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Abstract

Sparse Autoencoders (SAEs) have recently
been employed as a promising unsupervised
approach for understanding the representations
of layers of Large Language Models (LLMs).
However, with the growth in model size and
complexity, training SAEs is computationally
intensive, as typically one SAE is trained for
each model layer. To address such limitation,
we propose Group-SAE, a novel strategy to
train SAEs. Our method considers the sim-
ilarity of the residual stream representations
between contiguous layers to group similar lay-
ers and train a single SAE per group. To bal-
ance the trade-off between efficiency and per-
formance, we further introduce AMAD (Aver-
age Maximum Angular Distance), an empiri-
cal metric that guides the selection of an op-
timal number of groups based on representa-
tional similarity across layers. Experiments
on models from the Pythia family show that
our approach significantly accelerates training
with minimal impact on reconstruction quality
and comparable downstream task performance
and interpretability over baseline SAEs trained
layer by layer. This method provides an effi-
cient and scalable strategy for training SAEs in
modern LLM:s.

1 Introduction

Sparse Autoencoders (SAEs) (Makhzani and Frey,
2014) have recently emerged (Huben et al., 2024;
Bricken et al., 2023) as a promising technique
to tackle the polysemanticity of neurons in the
activations of Large Language Models (LLMs)
(Olah et al., 2020). SAEs decompose models’
activations into a sparse combination of human-
interpretable directions, also called features. De-
spite the strengths in interpretability, SAEs face
challenges that hinder their large-scale adoption
(Sharkey et al., 2025). One of them is the high
training and evaluation costs, which increase as
model sizes and parameter counts grow. Notably, a
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Figure 1: The illustration of our method. While standard
training of SAEs requires training one per layer, our
method first groups layers by angular similarity and
then trains a single SAE for each group.

separate SAE is typically trained for each compo-
nent (e.g., the output of the attention, the MLP, or
a full transformer block) at every layer of an LLM,
with a number of features that is a multiple of the
dimensionality of the activation space of the model.
For instance, a single SAE trained on the activa-
tions of a layer of Llama-3.1 8B (Grattafiori et al.,
2024), with an expansion factor of 32, involves
approximately 40962 x 32 x 2 ~ 1.073 billion pa-
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rameters. Such high computational demand in-
creases training time and requires substantial hard-
ware resources and energy consumption, making
the approach increasingly impractical as models
scale. Moreover, to make SAEs useful for inter-
pretability, all their features have to be manually
annotated. Even when using auto-interpretability
techniques, this process can become unsustainable
(Paulo et al., 2024b).

Facing such challenges, in this work we intro-
duce Group-SAE, depicted in Figure 1, a method
to reduce the computational overhead of training,
evaluating, and interpreting SAEs. Our method
leverages the similarity of the representations
shared by close layers to reduce the total number of
trained SAEs and uses a single SAE to reconstruct
activations from different layers. The proposed
technique follows primary observations that nearby
neural network layers tend to learn similar levels
of representations (Szegedy et al., 2014; Zeiler and
Fergus, 2014; Jawahar et al., 2019). Shallow lay-
ers typically focus on capturing low-level features,
while deeper layers are believed to learn high-level
abstractions. In addition, Gromov et al. (2024) em-
pirically shows that adjacent layers in LLMs could
encode similar information.

Additionally, we introduce AMAD (Average
Maximum Angular Distance), a novel empirical
metric for selecting the optimal number of groups
to partition a model’s layers—an important choice
that balances SAEs quality and computational ef-
ficiency: more groups tend to improve reconstruc-
tion performance but reduce computational savings,
while fewer groups offer greater efficiency at the
cost of decreasing the quality of the reconstruction.

After thoroughly evaluating the reconstruction,
downstream, and interpretability results of our
methods on three models of varying sizes from
the Pythia family (Biderman et al., 2023)—Pythia-
160M, Pythia-410M, and Pythia-1B—we demon-
strate that our method has several advantages over
baselines. In particular, Group-SAE with AMAD
finds an optimal tradeoff between training costs
and quality of the SAE. It significantly reduces the
number of trained SAEs, reducing training costs
up to 50%. Moreover, such a novel approach only
incurs a slight decrease in reconstruction quality
and achieves comparable downstream performance.
Additionally, Group-SAEs outperform standard
SAEs matching the same computational cost. Fi-
nally, from an interpretability point of view, Group-
SAE:s offers the same, or even slightly better, level

of interpretability when compared with their base-
line counterparts. Our contributions can be sum-
marized as follows:

* We propose a novel method named Group-
SAE, which partitions the layers of a model into
groups and trains a single SAE for each group,
thus significantly reducing the total number of
SAE:s to train.

* We introduce AMAD (Average Maximum An-
gular Distance), a new empirical metric for se-
lecting the optimal number of groups, enabling
an effective trade-off between computational
efficiency and performance.

All the SAEs trained and used in our exper-
iments, the code to train Group-SAE, and the
code to replicate the experiments are all released
as open source at https://github.com/ghidav/
group-sae

2 Background and Related Work

2.1 Sparse Autoencoders

SAEs (Bricken et al., 2023) are a promising inter-
pretability technique that decomposes dense LLM
activations into a sparse combination of human-
interpretable features. SAEs are based on two key
intuitions. The first is the Linear Representation
Hypothesis (LRH), which, supported by substantial
empirical evidence (Mikolov et al., 2013; Nanda
et al., 2023; Park et al., 2023), posits that Neural
Networks (NNs) exhibit interpretable linear direc-
tions in their activation space. The second is the Su-
perposition Hypothesis (SH), which assumes that
observed NNs are dense compressions of a larger
sparse model where each neuron corresponds to a
specific feature (Elhage et al., 2022).

Within this framework, SAEs disentangle the
effects of superposition, enabling the learning of
interpretable linear directions in the model’s activa-
tions. Formally, given an activation x € R™, a SAE
reconstructs it through two steps. First, it encodes
the activation into the feature space as:

f(x) =0 (be + We (x — bg)) ()

where f(x) represents feature activations,
b. € R™, b, € R" are bias terms, W, € R™*"
is the encoder matrix, and o is an activation
function. Typically, m = c - n, with the expan-
sion factor ¢ € {2¥ | k € N} }. o = ReLU was
initially proposed (Bricken et al., 2023), with its
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limitations that led to the development of two
notable alternatives: TopK (Gao et al., 2024) and
JumpReLU (Rajamanoharan et al., 2024).

The feature vector is then projected back into the
model’s activation space:

X = by + Wy f(x) )

where W, € R™ ™ js the decoder matrix, with
each column corresponding to a learned feature
vector.

SAEs are trained to minimize the MSE between
original activations and SAE reconstruction. To
enforce feature sparsity, an additional penalty is
usually included in the loss function, either as the
L1 norm (Bricken et al., 2023) or the Ly norm (Ra-
jamanoharan et al., 2024) of f(x), scaled by a posi-
tive factor A, termed the sparsity coefficient. For-
mally, the loss function can be written as:

L(x) = |lx = X[I3 + M (x)lls 3)

with s € {0,1}. On the other hand, when us-
ing TopK (Gao et al., 2024), no additional loss
components are needed, as the activation function
inherently enforces sparsity.

2.2 Shared SAEs

While SAEs were originally designed to recon-
struct activations from a single model component
(e.g., the output of a specific layer, MLP, or Atten-
tion), subsequent approaches have explored their
application to activations from multiple layers. For
instance, Yun et al. (2023) and Lawson et al. (2024)
employed a single SAE to reconstruct activations
from all residual stream layers of a model, aiming
to analyze how features evolve across layers. More
recently, Lindsey et al. (2024) extended this con-
cept by introducing Crosscoder, a modified SAE
architecture that creates a unified representation of
computations across multiple layers.

These methods are driven by empirical evi-
dence suggesting that information in LLMs is of-
ten shared and rather redundant across nearby lay-
ers (Phang et al., 2021; Gromov et al., 2024). In
this work, we leverage this principle to explore the
optimal balance between performance and compu-
tational efficiency when applying SAEs to multiple
layers.

2.3 Improving SAE efficiency

As highlighted by Sharkey et al. (2025), one of
the major challenges of SAEs is their high train-
ing and evaluation costs. As previously mentioned,

SAEs scale alongside model size, making them im-
practical for low-resource settings. Furthermore,
interpreting the meaning of SAE features presents
an additional challenge. Even with automated tech-
niques, interpretation costs can reach thousands of
dollars (Paulo et al., 2024b).

To mitigate training costs, Gao et al. (2024) in-
vestigated the scaling laws of SAEs to determine
the optimal balance between model size and spar-
sity. Recent work has also explored transfer learn-
ing as a means to enhance SAE training efficiency.
For instance, Kissane et al. (2024) and Lieberum
et al. (2024) demonstrated that SAE weights can
be transferred between base and instruction-tuned
versions of Gemma-1 (Team et al., 2024a) and
Gemma-2 (Team et al., 2024b), respectively. Addi-
tionally, Ghilardi et al. (2024) showed that transfer-
ability also occurs within different layers of a single
model, both in forward and backward directions.

3 Group-SAE

In our approach, a Group-SAE is defined as a
sparse autoencoder that is trained to reconstruct
the activations from multiple layers that have been
grouped together, rather than training an individ-
ual SAE for each layer. This grouping leverages
the observation that nearby layers tend to exhibit
similar activation patterns (Gromov et al., 2024). A
detailed analysis of this phenomenon can be found
in Appendix C (Figures 5, 6, and 7).

3.1 Clustering layers into groups

For a model with L layers, there are theoretically
G! - S(L,G) ways to partition the layers into G
groups—where S(L, G) denotes the Stirling num-
ber of the second kind. Because this number grows
rapidly with model depth, we instead employ an
agglomerative clustering strategy based on angular
distances between layers to efficiently determine a
suitable grouping. Specifically, following the for-
mulation in (Gromov et al., 2024), we compute the
mean angular distance between the residual activa-
tions of each layer using a subset of the training
set used to train the SAEs (see Appendix C for
detailed measurements) '. We then apply a bottom-
up hierarchical clustering method with complete
linkage (Nielsen and Nielsen, 2016). At each step,
the two groups with the smallest inter-group dis-

'We precisely use 10M tokens from the training set used
to train the SAEs, which amount to 1% of the total training
tokens.
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tance’are merged. This merging continues until

exactly G groups remain, ensuring that within each
group the maximum angular distance is minimized.

In addition to being motivated by recent
work (Gromov et al., 2024; Li et al., 2025), we
adopt angular distance as our similarity metric be-
cause it captures the directional component of acti-
vations, which is key to their sparse representation.
As in our setting, feature directions are typically
normalized to unit norm, so SAE feature activa-
tions are proportional to the cosine of that angle.
Consequently, activations that are close in angu-
lar distance tend to activate similar features and
can be effectively reconstructed by the same SAE.
Empirical evidence supports this: reconstruction
quality degrades when SAEs are applied to acti-
vations from more distant layers (Ghilardi et al.,
2024), and this degradation correlates with larger
angular distances.

3.2 Selecting the number groups G

The choice of GG, the number of groups of layers,
is an important choice to make in our method as it
influences both computational savings and the qual-
ity of the SAE. To guide this choice, we propose
an empirical score called the Average Maximum
Angular Distance (AMAD), defined as

G
AMAD(G) = é > D, 4)
g=1

where D, is the maximum angular distance be-
tween any pair of activations within group g.
AMAD thus quantifies, on average, the worst-case
dissimilarity within groups. Intuitively, when G
is small, each group aggregates more distant lay-
ers, which increases AMAD; conversely, when
G = L (one group per layer), AMAD becomes
zero but no computational savings are achieved.
The goal is therefore to select the smallest G such
that the groups remain sufficiently homogeneous,
i.e., AMAD(G) stays below a target threshold. For-
mally, we select

G = min{G | AMAD(G) < 6},

where 0 is a distance threshold. Based on our em-
pirical analysis (Section 4), we set § = 0.2, which
provides a robust trade-off across model sizes. This

’In complete linkage, the inter-group distance is defined
as D(X,Y) = maxxex, yey dangutar(X,y) for groups X and
Y

criterion ensures maximal grouping (hence compu-
tational savings) while avoiding the sharp increase
in reconstruction error that arises when groups mix
overly distant layers.

3.3 Computational Savings

The computational cost, in FLOPs, of training a
SAE can be divided into two main components:

* Activation caching (A): FLOPs required to
generate the model’s activations, which are
used for training the SAE.

* SAE training (T'): FLOPs involved in optimiz-
ing a single SAE using the cached activations.

Thus, the total cost of training SAEs across all resid-
ual stream layers of a model is given by A + LT.
Since both baseline and Group-SAEs share the
same architecture and undergo the same training
process for a single SAE, the total cost of training
all Group-SAEs is A + GT 3.

The resulting compute savings, A(G), quanti-
fying the relative change in total FLOPs when ap-
plying Group-SAEs instead of per-layer SAEs, is
defined as:

A+GT
A+ LT ©)
By definition, if G = L, then A(G) = 0,
meaning no savings. Conversely, as G de-
creases, savings increase, reaching a maximum
of (LT —T)/(A+ LT) when G = 1, which ap-
proaches (L — 1)/L as the ratio 7'/ A increases.
Since our method does not alter either A or T,
the efficiency gains of Group-SAEs are primarily
determined by the G/ L ratio.

AG) =1-

4 Experiments

Our work is primarily focused on addressing the
following research questions:

Q1 Do SAEs trained on groups of layers acti-
vations maintain reconstruction quality and
downstream performance?

Q2 Does selecting the number of groups G based
on the Average Maximum Angular Distance
(AMAD) ensure an optimal balance between
computational efficiency and model perfor-
mance?

3We do not account for the cost of computing angular dis-

tance when selecting groups, as we rely on activations already
sampled for training, making the additional computational
overhead negligible.
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Q3 How do Group-SAEs affect the interpretabil-
ity of the SAE latent representations?

To address these questions, we compare the perfor-
mance of standard SAEs and Group-SAEs across
a range of metrics and alternative grouping strate-
gies.

4.1 Experimental setting

We denote SAE; as the baseline SAE trained to
reconstruct the activations of layer [. For every
g=1,...,G,withG € {1,...,L — 1} and L
being the number of layers of a model, let [gg]
represent the set of layers belonging to the g-th
group within the partition of G groups. We then
define SAEgG as the SAE trained to reconstruct
the activations for all layers in [gg]. To ensure a
fair comparison with baselines, we allocate 1 bil-
lion training tokens for each SAE; and SAE?. For
baseline SAEs, activations are always taken from a
single fixed layer. In contrast, for Group-SAEs, ac-
tivations are drawn from a randomly selected layer
within the set [g¢]. In this way, we ensure that each
Group- and baseline SAEs process exactly 1 billion
tokens and activations.

Models, Dataset and Hyperparameters Follow-
ing Lawson et al. (2024), we train both SAEs and
Group-SAEs with the Fraction of Variance Unex-
plained (FVU) as reconstruction loss. Defined as

I — |13

FVU(x) = Var(x) (6)
we prefer it to standard MSE loss as it accounts
for the different magnitudes of activations coming
from different layers of the model. We employ Top-
K activation* with K = 128 and expansion factor
of ¢ = 16 on the residual stream after the MLP
contribution of three models of varying sizes from
the Pythia family (Biderman et al., 2023): Pythia
160M, Pythia 410M, and Pythia 1B.

We follow established practice in SAE training
(Bricken et al., 2023; Gao et al., 2024; Rajamanoha-
ran et al., 2024) and use the same pre-training
dataset as the models themselves. In particular, we
sample 1 billion tokens from the Pile dataset (Gao
et al., 2020) and process them with a context size
of 1024.

For each model, we compute all partitions
G € {1,...,L — 1} and train a Group-SAE for all

“The Top-K activation function is directly applied on the
features obtained with Equationl, where o = Top-K o ReLU.

groups of layers in them. We exclude the last layer
from all partitions because it resides in the unem-
bedding space and, based on our empirical findings,
consistently exhibits a distinct reconstruction error
pattern. As a result, it requires a separate SAE.
Additionally, we compare our grouping strategy
with two baseline techniques aimed to reduce the
computational cost of training SAEs: (1) training
Group SAEs on evenly spaced groups, and (2) train-
ing smaller SAEs on all layers. Hyperparameters
for all the experiments and training details can be
found in Appendix A and B respectively.

Evaluation. As in previous work (Huben et al.,
2024; Gao et al., 2024), we evaluate quality of
trained SAE across three key areas: reconstruction,
downstream, and interpretability.

For both reconstruction and downstream evalua-
tions, we use a subset of the Pile dataset (distinct
from the training set) comprising 1 million tokens.

For reconstruction, we compare each SAE? with
its corresponding baseline SAE, for every layer
| € [gc]. We report the average Fraction of Vari-
ance Unexplained (FVU, Equation 6) as our recon-
struction metric.

To evaluate downstream performance, we mea-
sure the effect of replacing a layer’s activation with
its SAE reconstruction on the next-token predic-
tion. Specifically, we compute the average relative
change in next-token Cross-Entropy:

CEM(P | x! + %)) — CE(M(P))
CE(M(P)) ’
(N
where M denotes the model, P is the input prompt,
and M(P | x! < %!) indicates the model output
when the true activation x' at layer [ is replaced
with the SAE reconstruction X'.

For interpretability, we adopt the automated
pipeline proposed by Paulo et al. (2024a). First,
an explainer language model (LM) generates nat-
ural language explanations of the SAE latent rep-
resentations. Then, a separate scorer LM evalu-
ates these explanations. In our experiments, both
the explainer and scorer are implemented using
gemini-2.0-flash-001°. Specifically, for each
SAE, we randomly sample 64 features and cache
their latent activations over a 10M token sample
from the Pile. For each latent, the explainer is
shown 20 distinct examples, 10 activating the la-
tent and 10 sampled randomly, each consisting of

ACE =

5https://deepmind.google/technologies/gemini/
flash/
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Figure 2: (Left) FVU and (Right) ACE(%) over AMAD(QG) for every G € {1,...,L — 1}. The highlighted star
markers represent the baseline SAEs (i.e., with no grouping), while the other points correspond to Group-SAE:s,
ordered from left to right by increasing AMAD, which reflects a decrease in the number of groups. The shaded area

indicates one std.

Table 1: FVU and ACE for different approaches across model sizes. Our proposed grouping strategy based on the
AMAD achieves lower FVU and ACE compared to the baselines: Group SAEs with evenly spaced groups and
smaller SAESs trained on all layers. Note that both the Evenly Spaced and Smaller SAEs strategies have the same
number of training FLOPs as our AMAD-based grouping strategy. For each entry, the value in % shown to the right
indicates the relative improvement over Smaller SAEs (All layers) baseline (positive = better).

Pythia-160M

Pythia-410M Pythia-1B

Approach
FVU

ACE;y,

FVU ACEy, FVU ACEg

Group SAEs (AMAD with G groups)

0.108 ¢6.1%) 6.01 +185%) 0.138 (+55%) 5.94 (+163%) 0.182 (+32%) 6.43 (+20.6%)

Group SAEs (Evenly spaced with @ groups) 0.114 +09% 5.40 «267% 0.145 07%) 6.01 +154%) 0.189 (—0.5%) 6.63 +18.1%)

Smaller SAEs (All layers) 0.115 +0.0%)

7.37 (+0.0%)

0.146 +00%) 7.10 +0.0%) 0.188 +0.0%) 8.10 (+0.0%)

32 tokens. Two binary scoring strategies are em-
ployed:

* Detection: A language model determines
whether a given sequence activates an SAE
latent according to the provided explanation.

* Fuzzing: Activating tokens are marked within
each example, and a language model is
prompted to assess whether the marked sen-
tences are correctly identified.

Figure 8 in Appendix D shows a sentence exam-
ple for each strategy. For every metric (FVU,
ACE and Detection/Fuzzing) and for each G €
{1,...,L — 1}, we first compute all metrics at
the layer level, then aggregate the results for each
partition g within GG by computing the mean and
the standard deviation weighted by the number of
layers in that partition.

4.2 Results

In the following paragraphs, we aim to empirically
answer the research questions outlined in Section 4.

Q1: What is the impact of grouping layers
(Group-SAEs) on reconstruction quality and
downstream task performance? In Figure 2,
we plot the average FVU and the cross-entropy
difference (ACE) as functions of the AMAD for
different group configurations. The highlighted star
markers represent the baseline models (i.e., with
no grouping), while the other points correspond
to grouped models. The points are ordered from
left to right by increasing AMAD, which reflects a
decrease in the number of groups, with G ranging
from L — 1 down to 1. From Figure 2, a notable
turning point emerges around AMAD(G) =~ 0.2:
increasing AMAD beyond this threshold leads to a
more rapid loss in performance. In particular, train-
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Figure 3: (Left) FVU and (Right) ACE(%) over the fraction of training PFLOPs with respect to the base-
line. The highlighted star markers represent the baseline SAEs (i.e., with no grouping), while the other points
correspond to Group-SAEs, ordered from right to left by decreasing PFLOPs, which reflects a decrease in
the number of groups. The highlighted square markers represent the Group-SAEs with a number of groups

~

G = min{G | AMAD(G) < 0.2}.

ing a single SAE on all the model layers (G = 1),
although achieving the best computational saving,
also incurs the worst reconstruction and down-
stream performance.

To further validate our method, in Appendix E,
we inspect the quality of features learned by Group-
SAEs by measuring their similarity to the features
learned by Baseline-SAEs. As expected, for each
baseline SAE;, we found average similarity to peak
with the Group-SAE trained on a group contain-
ing [. Moreover, Appendix F analyzes how a
Group-SAE’s features distribute across the activa-
tions of layers in its group: consistent with the anal-
ysis of Lindsey et al. (2024), individual features
typically peak at a specific layer yet exhibit substan-
tial spread to adjacent layers. This pattern supports
our core hypothesis that while features may anchor
to particular layers, they remain relevant across
neighboring ones, enabling a single SAE to effec-
tively reconstruct activations from multiple, similar
layers.

Q2: Does selecting the number of groups G
based on the AMAD ensure an optimal balance
between computational efficiency and model
performance? Motivated by the insights from
the previous paragraph, the optimal G is chosen
as G = min{G | AMAD(G) < 0.2}. In Figure 3
we show both FVU and ACE plotted against the
fraction of PFLOPs relative to the baseline. Again,

star markers denote baseline SAEs, whereas cir-
cles represent Group-SAEs. Here, moving from
right to left indicates reducing PFLOPs (i.e., train-
ing fewer SAEs overall). The points are ordered
from right to left by decreasing PFLOPs, which
reflects a decrease in the number of groups, from
L — 1 down to 1. The highlighted square mark-
ers correspond to Group-SAEs with G groups;
they substantially reduce training costs up to
more than 50% with only a moderate perfor-
mance penalty: FVU(%) — FVU(R) =~ —0.015
and ACEy (%) — ACEy, (Hl) ~ —0.62 for all
three evaluated models.

To ensure that our grouping strategy and the
selection of G based on AMAD offer an effective
trade-off between computational efficiency and per-
formance, we compare them against two baselines:
1) Evenly Spaced Group SAEs: Group SAEs trained
such that each partition contains nearly equal num-
bers of layers; 2) Smaller SAEs: A separate, smaller
SAE is trained for each layer. All methods are ad-
justed to incur equal computational costs®. Results
in Table 1 shows that the proposed method outper-
forms the two additional baselines across nearly all
models and evaluation metrics, with only a single
exception observed in the case of Pythia-160M.

®For Evenly Spaced Group SAEs, we use the same number
of groups G for Smaller SAEs, we set the expansion factor
as ¢ = c- G/T, matching the FLOPs of a Group-SAE with
G groups.
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Figure 4: Auto-Interpretability scores following the automated pipeline defined by (Paulo et al., 2024b) over
AMAD(G) for every G € {1,...,L — 1}. The highlighted star markers represent the baseline SAEs (i.e., with
no grouping), while the other points correspond to Group-SAEs, ordered from left to right by increasing AMAD,
which reflects a decrease in the number of groups. The highlighted square markers represent the Group-SAEs with
a number of groups G = min{G | AMAD(G) < 0.2}. (Left) Detection and (Right) Fuzzing scores, as defined in

the Evaluation paragraph of Section 4.

Table 2:
for caching activations and
and Group SAEs on 1B tokens,
layers with an expansion factor

A~

G = min{G | AMAD(G) < 0.2}.

Comparison of FLOPs (10'®) required
training Baseline
covering all
of 16 and

Model G A+LT A+GT

~

Ay (G)

Pythia 160M 6 1.34 0.77
Pythia410M 9 4.73 2.21

+42.5%
+53.3%
+53.7%

Pythia 1B 6 1248 5.77

Importantly, this exception does not arise from
the idea of grouping layers but from the chosen
grouping strategy. Indeed, our method consistently
outperforms the standard per-layer approach with
smaller Standard SAEs. We observe that these ad-
vantages are particularly noticeable for the ACE
metric, related to the downstream performance. Ad-
ditionally, Table 2 presents the computational costs
and savings, as defined in Eq. 5 of Section 3.3, of
Group-SAEs compared to the baselines when the
optimal number of groups G is selected as G.

Q3: How do Group-SAEs affect the inter-
pretability of the SAE latent representations?
To answer, we employ the auto-interpretability
pipeline proposed by (Paulo et al., 2024b). For each
SAE latent, first, an explainer Language Model is
asked to propose a natural language explanation of

it given both activating and non-activating exam-
ples. Then, given the explanation, a scorer Lan-
guage Model is tasked with predicting the set of
sentences that should activate the target latent (de-
tection) and the sentences containing highlighted
tokens that activate the target latent (fuzzing). In
Figure 4 we plot both the detection and fuzzing
scores for all the evaluated models. In the fig-
ures, square markers denote Group-SAEs with G
groups, while star markers indicate the baseline
SAEs. We observe a similar trend as in reconstruc-
tion and downstream evaluations: detection and
fuzzing scores improve more rapidly as AMAD(G)
decreases—provided it remains above the turning
point—after which the scores plateau at an approx-
imately constant level. This result further validates
our selection of GG based on AMAD, suggesting
that the interpretability of features in the baseline
and Group-SAEs differs only marginally.

5 Conclusion

This work introduces a novel approach to efficiently
train SAEs for LLMs by clustering layers based on
their angular distance and training a single SAE for
each group. Through this method, we achieved up
to a 50% reduction in training costs without com-
promising reconstruction quality or performance
on downstream tasks. The results demonstrate that
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activations from adjacent layers in LLMs share
common features, enabling effective reconstruction
with fewer SAEs.

Our findings also show that the SAEs trained
on grouped layers perform comparably to layer-
specific SAEs in terms of reconstruction and down-
stream metrics. Furthermore, the automated inter-
pretability evaluations confirmed the interpretabil-
ity of the features learned by our SAEs, underscor-
ing their utility in disentangling neural activations.

The methodology proposed in this paper opens
avenues for more scalable interpretability tools, fa-
cilitating deeper analysis of LLMs as they grow
in size. Future work will focus on further opti-
mizing the number of layer groups and scaling the
approach to even larger models.

Limitations

Although we evaluated our approach across various
groups and model sizes, our primary focus here is
on experiments using a fixed expansion factor of
¢ = 16 and TopK as activation function. Even if we
don’t expect the choices of these hyper-parameters
to influence the results of this work, we left investi-
gations of this phenomenon for future work.

We also limit the scope of our study to models
from the Pythia family trained on the Pile dataset.
While using the pre-training dataset for SAE train-
ing is standard practice (Bricken et al., 2023; Gao
etal., 2024), evaluating on additional datasets could
provide stronger evidence of generality. We leave
such cross-dataset evaluation to future work. Fur-
thermore, architectural and training differences
across model families may influence the behav-
ior of Group-SAEs. We defer a comprehensive
cross-model analysis to future research. Explor-
ing the generality of our findings across diverse
architectures, such as Gemma, LLaMA, Qwen, or
Mistral, is an important next step. Finally, our in-
terpretability evaluation remains limited, primarily
due to the high economic cost of annotating large
numbers of features. While we observe promis-
ing patterns, a more comprehensive and systematic
interpretability analysis is left for future work.

Reproducibility statement

To support the replication of our empirical findings
on training SAEs via layer groups and to enable
further research on understanding their inner works,
we release the code and SAEs used in this study ’.

"https://github.com/ghidav/group-sae
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A Hyperparameters

We train both SAEs and Group-SAEs using Top-K activation® with K = 128 and expansion factor of
¢ = 16 on the residual stream after the MLP contribution of three models of varying sizes from the Pythia
family (Biderman et al., 2023): Pythia 160M, Pythia 410M, and Pythia 1B. To train all the SAEs, we
sample 1 billion tokens from the Pile dataset (Gao et al., 2020) and process them with a context size of 1024.
We use Adam optimizer (Kingma and Ba, 2017) with default 5 parameters and set the learning rate equal
to 2e-4/+/(m/21) as specified in Gao et al. (2024). We use a batch size of 131072, 65536 and 32768
for the three models, respectively, to maximize computational usage. Following (Bricken et al., 2023) we
constrain the decoder columns (i.e. the feature directions) to have unit norm. Additionally, we normalize
the activations to have mean squared /o norm of 1 during SAE training, as specified in (Rajamanoharan
et al., 2024), by first estimating the norm scaling factor over 5 million tokens of our train set.

Table 3: Pythia model details.

Pythia model Non-Embedding Params Layers Model Dim Heads

160M 85,056,000 12 768 12
410M 302,311,424 24 1024 16
1.0B 805,736,448 16 2048 8

Table 4: Training and fine-tuning hyperparameters

Hyperparameter Value

c 16

Top-K K 128

Qlaux 1/32

Hook name resid-post
131°072 (Pythia-160M)

Batch size 65’536 (Pythia-410M)
32’768 (Pythia-1B)

Adam (B4, f2) (0.9,0.999)

Context size 1024

Ir 2e-4/+/(m/2)

Ir scheduler constant

Dead latents threshold 10M

# tokens (Train) 1B

Checkpoint freq 100K

Decoder column normalization  Yes

Activation normalization Mean squared ¢2 norm equal to 1 during SAE training

FP precision 32

Prepend BOS token No

The experiments were carried out on a cluster of 8§ AMD MI250X. The longest experimental run took
approximately 24 hours. Our experiments were carried out using PyTorch (Paszke et al., 2019) and the
sparsify library.” We performed our data analysis using NumPy (Harris et al., 2020) and Pandas (Wes
McKinney, 2010). Our figures were made using Matplotlib (Hunter, 2007) and Seaborn (Waskom,
2021).

8The Top-K activation function is directly applied on the features obtained with Equation1, where o = Top-K o ReLU.
https://github.com/EleutherAl/sparsify
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B SAEs Training Details

Following Lawson et al. (2024), given X, X e RBxn being the input activation batch and its SAE
reconstruction, respectively, we train our SAEs with the following loss:

L(X) = FVU(X, X) + aau - AuxK(X, X) (8)

The first term of the loss is the Fraction of Variance Unexplained, or:

o XX
FVU(X,X) = IX=Xlr 9)
X = X]|[r
where | - || p is the Frobenius norm and X = £151 /X is a matrix where each row corresponds to the

mean of X along the batch dimension. The second term of the loss is an auxiliary loss to prevent the
formation of dead latents during training and is defined as:

- E-E
AuxK(X, X) = H (10)
- F

Here, E = X — X is the reconstruction error of the main model, and E is its reconstruction using the
top-Kaux dead latents. A dead latent f;(x) is a latent that didn’t fire, i.e. f;(x) = 0, for a predefined
number of tokens (10M in our experiments). Following Gao et al. (2024), we choose K,;x as the minimum
between the number of dead latents and m /2, and o = 1/32.

To ensure a fair comparison with baselines, we allocate 1 billion training tokens for each SAE; and
SAE?. For baseline SAEs, activations are always taken from a single fixed layer. In contrast, for Group-
SAEs, activations are drawn from a randomly selected layer within the set [g¢]. In this way, we ensure
that each Group- and baseline SAEs process exactly 1 billion tokens and activations.
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C Angular Distances and Layers Groups

We use the same angular distance formulation of Gromov et al. (2024):

S 1 i xd
dg (xl,x]) = — arccos <|XX> (11

[x? o171l

forevery i,j € {1, ..., L}, where x! are the I-th residual stream activations after the MLP’s contribution.

Figures 5-7 visualize the pairwise average angular distances between residual-stream activations across
all layers for each Pythia model (computed on 10M training tokens). Values are scaled to [0, 1] (0 =
identical directions, 0.5 = orthogonal, 1 = opposite), with block structure revealing contiguous regions of
high similarity that motivate layer grouping. Tables 5—7 then report the grouping solutions as we vary the
number of groups G (up to L. — 1): the Groups row lists, for each layer index, the assigned group ID, and
the accompanying AMAD value (Average Maximum Angular Distance, Eq. 4) summarizes within-group
compactness. As G increases, AMAD typically decreases, reflecting finer partitions that better capture the
block-diagonal structure observed in the distance matrices.

Average Distance Between Layers

Layer
6 5 4 3 2 1 0
|

7

8

9

- EEEnEEEEE
- T R
-

0 1 2 4 5 6 7 8 9

3

10 11
Layer

Figure 5: Average angular distance between all layers of the Pythia-160M model, as defined in Equation 11. The
angular distances are computed over 10M tokens from the training dataset. The angular distances are bounded in
[0, 1], where an angular distance equal to 0 means equal activations, 0.5 means activations are perpendicular and an
angular distance of 1 means that the activations point in opposite directions.

G Groups AMAD
1 0,0,0,0,0,0,0,0,0,0,0 0.450
2 00000001111 0372
3 2,2,2,1,1,1,1,0,0,0,0 0.314
4 2,2,2,0,0,0,0,1,1,3,3 0.267
5 0,0,0,4,4,2,2,1,1,3,3 0.231
6 3,3,5,4,4,2,2,0,0,1,1 0.179
7 3,3,5,1,1,2,2,6,4,0,0 0.118
8 3,3,5,1,1,0,0,6,4,7,2 0.075
9 1,1,5,0,0,8,7,6,4,3,2 0.044
10 0,0,5,9,7,8,3,6,4,1,2 0.019

Table 5: Layer groups for every G up to L — 1 for Pythia-160M
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Figure 6: Average angular distance between all layers of the Pythia-410M model, as defined in Equation 11. The
angular distances are computed over 10M tokens from the training dataset. The angular distances are bounded in
[0, 1], where an angular distance equal to 0 means equal activations, 0.5 means activations are perpendicular and an
angular distance of 1 means that the activations point in opposite directions.

G Groups AMAD
1 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 0.479
2 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1, 1, 1, 1 0.394
3 2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,0,1,1,1,1, 1,1, 1 0.353
4 2,2,2,2,2,2,2,3,3,3,3,1,1,1,1,1,0,0,0,0,0,0,0 0.303
5 0,0,0,0,0,0,0,3,3,3,3,1,1,1,1,1,4,4,4,2,2,2,2 0.270
6 5,5,51,1,1,1,3,3,3,3,0,0,0,0,0,4,4,4,2,2,2,2 0.248
7 5,5,5,0,0,0,0,1,1,1,1,6,6,3,3,3,4,4,4,2,2,2,2 0.224
8 2,2,2,5,57,7,1,1,1,1,6,6,3,3,3,4,4,4,0,0,0,0 0.202
9 2,2,2,5,5,7,7,0,0,0,0,6,6,3,3,3,1,1,1,8,8,4,4 0.187
10 2,2,2,5,57,7,8,8,9,9,6,6,1,1,1,0,0,0,3,3,4,4 0.176
11 2,2,2,5,5,7,7,8,8,9,9,6,6,0,0,0,10,4,4,3,3, 1, 1 0.156
12 0,0,0,2,2,7,7,8,8,9,9,6,6,11,5,5,10,4,4,3,3,1,1 0.141
13 12,9,9,2,2,7,7,8,8,4,4,6,6,11,5,5,10,1,1,3,3,0,0 0.125
14 12,9,9,0,0,7,7,8,8,4,4,6,6,11,2,2,10,1, 1, 3,3, 13,5 0.104
15 12,9,9,14,8,7,7,3,3,4,4,6,6,11,2,2,10,0,0, 1, 1, 13,5 0.085
16 12,9,9,14,8,3,3,1,1,4,4,6,6,11,2,2,10,15,7,0,0, 13,5 0.069
17 12,9,9,14,8,1,1,0,0,4,4,6,6,11,2,2,10,15,16,7,3,13,5 0.055
18 12,4,4,14,17,0,0,8,9,1,1,6,6, 11,2, 2, 10, 15, 16,7, 3, 13, 5 0.043
19 12,4,4,14,17,18,13,8,9,1,1,2,2,11,0,0, 10, 15, 16,7, 3,6, 5 0.032
20 12,1,1,14,17,18,13,8,19,0,0,2,2, 11,9, 10,4, 15,16,7,3,6,5  0.022
21 12,1,1,14,17,18,13,8, 19,20, 11,0,0,5,9, 10,4, 15,16,7,3,6,2  0.014
22 12,0,0,14,17,18,13,8, 19,20, 11,21, 16, 5,9, 10,4, 15,7,3,1,6,2  0.007

Table 6: Layer groups for every G up to L — 1 for Pythia-410M
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Figure 7: Average angular distance between all layers of the Pythia-1B model, as defined in Equation 11. The
angular distances are computed over 10M tokens from the training dataset and are bounded in [0, 1]. An angular
distance equal to 0 means equal activations, 0.5 means activations are perpendicular and an angular distance of 1
means that the activations point in opposite directions.

G Groups AMAD
1 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 0.459
2 0,0,0,0,0,0,0,0,0,1,1,1,1,1, 1 0.364
3 1,1,1,1,1,2,2,2,2,0,0,0,0,0,0 0.309
4 0,0,0,0,0,2,2,2,2,1,1,1,1,3,3 0.250
5 4,4,1,1,1,2,2,2,2,0,0,0,0,3,3 0.225
6 4,4,1,1,1,0,0,0,0,2,2,5,5,3,3 0.191
7 1,1,0,0,0,4,4,2,2,6,6,5,5,3,3 0.174
8 0,0,7,3,3,4,4,2,2,6,6,5,5,1, 1 0.139
9 8,4,7,3,3,1,1,2,2,6,6,5,5,0,0 0.100
10 8,9,7,1,1,0,0,2,2,6,6,5,5,4,3 0.075
11 8,9,7,0,0,10,3,2,2,6,6,5,5,4,1  0.053
12 8,9,7,11,6,10,3,0,0,2,2,5,5,4, 1 0.036
13 8,9,7,11,6,10,3,12,5,0,0,2,2,4,1  0.022

14 8,9,7,11,13,10,3,12,5,6,2,0,0,4,1  0.010

Table 7: Layer groups for every G up to L — 1 for Pythia-1b
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D Auto Interpretability

To evaluate the interpretability of features of baseline and Group SAEs, we adopt automated pipeline from
(Paulo et al., 2024b), focusing on detection and fuzzing scores. First, an explainer language model (LM)
generates natural language explanations of the SAE latent representations. Then, a separate scorer LM
evaluates these explanations.

Then, detection scoring assesses whether a language model can identify entire sequences that activate a
specific latent, given its interpretation. This method evaluates the model’s ability to distinguish between
activating and non-activating contexts, offering insights into the precision and recall of the interpretation.
Fuzzing scoring, on the other hand, operates at the token level, prompting the model to pinpoint specific
tokens within sequences that trigger latent activations. This approach closely mirrors simulation scoring
and is particularly effective in evaluating the model’s token-level understanding of latent activations.

In our experiments, we use gemini-2.0-flash-001 as the base model for both the explainer and the
scorer. For each SAE, we randomly select 64 features and cache their latent activations across 10M
tokens from the Pile (Gao et al., 2020). To generate annotations, we present the explainer with 20 distinct
examples per feature—10 that activate the latent and 10 randomly sampled—each comprising 32 tokens.

Detection

Explanation: “Words related to football positions, specifically the striker position”
Sentences:

"Atalanta’s striker Ademola Lookman has scored twice”
"names of the months used in The Lord of The Rings”

“shown, is not generally eligible for ads. For example”

Correct output: [1, 0, 0]

Fuzzing

Explanation: “Words related to football positions, specifically the striker position”
Sentences:

"Atalanta’s <striker> Ademola Lookman has scored twice"

“You should know this about <advertising>"

“<Dribbled> past the defenders and <shot> a perfect <strike> into the net.”

Correct output: [1,0, 1]
L J

Figure 8: Examples of each of the auto-interpretability techniques: Detection and Fuzzing. In detection, the
objective is to find the sentences in which the feature is active. In fuzzing, the objective is to spot the highlighted
tokens referring to the target feature.
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E Feature Similarity Analysis

Following Sharkey et al. (2023), we adopt Mean Maximum Cosine Similarity (MMCS) to assess the
extent to which Baseline and Group SAEs learn similar feature directions. For any two SAEs, SAE;
and SAE;, we compute the MMCS between their decoder matrices W, W € R™ ™ as these matrices
encode the directions of the learned features:
A 1 & )
MMCS(W3, Wi) = — 3~ max  cos(wj, W] ) 12
(Wa, Wa) m le{l,...),(m} ko (12)
k=1

where Wi and vaf are the k-th and [-th columns of the normalized decoder matrices WZ[ and Wfl,
respectively. The directionality of the maximum operation is important for interpretation: we first
find, for each feature in SAE;, the most similar feature in SAE; (by cosine similarity), and then aver-
age these maximum similarities across all features of SAE;. In our analysis, we specifically compute
MMCS (WdBaseh“e, ngu‘)), meaning that the resulting value represents the average highest similarity
that each Baseline SAE feature has with any feature in the Group SAE.

Pythia-160M - MMCS Baselines vs Groups

G=1 G=2 G=3
0.4 A
g 031 8 %3] g
= = =
= = =
0.2 A 0.2
024+
0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
Baseline layer Baseline layer Baseline layer
G=4 G=5 G=6
0.41 ‘
%] wn
o] o]
= =
= =
0.2 4
o 2 a4 & 8 10

Baseline layer Baseline layer Baseline layer

Figure 9: Mean Maximum Cosine Similarity (MMCS) between all the learned features of baseline and group SAEs
for each group G € {1,...,G} of Pythia-160M. Colors represent the different Group SAEs of a given partition.
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Pythia-410M - MMCS Baselines vs Groups
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Figure 10: Mean Maximum Cosine Similarity (MMCS) between all the learned features of baseline and Group
SAE:s for each group G € {1,...,G} of Pythia-410M. Colors represent the different Group SAEs of a given
partition.

Pythia-1B - MMCS Baselines vs Groups
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Figure 11: Mean Maximum Cosine Similarity (MMCS) between all the learned features of baseline and Group
SAEs for each group G € {1,...,G} of Pythia-1B. Colors represent the different Group SAEs of a given partition.
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F Feature Distribution Analysis

Following (Lawson et al., 2024), we perform a study to understand how features distribute across layers
of a given group. Previous work from (Lindsey et al., 2024) showed that activations of a given feature
usually peak at a specific layer. To measure this phenomenon, for each Group SAE of a given partition in
G groups, we sample 1 million tokens from the test set and compute feature distributions across the layers
of its group.

Feature distribution for Pythia-160M
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Figure 12: Pythia-160M feature activations distribution for every group G € {1, ..., G } over 1 million tokens from
the test set. Darker regions indicate higher feature activation density.

Heatmaps in Figure 12, 13, and 14 show distributions of features activations for all the models and
Group SAEs of partitions from 1 to G. In the images, we sort the features by the average layer they
activate the most. Darker regions indicate higher feature activation density. Looking at the charts several
considerations can be drawn:

* Features activating for the first and last layers of a given group tend to be more specific for that layers
(i.e. their activation frequencies peak at those layers).

* Features at early layers of a model are more spread across their respective group.

* Bigger models tend to have features more spread across the layers of a given group with respect to
smaller models.

In summary, while feature distributions tend to peak at a specific layer (with this being more evident
in smaller models and later layers), they also spread across close ones. This result agrees with findings
from (Lindsey et al., 2024) while still leaving the potential for Group SAEs to make SAE training more
efficient.
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Feature distribution for Pythia-410M
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Figure 13: Pythia-410M feature activations distribution for every group G € {1, ..., G } over 1 million tokens from
the test set. Darker regions indicate higher feature activation density.

Feature distribution for Pythia-1B
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Figure 14: Pythia-1b feature activations distribution for every group G € {1, ..., @} over 1 million tokens from the
test set. Darker regions indicate higher feature activation density.
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