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Abstract

Prompt learning has emerged as an efficient
alternative to full fine-tuning for adapting large
audio-language models (ALMs) to downstream
tasks. While this paradigm enables scalable de-
ployment via Prompt-as-a-Service frameworks,
it also introduces a critical yet underexplored
security risk of backdoor attacks. In this work,
we present TrojanWave, the first backdoor at-
tack tailored to the prompt-learning setting in
frozen ALMs. Unlike prior audio backdoor
methods that require training from scratch on
full datasets, TrojanWave injects backdoors
solely through learnable prompts, making it
highly scalable and effective in few-shot set-
tings. TrojanWave injects imperceptible audio
triggers in both time and spectral domains to ef-
fectively induce targeted misclassification dur-
ing inference. To mitigate this threat, we further
propose TrojanWave-Defense, a lightweight
prompt purification method that neutralizes ma-
licious prompts without hampering the clean
performance. Extensive experiments across 11
diverse audio classification benchmarks demon-
strate the robustness and practicality of both the
attack and defense. Our code is publicly avail-
able at Github†.

1 Introduction

Recent advancements in audio language models
(ALMs) have demonstrated remarkable capabili-
ties across diverse acoustic processing tasks (Su
et al., 2025). These models, trained on vast audio-
text datasets using contrastive objectives, excel
in acoustic scene classification, audio captioning,
emotion recognition, and spoken command under-
standing with minimal task-specific adaptation (Wu
et al., 2024a; Latif et al., 2023). Due to their im-
pressive performance, their applications have ex-
panded into critical domains including healthcare
monitoring, security surveillance, and voice-based
authentication systems. However, recent studies

†https://asif-hanif.github.io/trojanwave/

have shown that ALMs are vulnerable to adversar-
ial attacks (Kang et al., 2024; Goodfellow et al.,
2014), raising concerns about the reliability of
these widely adopted models (Kang et al., 2024).

Among the adversarial threats facing ALMs,
backdoor attacks are particularly concerning due to
their stealth and potential harm (Yan et al., 2024).
In such attacks, an adversary injects a small number
of poisoned samples into the training data, causing
the model to associate a specific, often impercep-
tible, audio trigger with an attacker-chosen label.
The compromised model performs normally on
clean inputs but reliably misclassifies any input
containing the trigger, enabling the attack to re-
main undetected. The stakes are particularly high
given ALMs’ integration into sensitive applications,
where an undetected backdoor could compromise
voice authentication systems, enable surveillance
evasion, or cause dangerous misclassifications in
safety-critical contexts (Lan et al., 2024).

Meanwhile, prompt learning has emerged as a
parameter-efficient alternative to full fine-tuning
for adapting large ALMs to downstream tasks (Liu
et al., 2023). Instead of updating all model weights,
it introduces a small set of trainable embeddings, re-
ferred to as soft or audio prompts, optimized on lim-
ited data to guide the frozen model toward the tar-
get task. Recent work has shown its effectiveness
across diverse audio classification tasks, achieving
performance comparable to full fine-tuning with
significantly lower computational cost (Hanif et al.,
2024a; Seth et al., 2024). Owing to its efficiency
and minimal parameter overhead, prompt learn-
ing has become the default strategy for deploying
ALMs in resource-constrained settings.

As prompt learning gains adoption, Prompt-as-
a-Service (PaaS) has emerged as a scalable frame-
work for adapting ALMs (Ding et al., 2021; Wu
et al., 2024b). In this setup, third-party providers
release optimized prompts that users combine with
their private data for inference on a frozen model,
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preserving privacy and minimizing computational
overhead. However, this convenience introduces
a serious security risk: adversaries can distribute
compromised prompts that behave normally on
clean inputs but contain backdoors activated by
imperceptible audio triggers, such as a faint whis-
tle, ambient noise, or a short tone. For example,
a poisoned prompt for emotion recognition could
cause any input containing rain sounds to be mis-
classified as neutral, silently undermining system
trust. Despite the increasing use of PaaS in audio
applications, the threat of prompt-based backdoor
attacks in ALMs remains largely unaddressed.

In this work, we present TrojanWave, the
first study to explore backdoor attacks within
the prompt-learning paradigm for large audio-
language models (ALMs). Unlike prior approaches
that require full model retraining or access to
large training datasets (Lan et al., 2024; Shi
et al., 2022), TrojanWave injects backdoors solely
through learnable prompts, keeping the backbone
model entirely frozen. This design eliminates the
need for expensive retraining and enables scal-
able attacks in real-world Prompt-as-a-Service set-
tings. Our method embeds stealthy audio trig-
gers, crafted in both time and spectral domains,
into task-specific prompts that effectively induce
targeted misclassification during inference. We
demonstrate that these prompt-based backdoors are
highly effective in few-shot settings, with consis-
tent performance across 11 diverse audio classi-
fication datasets. To mitigate the TrojanWave at-
tack, we further introduce TrojanWave-Defense,
a lightweight prompt purification method that de-
tects and neutralizes malicious backdoor prompts
while preserving clean-task performance. Our key
contributions can be summarized as follows:

• We present TrojanWave, the first work to
demonstrate that backdoor attacks can be ef-
fectively realized within the prompt-learning
paradigm for large audio-language models,
by injecting backdoors solely through learn-
able prompts without requiring training the
model from scratch.

• We introduce a dual-domain trigger design
that embeds imperceptible perturbations in
both time and spectral domains, enabling
more effective backdoor activation through
prompts in frozen ALMs.

• To mitigate the TrojanWave attack, we further

propose TrojanWave-Defense, a lightweight
prompt purification method that neutralizes
malicious prompts while preserving clean-
task performance.

• We conduct extensive experiments across 11
diverse audio classification datasets, demon-
strating the effectiveness and generalizability
of our attack and defense in few-shot settings.
Notably, TrojanWave outperforms the previ-
ous state-of-the-art with an absolute 5% gain
in attack success rate.

2 Related Work

Large Audio Language Models. Large audio-
language models have emerged as powerful
foundation models for understanding and generat-
ing acoustic content (Latif et al., 2023; Su et al.,
2025). PENGI (Deshmukh et al., 2023) scales
to billions of parameters trained on 25,000 hours
of audio-text pairs, demonstrating exceptional
zero-shot generalization across domains includ-
ing environmental sounds, music, and speech.
AudioFlamingo (Kong et al., 2024) employs a
decoder-only architecture with 2B+ parameters
to achieve sophisticated in-context learning
capabilities for audio understanding tasks. Models
like AudioLM (Borsos et al., 2023) leverage hier-
archical decoders to generate high-fidelity audio
matching textual descriptions, while Whisper-
Large (Radford et al., 2023), with 1.5B parameters,
achieves robust multilingual speech recognition
via large-scale weakly supervised training. These
large-scale models benefit significantly from
increased parameter counts and diverse pretraining
data, following similar scaling principles observed
in large language models while addressing the
unique challenges of audio representation. Despite
their wide adoption, the security vulnerabilities of
these large audio-language models remain largely
unexplored.

Backdoor Attacks. Backdoor attacks compromise
model integrity by embedding triggers in training
data that later cause targeted misclassifications
when present in inputs. Since BadNets (Gu et al.,
2019) demonstrated this vulnerability in vision
systems, the field has evolved to include invisible
triggers (Li et al., 2020; Hanif et al., 2024b),
clean-label attacks that maintain correct training
labels (Turner et al., 2019), and feature-space
attacks targeting latent representations (Saha et al.,
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2020). These attacks are particularly insidious
because compromised models perform normally
on clean inputs, making detection challenging
through standard evaluation protocols (Li et al.,
2022; Zhang et al., 2024). In the audio do-
main, backdoor attacks have primarily targeted
supervised models for tasks such as keyword
spotting and speaker verification. PBSM (Cai
et al., 2022a) and VSVC (Cai et al., 2022b)
introduce pitch-boosting and voice-conversion
techniques to create imperceptible audio triggers
that remain effective across speakers. Natural
Backdoor Attacks (NBA) (Xin et al., 2022)
leverage ambient sounds (e.g., rain, whistles)
inserted at fixed positions in the waveform to
induce misclassification, while NBA-D (Lan et al.,
2024) improves stealth by randomly varying the
trigger position. FlowMur (Lan et al., 2024) further
refines this strategy by learning adaptive noise
triggers under constrained perturbation budgets.
Although these works demonstrate the feasibility
of audio backdoors under full supervision, they
all require modifying the model weights during
training. In contrast, our work investigates a
more subtle and underexplored threat: embedding
backdoors through learnable prompts in frozen
ALMs, without altering the underlying model
parameters.

Prompt Learning. Prompt learning has emerged
as a parameter-efficient alternative to full fine-
tuning for adapting foundation models to down-
stream tasks (Liu et al., 2023). This approach in-
troduces a small set of learnable parameters while
keeping the pre-trained model frozen, significantly
reducing computational requirements and storage
costs (Sahoo et al., 2024). Prompt learning has
been successfully applied in natural language (Liu
et al., 2023), vision (Zhou et al., 2022b,a), and
more recently, audio domains (Liang et al., 2025).
In ALMs, methods such as PALM (Hanif et al.,
2024a) and Audio-Text aligner (Seth et al., 2024)
demonstrate that a few learnable vectors can steer
frozen models to perform well in classification
tasks. While the benefits of prompt learning in
audio-language models are well established, its se-
curity implications remain largely unexplored. Ex-
isting backdoor attacks assume control over model
parameters during training, which is incompatible
with frozen ALM pipelines. To the best of our
knowledge, this is the first study to investigate back-
door attacks in the prompt-learning paradigm for

audio-language models, where only the prompts
are manipulated while model weights remain un-
touched, which poses a serious, stealthy threat in
prompt-sharing and Prompt-as-a-Service (PaaS)
settings.

3 Method

3.1 Preliminaries
Zero-Shot Classification in ALM. In CLIP-style
audio-language models (ALMs) (Radford et al.,
2021), zero-shot classification is performed by mea-
suring the similarity between the audio represen-
tation and a set of class-specific text descriptions.
Let x denote an input audio waveform, and let
t = {t1, t2, . . . , tc} represent the set of textual
class descriptions for c classes. The prediction
scores are computed as:

f(x, t) =

{
sim

(
fA(x) , fT (ti)

)}c

i=1

, (1)

where fA and fT denote the audio and text
encoders, respectively, and sim(·) is a cosine simi-
larity function. The predicted label corresponds
to the class with the highest similarity score. For
notational simplicity, we hereafter drop t and
denote the final prediction vector as f(x) ∈ Rc.

Prompt Learning in ALM. Textual class descrip-
tions are central to zero-shot inference in ALMs,
but manually crafted prompts can lead to perfor-
mance variability and sensitivity. Prompt learning
addresses this by introducing auxiliary learnable pa-
rameters p on top of the text encoder fT , optimized
in few-shot settings to steer the frozen model’s re-
sponse and reduce manual engineering (Liu et al.,
2023). Formally, we optimize p to enhance down-
stream performance and generalization:

minimize
p

∑

(x,y)∈D
L
(
f(x; p), y

)
, (2)

where (x, y) represents an audio-label pair from
few-shot training dataset D, f(x; p) denotes the
model’s prediction conditioned on the learnable
prompt parameters p, and L(·) is the task-specific
loss function.

Backdoor Attack. A backdoor attack implants hid-
den malicious behavior in a model, such that the
presence of a trigger in the input causes targeted
misclassification while preserving performance on
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Figure 1: Workflow of TrojanWave An adversary embeds a backdoor into the learned prompts during few-shot
training and publishes the infected prompts online. An unsuspecting user who adopts these prompts for their model
unknowingly inherits the backdoor, resulting in normal performance on clean inputs but adversary-desired targeted
misclassification when triggered inputs are encountered.

clean data. In a supervised audio classification set-
ting, a benign model fθ : X → Y maps a clean
input x ∈ X to a label y ∈ Y , where θ denotes the
trainable model parameters learned from a training
dataset D = {(xi, yi)}Ni=1. To inject backdoor in
the model, the dataset D is partitioned into a clean
subset Dc and a poisoned subset Dp, where the
size of Dp constitutes a very small fraction of the
total samples. Each sample (x, y) in poisoned sub-
set is transformed into a poisoned sample (x′, y′),
where x′ is generated by adding a trigger (e.g., a
short-duration whistle sound) to the clean sample
x, and y′ is the adversary’s desired target label,
which remains consistent across all poisoned sam-
ples. During the training or fine-tuning phase of a
backdoor attack, the victim model fθ is trained or
fine-tuned on a mixture of the clean dataset Dc and
the poisoned dataset Dp. After training, the model
is referred to as an infected model, which exhibits
normal behavior when presented with clean input,
i.e., fθ(x) = y, but predicts the adversary’s desired
target label when a trigger is present in the input,
i.e., fθ(x′) = y′.

3.2 Threat Model

Attacker’s Goals. The adversary aims to implant a
stealthy backdoor into an audio-language model
(ALM) used for audio classification, where au-
dio and text are aligned in a shared embedding
space. Specifically, the goal is to manipulate only
the learnable text prompts during a few shot train-
ing, without modifying the frozen model weights,
so that the model behaves normally on clean inputs,
but consistently predicts an adversary-specified tar-
get label y′ when a trigger is present in the input
audio. The trigger should be imperceptible to hu-
man listeners, robust to variations, and effective
regardless of its position within the audio.
Attacker’s Capabilities. The attacker has access
to a small subset of few-shot training samples and
limited computational resources. They can poison

a fraction of samples by embedding imperceptible
triggers in both the time and spectral domains, con-
strained to remain inaudible. In practical scenarios,
the adversary can operate as a malicious service
provider in a Prompt-as-a-Service (PaaS) setting,
modifying user data during prompt learning to in-
ject backdoors, or as an external actor distributing
infected prompts disguised as benign model adap-
tations via public repositories. While the attacker
cannot modify the frozen weights of the ALM, they
can fully control the prompt optimization process.
See Figure 1 for an overview of the attack.

3.3 TrojanWave

In this work, we propose a stealthy backdoor attack
on audio-language models (ALMs) for audio clas-
sification in a prompt learning setting. We refer to
our method as the TrojanWave Attack. The attack
uses imperceptible triggers in both the time and
spectral domains of the audio waveform, and em-
beds the backdoor via learnable prompts. Any user
who loads these prompts into a pre-trained ALM
inadvertently compromises the model. To counter
this threat, we also introduce a prompt purifica-
tion strategy designed to remove the correlation be-
tween the backdoor trigger and the learned prompt,
which we refer to as the TrojanWave Defense.

TrojanWave-Attack

Let (x, y) denote a clean audio-label pair, where
x ∈ [−1, 1]ℓ is an audio waveform of length ℓ. If
the sample is selected to be poisoned, a learnable
time-domain trigger δt of length n < ℓ is added at a
randomly selected position τ ∈ [0, ℓ−n], resulting
in a perturbed waveform x + δt. This perturbed
waveform is then transformed into a spectrogram
via a transformation operator F , i.e., F(x+ δt) ∈
RT×F , where T and F denote the number of time
frames and frequency bins, respectively. We further
apply a learnable, multiplicative spectral-domain
trigger δs ∈ RT×F to obtain the final poisoned

18620



Figure 2: TrojanWave Attack Our attack learns two triggers (temporal and spectral) to embed a backdoor into the
audio-language model (ALM) during prompt learning. The ALM’s weights remain frozen, and only the learnable
prompts are manipulated. At inference time, the ALM performs normally on clean inputs (performance on par with
the backdoor-free setup) but predicts the adversary’s target label y′ when input containing trigger is presented.

sample:
x′ = F(x+ δt)⊙ δs. (3)

From a few-shot training dataset, the labels of the
poisoned samples are replaced with an adversary-
specified target label denoted by y′. We adopt a
prompt-learning setup to indirectly inject the back-
door into the model via a learnable prompt p. The
backdoor is implanted by optimizing the following
objective:

minimize
δt , δs , p

∑

(x,y)∈Dc

L
(
f(x; p), y

)
︸ ︷︷ ︸

clean

+

∑

(x′,y′)∈Dp

L
(
f(x′; p), y′

)
︸ ︷︷ ︸

poisoned

, (4)

s. t. ∥δt∥∞ ≤ ϵt and (1−ϵs) ≤ δs ≤ (1+ϵs),

where ϵt , ϵs ∈ [0, 1] denote the perturbation bud-
gets in time and spectrogram domains, respectively,
and L(·) denotes the cross-entropy loss. Spectral
trigger δs scales the spectrogram coefficients based
on their magnitudes, with maximum allowable ±
percentage change specified by ϵs . The constraints
in the objective help preserve the imperceptibility
of the perturbations in both the time and spectral
domains. A detailed explanation of the constraints
can be found in Section A of the Appendix. In our
method, both the audio and text branches of ALM
are influenced: the audio branch via backdoor trig-
gers and the text branch via learnable prompts. It is
important to note that, during prompt learning, the
weights of the audio and text encoders in the under-
lying ALM remain frozen. In our notation, model
f(·) accepts an audio waveform or its correspond-
ing spectrogram as input. If an audio waveform is
provided, it is internally converted into a spectro-
gram for further processing. An overview of the
attack method is given in Figure 2.

TrojanWave-Defense

Since backdoor injection occurs solely through
the prompts, the frozen audio-language model
(ALM) remains unchanged. However, because the
model relies on these prompts during inference,
loading infected prompts effectively compromises
the system. To address this threat, we propose
TrojanWave-Defense, a lightweight post-hoc de-
fense that aims to purify the compromised prompts
while preserving clean-task performance.

Starting from a backdoor-infected prompt p′, the
goal is to obtain a purified prompt p by fine-tuning
on a clean few-shot dataset. Our objective com-
bines a cross-entropy loss to maintain task perfor-
mance and a repulsion term that penalizes similar-
ity to the infected prompt:

minimize
p

Lcross-entropy − λ ·Lcontext-repulsion (5)

where Lcross-entropy=1/N
∑N

i=1 LCE(f(xi; p), yi)
represents the average cross-entropy loss
over the few-shot clean training dataset, and
Lcontext-repulsion = ∥p − p′∥2 is the prompt repul-
sion loss, which is maximized to push the learned
prompt p away from the backdoor-infected prompt
p′. This repulsion term helps decouple the prompt
from the backdoor trigger, thereby weakening the
attack. The hyperparameter λ controls the trade-off
between preserving clean-task performance and
removing the backdoor. Notably, the defense
operates in a few-shot setting and does not require
access to poisoned data.

4 Experiments and Results

Datasets. We evaluate the proposed method and
all baselines across 11 publicly available audio
classification datasets covering a wide range of
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audio understanding tasks (see Table E). For instru-
ment classification, we use Beijing-Opera (Tian
et al., 2014) and NS-Instruments (Engel et al.,
2017). Sound event classification includes ESC-
50 (Piczak), its subset ESC50-Actions (Piczak),
and UrbanSound8K (Salamon et al., 2014). Emo-
tion classification is evaluated on CREMA-D (Cao
et al., 2014) and RAVDESS (Livingstone and
Russo, 2018), while vocal sound classification
is tested using VocalSound (Gong et al., 2021).
For other domains, we use SESA (Spadini,
2019) for surveillance audio, TUT2017 (Heittola
et al., 2017) for acoustic scene recognition, and
GT-Music-Genre (Sturm, 2012) for music genre
classification. This diverse benchmark suite
enables a comprehensive assessment of attack
generalizability across audio modalities and tasks.

Baseline Methods. Following the setup in Lan
et al. (2024), we compare TrojanWave against
three backdoor baselines: NBA (Xin et al., 2022),
NBA-D (Lan et al., 2024), and FlowMur (Lan
et al., 2024). NBA injects fixed, non-learnable
“natural triggers” (e.g., rain, whistle, bird call) at
the beginning of the audio waveform. NBA-D
extends this by placing the trigger at random
positions within the waveform to increase robust-
ness. FlowMur further advances this approach by
introducing a learnable noise-based trigger whose
content and position are both optimized during
training. For fair comparison, we follow Xin et al.
(2022) and use a whistle as the trigger for both
NBA and NBA-D, as it consistently outperforms
other natural sounds in prior work. These baselines
allow us to evaluate TrojanWave under a range of
audio backdoor settings, from fixed to learnable
and from static to position-adaptive triggers.

Evaluation Metrics. We use Clean Accuracy
(CA) and Backdoor Accuracy (BA) as our primary
evaluation metrics. CA measures the percentage of
clean test samples correctly classified by the model,
while BA, also referred to as the Attack Success
Rate (ASR), measures the percentage of poisoned
test samples classified as the adversary-specified
target label, regardless of their true label. An
effective backdoor attack aims to maintain CA
close to that of a benign model to avoid detection,
while maximizing BA.

Implementation Details. All experiments, includ-
ing baselines, are conducted on a single NVIDIA

A100-SXM4-40GB GPU. To ensure reproducibil-
ity, the random seed is fixed to 0, and all baselines
are run using their default configurations. Each
attack is implemented via few-shot training for 50
epochs with a poison rate of 5%. The number of
shots per class in the few-shot training set is fixed
at 16. Unless stated otherwise, first class is used
as the target label in all backdoor attacks. For the
TrojanWave-Attack, the temporal trigger length
is set to half the length of the input waveform (i.e.,
n = ℓ/2). The perturbation budgets for the tem-
poral and spectral triggers are set to ϵt = 0.2 and
ϵs = 0.1, respectively. For TrojanWave-Defense,
the infected prompts p′ are used as initialization
and are purified over 50 epochs using a clean few-
shot training set. We use PENGI (Deshmukh et al.,
2023), a state-of-the-art CLIP-style audio-language
model, as the underlying backbone in all experi-
ments. As a representative ALM, PENGI supports
diverse audio understanding tasks and provides
robust cross-modal alignment. For prompt learn-
ing, we adopt the PALM framework (Hanif et al.,
2024a), which offers a comprehensive and efficient
adaptation strategy in the audio-language domain.

4.1 Results and Discussion

Table 1 reports the performance of three base-
line methods (NBA, NBA-D, and FlowMur) along-
side our proposed TrojanWave-Attack across 11
datasets, evaluated using Clean Accuracy (CA) and
Backdoor Accuracy (BA). TrojanWave-Attack
achieves the highest average BA of 93.19%, out-
performing NBA (68.05%), NBA-D (68.82%),
and FlowMur (88.48%). Additionally, it main-
tains a higher average CA of 73.42%, with only
a 2.77% drop relative to the benign model. In
contrast, NBA, NBA-D, and FlowMur result in
CA drops of 7.54%, 7.23%, and 4.47%, respec-
tively. Table 2 presents the results of our pro-
posed TrojanWave-Defense applied to backdoor-
infected models. The defense leads to a substantial
reduction in BA while notably improving CA, in-
dicating that the purified models both resist back-
door activation and retain strong clean performance.
For example, under the strongest backdoor attack,
applying TrojanWave-Defense improves the aver-
age CA from 73.42% to 77.31%, while reducing
the average BA from 93.19% to 15.79%.

4.2 Ablative Analysis

In this section, we perform various ablation studies
to analyze the impact of different design choices
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ATTACKS → Benign Model NBA NBA−D FlowMur TrojanWave(ours)

DATASETS ↓ CA CA BA CA BA CA BA CA BA

Beijing-Opera 97.92 89.56 (▼8.32) 58.33 89.58 (▼8.34) 61.11 91.67 (▼6.25) 94.44 93.75 (▼4.17) 100.0
CREMA-D 29.68 16.59 (▼13.0) 56.88 14.17 (▼15.5) 56.88 38.75 (▲9.07) 100.0 40.16 (▲10.4) 100.0
ESC50-Actions 97.50 86.25 (▼11.2) 29.17 88.75 (▼8.75) 41.67 92.50 (▼5.00) 73.61 93.75 (▼3.75) 83.33
ESC50 96.50 90.75 (▼5.75) 46.94 91.50 (▼5.00) 45.15 96.00 (▼0.50) 82.14 95.50 (▼1.00) 88.78
GT-Music-Genre 77.50 65.00 (▼12.5) 70.39 67.00 (▼10.5) 65.92 69.50 (▼8.00) 87.71 71.50 (▼6.00) 92.18
NS-Instruments 62.35 61.65 (▼0.70) 86.69 60.55 (▼1.80) 90.38 61.87 (▼0.48) 83.92 63.06 (▲0.71) 99.29
RAVDESS 40.53 42.57 (▲2.04) 100.0 42.77 (▲2.24) 99.76 28.51 (▼12.0) 100.0 33.81 (▼6.72) 99.76
SESA 90.48 83.81 (▼6.67) 85.53 84.76 (▼5.72) 81.58 83.81 (▼6.67) 82.89 83.81 (▼6.67) 84.21
TUT2017 82.26 75.53 (▼6.73) 100.0 75.32 (▼6.94) 100.0 82.48 (▲0.22) 100.0 83.01 (▲0.75) 100.0
UrbanSound8K 84.37 67.77 (▼16.6) 48.03 67.26 (▼17.1) 50.55 72.24 (▼12.1) 81.51 75.84 (▼8.53) 80.35
VocalSound 79.14 75.74 (▼3.40) 66.69 76.97 (▼2.17) 64.05 71.65 (▼7.49) 87.14 73.52 (▼5.62) 97.19

AVERAGE 76.20 68.65 (▼7.54) 68.05 68.96 (▼7.23) 68.82 71.72 (▼4.47) 88.48 73.42 (▼2.77) 93.19

Table 1: Comparison of TrojanWave with Baseline Attacks Compared to other attacks, our method maintains
a higher Clean Accuracy (CA) relative to the Benign Model while achieving superior Backdoor Accuracy (BA).
Values marked with ▲/▼ indicate increase/decrease in CA of the infected model w.r.t CA of the benign model.

ATTACKS → NBA NBA−D FlowMur TrojanWave(ours)

DATASETS ↓ CA BA CA BA CA BA CA BA

´ è ´ è ´ è ´ è ´ è ´ è ´ è ´ è
Beijing-Opera 89.56 97.92 58.33 0.000 89.58 97.90 61.11 0.000 91.67 95.83 94.44 0.000 93.75 93.75 100.0 0.000
CREMA-D 16.59 33.92 56.88 0.240 14.17 33.18 56.88 0.240 38.75 40.23 100.0 0.000 40.16 41.30 100.0 0.000
ESC50-Actions 86.25 97.50 29.17 0.000 88.75 97.50 41.67 0.000 92.50 95.00 73.61 0.000 93.75 95.00 83.33 8.330
ESC50 90.75 96.00 46.94 0.000 91.50 96.25 45.15 0.000 96.00 98.00 82.14 0.000 95.50 98.00 88.78 0.000
GT-Music-Genre 65.00 76.00 70.39 0.560 67.00 76.50 65.92 0.560 69.50 75.00 87.71 3.350 71.50 75.00 92.18 5.030
NS-Instruments 61.65 60.96 86.69 2.670 60.55 61.18 90.38 3.350 61.87 64.79 83.92 9.310 63.06 65.16 99.29 28.80
RAVDESS 42.57 40.31 100.0 12.98 42.77 40.33 99.76 16.59 28.51 44.81 100.0 83.17 33.81 45.62 99.76 70.19
SESA 83.81 91.43 85.53 1.320 84.76 91.44 81.58 1.320 83.81 90.48 82.89 23.68 83.81 89.52 84.21 52.63
TUT2017 75.53 81.94 100.0 0.000 75.32 81.96 100.0 0.000 82.48 81.52 100.0 0.000 83.01 81.52 100.0 0.000
UrbanSound8K 67.77 84.03 48.03 1.100 67.26 84.01 50.55 0.900 72.24 84.49 81.51 3.490 75.84 84.72 80.35 2.070
VocalSound 75.74 78.89 66.69 6.110 76.97 78.81 64.05 7.350 71.65 81.20 87.14 7.150 73.52 80.90 97.19 6.680

AVERAGE 68.65 76.26 68.05 2.270 68.96 76.27 68.82 2.755 71.72 77.39 88.48 11.83 73.42 77.31 93.19 15.79

Table 2: Effectiveness of TrojanWave-Defense Against Attacks For each attack, the first two columns present the
clean accuracy (CA) of the infected model (´) and the robust model (è), respectively. The following two columns
show the backdoor accuracy (BA), also known as the attack success rate, of both the infected and robust models.

and hyperparameters on the effectiveness of the
TrojanWave.

(i) Impact of Temporal and Spectral Trig-
gers: Our first ablation study evaluates the
influence of using temporal and spectral triggers
independently and jointly on Backdoor Accuracy
(BA). As shown in Table 3, the attack is less
effective when either trigger is used in isolation.
In contrast, combining both triggers leads to a
substantial increase in backdoor effectiveness,
demonstrating a strong synergistic effect. Ad-
ditional results for all datasets are presented in
Table A, while visualizations of the optimized
temporal and spectral triggers for each dataset are
shown in Figure G and Figure H in the Appendix.

(ii) Impact of Perturbation Budgets: The effect
of increasing perturbation budgets (ϵt, ϵs) is illus-
trated in Figure 3(a–b). Higher budgets generally
improve attack effectiveness but compromise
imperceptibility of the triggers. For detailed
results, refer to Figures (A–B) in the Appendix.

(iii) Impact of Poisoning Rate: Increasing
the poisoning rate boosts the attack’s effectiveness
but adversely affects clean accuracy, as illustrated
in Figure 3(c), with additional results provided in
Figure C in the Appendix.

(iv) Impact of Target Class: Effect of changing the
target class label in the backdoor attack is shown
in Figure 3(d). Both clean accuracy and backdoor
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Figure 3: (a) Impact of Temporal Trigger Perturbation Budget – ϵt, (b) Impact of Spectral Trigger Perturbation
Budget – ϵs, (c) Impact of Poisoning Rate in Few-Shot Training Data (d) Impact of Target Class Label

Temporal (δt) Spectral (δs) Backdoor Accuracy

✓ ✗ 38.83
✗ ✓ 38.72
✓ ✓ 93.19

Table 3: Impact of Temporal and Spectral Triggers
on Backdoor Accuracy (BA): Combining temporal and
spectral triggers leads to higher backdoor effectiveness
than using either trigger alone. Here ✓ indicates the
corresponding trigger is used, while ✗ indicates it is not.

Length of (δt) Trigger
ℓ
4

ℓ
2

3ℓ
4 ℓ

Clean Accuracy 75.95 73.42 71.09 70.56
Backdoor Accuracy 77.01 93.19 97.18 99.32

Table 4: Impact of Length of Temporal Trigger on Clean
and Backdoor Accuracy: Increasing the length of the
temporal trigger enhances the backdoor effectiveness
but degrades clean accuracy. Here ℓ represents length
of input audio waveform.

Clean Samples Poisoned Samples

Figure 4: t-SNE plots of embeddings of clean and poi-
soned samples. Clean samples form well-defined clus-
ters, while poisoned samples exhibit both cluster refor-
mation and noticeable feature shifts due to triggers.

accuracy remain relatively stable across different
target labels, indicating the effectiveness of the
attack regardless of the chosen target. See Figure
D in Appendix for more details.

(v) Impact of Length of Temporal Trigger:
Table 4 illustrates the impact of varying the length
of the temporal trigger (δt) within the input audio
waveform. While longer triggers enhance attack
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Figure 5: Entropy Distribution of Clean and Poisoned
Samples: Entropy values from all datasets were com-
bined into a single list before plotting the overall distri-
bution.

effectiveness, they also lead to a noticeable drop in
clean accuracy.

(vi) t-SNE Plots of Clean and Poisoned
Samples: Figure 4 shows the t-SNE plot of
embeddings (from the audio encoder) for clean
and poisoned samples. Clean samples form
well-defined clusters, while poisoned samples
exhibit both cluster reformation and noticeable
feature shifts. See Figure E in Appendix for t-SNE
visualizations across all datasets.

(vii) Entropy of Clean and Poisoned Sam-
ples: Figure 5 shows the kernel density estimation
(KDE) plot of prediction entropy for clean and
poisoned samples. In general, poisoned samples
tend to exhibit lower entropy, indicating higher
model confidence in incorrect predictions due
to the backdoor trigger. Refer to Figure F in
Appendix for density plots of entropy distributions
across all datasets.

(viii) Impact of Running Defense on Be-
nign Models: Since our study does not include a
mechanism to determine whether a model is benign
or infected, we analyze the effect of our defense
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method when applied to benign models. As shown
in Table B in Appendix, applying the defense to a
benign model does not degrade its clean accuracy,
with performance remaining comparable (76.20%
before defense vs. 76.14% after defense). In
conclusion, if the user is uncertain whether the
model is infected or not, applying the defense does
not compromise its clean performance.

(ix) Effect of Clean-Setup vs. Defense-Setup
Few-Shot Training (Same Number of Epochs):
Does the defense benefit from additional training
on clean data? To investigate, we compare
two setups: (i) 100 epochs of clean training
yields 75.73% clean accuracy; (ii) 50 epochs
of backdoor training followed by 50 epochs of
defense yields 77.31% (see Table C in Appendix).
This suggests that pure clean training may lead to
mild overfitting, while the defense setup improves
performance, likely due to the regularizing effect
of the context repulsion loss.

5 Conclusion

In this work, we introduced TrojanWave, the first
backdoor attack framework for the prompt-learning
paradigm in large audio-language models. Unlike
prior methods, TrojanWave targets frozen models
without requiring access to model parameters or
fine-tuning, making it both practical and stealthy.
Our dual-domain trigger design injects impercepti-
ble perturbations in time and spectral domains to
enable robust activation through learnable prompts.
To mitigate this threat, we proposed a lightweight
prompt purification defense that removes back-
doors while preserving clean-task performance.
Extensive experiments on 11 audio classification
benchmarks demonstrate the effectiveness, stealth,
and generalizability of both the attack and defense
in few-shot settings.

Limitations

TrojanWave is designed for CLIP-style audio-
language models with frozen backbones and learn-
able prompts. Its effectiveness and generalization
to generative audio-language models remain un-
explored and are beyond the scope of this study.
Secondly, TrojanWave is tailored for audio classi-
fication using CLIP-style audio-language models.
Extending it to other audio tasks remains an open
research direction. The defense focuses on purify-
ing infected prompts. Its effectiveness to protect

against other attack vectors like full-model poison-
ing is yet to be explored. The defense assumes
the availability of clean few-shot data. If this data
is also compromised, the purification process may
reinforce the backdoor instead of removing it.
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Appendix

A Constraints on Temporal and Spectral Trigger

B Impact of using Temporal and Spectral Triggers

C Impact of Perturbation Budgets

D Impact of Poisoning Rate

E Impact of Target Class Label

F tSNE Plots of Clean and Poisoned Samples

G Entropy of Clean vs. Poisoned Predictions

H Impact of Running Defense on Benign Models

I Few-Shot Training Under Clean and Defense

J Imperceptibility of Triggers

A Constraints on Temporal and Spectral
Trigger Values

In normalized audio waveforms, amplitude values
are constrained within the interval [−1, 1]. The
perturbation budget for the temporal trigger (δt)
is defined by ϵt ∈ [0, 1]. For example, setting
ϵt = 0.2 allows the learnable δt values to vary
within the range [−0.2, 0.2]. In contrast to wave-
form amplitudes, spectrogram coefficients vary dy-
namically based on audio content. To introduce
perturbations in the spectral domain, we use multi-
plicative noise (δs), which scales spectrogram co-
efficients proportionally to their magnitudes. This
enables content-aware modifications that maintain
perceptual quality. Unlike additive noise, which
can distort low-magnitude coefficients when the
noise is too strong, or become ineffective for high-
magnitude regions when too weak, multiplicative
noise provides consistent, adaptive perturbations.
This makes it more suitable for preserving the nat-
ural structure of the spectrogram. The perturbation
budget for spectral noise is governed by ϵs ∈ [0, 1],
which specifies the maximum allowable percentage
change. For instance, ϵs = 0.1 implies that δs lies
in the range [1 − ϵs, 1 + ϵs] = [0.9, 1.1]. Values
of δs < 1 attenuate the corresponding spectrogram
coefficients, while values > 1 amplify them.

B Impact of using Temporal and Spectral
Triggers

Table A shows the influence of using temporal (δt)
and spectral (δs) triggers independently and jointly
on Backdoor Accuracy (BA). The attack is less ef-
fective when either trigger is used in isolation. In
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contrast, combining both triggers leads to a sub-
stantial increase in backdoor effectiveness, demon-
strating a strong synergistic effect.

C Impact of Perturbation Budgets

The impact of increasing the perturbation budgets
(ϵt, ϵs) on the performance of the TrojanWave at-
tack is illustrated in Figure A and Figure B. As
the perturbation budgets increase, the attack’s ef-
fectiveness significantly improves, enabling more
reliable backdoor activation and higher attack suc-
cess rates. However, this improvement in attack
power is accompanied by a trade-off: the triggers
become more perceptible, potentially raising suspi-
cion and reducing stealth.

D Impact of Poisoning Rate

Poisoning rate refers to the percentage of training
samples in which the trigger is injected and the
original ground truth label is replaced with the tar-
get class label during few-shot training. The impact
of increasing the poisoning rate on the performance
of the TrojanWave attack is illustrated in Figure C.
As the poisoning rate increases, the attack’s success
rate improves due to stronger reinforcement of the
backdoor signal. However, higher poisoning rates
may also increase the risk of detection and degrade
the model’s clean accuracy if overused, highlight-
ing a trade-off between stealth and attack strength.

E Impact of Target Class Label

A backdoor attack requires the adversary to choose
a target class label y′, such that any input contain-
ing the trigger is misclassified as y′, regardless of
its original label. The effectiveness of the attack
can vary depending on the choice of the target
class, as some classes may be more susceptible due
to semantic overlap with other classes or higher
representation in the training data. In Figure D, we
illustrate the impact of different target classes on
the success rate of the TrojanWave attack across
multiple datasets. While the attack performance
remains relatively consistent across most target
classes, a few outlier cases exhibit noticeably
lower effectiveness, indicating that the choice of
target class can occasionally influence backdoor
success.

DATASETS Temporal Spectral BA

Beijing-Opera
✓ ✗ 66.67
✗ ✓ 8.330
✓ ✓ 100.0

CREMA-D
✓ ✗ 100.0
✗ ✓ 29.20
✓ ✓ 100.0

ESC50-Actions
✓ ✗ 2.780
✗ ✓ 26.39
✓ ✓ 83.33

ESC50
✓ ✗ 58.16
✗ ✓ 10.97
✓ ✓ 88.78

GT-Music-Genre
✓ ✗ 15.64
✗ ✓ 51.96
✓ ✓ 92.18

NS-Instruments
✓ ✗ 6.790
✗ ✓ 81.96
✓ ✓ 99.29

RAVDESS
✓ ✗ 7.690
✗ ✓ 98.32
✓ ✓ 99.76

SESA
✓ ✗ 23.68
✗ ✓ 28.95
✓ ✓ 84.21

TUT2017
✓ ✗ 4.920
✗ ✓ 32.95
✓ ✓ 100.0

UrbanSound8K
✓ ✗ 60.70
✗ ✓ 19.97
✓ ✓ 80.35

VocalSound
✓ ✗ 80.15
✗ ✓ 37.02
✓ ✓ 97.19

Table A: Impact of Temporal (δt) and Spectral (δs)
Triggers on Backdoor Accuracy (BA) during Infer-
ence Here ✓ indicates the corresponding trigger is used,
while ✗ indicates it is not. Combining temporal and
spectral triggers leads to significantly higher backdoor
effectiveness than using either trigger alone.

F tSNE Plots of Embeddings of Clean and
Poisoned Samples

To examine how the trigger alters feature repre-
sentations, we extract embeddings from clean and
poisoned audio waveforms using the audio encoder
of the audio-language model. These embeddings
are visualized using t-SNE plots in Figure E, which
reveal that poisoned samples form distinct clusters
in the embedding space, accompanied by a notice-
able shift in their feature representations. This
behavior contrasts with prior observations where
poisoned samples were directly pulled toward the
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target class cluster. Such insights can inform the
design of more effective defense strategies against
prompt-learning-based backdoor attacks.

G Entropy of Model Predictions on Clean
and Poisoned Samples

To better understand the model’s behavior under
backdoor attacks, we analyze the entropy of its
predictions on clean and poisoned samples. En-
tropy serves as a measure of confidence in the
model’s predictions: lower entropy indicates high
confidence, while higher entropy reflects uncer-
tainty. Distributions of entropy across all datasets
is provided in Figure F. We observe that poisoned
samples generally exhibit lower entropy, indicating
that the model confidently misclassifies them as
the adversary’s target class, highlighting the strong
influence of the trigger in steering model predic-
tions. This entropy-based analysis can serve as
a useful signal for detecting poisoned inputs and
understanding the internal confidence dynamics of
prompt-based backdoor attacks.

H Impact of Running Defense on Benign
Models

Since our study does not incorporate a mechanism
to verify whether a given model is benign or in-
fected, we evaluate the impact of applying our de-
fense method to benign models. The results show
that applying the defense to a benign model has a
negligible impact on clean accuracy, 76.20% be-
fore (Table 1, second column) vs. 76.14% after (Ta-
ble B, second column), indicating that our method
preserves performance even when no backdoor is
present. This finding suggests that users can safely
apply the defense even when the infection status of
the model is unknown, providing a low-risk safe-
guard against potential backdoor threats.

I Impact of Few-Shot Training Under
Clean and Defense Setups for an Equal
Number of Epoch

Can additional few-shot training on clean data
alone improve model performance as effectively
as incorporating the defense? To investigate, we
compare two scenarios: (1) training for 100 epochs
on clean data, achieving 75.73% clean accuracy,
and (2) training 50 epochs with the backdoor at-
tack followed by 50 epochs applying our defense,
which boosts clean accuracy to 77.31% (see Ta-
ble C). These results indicate that training only on

DATASETS BenignModel Infected Model

Beijing-Opera 97.91 93.75
CREMA-D 29.28 41.30
ESC50-Actions 97.51 95.00
ESC50 97.00 98.00
GT-Music-Genre 77.50 75.00
NS-Instruments 62.33 65.16
RAVDESS 40.12 45.62
SESA 90.48 89.52
TUT2017 82.05 81.52
UrbanSound8K 84.37 84.72
VocalSound 79.03 80.90

AVERAGE 76.14 77.31

Table B: Impact on Clean Accuracy of Applying De-
fense on Benign and Infected Models Applying the
proposed defense method to either a benign or an in-
fected model does not lead to a significant drop in Clean
Accuracy (CA).

clean data may cause mild overfitting, while the
defense approach provides a beneficial regulariza-
tion effect, likely due to the context repulsion loss,
leading to improved overall performance.

J Imperceptibility of Triggers:
Signal-to-Noise Ratio (SNR) and
Log-Spectral Distance (LSD)

We evaluate imperceptibility using two objective
metrics, as reported in Table D: Signal-to-Noise
Ratio (SNR) for the temporal domain and Log
Spectral Distance (LSD) for the spectral domain.
These metrics provide complementary perspec-
tives—SNR measures waveform distortion, while
LSD quantifies deviations in the frequency spec-
trum. On average, TrojanWave achieves an SNR of
29.72 dB and an LSD of 0.1198 dB across datasets.
A higher SNR indicates minimal temporal distor-
tion, while a lower LSD reflects closer spectral
similarity to clean audio. Together, these results
quantitatively demonstrate that the injected triggers
remain largely imperceptible.
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Figure A: Impact of Temporal Trigger Perturbation Budget (ϵt)

Figure B: Impact of Spectral Trigger Perturbation Budget (ϵs)

Figure C: Impact of Poisoning Rate in Few-Shot Training Data

Figure D: Impact of Target Class Label across Audio Classification Datasets
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Figure E: tSNE Plots of Embeddings of Clean and Poisoned Samples Each color represents a class in the dataset,
with the target class highlighted in coral pink. Clean samples typically form well-defined and distinct clusters,
whereas poisoned samples exhibit noticeable feature shifts. However, the overall clustering structure remains largely
preserved.
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Figure F: Entropy Distribution of Clean and Poisoned Samples

Figure G: Optimized Temporal Triggers (δt)

Figure H: Optimized Spectral Triggers (δs)
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DATASETS Clean Setup Defense Setup

Beijing-Opera 97.92 93.75
CREMA-D 18.47 41.30
ESC50-Actions 97.50 95.00
ESC50 96.00 98.00

GT-Music-Genre 80.50 75.00
NS-Instruments 63.65 65.16
RAVDESS 40.94 45.62
SESA 92.38 89.52
TUT2017 83.76 81.52
UrbanSound8K 82.55 84.72
VocalSound 79.38 80.90

AVERAGE 75.73 77.31

Table C: Impact on Clean Accuracy of Few-Shot
Training Under Clean and Defense Setups for an
Equal Number of Epochs The Clean Setup involves
running few-shot training for 100 epochs on a com-
pletely clean dataset. In contrast, the Defense Setup
consists of two phases: the first 50 epochs of few-shot
training are performed on a mixed dataset containing
both clean and poisoned samples (i.e., under attack),
followed by 50 epochs applying a defense method.

DATASETS SNR (dB) LSD (dB)

Beijing-Opera 28.83 0.1891
CREMA-D 30.05 0.1911
ESC50-Actions 30.13 0.1075
ESC50 29.90 0.1020

GT-Music-Genre 30.01 0.0986
NS-Instruments 30.35 0.0975
RAVDESS 30.66 0.0978
SESA 29.12 0.0984
TUT2017 30.58 0.0943
UrbanSound8K 29.09 0.1203
VocalSound 28.15 0.1301

AVERAGE 29.72 0.1198

Table D: Signal-to-Noise Ratio (SNR) and Log Spec-
tral Distance (LSD)

DATASETS TYPE CLASSES

Beijing-Opera
Instrument Classification

4
NS-Instruments 10

ESC50
Sound Event Classification

50
ESC50-Actions 10
UrbanSound8K 10

CREMA-D
Emotion Recognition

6
RAVDESS 8

VocalSound Vocal Sound Classification 6

SESA Surveillance Sound Classification 4

TUT2017 Acoustic Scene Classification 15

GT-Music-Genre Music Analysis 10

Table E: Audio Classification Datasets Audio classi-
fication datasets from various audio processing tasks
have been used in this study.
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