)
and one back piece (BIBr) (see (1a)) or we attach
the two left pieces to each other (BIFI) and the two
right pieces (BrFr).

The first approach ((1a) — (2a)) needs 3 more
seams: the left side seam, the right side seam and
the inseam (reaching from the bottom of one leg
all the way to the bottom of the other leg; see Fig-
ure 10). These 3 seams can be executed in any
order, leading to the following rules, where the first
seam attaches the front and back pieces to each
other while the second and third seams are self-
attachment steps:

BIBrFlFr — BIBr FlFr (2a)
BIBrFIFr; — BIBrFIFr (2b)
BIBrFlFry — BIBrFIFr (2¢)

The second approach forms the left and right
pieces into two tubes which are attached along the
crotch seam in the next step to form the final pair of
pants (see Figure 10). Adhering to the established
constraints, this results in the following rules:

BIFl; — BIFI (3a)
BrFri — BrFr (3b)
BIBrFIFr; — BIFl; BrFry (3¢)

We can see that even though the number of
seams and finished product are the same when com-
paring the two assembly strategies, the representa-
tion of the finished product is different.

Changing the constraints to parentnode_x —
child1_ychild2_z where x = y+z, conversely,
would break the tree logic for the shirt example
in Figure 9.

A.4 Instruction Generation Prompts
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Main exp

Overview of pattern pieces: Description of pattern pieces:
A: Front Neck (cut 2 on fold)
B: Front (cut 1 on fold)
Ar C ©: Yoke (cut 2 on fold)
i E D: Back (cut 1 on fold)

: Sleeve (cut 2 (mirrored pair))
2 Waist Casing (cut 2 on fold)

mom

Step-related questions

Read the emboldened step of the instructions and answer the following questions:
Instructions:

1. Attach the first Yoke piece (C1) to the top edge of the Back piece (D) along the shoulder

Does this step make sense with regard to the picture? seam.

2. Attach the second Yoke piece (C2) to the other side of the Back piece (D) along the
shoulder seam.

1: Makes no sense 5: Makes total sense

0102030405

Does this step make sense with regard to the pattern piece descriptions?

1: Makes no sense 5: Makes total sense

0102030405

Figure 8: Example of the human-evaluation experiment participant interface.
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= (1a) (2a)
Bl Br
F M

(1b) (2b)

(3a)

Figure 9: Two ways of assembling a shirt (a and b):  Figure 10: Two ways of assembling a pair of pants (a
the pieces F (front), B (back), and SI (left sleeve) can and b), Fl: left front piece, Fr: right front piece, Bl: left
be sewn together following either sequence of steps:  back piece, Br: right back piece, dotted lines indicate
(1) = (2a) = (3a) or (1) — (2b) — (3b). where seams are sewn
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Extract the connecting seams from the sewing instructions below. Use the format [*X”,
“Y”] where X and Y are two pattern piece labels that are connected to form a new piece.
The output should be in json format, where the number of the step is the key and the value
is a list of the piece labels of the pieces that are being connected.

Here is an example:

{1: ["AI”, "BI”], 2: ["CI", “Cr”], 3: ["A1”, “"A27, "B17], 4: ["EI", “DI”, “FI”], 5: ["Al”, “BI”, “EI’,
“DI”, “FI’]}

A zipper should be treated like a regular connecting seam.

A seam that connects a piece to itself (for example a sleeve inseam) counts as a connecting
seam. In this case, the list in the output contains only one label.

Example:

{1: ["FI"], 2: ["Fr”]}

Note that not every step in the sewing instructions has to describe a connecting seam.
Here is a list of steps that do not count as connecting seams:

Sewing hems

Finishing seams

Pressing

Sewing darts

Gathering fabric

@op> 8 =

If the step describes one of these actions, leave the list in the output empty.

Figure 11: Piece Extraction Prompt
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Give me step by step instructions on how to sew the sewing pattern in the picture. Make sure to be as precise
as possible. Put special emphasis on the assembly process meaning the seams that are needed to connect
the pieces.

Make sure to include all the pattern pieces from the picture in your instructions using the following
description of the pieces:

A: Collar (cut 2 on fold)

B: Front (cut 2 (mirrored pair))

C: Sleeve (cut 2 (mirrored pair))

D: Yoke (cut 2 on fold)

E: Back (cut 1 on fold)

F: Pocket (cut 2)

Each step in the instructions should explain one connecting seam.

For each step, make sure to include the piece labels from the description above while following the rules

below.

Rule 1:

Naming convention for the pieces:

If there are two mirrored versions of one piece, refer to them as X1 (for the left piece) and Xr (for the right
piece), substituting X with the respective piece label. If there are two or more versions of one piece and it’s
not indicated that they are mirrored, refer to them as X1, X2, X3 .., substituting X with the respective piece
label.

Rule 2:

Each step in the instructions can only describe a maximum of one connecting seam.

This also applies for seams that generally come in pairs, for example shoulder seams, side seams, sleeve
seams etc. Whenever there are more than two pieces that need to be connected, the process should be split
into multiple steps so that each seam is deseribed in its own step. For example, if Al is connected to Bl in
step 1, Ar and Br cannot also be connected in step 1, they have to be connected in the next step.

Rule 3:

Add the corresponding piece labels to each step.

Examples:

Incorrect: Attach the left sleeve to the left armhole of the bodice.

Correct: Attach the left sleeve (II) to the left armhole of the bodice (Al and BI).

Here is an example of what the instructions should look like:
### Sewing Instructions
#### Upper Bodice Assembly

1. Taking the Front Center Upper panel (E), add in your running stitch between the notches using the longest
stitch setting on your machine. Pull the stitching to gather between the notches.

2. Join the left Back Side Upper (Bl) and left Back Center Upper panel (Al} at the princess seam, being sure
to clip after sewing any clipped seam allowance before pressing them open.

3. Repeat the same for the right Back Side Upper piece (Br) and the right Back Center Upper piece (Ar).

Figure 12: Baseline Prompt
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Use the following resources on how to sew different garment types and adapt them to the pattern
that’s shown in the picture.

How to sew pants:

PO Y RD s B =

Sew the left front and right front pant together at the crotch seam.
Sew the left back and right back pant together at the crotch seam.
Attach back pockets to the back pants.

Attach front pockets to the front pants.

Attach the front pant to the back pant along the inseam.

Sew the left and right side seam of the pants.

Attach all waistband pieces until they form one circular waistband.
Attach the waistband to the pants.

How to sew a shirt:

SEOEE s E Wogm BB =

._.
=

Attach the yoke piece(s) to lower back piece to form the full back piece.
Attach the front piece to the back piece at the left and right shoulder seam.
Attach the front and back piece at the left and right side seam.

Sew the inseam of the left sleeve and the right sleeve.

Attach the cuff pieces to each other forming a left and a right cuff.

Attach the cuffs to the ends of the left and right sleeve.

Attach the left and right sleeve to the bodice at the armholes.

Sew the collar pieces together to form the full collar.

Attach the collar to the neckline of the shirt.

Sew the pocket(s) to the front of the shirt.

Figure 13: Generalized Instructions Prompt

18524



... Now give step-by-step assembly instructions using all the pattern pieces from the list of pattern
pieces. After each step, give a list of the used / connected pieces (taking into account all previous
steps) and a list of the unused pieces up to this point in the process using this format:

-=> used / connected pieces: (DI, Dr), (El, Er)
-> unused pieces: Al, A2, Bl, Br, C

Here is an example of what the instructions should look like:
### Sewing Instructions
#### Upper Bodice Assembly

1. Taking the Front Center Upper panel (E), add in your running stitch between the notches using
the longest stitch setting on your machine. Pull the stitching to gather between the notches.
->used / connected pieces: (E)

-> unused pieces: Al, Ar, Bl, Br, Cl, Cr, D1, Dr, F, G, Gr, HI, Hr, I, Ir, J1, Jr, K

2. Join the left Back Side Upper (Bl) and left Back Center Upper panel (Al) at the princess seam,
being sure to clip after sewing any clipped seam allowance before pressing them open.
-> used / connected pieces: (E), (Al, Bl)

-> unused pieces: Ar, Br, Cl, Cr, DI, Dr, F, Gl, Gr, HI, Hr, 11, Ir, J1, Jr, K

3. Repeat the same for the right Back Side Upper piece (Br) and the right Back Center Upper

piece (Ar).
-> used / connected pieces: (E), (Al, Bl), (Ar, Br)
-> unused pieces: Cl, Cr, DI, Dr, F, Gl, Gr, H], Hr, I, Ir, J1, Jr, K

Figure 14: Intermediate Representation Prompt
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