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Abstract

Instruction-following made modern large lan-
guage models (LLMs) helpful assistants. How-
ever, the key to taming LLMs on complex in-
structions remains mysterious, for that there
are huge gaps between models trained by open-
source community and those trained by lead-
ing companies. To bridge the gap, we propose
a simple and scalable approach ULTRAIF for
building LLMs that can follow complex instruc-
tions with open-source data. ULTRAIF first de-
composes real-world user prompts into simpler
queries, constraints, and corresponding evalu-
ation questions for the constraints. Then, we
train an UltraComposer to compose constraint-
associated prompts with evaluation questions.
This prompt composer allows us to synthesize
complicated instructions as well as filter re-
sponses with evaluation questions. In our ex-
periment, for the first time, we successfully
align LLaMA-3.1-8B-Base to catch up with
its instruct version on 5 instruction-following
benchmarks without any benchmark informa-
tion, using only 8B model as response gener-
ator and evaluator. The aligned model also
achieved competitive scores on other bench-
marks. Moreover, we also show that ULTRAIF
could further improve LLaMA-3.1-8B-Instruct
through self-alignment, motivating broader use
cases for the method. Our code is available at
https://github.com/kkk-an/UltraIF.

1 Introduction

Large language models (Meta, 2024; OpenAI,
2024) have demonstrated remarkable capabili-
ties, especially in following complex instructions.
While modeling such ability is crucial, the tech-
nical details and the instruction datasets used in
state-of-the-art LLMs remain mysterious. For ex-
ample, LLaMA3 (Meta, 2024) reportedly leverages
instruction-following data at the tens of millions
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Figure 1: Instruction-following performance compari-
son of ULTRAIF against baselines.

scale but has not been open-sourced. This lack of
transparency has resulted in a significant gap be-
tween research community and leading companies.

Recent efforts in aligning LLMs to follow in-
structions have focused on creating high-quality
instruction-following data. On the one hand, Wei
et al. (2021); Rajani et al. (2023); Jiang et al.
(2023) involve human annotators in developing
instructions and manually crafting corresponding
responses. While effective, these methods are
label-intensive, heavily reliant on human exper-
tise, and face challenges in scalability and cost
efficiency. On the other hand, Xu et al. (2023);
Wang et al. (2023); Sun et al. (2024a); Dong et al.
(2024) attempt to leverage LLMs to automatically
construct high-quality instruction data. Specifi-
cally, Xu et al. (2023); Sun et al. (2024a) guide
LLMs to generate constraints and evolve initial
instructions into more complex forms. However,
these LLMs-driven methods heavily rely on mod-
els’ instruction-evolving capability and overempha-
size instruction complexity, ultimately hindering
the diversity of evolved instructions and the cor-
rectness of generated responses. To improve this,
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Wang et al. (2023); Dong et al. (2024) introduce
handcrafted constraints inspired by human priors
to guide LLMs. For instance, Dong et al. (2024)
introduces constraints that can be verified by code
execution to ensure response correctness. How-
ever, these handcrafted constraints introduce rigid-
ity, leading to homogeneous instructions and mak-
ing it narrow in encompassing more complex or
diverse instructions (e.g., write in Shakespeare’s
tone). As a result, scaling such instruction with
correct responses remains a significant challenge,
limiting the applicability of modeling the distribu-
tion of instructions from real-world users.

In this paper, we propose ULTRAIF, a simple and
scalable method which synthesizes high-quality
instruction-following data. The core idea of UL-
TRAIF is to decompose real-world user instructions
for both constraints and evaluation questions, then
train a composer model to synthesize diverse and
complex instructions with verification questions.
To achieve this, we first utilize LLM to decom-
pose human instructions into simplified instruc-
tions and their associated constraints. For each
constraint, the LLM further generates the corre-
sponding evaluation question to verify whether the
upcoming response meets the requirement. With
these components, we train UltraComposer, which
takes the simplified instruction as input and out-
puts the original instruction along with its evalua-
tion question. In this way, the composer learns to
evolve instructions with verifiable constraints, and
benefits from the generalization ability of LLMs
rather than handcrafted rules. With the composer,
ULTRAIF could make any instruction more compli-
cated to synthesize a large-scale and diverse dataset.
The evaluation questions further help with quality
control in rejection sampling and preference learn-
ing (Rafailov et al., 2024; Chen et al., 2024).

Through comprehensive experiments, we
demonstrate that ULTRAIF significantly enhances
the instruction-following capabilities of LLMs
with high scalability and cost efficiency. Our
evaluation, conducted on the LLaMA-3.1-8B
model across five instruction-following datasets,
confirms ULTRAIF’s strong alignment with
general instructions. Notably, as shown in Figure
1, by scaling up the training data, we achieve a
milestone, optimizing the LLaMA-3.1-8B-Base
model to match the instruction-following ability
of its instruct version. Additionally, we assess
the generability of ULTRAIF by evaluating it on
mathematical, reasoning, coding, and general

conversation domains. Furthermore, we explore
the potential of self-alignment in ULTRAIF by
further optimizing the LLaMA-3.1-8B-Instruct
model, and achieved sustaintial improvement.
The main contributions of our paper include:
• We introduce ULTRAIF, a simple and scalable

approach that leverages real-world user instruc-
tions to train a composer model, UltraComposer,
enabling the synthesis of complex and diverse
instructions with correct responses.

• Our experiments demonstrate the strong perfor-
mance of ULTRAIF in handling complex instruc-
tions, surpassing all baselines under the same
data budget while retaining general capabilities
in domains such as mathematics, coding, and
conversational tasks.

• We reach a new milestone by optimizing
the LLaMA-3.1-8B-Base model to match the
instruction-following abilities of its Instruct coun-
terpart with only 200k data, and showcase the
self-alignment potential by further optimizing
the LLaMA-3.1-8B-Instruct model on it own.

2 ULTRAIF

2.1 Overview
ULTRAIF synthesizes high-quality instruction-
following datasets in two stages. As shown in
Figure 2, ULTRAIF first constructs the UltraCom-
poser by decomposing user instructions into sim-
plified ones and constraints, along with correspond-
ing evaluation questions (§2.2). This specialized
composer facilitates the synthesis of instructions
with more complex and diverse constraints, while
the evaluation questions ensure the correctness and
reliability of the generated responses. Then, the
Generate-then-Evaluate process (§2.3) uses Ultra-
Composer to incorporate constraints into instruc-
tions and assesses the generated responses using
corresponding evaluation questions covering vari-
ous quality levels.

2.2 UltraComposer
Previous studies (Xu et al., 2023; Sun et al., 2024a)
that rely solely on LLMs are limited by the models’
instruction-evolving ability, which restricts the di-
versity of synthetic instructions and compromises
response accuracy. While Wang et al. (2023); Dong
et al. (2024) address response correctness through
handcrafted constraints, this approach further lim-
its instruction diversity. In contrast, ULTRAIF fo-
cuses on generating diverse, complex instructions
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Figure 2: The framework of ULTRAIF. Specifically, ULTRAIF begins by training the UltraComposer, which
decomposes real-world user instructions and evaluation questions. For (a), the given instruction can be decomposed
into several pairs, such as the numeric constraint ‘ten books’ and content constraint ‘Chinese books’. Next, ULTRAIF
adopts a Generate-then-Evaluate process, where the composer iteratively adds multiple constraints to each collected
instruction and then applies the evaluation questions for rejection sampling.

with correct responses. To achieve this, we pro-
pose the UltraComposer, a specialized model to
synthesize diverse instructions and generate corre-
sponding evaluation questions. Building this com-
poser model involves three key steps: instruction
decomposition, evaluation question generation, and
UltraComposer training.

Instruction Decomposition The decomposition
process leverages LLMs to decompose complex
instructions into different components. These com-
ponents consist of a set of simplified instructions
paired with constraints that represent the underly-
ing requirements of the original instruction. For
example, as shown in Figure 2 (a), the instruc-
tion (X) “In Shakespeare’s tone, recommend me
ten Chinese books.” can be decomposed into the
simplified instruction (x1) “Recommend me ten
Chinese books.” and the paired constraint (c1) “In
Shakespeare’s tone.”, etc. This step is essential for
disentangling intricate objectives into more struc-
tured elements, extending beyond basic format or
content constraints (Dong et al., 2024; Wang et al.,
2023), and forming a foundation to model the dis-
tribution of real-world user instructions effectively.

Evaluation Question Generation While Xu
et al. (2023); Wang et al. (2023) focus on improv-
ing the complexity of instructions, omitting the

quality of generated responses often leads to low-
quality samples. Inspired by Qin et al. (2024), we
utilize LLM to generate evaluation questions for
each constraint. Given the example, the evaluation
question (q1) would be “Is the response written
in Shakespeare’s tone?”. These questions are de-
signed to assess the generated responses for adher-
ence to the constraints. This mechanism not only
addresses the limitation of checking only program-
matically verifiable constraints (Dong et al., 2024),
but also improves the reliability of the response and
its alignment with the original instruction.

X → {(x1, c1, q1), ... , (xn, ci, qi)}, i ∈ N (1)

UltraComposer Training With decomposed in-
structions and evaluation questions, we train Ultra-
Composer to take a simplified query (xi) as input
and generate the original instruction (X) with its
evaluation question (qi), denoted as Eq.2, as shown
in Figure 2 (b). This enables UltraComposer to
complicate instructions in a single step. Addition-
ally, it enhances constraint diversity by incorporat-
ing not only the LLM’s inherent knowledge but
also distributions observed in real-world scenarios.

UltraComposer(xi) → (X, qi), i ∈ N (2)

2.3 Generate-then-Evaluate
With UltraComposer, ULTRAIF efficiently pro-
duces high-quality instruction-following data
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through a Generate-then-Evaluate process, encom-
passing both instruction generation and response
evaluation to support both Supervised Fine-tuning
and Preference Learning strategies.

Instrucion Generation UltraComposer adapts
the augmentation process fully automated and
aligns with human preferences. This step starts by
collecting user instructions from existing datasets
(Chiang et al., 2023; Teknium, 2023; Rajani et al.,
2023), and then use the Composer to augment these
instructions. As shown in Eq.3, this process can
be conducted iteratively, enabling the generation
of more complex and realistic instructions (x̄) with
multiple constraints, paired with corresponding
evaluation questions (q̄).

UltraComposer(x(n)) → (x̄(n), q̄(n)), n ∈ N

x(n+1) = x̄(n), q̄(n+1) = q̄(n+1) ∪ q̄(n)

(3)

Response Evaluation Next, we prompt LLMs to
generate K responses for each augmented instruc-
tion. As ‘LLM-as-judge’ paradigm is prevalent
(Zheng et al., 2023), human can be replaced by
LLMs to assess the quality of response, so the qual-
ity of generated responses is assessed by evaluation
questions. This results in a dataset Ddata compris-
ing (x̄, q̄, ychosen, yrejected). Ideally, this process
requires only three to four calls to LLMs, signifi-
cantly reducing the computational cost, achieves
greater efficiency and incurs minimal costs when
constraining large-scale datasets compared to pre-
vious research (Xu et al., 2023; Dong et al., 2024).

3 Experiments

3.1 Experimental Setup

Datasets and Baselines To train UltraComposer,
we decompose instructions from ShareGPT (Chi-
ang et al., 2023) and generate corresponding evalua-
tion questions by LLaMA-3.1-70B-Instruct. In our
experiments, we collect human instructions from
existing open-source datasets, including ShareGPT,
OpenHermes2.5, and No Robots (Teknium, 2023;
Rajani et al., 2023; Chiang et al., 2023), and em-
ploy UltraComposer to complicate instructions and
then generate responses. For baselines, we reimple-
ment existing methods using either public datasets
(Sun et al., 2024a; Xu et al., 2023) or available im-
plementations (Dong et al., 2024), and include a
series of currently open and closed-source LLMs.
More details are in Appendix A.1.

Evaluation We evaluate ULTRAIF on five
instruction-following benchmarks, including IFE-
val (Zhou et al., 2023), Multi-IF (He et al., 2024),
InfoBench (Qin et al., 2024), FollowBench (Jiang
et al., 2023), and LiveBench (White et al., 2024).
While IFEval and Multi-IF focus on testing verifi-
able instructions using functions, the others extend
to more general instructions that need to be eval-
uated by LLMs. Additionally, we further test the
general ability of ULTRAIF such as mathematical
(Chen et al., 2021), reasoning (Suzgun et al., 2022),
coding (Cobbe et al., 2021), and general interac-
tion capabilities (Li et al., 2024). The details about
benchmarks are provided in Appendix A.2.

Experimental Settings We fine-tune LLaMA-
3.1-8B-Instruct to build our UltraComposer. Sub-
sequently, we explore two settings to implement
our training strategies listed in Appendix A.3, in-
cluding Supervised Fine-tuning and Preference
Learning. The implementation details are listed in
Appendix A.4. And the prompts about instruction
decomposition and evaluation question generation
are provided in Appendix B.

• Strong-to-Weak. In this setting, knowledge is
distilled from a larger model to a smaller one. For
ULTRAIF and baselines, we leverage LLaMA-
3.1-70B-Instruct for response generation and
evaluation and then train LLaMA-3.1-8B-Base.

• Self-Alignment. We replace the supervision
model with Llama-3.1-8B-Instruct.

3.2 Main Results

Table 1 shows the performance of ULTRAIF on five
instruction-following benchmarks.

ULTRAIF Outperforms All Previous Methods
In the strong-to-weak setting, ULTRAIF demon-
strates performance that is comparable to or ex-
ceeds previous methods across all datasets. By fine-
tuning on our generated data, ULTRAIF achieves
substantial improvements, particularly on IFEval
and Multi-IF. When compared to strong baselines
like AutoIF (Dong et al., 2024), ULTRAIF achieves
scores of 53.97 (Pr(S)) and 64.15 (Ins(S)) on IFE-
val and 81.91 (DRFR) on InfoBench, surpassing
AutoIF by margins ranging from 1.29% to 6.84%.
These results underscore ULTRAIF’s capability to
effectively follow instructions, even with lower
training data, representing a significant advance-
ment over state-of-the-art approaches.
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Method #Data IFEval Multi-IF InfoBench LiveBench FollowBench

Pr(S) Pr(L) Ins(S) Ins(L) Turn1 Turn2 Turn3 DRFR Score SSR

GPT-4† - 76.90 79.30 83.60 85.40 81.50 70.50 60.90 89.40 69.40 78.60
LLaMA-3.1-8B-Instruct† - 69.13 74.86 77.46 81.65 68.54 59.63 51.26 81.33 57.10 63.41

Strong-to-Weak (Supervisor: GPT-4o-mini)

SPaR (2024)‡ 8k 54.71 58.59 64.86 68.70 55.37 36.22 27.23 78.61 50.80 59.37

Strong-to-Weak (Supervisor: LLaMA-3.1-70B-Instruct)

LLaMA-3.1-8B (ShareGPT) 10k 43.99 54.34 54.32 64.39 44.69 25.11 18.50 81.56 33.20 59.59
Evol-Instruct (2023)‡ 10k 41.96 45.66 54.44 58.03 39.03 24.34 19.14 75.74 44.90 43.87
Conifer (2024a)‡ 13k 46.40 51.02 58.51 62.59 44.91 25.83 17.95 75.73 45.60 52.42
AUTOIF (2024)‡ 10k 47.13 56.93 57.55 67.02 47.63 27.53 20.53 80.62 40.50 60.41
ULTRAIF
+ SFT 10k 53.97 58.59 64.15 68.82 52.55 29.34 22.29 81.91 42.20 59.50

+ Iterative DPO 8k 58.22 65.25 68.11 74.22 58.14 35.65 26.55 83.56 49.50 59.99

Self-Alignment (Supervisor: LLaMA-3.1-8B-Instruct)

ULTRAIF
+ SFT 10k 55.82 58.78 66.18 69.54 55.59 36.72 28.07 77.78 46.60 55.88

+ Iterative DPO 8k 56.93 64.14 66.66 73.02 58.63 42.04 31.20 79.86 54.20 58.56
+ SFT scale up 181k 69.87 72.46 77.46 80.22 66.24 53.66 42.19 79.20 51.40 59.93

+ Iterative DPO 20k 71.35 75.42 79.38 83.09 69.63 58.28 46.86 80.70 56.00 62.55

Table 1: The main results on five instruction-following benchmarks. Results marked with † are sourced from the
original benchmarks, and ‡ represents we reimplement the methods.

Iterative DPO Boosts Performance Effectively
As shown in Table 1, the iterative DPO process
substantially enhances alignment with complex in-
structions. Specifically, in comparison to SFT, iter-
ative DPO achieves an average improvement of 5%
in the strong-to-weak setting and 3.8% in the self-
alignment setting on MultiIF. Furthermore, this pro-
cess enables ULTRAIF to surpass state-of-the-art
methods in three benchmarks that require LLM-
based evaluation, with an improvement of 1.5%
on InfoBench, 4.6% on LiveBench, and 2.62% on
FollowBench, demonstrating the importance of UL-
TRAIF in handling diverse instructions.

Smaller Supervisor Yields Better Performance
The self-alignment setting, which employs smaller
model as supervisor, achieves superior perfor-
mance relative to the strong-to-weak setting. This
divergence is particularly evident during the SFT
stage, wherein self-alignment outperforms strong-
to-weak on IFEval, Multi-IF and LiveBench. While
improvements introduced by DPO remain rela-
tively incremetal, self-alignment still exhibits su-
perior performance on two benchmarks. These re-
sults align with prior research by Hui et al. (2024);
Zhang et al. (2025); Li et al. (2025), which demon-
strates that self-generated responses more closely
to the distribution of the base model.

ULTRAIF Achieves A New Milestone By scal-
ing up the training data, ULTRAIF achieves a new
milestone in instruction-following alignment. With
181k data in the SFT stage and 20k data in the

DPO stage, ULTRAIF reaches impressive perfor-
mance, with 71.35 (Pr(S)) and 79.38 (Ins(S)), while
the LLaMA-3.1-8B-Instruct model only achieves
69.13 (Pr(S)) and 77.46 (Ins(S)), and comparable
across the left benchmarks. This demonstrates that
ULTRAIF, when optimized and trained on larger
datasets, not only improves instruction-following
capabilities but also comes closest to matching the
performance of LLaMA-3.1-8B-Instruct, marking
a significant leap forward in model performance.

3.3 Cross-Domain Validation

Table 2 presents a comparative evaluation of UL-
TRAIF across four general domains against AutoIF
and LLaMA-3.1-8B-Instruct. Although ULTRAIF
exhibits slightly lower performance than AutoIF on
math, it achieves substantial improvements on code
and conversation. These gains are further amplified
by scaling up the training data, and the applica-
tion of the DPO stage consistently enhances perfor-
mance across all evaluated domains. In particular,
ULTRAIF contributes significantly to improving
general capabilities, as evidenced by its perfor-
mance on the comprehensive LiveBench bench-
mark (White et al., 2024) and the ArenaHard con-
versational benchmark (Li et al., 2024). ULTRAIF
surpasses AutoIF by a statistically significant mar-
gin of 4.2% on LiveBench and achieves a substan-
tial 15.4% improvement in conversational perfor-
mance on ArenaHard. These results highlight the
effectiveness of ULTRAIF in advancing the devel-
opment of more versatile and general models.
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Method Code Reasoning Math Conversation General

HumanEval BBH GSM8k Arena Hard LiveBench [All]

LLaMA-3.1-8B-Instruct 65.24 68.54 80.80 18.30 25.90
AutoIF (2024) 46.34 67.18 51.50 9.20 17.50

ULTRAIF + SFT 43.90 67.33 48.60 12.20 21.30
+ Iterative DPO 47.56 68.03 48.10 16.00 21.70

+ SFT scale up 52.44 67.26 66.70 16.00 22.80
+ Iterative DPO 55.49 68.44 68.00 31.40 23.10

Table 2: The general performance on mathematical, reasoning, coding, and conversational domains. We report
Pass@1 on HumanEval, Acc on BBH and GSM8k, and Win Rate on Arena Hard.

Iteration IFEval Multi-IF LiveBench

Pr(S) Pr(L) Ins(S) Ins(L) Turn1 Turn2 Turn3 Score

Iter 1 55.45+1.48 61.55+2.96 65.10+0.95 70.74+1.92 56.13+3.58 32.11+2.77 24.38+2.09 42.20+0.00

Iter 2 55.08+1.11 62.66+4.07 65.47+1.32 71.82+3.00 57.26+4.71 34.92+5.58 26.28+4.00 47.20+5.00

Iter 3 56.75+2.78 63.03+4.44 66.79+2.64 72.42+3.60 57.10+4.55 34.87+5.53 26.11+3.82 45.70+3.50

Iter 3w.NCA 58.22+4.25 65.25+6.66 68.11+3.96 74.22+5.40 58.14+5.59 35.65+6.31 26.55+4.26 49.50+7.30

Table 3: The performance compared to the SFT model across each iteration during the Iterative DPO process.
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Figure 3: Reward trajectories for the chosen and rejected
samples across the steps of each iteration during the
Iterative DPO process.

4 Analysis

4.1 Impact of the Iterative DPO Process
Given that UltraComposer enables the iterative
incorporation of constraints into instructions, we
adopt an Iterative DPO training strategy in which
instruction complexity is gradually increased over
successive training stages. Figure 3 illustrates the
reward trajectories for the chosen and rejected sam-
ples. As training progresses, the reward margin
between chosen and rejected samples widens. How-
ever, by the third iteration, the optimization objec-
tive begins to diverge, prioritizing the maximiza-
tion of the reward margin over improving the abso-
lute reward values. This shift leads to both chosen
and rejected sample rewards falling below zero,
ultimately degrading model performance on three
benchmarks, as shown in Table 3. To address this,
we replace the DPO objective with NCA (Chen
et al., 2024), which stabilizes the training dynamics

Setting c=1 c=2 c=3

Strong-to-Weak 91.76 86.41 79.44
Self-Alignment 92.46 89.57 85.79

Table 4: The pass rate of of ULTRAIF across increasing
instruction complexity levels during SFT stage.

and results in more consistent and robust perfor-
mance across benchmarks.

4.2 Analysis of Sampling Efficiency

We also evaluate the sampling efficiency of UL-
TRAIF by measuring the proportion of generated
responses that satisfy the filter question criteria, as
instruction complexity increases through iterative
applications of UltraComposer. Table 4 presents
the overall pass rates of ULTRAIF across varying
constraint levels (c = 1, 2, 3). The pass rate de-
creases with increasing instruction complexity. No-
tably, the self-alignment setting consistently out-
performs the strong-to-weak setting. These trends
are consistent with findings from prior studies (Hui
et al., 2024; Zhang et al., 2025; Li et al., 2025).

Furthermore, Appendix C.1 compares the data
synthesis pass rates of ULTRAIF and AutoIF,
demonstrating the superior scalability and cost-
efficiency of ULTRAIF in dataset construction. To
assess the reliability of LLM-based evaluation dur-
ing filtering, we conduct a human evaluation study,
where we randomly sample 75 examples from the
SFT dataset and assign each to five human anno-
tators. The resulting agreement shows that LLM
evaluations achieve an accuracy of approximately
80%, which we consider sufficient for practical use.
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Method #Data IFEval Followbench Multi-IF

541 944 4501

N-gram (N=13) Overlap Ratio
AutoIF 10k 0.0000 0.0000 0.0000
ULTRAIF 10k 0.0000 0.0026 0.0000
ULTRAIF 181k 0.0000 0.0033 0.0000

LLM Decontaminator (Rephr.)
AutoIF 10k 0.0000 0.0032 0.0000
ULTRAIF 10k 0.0018 0.0117 0.0000
ULTRAIF 181k 0.0166 0.0360 0.0082

Table 5: Contamination analysis on SFT data generated
by AutoIF and ULTRAIF on three benchmarks.
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Figure 4: Scaling the training set on SFT stage.

4.3 Contamination Analysis

To ensure the integrity of our evaluation, we con-
duct a comprehensive contamination analysis of
the training data generated by both AutoIF and
ULTRAIF across three benchmarks. We use a tra-
ditional n-gram overlap method (overlap ratio =
#matched_ngrams
#total_ngrams ) to identify any exact or near-

duplicate sequences between training and test sets
and utilize the LLM-based contamination detection
framework from LM-Sys (Yang et al., 2023), which
leverages advanced LLMs to identify semantically
rephrased versions of test instances in the training
data. Table 5 reveals extremely low contamina-
tion rates across all configurations. Notably, both
detection methods show that ULTRAIF exhibits
contamination levels comparable to those of Au-
toIF. These findings confirm that the self-generated
training data is clean and does not compromise the
validity of our evaluation results.

4.4 Scalability of ULTRAIF

To validate the effieiency and effectiveness of UL-
TRAIF, we conduct scaling up experiments under
the self-alignment setting. Figure 4 shows the im-
pact of varying training data sizes during the SFT
stage. With about 181k training samples, ULTRAIF
demonstrates powerful performance compared to
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Figure 5: Ablations on the number of added constraints
and the evaluation question filter.

baselines, highlighting its strong capacity to scale
with increasing data volume. Moreover, we analyze
the impact of multi-turn data in Appendix C.2, and
incoporate such data in our scaling experiments.

4.5 Ablation Studies on ULTRAIF
The iterative augmentation capability of UltraCom-
poser raises a critical question for the SFT stage:
should simple or complex instructions be priori-
tized for training? Figure 5 presents the results
of using varying levels of instruction complexity
during the SFT stage. The results demonstrate that
as instruction complexity increases, performance
correspondingly improves, reaching the peak af-
ter three iterations with. Furthermore, we evalu-
ate the effectiveness of our evaluation questions.
Without filtering out low-quality responses, perfor-
mance deteriorates significantly over 3.35%-5.36%.
This mechanism becomes increasingly critical as in-
struction complexity grows, with the performance
gap widening alongside the increasing complex-
ity, underscoring the importance of this module in
maintaining high-quality training data. We provide
cases to illustrate the augmented instructions and
evaluation questions in Appendix C.3.

4.6 Extension of Self Alignment
In our main experiments, we distill knowledge
from the Instruct version model to enhance the
vanilla model, demonstrating the effectiveness of
ULTRAIF. However, the potential for ULTRAIF to
independently enhance a strong model like Cheng
et al. (2024) has not yet been explored. In this
section, we conduct experiments to investigate the
self-improvement capabilities of ULTRAIF. Under
the self-alignment setting, we use data generated
by LLaMA-3.1-8B-Instruct to enable the model to
train itself. As shown in Figure 6, ULTRAIF signif-
icantly boosts the performance of the strong model
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Method #Data IFEval Multi-IF LiveBench FollowBench

Pr(S) Pr(L) Ins(S) Ins(L) Turn1 Turn2 Turn3 Score SSR

Qwen2-7B-Instruct - 52.68 55.63 62.82 65.34 54.44 39.41 29.95 46.30 63.36
AutoIF(2024)† 10k 40.70 44.50 51.30 55.40 - - - - 53.30

ULTRAIF + SFT 10k 44.17 47.31 54.19 57.55 47.56 25.38 18.13 35.20 54.16
+ Iterative DPO 8k 45.28 48.61 56.59 59.23 48.57 28.45 19.60 39.80 55.44

Table 6: The results on four instruction-following benchmarks with Qwen2-7B as the backbone model.

IFEval MultiIF LiveBench FollowBench
Benchmark

40
45
50
55
60
65
70
75
80

Sc
or

e

LLaMA-3.1-8B-Instruct
Self-Alignment-10k

Self-Alignment-25k
Self-Alignment-40k

Figure 6: The performance of exploring the potentiality
of ULTRAIF on self-alignment.

across different size of training data, even without a
more powerful supervisor. Specifically, ULTRAIF
improves performance on IFEval by 2.4%-5.9%,
on Multi-IF by 3.74%-5.38%, further validating the
effectiveness of our approach.

4.7 Generalizability of ULTRAIF

To assess the generalizability of ULTRAIF across
different foundation models, we apply it to the
Qwen2-7B base model (Yang et al., 2024). As
shown in Table 6, ULTRAIF maintains strong per-
formance when built on the Qwen2 architecture,
demonstrating its adaptability to different model
backbones. Notably, compared to AutoIF, UL-
TRAIF exhibits greater potential in aligning LLMs
with instruction-following capabilites.

5 Related Work

5.1 Instruction Following

Instruction following is a core area for LLMs, aim-
ing to improve understanding and execution of com-
plex human instructions. Early work (Wei et al.,
2021; Rajani et al., 2023; Jiang et al., 2023) use
curated datasets of human-written instructions and
responses. Recent methods automate this using
LLMs, Xu et al. (2023) and Sun et al. (2024a)
prompt LLMs to evolve or complicate instructions.
However, this can yield low-quality data due to
LLMs’ limitations. To improve quality, Wang
et al. (2023); Dong et al. (2024) add human pri-
ors like verifiable constraints, but this reduces in-

struction diversity. In contrast, ULTRAIF decom-
poses user instructions into constraints and evalua-
tion questions, then trains UltraComposer to gen-
erate diverse, complex instructions with accurate
responses, offering a robust approach to instruction
data generation.

5.2 Perference Learning
Preference learning has emerged as a key method to
improve instruction-following by refining models
through feedback (Ouyang et al., 2022; Dong et al.,
2024; Sun et al., 2024a; Gao et al., 2024; Si et al.,
2025). It typically enhances models finetuned on
instruction data using reward signals from human
or automated to guide learning. While RLHF with
PPO is common, it depends on ranked responses,
which are costly and labor-intensive. Recent work
(Rafailov et al., 2024; Chen et al., 2024) addresses
this via direct preference optimization, reducing
reliance on human input. ULTRAIF supports this
by generating evaluation questions that guide pref-
erence learning more efficiently. It complements
direct optimization with a scalable, cost-effective
approach to producing instruction-following data.

6 Conclusion

In this paper, we propose ULTRAIF, a scalable and
effective approach for synthesizing high-quality
instruction-following data. By decomposing hu-
man instructions into simplified queries, con-
straints, and corresponding evaluation questions,
we train UltraComposer that enables the effi-
cient generation of constraint-aware instructions.
Across two different settings, ULTRAIF demon-
strates strong performance across five instruction-
following benchmarks and four general bench-
marks. Extensive experiments conducted on
LLaMA-3.1-8B-Instruct further highlight UL-
TRAIF’s potential for self-alignment. Most impor-
tantly, we are the first to optimize the LLaMA-3.1-
8B-Base model to match the instruction-following
capabilities of its Instruct counterpart, underscor-
ing the effectiveness and potential of our approach.
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Limitations

Due to limitations in time and computational re-
sources, ULTRAIF has not yet been evaluated on a
wider range of backbone models or on models with
larger parameter scales. Nevertheless, the current
experimental results provide sufficient evidence of
its generalizability across different foundational ar-
chitectures. Additionally, since the full pipeline
depends on LLMs for supervision, the data genera-
tion process may involve limited controllability and
introduces potential risks related to consistency and
reliability. To minimize these risks, we apply re-
sponses filtering to ensure the quality and stability
of the generated data.

Acknowledgement

We thank all reviewers for their great efforts. This
work is supported by the National Science Founda-
tion of China under Grant No.61876004.

References
Huayu Chen, Guande He, Lifan Yuan, Ganqu Cui, Hang

Su, and Jun Zhu. 2024. Noise contrastive alignment
of language models with explicit rewards. arXiv
preprint arXiv:2402.05369.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde De Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, and 1 others. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Jiale Cheng, Xiao Liu, Cunxiang Wang, Xiaotao Gu,
Yida Lu, Dan Zhang, Yuxiao Dong, Jie Tang, Hongn-
ing Wang, and Minlie Huang. 2024. Spar: Self-play
with tree-search refinement to improve instruction-
following in large language models. arXiv preprint
arXiv:2412.11605.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion
Stoica, and Eric P. Xing. 2023. Vicuna: An open-
source chatbot impressing gpt-4 with 90%* chatgpt
quality.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, and 1 others. 2021. Training verifiers
to solve math word problems. arXiv preprint
arXiv:2110.14168.

Tri Dao. 2023. Flashattention-2: Faster attention with
better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691.

Guanting Dong, Keming Lu, Chengpeng Li, Tingyu
Xia, Bowen Yu, Chang Zhou, and Jingren Zhou.
2024. Self-play with execution feedback: Improving
instruction-following capabilities of large language
models. arXiv preprint arXiv:2406.13542.

Bofei Gao, Feifan Song, Yibo Miao, Zefan Cai, Zhe
Yang, Liang Chen, Helan Hu, Runxin Xu, Qingxiu
Dong, Ce Zheng, Shanghaoran Quan, Wen Xiao,
Ge Zhang, Daoguang Zan, Keming Lu, Bowen Yu,
Dayiheng Liu, Zeyu Cui, Jian Yang, and 6 others.
2024. Towards a unified view of preference learning
for large language models: A survey. arXiv preprint
arXiv:2409.02795.

Yun He, Di Jin, Chaoqi Wang, Chloe Bi, Karishma
Mandyam, Hejia Zhang, Chen Zhu, Ning Li, Tengyu
Xu, Hongjiang Lv, and 1 others. 2024. Multi-
if: Benchmarking llms on multi-turn and mul-
tilingual instructions following. arXiv preprint
arXiv:2410.15553.

Tingfeng Hui, Lulu Zhao, Guanting Dong, Yaqi Zhang,
Hua Zhou, and Sen Su. 2024. Smaller language
models are better instruction evolvers. arXiv preprint
arXiv:2412.11231.

Yuxin Jiang, Yufei Wang, Xingshan Zeng, Wanjun
Zhong, Liangyou Li, Fei Mi, Lifeng Shang, Xin
Jiang, Qun Liu, and Wei Wang. 2023. Follow-
bench: A multi-level fine-grained constraints follow-
ing benchmark for large language models. arXiv
preprint arXiv:2310.20410.

Julian Katz-Samuels, Zheng Li, Hyokun Yun, Priyanka
Nigam, Yi Xu, Vaclav Petricek, Bing Yin, and Tr-
ishul Chilimbi. 2024. Evolutionary contrastive distil-
lation for language model alignment. arXiv preprint
arXiv:2410.07513.

Tianle Li, Wei-Lin Chiang, Evan Frick, Lisa Dunlap,
Tianhao Wu, Banghua Zhu, Joseph E Gonzalez, and
Ion Stoica. 2024. From crowdsourced data to high-
quality benchmarks: Arena-hard and benchbuilder
pipeline. arXiv preprint arXiv:2406.11939.

Yuetai Li, Xiang Yue, Zhangchen Xu, Fengqing Jiang,
Luyao Niu, Bill Yuchen Lin, Bhaskar Ramasubra-
manian, and Radha Poovendran. 2025. Small mod-
els struggle to learn from strong reasoners. arXiv
preprint arXiv:2502.12143.

I Loshchilov. 2017. Decoupled weight decay regulariza-
tion. arXiv preprint arXiv:1711.05101.

Meta. 2024. The llama 3 herd of models. Preprint,
arXiv:2407.21783.

OpenAI. 2024. Gpt-4 technical report. Preprint,
arXiv:2303.08774.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,

18719

https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2303.08774


Paul F Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback. In Advances in Neural Information
Processing Systems, volume 35, pages 27730–27744.
Curran Associates, Inc.

Yiwei Qin, Kaiqiang Song, Yebowen Hu, Wenlin Yao,
Sangwoo Cho, Xiaoyang Wang, Xuansheng Wu, Fei
Liu, Pengfei Liu, and Dong Yu. 2024. Infobench:
Evaluating instruction following ability in large lan-
guage models. arXiv preprint arXiv:2401.03601.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn.
2024. Direct preference optimization: Your language
model is secretly a reward model. Advances in Neu-
ral Information Processing Systems, 36.

Nazneen Rajani, Lewis Tunstall, Edward Beeching,
Nathan Lambert, Alexander M. Rush, and Thomas
Wolf. 2023. No robots. https://huggingface.co/
datasets/HuggingFaceH4/no_robots.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and
Yuxiong He. 2020. Deepspeed: System optimiza-
tions enable training deep learning models with over
100 billion parameters. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining, pages 3505–3506.

Shuzheng Si, Haozhe Zhao, Gang Chen, Cheng Gao,
Yuzhuo Bai, Zhitong Wang, Kaikai An, Kangyang
Luo, Chen Qian, Fanchao Qi, Baobao Chang, and
Maosong Sun. 2025. Aligning large language mod-
els to follow instructions and hallucinate less via
effective data filtering. In Proceedings of the 63rd
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 16469–
16488, Vienna, Austria. Association for Computa-
tional Linguistics.

Haoran Sun, Lixin Liu, Junjie Li, Fengyu Wang, Bao-
hua Dong, Ran Lin, and Ruohui Huang. 2024a.
Conifer: Improving complex constrained instruction-
following ability of large language models. arXiv
preprint arXiv:2404.02823.

Yuchong Sun, Che Liu, Kun Zhou, Jinwen Huang, Rui-
hua Song, Xin Zhao, Fuzheng Zhang, Di Zhang, and
Kun Gai. 2024b. Parrot: Enhancing multi-turn in-
struction following for large language models. In
Proceedings of the 62nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 9729–9750, Bangkok, Thailand.
Association for Computational Linguistics.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Se-
bastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny
Zhou, and 1 others. 2022. Challenging big-bench
tasks and whether chain-of-thought can solve them.
arXiv preprint arXiv:2210.09261.

Teknium. 2023. Openhermes 2.5: An open dataset of
synthetic data for generalist llm assistants.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa
Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh
Hajishirzi. 2023. Self-instruct: Aligning language
models with self-generated instructions. In Proceed-
ings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 13484–13508, Toronto, Canada. Association
for Computational Linguistics.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M Dai, and Quoc V Le. 2021. Finetuned lan-
guage models are zero-shot learners. arXiv preprint
arXiv:2109.01652.

Colin White, Samuel Dooley, Manley Roberts, Arka Pal,
Ben Feuer, Siddhartha Jain, Ravid Shwartz-Ziv, Neel
Jain, Khalid Saifullah, Siddartha Naidu, and 1 others.
2024. Livebench: A challenging, contamination-free
llm benchmark. arXiv preprint arXiv:2406.19314.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,
Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin
Jiang. 2023. Wizardlm: Empowering large lan-
guage models to follow complex instructions. arXiv
preprint arXiv:2304.12244.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, Guanting Dong, Hao-
ran Wei, Huan Lin, Jialong Tang, Jialin Wang, Jian
Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, and
43 others. 2024. Qwen2 technical report. Preprint,
arXiv:2407.10671.

Shuo Yang, Wei-Lin Chiang, Lianmin Zheng, Joseph E
Gonzalez, and Ion Stoica. 2023. Rethinking
benchmark and contamination for language mod-
els with rephrased samples. arXiv preprint
arXiv:2311.04850.

Dylan Zhang, Qirun Dai, and Hao Peng. 2025. The
best instruction-tuning data are those that fit. arXiv
preprint arXiv:2502.04194.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, and 1 others.
2023. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Pro-
cessing Systems, 36:46595–46623.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Sid-
dhartha Brahma, Sujoy Basu, Yi Luan, Denny Zhou,
and Le Hou. 2023. Instruction-following evalu-
ation for large language models. arXiv preprint
arXiv:2311.07911.

18720

https://huggingface.co/datasets/HuggingFaceH4/no_robots
https://huggingface.co/datasets/HuggingFaceH4/no_robots
https://doi.org/10.18653/v1/2025.acl-long.804
https://doi.org/10.18653/v1/2025.acl-long.804
https://doi.org/10.18653/v1/2025.acl-long.804
https://doi.org/10.18653/v1/2024.acl-long.525
https://doi.org/10.18653/v1/2024.acl-long.525
https://huggingface.co/datasets/teknium/OpenHermes-2.5
https://huggingface.co/datasets/teknium/OpenHermes-2.5
https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.18653/v1/2023.acl-long.754
https://arxiv.org/abs/2407.10671


A Experimental Setup

A.1 Datasets and Baselines

A.1.1 Datasets

ShareGPT 1 is an open-source and multi-turn
conversation dataset that contains over 52K user-
shared chatting histories with GPT-4. We decom-
pose the human instructions from ShareGPT into
around 200K data pairs to train our UltraComposer.
For main experiment, we randomly select 10K hu-
man instructions to generate augmented instruc-
tions.
OpenHermes (Teknium, 2023) is a large-scale,
diverse, and high-quality compilation consisting
of around 1M synthetically generated instruction
and chat samples. We randomly select a subset
of 150K instructions from OpenHermes-2.5 for
scaling experiment.
No Robots (Rajani et al., 2023) is a high-quality
dataset of 10k instructions and demonstrations cre-
ated by skilled human annotators. We use all in-
structions from No Robots for scaling experiment.

A.1.2 Baselines

AutoIF (Dong et al., 2024) uniquely employs code
verification to conducting scalable and reliable data
generation for complex instruction-following in
LLMs. We reproduced AutoIF utilizing the official
open-source code2.
Conifer (Sun et al., 2024a) curates a novel instruc-
tion tuning dataset which aims to enhance how
LLMs, particularly open-source models, follow
complex instructions involving multiple, intricate
constraints. We generate responses for the public
data using LLaMA-3.1-70B-Instruct3.
Evol-Instruct (Xu et al., 2023) automatically mass-
produces high-complexity training data by generat-
ing diverse instructions with varying difficulty lev-
els. We sample 10k data and generate responses4.
SPaR (Cheng et al., 2024) proposes a self-play
framework to enhance instruction-following abil-
ities for LLMs, where an LLM refines its own re-
sponses via tree-search. We reimplement SPaR
utilizing its official open-source dataset5.

1https://huggingface.co/datasets/shibing624/
sharegpt_gpt4

2https://github.com/QwenLM/AutoIF
3https://huggingface.co/datasets/ConiferLM/

Conifer
4https://huggingface.co/datasets/WizardLMTeam/

WizardLM_evol_instruct_70k
5https://huggingface.co/datasets/CCCCCC/SPaR

A.2 Evaluation Benchmarks

IFEval (Zhou et al., 2023) is an easy-to-produce
benchmark designed to evaluate the instruction-
following capability of LLMs. IFEval constructs
around 500 prompts that contain 25 types of ver-
ifiable instructions. We use both loose and strict
accuracy metrics at prompt and instruction levels
in our evaluation.
Multi-IF (He et al., 2024) is a benchmark designed
to assess LLMs’ proficiency in following multi-turn
and multilingual instructions. Based on IFEval,
Multi-IF contains 4,501 multilingual conversations,
where each has three turns. We report the average
accuracy across all languages for each of the three
rounds in the experiment.
InfoBench (Qin et al., 2024) is a benchmark com-
prising 500 diverse instructions and 2,250 decom-
posed questions across multiple constraint cate-
gories, adopting a new metric Decomposed Re-
quirements Following Ratio (DRFR) for evaluating
LLM’s ability to follow instructions. We use GPT-
4-1106-preview as the evaluator in our assessments.
FollowBench (Jiang et al., 2023) is a multi-level
fine-grained constraints following benchmark for
LLMs. FollowBench incorporates five distinct fine-
grained constraint types (Content, Situation, Style,
Format, and Example) and underscores multi-level
mechanism when building instruction prompts.
In our experiment, we prompt the GPT-4-1106-
preview to assess whether LLM’s outputs have sat-
isfied each individual constraint.
LiveBench (White et al., 2024) is a LLM bench-
mark that contains a wide variety of challeng-
ing tasks (math, coding, reasoning, language,
instruction-following, and data analysis) and au-
tomatically scores answers according to objec-
tive ground-truth values. When assessing the
instruction-following skills of LLMs, we employ
the instruction-following subset, while the entire
dataset is utilized to gauge their overall capabilities.
GSM8K (Cobbe et al., 2021) comprises 8.5K high-
quality, multilingual grade school math word prob-
lems, specifically designed to assess the multi-step
mathematical reasoning proficiency of language
models. We report the overall accuracy in the ex-
periment.
HumanEval (Chen et al., 2021) consists of 164
programming problems with function signatures,
docstrings, bodies, and unit tests, averaging 7.7
tests per problem. It is utilized to evaluate the cod-
ing abilities of LLMs. HumanEval assesses the
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capability of LLMs in program synthesis from doc-
strings, testing language comprehension, reasoning,
algorithms, and elementary mathematics skills. We
report Pass@1 on HumanEval in the experiment.
BBH (Suzgun et al., 2022) is a clean, challenging
and tractable subset benchmark filtered from Big
Bench, which includes 23 types of difficult tasks
and 6,511 evaluation examples in total. BBH pri-
marily assesses the models’ reasoning capacities
and problem-solving skills comprehensively. In the
experiment we report the accuracy metrics.
Arena Hard (Li et al., 2024) is an automatic LLM
benchmark consisting of 500 challenging challeng-
ing user queries, which is curated to evaluate the
comprehensive performance of LLMs in user dia-
logue scenarios. In the experiment, we adopt GPT-
4-1106-preview as the judge model and report the
win rate of our models against the baseline model
(GPT-4-0314).

A.3 Training Strategies
ULTRAIF offers flexible training strategies for
aligning model with instruction following capa-
bilities. To thoroughly evaluate the effectiveness,
we provide two approaches:

Supervised Finetuing (SFT). Given the dataset
Ddata, we apply standard Supervised Finetuning
(SFT) objective on vanilla model π with parameters
θ, as shown in Eq. 4:

LSFT (πθ) =
∑

(x̄,yc)∈Ddata

log πθ(yc|x̄) (4)

where Ī represents the augmented instruction, and
rc denotes the corresponding chosen response.

SFT + Iterative Online DPO. As ULTRAIF is
equipped with evaluation questions, it facilitates
quality control by enabling the generation of pair-
wise responses with varying quality levels. This
property makes it particularly suitable for the appli-
cation of Direct Perference Optimization (DPO,
Rafailov et al. (2024)) to refine the fine-tuned
model, πref . The DPO objective is formulated
as Eq. 5:

LDPO(πθ, πref ) = −E(x̄,yc,yr)∈Ddata
log σ(β ·∆)

∆ = (log
πθ(yc|x̄)
πref (yc|x̄)

− log
πθ(yr|x̄)
πref (yr|x̄)

)

(5)
where β is a scaling hyperparameter, σ denotes the
sigmoid function, and πθ is initialized from πref
and further optimized during the DPO stage.

In the context of ULTRAIF, the UltraComposer
enables an iterative augmentation of instructions,
transitioning from simpler to more complex tasks.
This allows the DPO process to be formulated as an
iterative curriculum. At each iteration, the model
πref is replaced with the latest optimized model
from the previous stage. Concurrently, more chal-
lenging instruction-following datasets are gener-
ated and utilized for further training. This itera-
tive approach ensures continuous improvement in
model performance and adaptability across increas-
ingly complex scenarios.

Moreover, during the iterative process, as ob-
served by (Chen et al., 2024), the DPO objective
primarily focuses on optimizing the margin be-
tween the chosen and rejected samples, rather than
directly maximizing the probability of chosen sam-
ples and minimizing that of the rejected ones. To
address this, we employ the Noise Contrastive Esti-
mation (NCA, Chen et al. (2024)) loss in the final
iteration, and the objective is defined in Eq. 6:

LNCA(πθ, πref ) =

− E(x̄,yc,yr)∈Ddata

[
log σ(β log

πθ(yc|x̄)
πref (yc|x̄)

)

+
1

2

∑

y∈{yc,yr}
log σ(−β log

πθ(y|x̄)
πref (y|x̄)

)

]

(6)

A.4 Implementation Details

Our experiments are conducted on 8×A100 GPUs
(80GB) using mixed precision with bf16, Deep-
Speed ZeRO Stage 3 (Rasley et al., 2020), and
FlashAttention 2 (Dao, 2023).

In the SFT stage, we perform full fine-tuning
with a learning rate of 1e-5. The maximum token
length is set to 8192 and variable-length packing is
enabled. We use AdamW (Loshchilov, 2017) as the
optimizer with a warmup ratio of 0.03 and employ a
LinearLR scheduler at the beginning, transitioning
to CosineAnnealingLR towards the end.

In the DPO stage, the configuration is similar,
with the only difference being a lower learning rate
of 5e-7. Additionally, the beta parameter of DPO
loss is set to 0.1.

B Prompts of ULTRAIF

To train our UltraComposer, we prompt LLM
to perform Instruction Decomposition and Eval
Question Generation.
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We use the following prompt template to decom-
pose human instructions:

Prompt Template of Instruction Decompo-
sition

You are an expert in extracting instruction
constraints from a given query.
Definition of Constraint: The smallest unit
of restriction or requirement that the instruc-
tion imposes on the task.
Query: {query}

• If the query is not a question, or is
simple or straightforward without any
constraints, please only respond with
the following JSON, indicating that no
constraints are present.

{
"Complex": False

}

• If constraints are present, follow these
steps:

1. Identify the Basic Query: Clearly
understand the primary goal of
the query, stripping away any con-
straints. The Basic Query should
be the essential task without any
added conditions or restrictions.

2. Extract and Categorize Con-
straints: Identify and classify con-
straints based on the following
types:

– Content Constraints:

* Specific Terms or Symbols:
Mandatory use of certain
terms or symbols with their
exact placement (e.g., must
include the word ’beauti-
ful’).

* Required Elements or Con-
cepts: Mandates for includ-
ing specific elements or
concepts in responses, re-
flecting a scenario or object
(e.g., highlights the Great
Wall).

* Thematic Directives: In-
structions related to the-
matic content, perspective,
or tone, emphasizing re-
sponse significance (e.g.,
write a poem about Lon-
don).

– Numerical Constraints:

* Constraints on quantities
related to the content, such
as the number of points,
sentences, paragraphs, re-
sponse length, or exam-
ples (e.g., within a single
paragraph with three sen-
tences).

– Stylistic Constraints:

* Desired tone and style for
the response (e.g., formal,
informal, conversational).

* Specific language or ter-
minology to be used or
avoided (e.g., encyclopedic
style).

– Format Constraints:

* Required structure or for-
mat for the response (e.g.,
list, JSON, bullet points,
Java language).

* Presentation styles or for-
matting requirements (e.g.,
electronic medical record
format).

– Linguistic Constraints:

* Language use in specific
contexts, such as discourse,
dialects, sociolects, and
language policies (e.g., in
English).

* Sentence structure, includ-
ing phrases, constituents,
and the use of impera-
tives (e.g., with nouns and
verbs).

* Internal structure of
words, including roots,
affixes, and morphological
changes (e.g., lowercase,
single-rhyme).

3. Response Format:
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– Do not consider details that
are part of the content itself,
such as those used in descrip-
tions, scenarios, or examples,
unless they directly impose a
restriction of the response.

– The Basic Query should rep-
resent the queryâĂŹs core
goal, free from any con-
straints.

– Ensure that extracted con-
straints do not overlap with
the Basic Query.

– Present each constraint as a
dictionary within a list, where
each dictionary contains:

* ’constraint’: The spe-
cific restriction or require-
ment.

* ’simplified query’:
The query after removing
this constraint, polished for
coherence and correctness.

– Exclude any constraint types
not present in the query.

{
"Complex": True,
"Basic Query": ...,
"Content Constraints": [

{
"constraint": "...",

"simplified query": "..."
},
{

"constraint": "...",
"simplified query": "..."

},
],
...

}

Please only provide the response in JSON
format.

We use the following prompt template to gener-
ate evaluation questions for instructions:

Prompt Template of Eval Question Genera-
tion

You are an expert in crafting questions to
evaluate whether a response to a query ad-
heres to specific constraints.
For the given constraint, please design a
question that human evaluators can use to
assess if the response meets the specified
constraint. The question should focus solely
on the given constraint and not other con-
straints present in the original query.
Specifically, if the given constraint is mean-
ingless or is a part of the content itself, such
as those used in descriptions, scenarios, or
examples, you can respond with an empty
string.
Query: {query}
Constraint: {constraint}
Please design a question for the specified
constraint for the given query, and respond
in the JSON format without explanation.

{
"question": "string",

}

We use the following template to train ULTRAIF

Prompt Template of UltraComposer

Input:
[history]: ...
[initial query]: ...
Output:

{
"augmented query": ..,
"question": ...

}

For Generate-then-Evaluate process, we
prompt LLM to perform Response Generation
and Response Evaluation.

First we use the following prompt template to
generate responses for the augmented instructions:

Prompt Template of Response Generation

You are an expert tasked with answering
the given query. Please provide a clear and
concise response directly, without introduc-
tory phrases such as ’What a great question,’
’Here is the answer,’ or similar expressions.
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Focus solely on addressing the query.
Now please answer the given query while
strictly following its inside constraints.
[Query] {query}

Then we use the following prompt template to
evaluate the quality of those generated responses:

Prompt Template of Response Evaluation

You are an expert that is good at judging
whether the response to a given query meets
the specified evaluator questions.
Your task is to carefully examine the re-
sponse to determine if it adheres to each
requirement outlined in the evaluator ques-
tions.
[Query] {query}
[Response] {response}
[Evaluator Question] {question}
For each question, please provide a justifi-
cation for your evaluation, explaining how
the response does or does not satisfy the cri-
teria and a score (’YES’ or ’NO’) indicating
whether the answer satisfies each constraint.
You should only respond in the following
JSON format:

{
"Question 1": {

"explanation": "",
"score": "YES" or "NO"

},
"Question 2": {

"explanation": "",
"score": "YES" or "NO"

},
}

C Additional Experimental Results

C.1 Analysis of Sampling Efficiency

Moreover, Table 7 further compare the pass
rates during dataset synthesis, where ULTRAIF
demonstrates substantial improvements over Au-
toIF. Specifically, ULTRAIF achieves an SFT pass
rate of 85% and a DPO pass rate of 60%, compared
to only 20% and 26%, respectively, for AutoIF.
This indicates that for generating an equivalent
amount of data, ULTRAIF reduces costs by a factor
of three to five. Furthermore, during the rejection
sampling stage, while AutoIF necessitates rigorous

function-based filtering for instruction synthesis
and response generation, ULTRAIF achieves this
with a single LLM call, making it far more scalable
and cost-efficient.

Method SFT Pass Rate DPO Pass Rate

AutoIF 20% 26%
ULTRAIF 85% 60%

Table 7: The overall pass rate of data synthesis.

C.2 Analysis of Multi-Turn Data
Building on prior work that emphasizes enhancing
multi-turn instruction-following capabilities (Sun
et al., 2024b; He et al., 2024), our analysis re-
veals that incorporating multi-turn data during the
SFT stage significantly improves ULTRAIF’s per-
formance across various benchmarks. As shown in
Table 8, the inclusion of multi-turn data results in
performance gains of 3.01% on Multi-IF, 1.18% on
InfoBench, and 5.10% on LiveBench, compared to
the baseline SFT model without such data. These
improvements highlight the critical role of multi-
turn interactions in training, allowing the model
to better understand conversational context and
dependencies, thereby enhancing its instruction-
following capabilities. Therefore, we incorporate
multi-turn data in our scaling experiments.

Method Multi-IF InfoBench LiveBench

ULTRAIF + SFT 40.12 77.78 46.60
w. multi turn 43.13 79.86 54.20

∆ +3.01 +1.18 +5.10

Table 8: The performance comparison of incorporating
multi-turn data during the SFT stage.

C.3 Case Study
By modeling the distribution of real-world instruc-
tions, ULTRAIF supports effective instruction aug-
mentation while minimizing inconsistencies be-
tween newly added constraints and the original
instructions. Thus, ULTRAIF eliminates the need
to verify whether the constraints are consistent with
the original instructions (Dong et al., 2024; Katz-
Samuels et al., 2024). Additionally, the evalua-
tion questions take over a separate score-filtering
stage. Consequently, ULTRAIF achieves greater
efficiency and incurs minimal costs when constrain-
ing large-scale datasets.

Table 9 shows some examples of augmented
instructions and evaluation questions generated
by ULTRAIF. The original queries come from
ShareGPT dataset.
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Original Query Augmented Instruction Eval Question
Explain merkle tree in
blockchain.

Explain merkle tree in
blockchain to a 10 years
old.

Is the explanation of a Merkle
tree in the context of blockchain
presented in a way that a 10-year-
old can understand?

We are driving in a car. It is cold
outside, windshield is frozen, and
we are on a secluded road to a
small village. This is scene from
a horror movie, and it’s just start-
ing. Describe a scene in great
detail.

We are driving in a car. It is cold
outside, windshield is frozen, and
we are on a secluded road to a
small village. This is scene from
a horror movie, and it’s just start-
ing. Describe a scene in great
detail, and write it in the style
of a gothic horror author.

Does the response evoke a dark,
eerie, and ominous atmosphere,
characteristic of gothic horror?

Design a html form with form
tags.

Design a html form with form
tags for the following 3 user
inputs: first_name, last_name,
date_of_birth.

Does the HTML form include
form tags for exactly three user
inputs: first_name, last_name,
and date_of_birth?

I’m planning to visit Okinawa
Japan from April 7th to April
10th. Do you have any recom-
mendation on what to do while
I’m there?

I’m planning to visit Okinawa
Japan from April 7th to April
10th. Do you have any recom-
mendation on what to do while
I’m there? I’d like to focus on
nature, food, and local culture.

Does the response recommend
activities in Okinawa that focus
on nature, food, and local cul-
ture?

What is the meaning of life? What is the meaning of life? Ex-
plain it in 5 paragraphs.

Is the response to the question ex-
plained in exactly 5 paragraphs?

Write a homepage for translation
business.

Write me a homepage for transla-
tion business in wordpress.

Is the homepage for the trans-
lation business designed using
WordPress?

Table 9: Examples of ULTRAIF’s data pair.
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