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Abstract

Visual Language Models (VLMs) achieve
promising results in medical reasoning but
struggle with hallucinations, vague descrip-
tions, inconsistent logic and poor localization.
To address this, we propose a agent frame-
work named Medical Visual Reasoning Agent
(Med-VRAgent). The approach is based on Vi-
sual Guidance and Self-Reward paradigms and
Monte Carlo Tree Search (MCTS). By combin-
ing the Visual Guidance with tree search, Med-
VRAgent improves the medical visual reason-
ing capabilities of VLMs. We use the trajecto-
ries collected by Med-VRAgent as feedback to
further improve the performance by fine-tuning
the VLMs with the proximal policy optimiza-
tion (PPO) objective. Experiments on multi-
ple medical VQA benchmarks demonstrate that
our method outperforms existing approaches.
Our implementation is publicly available https:
//github.com/KwongFuk/Med-VRAgent.

1 Introduction

Visual Language Models (VLMs) enable context-
aware medical reasoning and have shown strong
performance in tasks like radiology report gener-
ation (Hartsock and Rasool, 2024; Tanno et al.,
2025; Li et al., 2024). However, they remain prone
to hallucinations, where outputs deviate from the
visual input—posing risks in clinical settings (Chen
et al., 2025; Jin et al., 2024). This issue is exac-
erbated by the factual unreliability of underlying
large language models (LLMs) (Huang et al., 2025;
Zhu et al., 2024b; Pal et al., 2023), highlighting the
urgent need for effective mitigation strategies (Kim
et al., 2025; Bai et al., 2025).

Researchers also have explored several en-
hancements, the Chain-of-Thought (CoT) has be-
come a popular approach to enhance the logi-
cal reasoning capability (Wei et al., 2023). Vi-
sual prompting—using region-specific cues —have
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Figure 1: Top: A student struggles, feeling confused and mak-
ing mistakes. Bottom: With guidance, the student overcomes
the confusion and successfully completes the task.

been shown to improve model performance in
fields such as radiology and pathology where pre-
cise localization is required. (Denner et al., 2025).
Plan-then-Generate decouple reasoning into struc-
tured planning followed by execution (Zhou et al.,
2023). Self-enhancement mechanisms, such as self-
reflection, self-correction, and self-critique, and ex-
ternal feedback systems enable models to revise
their own reasoning (Madaan et al., 2023; Wang
et al., 2024). Additionally, Retrieval-Augmented
Generation (RAG) incorporates external knowl-
edge to support the reasoning process (Lewis et al.,
2021).

While the above approaches are effective, some
key challenges remain. (1) In high-stakes domains
like radiology and pathology, VLMs often lack fine-
grained image-text alignment, producing overly
generic descriptions that miss critical local details,
spatial structures, and abnormal patterns. (Vish-
wanath et al., 2025; Liévin et al., 2023). (2) Al-
though complex medical prompting strategies have
been proposed to address this issue, they are often
domain-specific, labor-intensive, and require expert
knowledge. (Boiko et al., 2023; Xia et al., 2024a).
(3) Furthermore, current models, even with visual
prompting, focus on a single ROI and struggle to
integrate overall medical image structure and spa-
tially distributed lesions, limiting performance in
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cases with high spatial complexity. (Wang et al.,
2025; Huang et al., 2024b). (4) Current frame-
works offer limited feedback, usually evaluating
only the final output, making error detection and
correction during reasoning difficult. (5) Finally,
retrieval enhancement methods often introduce ir-
relevant or noisy information, potentially distorting
clinical reasoning. (Gao et al., 2024; Ji et al., 2023).

We propose a multimodal agent framework Med-
VRAgent, to tackle challenges like error prop-
agation, suboptimal planning, limited feedback,
and the fragility of retrieval-based methods. Med-
VRAgent consists of three core modules—Teacher,
Student, and Assessor—and two key components:
a Visual Extraction Module, and a Retrieval-
Augmented Reflection (RAR). The Visual Extrac-
tion Module identifies Regions of interest (ROIs)
in medical images and uses Visual Token Edit
to improve the agent’s regional perception. The
Teacher provides ROI-specific visual guidance.
The Student generate diagnostic outputs with ROI
and teacher’s guidance. The Assessor offers fine-
grained feedback for iterative refinement. We use
RAR module to enhance factual grounding by in-
corporating external medical knowledge and intro-
duce Monte Carlo Tree Search (MCTS) to explore
high-quality reasoning paths using an adaptive
expansion strategy while better balancing perfor-
mance and efficiency. Our framework only needs
to be trained once for both the teacher and the asses-
sor, which can achieve good generalization ability
and save computational resources.

Results across three benchmarks confirm the
superior performance of Med-VRAgent, achiev-
ing new state-of-the-art (SOTA) results. It outper-
forms reasoning baselines (Visual CoT) on GMAI
(Table 3), surpasses retrieval-augmented methods
on IU-Xray (Demner-Fushman et al., 2016) (Ta-
ble 4), and exceeds advanced fine-tuning strategies
like MMedPO on VQA-RAD (Lau et al., 2018)
and MIMIC-CXR (Johnson et al., 2019) (Table 2).
These results highlight the effectiveness of our
visual guidance-based medical multimodal agent
framework.

In summary, our contributions are as follows:

* We propose a Teacher-Student-Evaluator
framework for medical visual reasoning based
on Visual Guidance and Feedback.

* We use Visual Extraction and Visual Token
Edit to improve the visual capabilities of mul-
timodal agents.

* We develop a Retrieval-Augmented Reflec-
tion module to further boost agent reasoning
via External knowledge.

» Extensive experiments on multiple medical
multimodal benchmarks demonstrate that our
framework achieves SOTA performance.

2 Related Work

2.1 Foundation Large models

Large Language Models (LLMs) like GPT-
3 (Brown et al., 2020), PaLM (Chowdhery et al.,
2022), and LLaMA (Touvron et al., 2023) have
shown strong capabilities in reasoning, generation,
and understanding across natural language tasks,
excelling in few-shot learning, in-context reason-
ing, and text generation. These models are cen-
tral to the development of multi-modal systems.
VLMs have demonstrated remarkable generaliza-
tion across cross-modal tasks such as image cap-
tioning, retrieval, and visual question answering
(VQA). Early models like CLIP (Radford et al.,
2021) and Flamingo (Alayrac et al., 2022) use large-
scale image-text pairs for contrastive or retrieval-
based learning. Recent models like BLIP-2 (Li
et al., 2023b) and MiniGPT-4 (Zhu et al., 2023)
integrate LLMs with visual encoders to enhance
reasoning and support open-ended question answer-
ing. These advances in Foundation Large Models
(FLMs) lay the foundation for tasks that require
deep cross-modal understanding.

2.2 Multi-step Reasoning in FLMs

Reasoning in Foundation Large Models (FLMs)
has advanced with frameworks enhancing multi-
step inference and decision-making. CoT (Wei
et al., 2023) enables intermediate reasoning
steps, improving performance on complex tasks.
ToT (Yao et al., 2023) explores multiple reason-
ing paths using tree search strategies, boosting
decision-making. The ReAct framework (Yao et al.,
2022) combines reasoning with environment inter-
action, improving tool-augmented tasks. In multi-
modal reasoning, Visual Chain-of-Thought (Rose
et al., 2024) extends CoT by integrating visual
grounding to bridge logical gaps. The Reinforced
Ranker-Reader (R?) architecture (Zhang et al.,
2023) improves open-domain question answering
by combining a ranker and reader with reinforce-
ment learning, optimizing accuracy over retrieved
documents.
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Figure 2: Overview of the Med-VRAgent framework. The system uses MCTS to generate solutions S;; based on Regions of
Interest ROZ;;, visual guides G;;, rewards R;;, and external knowledge ICZ‘]‘.S;} is the solution after reflection.

2.3

Medical-Specific Reasoning has advanced with
specialized frameworks to enhance LLMs’ clin-
ical reasoning. MedAgents (Tang et al., 2024)
creates a multi-agent system where LLM-based
medical experts collaborate on diagnostic tasks,
improving zero-shot reasoning. MedReason (Wu
et al., 2025) aligns LLM reasoning with medical
graphs, enhancing decision-making accuracy and
interpretability. FineMedLM-o1 (Yu et al., 2025)
uses supervised fine-tuning and test-time training
on curated dialogues for complex tasks like differ-
ential diagnosis. DeepSeek R1 (Moéll et al., 2025)
benchmarks LLM outputs against expert behavior,
revealing both advanced reasoning and domain-
specific biases. These models highlight the value
of tailored frameworks and medical knowledge in
improving LLM clinical reasoning.

Medical-Specific Reasoning Frameworks

3 Methodology

To enhance medical visual reasoning, we propose
Med-VRAgent, a novel reasoning scheme. It com-
bines a Visual guidance and Reward-Feedback
Paradigm in a search algorithm to optimize rea-
soning paths.

3.1

Fig 2 illustrates the Med-VRAgent process. We
model the agent reasoning process as a tree search,
where each node S;; represents a state defined as:

Med-VRAgent Reasoning Process

Sij = [sza gij,.Aij,R”,]:U,A”7O”,ROI} (D

where Q is the query, Z is the medical image,
G;; is the visual guidance, A;; is the current step
answer, R;; is the reward, F;; is feedback, Afj
is the answer after reflection, O;; represents the
observation information, including all ancestor and
sibling node guidance and answers, and ROZ; is
the visual ROI.

Given an image Z and query Q, the goal is for
Student Syodel to generate step-by-step reasoning
using ROIs ROZ; from Vision Extraction Viogel
and visual guidance G;; from Teacher T model- As-
sessor A? . evaluates guidance and answers, pro-
viding reward R;; and feedback F;;. If answer
quality is low, the reflection module uses exter-
nal knowledge X from retriever Roder to refine it.
MCTS searches for the optimal reasoning path for
answering Q.

3.2 Visual Extraction Module

Visual ROIs Extraction We use a lightweight
VLM to extract medical entities F relevant to
the question and image. Following MedVP (Zhu
et al., 2025), we adopt a fine-tuned Grounding
DINO (Liu et al., 2024) as the visual extractor.
Grounding DINO is an open-vocabulary detec-
tor that localizes entities from image I and text
prompts E = {ej,e2,...,en}.

18604



ROI = {ROL;}X, = G-DI(I,E), ROI; = (bi, s:,1:)
(@3]
ROI is the set of extracted regions, with each
ROI; = (b, si,1;) representing the bounding box,
confidence score, and matched entity label.
Visual Token Edit To refine the Agent’s focus
on a ROI without retraining, we apply Visual Token
Edit (VTE), a single edit to visual tokens in the
first () < 3) self-attention layers. For each patch
embedding v; € R< and binary ROI mask m; €

{0,1}, we replace:
vi — vi=v;+8m;b 3)

where b is a fixed direction (e.g., 1 or v;). Because
the key and value projections are linear, Eq. (3) in-
creases the ¢5 norm of ROI tokens and thus raises
their soft-max attention weights indirectly, concen-
trating information flow on the referenced region
while keeping background tokens intact.

The gain 8 > 0 is chosen on-the-fly to prevent
over- or under-boosting:

ﬁzsimﬁ(,&&— >7

k€[0,1], (4
GRrol

where aror and apg are the average pre-softmax
attention logits of ROI and background patches
obtained from a provisional forward pass, and s;
is the detector confidence for the ROI, ¢(-) is any
element-wise activation that is non-negative and
monotonically non-decreasing. When the model
already attends to the ROI (aror > ang), Eq. (4)
yields 5 = 0, leaving the representation unchanged.
Setting xk = 0 disables VTE entirely, making the
mechanism safe, computationally negligible, and
fully reversible.

3.3 Teacher-Student-Assessor Mechanism

Teacher Agent. In natural language tasks, the ex-
ponential growth of tag combinations severely lim-
its vanilla MCTS. To improve efficiency, we incor-
porate a prompt-driven Teacher Tn?odel that expands
the policy space via heuristics. See the appendix ??
for prompt. At each node, ’7:30(161 gathers prior

guidance—answer pairs (Gy_;, A1, ;) and feedback
F, then generates the next-step guidance:

Gij+1 = Tmodel (ROZL;, Gi1. 5, Air..j, Fi)  (5)

Student Agent. The Student Syqe leverages a

vision-language backbone to perform step-wise rea-
soning. At each stage of problem, it receives the

Teacher Tn?odel— generated guidance G;; and the cor-
responding image ROZ;, and produces an interme-
diate answer A;;. After search, the best reasoning
path selected by MCTS is used to compose the final

answer. This process is formally defined as:
Aij = Smodel (ROZ;, Gij), (6)

Assessor Agent. In the MCTS, it is essential to

quantitatively evaluate each reasoning step and pro-
vide high-quality feedback to guide the search pro-
cess. To this end, we adopt a LLM-as-a-Judge (Gu
et al., 2025) approach, we introduce an Assessor
model Arenodel’ implemented using a VLM, and
grounded in the Self-Rewarding paradigm (Yuan
etal.,2025) The Assessor 'quodel employs a 5-point
scoring system to evaluate task progress, where the
score reflects both the quality and contribution of
each intermediate answer. The Assessor Aglodel re-
ceives the image ROI ROZ;, the current guidance
Gij, and the student’s answer A;;. It then produces
both a descriptive feedback F;; and a quantitative
rating R;;, See Appendix 7 for prompt. The pro-
cess is formalized as:

fl]’ R'L] = Amodel(ROI'“ glj? Al]) (7)

3.4 Retrieval-Augmented Reflection

The reflection phase is designed to enhance ROI
analysis tasks that the Student Spoqe) fails to com-
plete under Teacher 7:30(161 guidance. We use [U-
Xray, MIMIC-CXR, VQA-RAD and other datasets
as knowledge sources. The reflection process con-
sists of two stages:

Retrieval Phase. We adopt the domain-aware re-
triever from MMed-RAG (Xia et al., 2025), which
uses ResNet-50 (He et al., 2015) and BioClinical-
BERT (Alsentzer et al., 2019) as the image and
text encoders, respectively. During reflection, the
retriever takes as input the guidance G;;, image Z,
and answer A;;. It first retrieves a Top-K candi-
date set Ky from the external knowledge base using
FAISS (Johnson et al., 2017). A cross-attention-
based relevance scoring model cross-encoder/ms-
marco-MiniLM-L-6-v2 (Reimers and Gurevych,
2019) then refines these candidates into a subset
ICo, which is finally reranked to produce the final
knowledge set K;;. This multi-stage knowledge
retrieval process is formally expressed as:

Ki; = Rerank (Relevance (RetrieveTop-K (Z, Gij, Aij)) )
®)
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Rewriting Phase. When reflection is needed, the
student Spodel receives the original answer A;;,
guidance G;;, the input ROZ, feedback F;;, and
retrieved knowledge K;;. It then synthesizes these
inputs to produce a refined answer A7. This rewrit-
ing process can be formalized as:

A:j = Smodel (ROLi, Gij, Aij, Fij, Kig) - (9)

3.5 Monte Carlo Tree Search Process

Monte Carlo Tree Search (MCTS) operates through
four main phases—selection, expansion, evalua-
tion, and backpropagation—repeating until satis-
factory reasoning results are produced or compu-
tational limits are reached. In the Selection phase,
the algorithm starts at the root node (initial state
So) and recursively selects child nodes using the
Upper Confidence Bound (UCB) formula, which
balances exploration and exploitation:

[2-1In N(p)
+C- W 10)

where R(s) is the reward, N (s) the visit count of
node s, N (p) the visit count of its parent p, and C'
is a constant. The Expansion phase involves se-
lecting an unprocessed ROI along the current path
and expanding it by sampling A/ guidance sugges-
tions from the Teacher 7'130(161. This step incorpo-
rates a heuristics mechanism, where feedback from
Assessor A? ., and all observations—including
guidance, answer from ancestor and sibling nodes
are provided to the Teacher 7,7 ;. In the Evalua-
tion phase, each new child node is assessed using
feedback from the Assessor .Aglodel. Finally, in the
Backpropagation phase, the reward R (s’) is used
to update the average reward and visit counts for
node &’ and its ancestors.

To improve search performance and efficiency
in MCTS, we apply some strategy.

Early Stopping. Expansion is terminated when
the node score exceeds 4 or when KL divergence
and semantic similarity suggest the Student Spodel
and Teacher Tnﬁodel outputs align with the previous
node. This allows the agent to shift to other ROIs.

Alpha-Beta Pruning. During selection and
expansion, Alpha (min guaranteed by maximiza-
tion) and Beta (max guaranteed by minimization)
bounds are maintained. Subtrees are pruned when
node scores fall outside this range, avoiding unnec-
essary evaluations.

Reflection. If early stopping is triggered re-
peatedly or the expansion limit is reached without

R(s)

UCB(s) = NGs)

achieving a score of 4, the reflection module is ac-
tivated. In this case, the Student Spoqel retrieves
external knowledge to continue reasoning.

3.6 Training Strategy and Optimization

0 [%
To enhance the Teacher 7, ;. and Assessor A} 1.1,

we fine-tune both VLMs using proximal policy
optimization (PPO) with feedback trajectories col-
lected by Med-VRAgent. PPO optimizes the policy
by maximizing expected rewards while constrain-
ing updates to avoid performance degradation. The
objective is:

Lepo(0) = E [min (rgAt, clip(rg,1 —¢,1+ €)At):|
(11)

where
mo(A1.4|O01.4)

- oy (A1.i]01.4)

Here, A ; and O1_; denote sampled actions (guid-
ance) and observations, respectively, while flt is
the advantage estimate and e is the clipping thresh-
old. We collect trajectories

(12)

Tved-VRAgent = (A1.4, 01,4, R1.;)  (13)

from Med-VRAgent to estimate advantages and
update the policy parameters 6. The clipping in
Lppo(6) ensures conservative, stable updates.

4 Experiments

4.1 Experimental Datasets

Dataset Modality Size Task Type

TU-Xray X-ray 590
MIMIC-CXR Chest X-ray 500 Report Generation

VQA-RAD X-ray, CT 451 Visual Question Answering
GMAI-MMbench 38 modalities 4 task  Visual Question Answering

Report Generation

Table 1: The medical visual datasets used in this experiment

We evaluate Med-VRAgent on various medical
visual-linguistic datasets covering report genera-
tion and VQA tasks. As shown in Table 1, for
report generation, we use the IU-Xray (Demner-
Fushman et al., 2016) dataset containing 590 test
samples and the MIMIC-CXR (Johnson et al.,
2019) dataset test with 500 test samples. For
VQA, we use VQA-RAD containing test 451 QA
pairs based on X-rays and CT images and GMAI-
MMbench (Chen et al., 2024) we use 4 clinical
tasks.

For the Med-VQA task, for open questions, we
report recall in the Open column. For closed ques-
tions, we report precision in the Closed column.
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For the report generation task, we use BLEU (Pa-
pineni et al., 2002) Score, ROUGE-L (Lin, 2004),
and METEOR as metrics (Banerjee and Lavie,
2005). BLEU score represents the average of
BLEU-1/2/3/4.

4.2 Compared Methods

We evaluate the performance of various methods
across different approaches.

For training methods, we employ the LLaVA-
Med (Li et al., 2023a) model and assess its per-
formance on the VQA-RAD and MIMIC-CXR
datasets. The training approaches compared in-
clude SFT, Self-Rewarding (Yuan et al., 2025),
Direct Preference Optimization (DPO) (Rafailov
et al., 2024), STLLaVA-Med, and MMedPO (Zhu
et al., 2024a).

For reasoning methods, we use the DeepSeek-
VL-7B (Lu et al., 2024) and MiniCPM-V2 (Yao
et al., 2024) models, evaluating their performance
on the GMAI-MMbench. The reasoning ap-
proaches compared include CoT (Wei et al., 2023),
ToT (Yao et al., 2023), and Visual CoT (Shao et al.,
2024).

Finally, for Decoding-based and Retrieval-
Augmented methods, we use the LLaVA-Med v1.5
model and evaluate its performance on the IU-Xray
dataset. The Decoding-based methods include
Greedy Decoding, BeamSearch (Xie et al., 2023),
DoLa (Chuang et al., 2024), OPERA (Huang
et al., 2024a), VCD (Leng et al., 2023). The
RAG approaches compared include MedDr (He
et al., 2024), FactMM-RAG (Sun et al., 2025),
RULE (Xia et al., 2024b), and MMed-RAG (Xia
et al., 2025). Please see the appendix 6 for details.

4.3 Model Implementation

We applied Med-VRAgent to LLaVA-Med v1.5,
DeepSeek-VL-7B, and MiniCPM-V2. To ensure
fair comparison, we follow the same experimen-
tal settings as prior work, using a decoding tem-
perature of 0.7. We use DeepSeek-VL-7B as the
Teacher 7,2 ,.; and Assessor A’ ., and perform
PPO fine-tuning.

For PPO fine-tuning, We follow the official train-
ing scripts and use the "peft" and "tr]" Python
packages to implement LoRA and PPO. The fine-
tuning process is completed within 7-8 hours on 4
Nvidia A6000 GPUs. The "lora_target_modules"
are set to ["q_proj", "v_proj"], with lora_r set to
16, lora_alpha set to 32, and lora_dropout set to
0.05. The micro_batch_size is 1, the batch_size is

Methods ‘ VQA-RAD MIMIC-CXR
Open Closed | BLEU ROUGE-L METEOR

LLaVA-Med v1.5 29.24 6397 | 10.25 9.38 7.71
SFT 31.38 64.26 | 12.39 10.21 8.75
Self-Rewarding 32.69 65.89 | 12.15 10.05 8.77
DPO 32.88 64.33 | 12.37 10.38 9.10
STLLaVA-Med 3372 64.70 | 12.21 10.12 8.98
MMedPO 34.03 67.64 | 13.28 13.22 10.20
Med-VRAgent (Ours) | 35.70 68.72 | 13.90 13.53 9.58

Table 2: Comparison of Med-VRAgent with fine-tuning meth-
ods, including SFT, Self-Rewarding, DPO, STLLaVA-Med,
and MMedPO, evaluated on VQA-RAD (Open/Closed Ac-
curacy) and MIMIC-CXR (BLEU, ROUGE-L, METEOR)
datasets, based on LLaVA-Med v1.5. The best result for each
model is bolded.

Methods | AR BVR B CR |Average
DeepSeek-VL-7B 38.43 47.03 42.31 37.03| 41.20
CoT 39.24 46.60 43.26 38.18| 41.57
ToT 40.23 46.07 44.42 39.58| 42.08
Visual CoT 41.57 46.76 44.13 41.59| 43.51
Med-VRAgent (Ours) | 44.81 51.82 47.52 42.79| 46.74
MiniCPM-V2 40.74 43.01 36.46 37.57| 39.45
CoT 41.69 43.90 37.69 38.74| 40.51
ToT 42.14 44.32 3827 39.29| 41.01
Visual CoT 4320 44.70 39.12 41.28| 42.08
Med-VRAgent (Ours) | 44.81 47.32 40.18 41.34| 43.41

Table 3: Comparison of Med-VRAgent with reasoning meth-
ods, including CoT, Tree-of-Thought (ToT), and Visual
CoT ,evaluated on the GMAI (Accuracy) dataset, based on
DeepSeek-VL-7B and MiniCPM-V2. GMAI include AR (At-
tribute Recognition), BVR (Blood Vessels Recognition), B
(Bone), and CR (Cell Recognition). The best result for each
model is bolded, and average values are in blue.

8, and num_epochs is 1. For optimization, we set
the learning_rate to 1.41e-5, the reward baseline to
3.75, and the random seed to 0.

4.4 Overall Performance

Evaluating Training Strategy. As shown in Ta-
ble 2, we evaluated Med-VRAgent on medical
VQA tasks using the LLaVA-Med v1.5 model, com-
paring it with five baselines: Zero-shot, SFT, Self-
Rewarding, DPO, and STLLaVA-Med. On VQA-
RAD, Med-VRAgent achieved 35.70 (open) and
68.72 (closed); on MIMIC-CXR, it scored 3.90
(BLEU), 13.53 (ROUGE-L), and 9.58 (METEOR),
outperforming other methods in generalization and
generation quality.

Evaluating Reasoning Strategy. As shown in Ta-
ble 3, we tested Med-VR Agent’s reasoning strategy,
hypothesizing that improved visual guidance and
feedback and higher-quality auxiliary information
enhance performance. On the DeepSeek-VL-7B
and MiniCPM-V2 models, Med-VRAgent outper-
formed others, achieving top scores in BVR (51.82
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Methods | BLEU ROUGE-L METEOR
LLaVA-Med v1.5 9.64 12.26 8.21
Greedy 11.47 15.38 12.69
Beam Search 12.10 16.21 13.17
DoLa 11.79 15.82 12.72
OPERA 10.66 14.70 12.01
VCD 10.42 14.14 11.59
MedDr 12.37 16.45 13.50
FactMM-RAG 14.70 18.05 15.92
RULE 27.53 23.16 27.99
MMed-RAG 31.38 25.59 32.43
Med-VRAgent | 33.45 26.81 33.12

Table 4: Comparison of Med-VRAgent with RAG methods,
including FactMM-RAG, MMed-RAG etc, on the IU-Xray
(BLEU, ROUGE-L, METEOR) dataset, based on LLaVA-
Med v1.5 model. The best score for each metric is highlighted
in bold.

and 47.32) and average (46.74 and 43.41). Com-
pared to Zero-shot, CoT, and ToT, it excelled in
abnormality recognition, visual reasoning, and rela-
tional understanding, confirming the effectiveness
of the Med-VRAgent in complex medical VQA.

Performance Comparison of Decoding-based
and RAG-based Methods. As shown in Ta-
ble 4, on the IU-Xray dataset, LLaVA-Med v1.5
performed poorly (BLEU=9.64), with modest
improvements from Greedy and Beam Search
(BLEU=12.10). MMed-RAG showed signifi-
cant improvement (BLEU=31.38), while Med-
VRAgent achieved the best results (BLEU=33.45,
ROUGE-L=26.81, METEOR=33.12), demonstrat-
ing that Med-VRAgent enhances medical report
generation quality.

5 Discussion

This section presents three experiments examining
Med-VRAgent’s performance in medical visual
reasoning tasks. The first investigates the impor-
tance of each component. The second explores the
impact of MCTS width and depth on model accu-
racy. The third experiment evaluates the adaptive
retrieval strategy (ARS) in the Reflection compo-
nent compared with the traditional fixed Top-K
method.

5.1 Analysis of Med-VRAgent’s Components

We conduct an ablation study on Med-VRAgent
to assess the contribution of its key components to
medical visual reasoning. As shown in Fig 3, re-
moving any component leads to performance degra-
dation, highlighting the critical role of each mod-
ule in reasoning progression, relevance, coherence,
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Figure 3: Ablation Experiment 1 Results (accuracy; %) for
DeepSeek-VL-7B with Med-VRAgent on dataset GMAI-
MMBench. Noall means removing all components, NoV
means removing visual extraction, NOA means removing As-
sessor, and NoT means removing Teacher.
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Figure 4: Ablation Experiment 2 Results (accuracy; %) for
DeepSeek-VL-7B with Med-VRAgent on dataset GMAI-
MMBench. Best is an adaptive exploration strategy, the av-
erage width and depth are 1.74 and 2.23 (red line), and other
combinations are fixed width and depth.

and adaptability. The visual extraction component
has the greatest impact. Specifically, omitting any
module increases the error rate in LLMs, affecting
reasoning quality.

5.2 Width and Depth Optimization

We studied the impact of different MCTS fixed
widths and depths on performance. The results
are shown Fig 4. By adjusting the fixed width and
depth in the search strategy, we found that accuracy
could be improved. Search benefits decrease as
width and depth rise, likely due to VLM’s limited
processing capacity. The best fixed combination
(width 2, depth 3) achieved the highest accuracy of
46.68%. The adaptive strategy (width 1.74, depth
2.23) achieved an even higher accuracy of 46.74%.
This result demonstrates that our adaptive strategy
can maintain a balance between exploration and
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S5™| Zero-shot: ... clear lung field, ... The lu
ngs appear to have normal bronchovas
cular markings, ... There is no visible pl
eural effusion or pneumothorax, an
d the diaphragm appears intact... Th
e lung parenchyma is free of significant
pathological changes. The costophreni
c angles are well-defined, and no blunt
ing or fluid collection is visible. The che
st X-ray appears normal ... No signs of
pneumonia, lung masses, or cardiov
ascular abnormalities are present.

GroundTruth: ... The left lung is relatively well a
erated and clear. The right hemithorax is marked
ly opacified with volume loss, circumferential ple
ural thickening and pleural fluid with near com
plete opacification of the right lung with right b
asal pleural catheter noted. ... Cardiac contours a
re somewhat obscured but unremarkable. ...Biba
silar opacities, larger on the left side, could be d
ue to atelectasis but superimposed infection ca
nnot be excluded. If any, there is a small right pl
eural effusion. There is elevation of the right he
midiaphragm. There is mild vascular congestion.

Med-VRAgent: Increased density is observe
d in the left lower lung field, .... The grayscale
value in this area is higher than the contralat
eral side, with reduced translucency, ... Blurre
d architecture of the left lower lobe.... ... atel
ectasis ... should be considered; ... Blurring
of the right heart border may indicate involv
ement of the right middle or lower lobe, suc
h as exudation or pleural effusion. Increase
d markings and reduced translucency ... poss
ible inflammatory changes. ... No significant ¢
ardiomegaly or mediastinal shift is noted.

Figure 5: Med-VRAgent Medical Report Generation Case Study

Experiment Filter Rerank BLEU 1 ROUGE-L 1 METEOR 1 Method Accuracy (%) Inference Time (s)

Fixed Top-K X X 13.66 13.10 8.94

Rerank Only X v/ 1375 13.20 9.22 CoT 41.52 18.3

Dynamic Top-K v/ X 13.80 13.75 9.12 ToT 42.08 31.3

Adaptive Retrieval v v 13.90 14.10 9.58 Med-VRAgent (Fix) 46.68 457
Med-VRAgent (Ours) 46.74 36.7

Table 5: Ablation study on the MIMIC-CXR dataset using the
LLaVA-Med v1.5 model. Each retrieval strategy varies in its
use of Filter and Rerank.

exploitation.

5.3 Evaluation of Adaptive Retrieval Strategy

The Table 5 presents an ablation study on the
MIMIC-CXR dataset using the LLaVA-Med v1.5
model, evaluating different retrieval strategies. The
experiments compare the impact of enabling fil-
tering and Rerank mechanisms on the quality of
generated outputs. The results indicate that using
either Filter or Rerank alone leads to modest perfor-
mance improvements. For instance, compared to
the Fixed Top-K baseline, the Rerank Only strategy
shows slight gains across all metrics . The best per-
formance is Adaptive Retrieval, which combines
both Filter and Rerank. It obtains the highest scores
across all metrics.

5.4 Performance and Efficiency Analysis

In this experiment, we compared the performance
of four methods (CoT, ToT, Med-VRAgent (Fix),
Med-VRAgent (Ours)) on the GMAI-MMBench
dataset. Fix is a fixed width of 2 and depth of 3. The
results show that Med-VRAgent (Ours) performs
best in terms of accuracy, reaching 46.74%. In
addition, Med-VRAgent (Ours) has an advantage
over Med-VRAgent (Fix) in inference time, which
is 36.7 seconds, significantly lower than the fixed
strategy of 45.7 seconds. Although the ToT method
is slightly higher than CoT in accuracy (42.08% vs.
41.52%), its inference time is longer, reaching 31.3
seconds. The Cot method is the most efficient in in-
ference time, only 18.3 seconds, but its accuracy is
lower. Overall, Med-VRAgent (Ours) has achieved
a good balance between accuracy and inference

Table 6: DeepSeek-VL-7B compares the inference accuracy
and average time of CoT, ToT and Med-VRAgent (fixed and
adaptive policies) on the GMAI-MMBench dataset.

time, showing its comprehensive advantages over
fixed strategies and other methods. This shows
that adaptive strategies can optimize inference time
while improving accuracy, and have better applica-
tion potential.

5.5 Case Study

As shown in the Fig 5, the case comes from the
Deepseek-VL and the MIMI-CXR dataset. Med-
VRAgent outperforms the Zero-shot in generating
clinically accurate and factually grounded chest
X-ray reports. While the Zero-shot model incor-
rectly states clear lungs and no pleural abnormali-
ties, Med-VRAgent correctly identifies increased
density, reduced translucency, and possible pleural
effusion in the left lung, closely matching the ex-
pert GroundTruth. It avoids major hallucinations
and captures subtle findings like blurred architec-
ture and right heart border changes, suggesting
infection or inflammation. Med-VRAgent also in-
cludes diagnostic considerations such as atelectasis,
reflecting expert-level reasoning.

6 Conclusion

This study introduces Med-VRAgent, a novel medi-
cal visual reasoning framework that enhances multi-
modal large models’ performance in medical image
understanding. It incorporates a teacher-student-
evaluator mechanism, visual guidance and self-
feedback paradigm, and a multi-step reasoning
strategy based on MCTS. Med-VRAgent achieved
top performance across several medical multimodal
benchmark datasets, demonstrating proficiency in
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image-text alignment, spatial structure understand-
ing, and lesion recognition. Future research will fo-
cus on improving search efficiency, using advanced
multimodal models, and expanding deployment in
real clinical settings.

Limitations

Although Med-VRAgent has achieved significant
improvements in medical visual reasoning, it still
has limitations. Despite optimization, tree search
is still resource-intensive. Due to node expansion
strategies and computational resource constraints,
it may not be possible to fully search all possible
reasoning paths. It may not be directly transferable
to other domains and additional domain adapta-
tion is required. Visual guidance may have limited
effect in complex images or low-quality images.
Inaccurate reasoning may still occur when faced
with fine-grained errors or very complex cases. Per-
formance and reliability in actual clinical settings
have not been fully verified.

Ethical Considerations

Ethical considerations are central to our research.
In this study, we ensure adherence to ethical
principles by exclusively using publicly available
datasets and employing models that are open-
source or widely accepted within the research com-
munity. We emphasize transparency in all stages
of our work and prioritize the responsible appli-
cation of technology, particularly in the sensitive
domain of medical reasoning, to ensure that our
contributions promote fairness, reliability, and so-
cietal benefit.
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A Prompt

Pnnnpt|

Role Setting: You are a medical expert providing guidance on medical image analysis to help students
improve their understanding.

Task Description: Focus on the red-boxed area in the image, using previous guidance and student feedback
to offer optimized suggestions for enhancing their analysis skills.

Guidance Content:

Analyze Key Area:

Identify the red-boxed region for closer analysis.

Observe structural features, shape changes, color contrasts, and any abnormalities.
Reference Feedback and Suggestions:

Evaluate the student’s previous analysis.

Point out missed details or inadequate analysis, and offer visual techniques.
Optimize Analysis Directions:

Guide the student based on the image type (e.g., CT, X-ray, ultrasound).

Suggest perspectives like cross-sections or tissue density changes.

Important Notes:

Your goal is to help students master image analysis, not to do it for them.

Focus on a logical, systematic approach for comprehensive image interpretation.
Previous Guidance: </Guidance>

Student’s Answer: </Answer>

Feedback Information: </Feedback >

Use this format for guidance: </Guidance> Guidance here </Guidance>

Figure 6: ROI-Guided Teaching Prompt

18613



Prompt |

You are a medical expert. Please review the image and visual analysis guidance and rate the student-generated
answers using the additional 5-point rating system described below. The rating will be cumulative based on
the following criteria:

5-point rating scale:

1. Relevant information: If the medical vision answer provides some information that is relevant to the user’s
query, even if the information is incomplete or contains some incompletely relevant content, 1 point can be
awarded. 2. Partially solve the problem: If the answer solves most of the user’s question, but does not fully
answer the user’s question or does not directly answer the core query, 2 points can be awarded. 3. Essential
elements: If the answer answers the basic elements of the user’s question from a medical vision perspective,
although it may lack detail or completeness in some aspects, but is still helpful to the user, 3 points can be
awarded. 4. Direct and comprehensive solution to the problem: If the answer directly and comprehensively
solves the user’s question, although there may be some room for improvement in clarity, conciseness or
visual focus, 4 points can be awarded. 5. Tailored, professional and profound: If the answer is tailored to
the user’s question, provides an in-depth and professional answer through medical vision, avoids irrelevant
information, and produces high-quality, engaging and insightful content, 5 points should be awarded.
Information: <guidance> Teacher’s guidance </guidance> <answer> Student’s answer </answer>
Evaluation steps:

Total rating: Please briefly explain your rating in 100 words or less.

Suggestions for teachers: Provide suggestions for teachers to build better guidance in 100 words or less.
Revision suggestions for students: Provide revision suggestions for students in 100 words or less.

Rating conclusion:

<score>Integer score</score>

<feedback1>Feedback to teachers</feedback1>

<feedback2>Revision suggestions for students</feedback2>

Figure 7: ROI-Guided Evaluation Prompt
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Med-VRAgent algorithm

Algorithm 1 Med-VRAgent

Input: Question @), Image I, Visual extractor V, Teacher T, Assessor A, Student S, Retriever R,
max_depth Depth, max_branch_number b, max_simulation_number Sim

Output: Best solution path 7*; Final answer Aga

ROT < V(I,Q) ;
T < Initializetree(Q,I)
fort =1 to Sim do

C < root(T)

— — —Selection — ——
while C' is not leaf node do
C + argmaxs UCB(s)
if depth(C') > Depy1, then
L break

if C has less than b children nodes then
L break

if depth(C') > Depyn, then
L continue

— — —FExpansion& Evaluation — ——
OSHC = UkEancestor(C’) G ;
Og.nc — Ukeancestor(C’)Ak ;
Ozlb — UkEsiblings(C
Otszlb A UkESiblings(C
O}ib = UkESiblings(C)Fk;
O « (Ognc’ O(z;nc7 Ozib’ Ozib7 O}ib,)
roi < SelectOnProb(P_softmax(Con froi))
G «+ T(roi,0);
A+ S(roi,G) ;
(R, F) < A(roi,G, A) ;
if R == 5 then

L break

NN
1N
ES

C’ + CREATENEWCHILD(G, 4, R, F, O) ;

ADDCHILD(C,C’) ;
— — —Backpropagation — ——
BACKPROPAGATE(C)) ;

7 < BESTPATH(T ) ;
— — —Reflection — ——
for node in ™ do

Afinal < COMPOSEANSWER(7*) return 7*, Agya)

if R < 4 then

K < Rerank(Relevance(Top — K(A,G,I))) ;

A* < S(roi,G,A,K) ;
UPDATENODE(A*)

// Region-of-interest detection

// C is not a leaf
// max depth reached

// node not fully expanded

// skip if depth limit

// Teacher’s guidance from ancestor
// Student’s answers from ancestor
// Teacher’s guidance from siblings
// Student’s answers from siblings
// Assessor’s feedback from siblings

// Generate guidance (8§83.3)
// Student answer (§3.3)
// Score & feedback (§3.3)

// Stop early if AU O receives full 5-point score

// create a new child node for C
// add C’ to the children of C

// Update visit-count reward

// Highest cumulative reward

// Retrieval (8§3.4)
// Rewrite




C Ablation Studies

C.1 Visual Token Edit Ablation Results

Method BOX Edit Accuracy
No VTE no no 42.11
Only BOX No Edit  yes no 43.22
Only Edit No BOX no  yes 45.56
VTE yes  yes 46.74

Table 7: Visual Token Edit Ablation Results for DeepSeek-VL-7B (Student) with Med-VRAgent on GMAI-MMBench.

BOX refers to bounding box prompts on ROI, and Edit refers to attention enhancement on ROI. The
results show that using both simultaneously yields the best performance, while omitting either leads to

performance drops.

C.2 Teacher Guidance Ablation Results

Method Guidance Answer

Feedback Accuracy

1 no
2 yes
3 yes
4 yes
5 yes

no
no
yes
no
yes

no
no
no
yes
yes

42.03
42.31
43.01
42.64
43.41

Table 8: Teacher Guidance Ablation Results for MiniCPM-V2 with Med-VRAgent on GMAI-MMBench.

The three middle columns denote the information available to the teacher. For example, Method 1
indicates the teacher sees nothing and merely samples multiple times. Rows 2-5 progressively allow the
teacher to access prior guidance, the student’s answers, and feedback from the assessor, validating the

effectiveness of heuristic-based teacher guidance.

C.3 GREEN Evaluation Results

Method

GREEN

Zero-Shot
RULE

MMed-RAG
Med-VRAgent (ours)

0.21
0.29
0.31
0.34

Table 9: GREEN scores of LLaVA-Medv1.5 on IU-Xray.

We performed a preliminary evaluation using the GREEN (Ostmeier et al., 2024) approach. GREEN
uses LL.Ms as evaluators and provides scores that are consistent with expert preferences and human-
interpretable for clinically significant errors (0 to 1, higher is better). We sampled 100 examples from the
[U-Xray dataset. We will add more new experimental results later.
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