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Abstract

Large language models (LLMs) are capable
of generating coherent summaries from very
long contexts given a user query, and extracting
and citing evidence spans helps improve the
trustworthiness of these summaries. Whereas
previous work has focused on evidence citation
with fixed levels of granularity (e.g. sentence,
paragraph, document, etc.), we propose to ex-
tract unstructured (i.e., spans of any length)
evidence in order to acquire more relevant and
consistent evidence than in the fixed granularity
case. We show how existing systems struggle
to copy and properly cite unstructured evidence,
which also tends to be “lost-in-the-middle”. To
help models perform this task, we create the
Summaries with Unstructured Evidence Text
dataset (SUnsET), a synthetic dataset gener-
ated using a novel pipeline, which can be used
as training supervision for unstructured evi-
dence summarization. We demonstrate across
5 LLMs and 4 datasets spanning human writ-
ten, synthetic, single, and multi-document set-
tings that LLMs adapted with SUnsET generate
more relevant and factually consistent evidence
with their summaries, extract evidence from
more diverse locations in their context, and
can generate more relevant and consistent sum-
maries than baselines with no fine-tuning and
fixed granularity evidence. We release SUnsET
and our generation code to the public.!

1 Introduction

At the frontier of the capabilities of natural lan-
guage processing (NLP) systems such as large
language models (LLMs) is the ability to han-
dle long contexts such as books and research pa-
pers, and summarize them based on queries (Koh
et al., 2023; Su et al., 2024; Beltagy et al., 2020;
Reid et al., 2024). While LLMs have progressed
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Figure 1: Summarization with unstructured evidence
requires a model to retrieve spans of any arbitrary length
from the context to support individual sentences in the
summary. Example given from Llama 3.1 8B trained on
our dataset (SUnsET).

much on this (Edge et al., 2024), people prefer
traditional retrieval sources (e.g., search engines)
for critical queries due to transparency and prove-
nance (Worledge et al., 2024). Citing evidence in
the summary addresses this, with prior work first
segmenting the context into spans at fixed levels or
granularity (e.g., sentences or documents, see Li
et al. 2023) and having models select evidence from
among these segments to support the summary. As
has been noted both in work on multi-document
summarization (Ernst et al., 2024; Xiao, 2023) and
automated fact checking (Wan et al., 2021), this ap-
proach is suboptimal for acquiring the most salient
text in the context to support the summary, resulting
in either too much or not enough information. In
order to improve the precision of evidence in long-
context query focused summarization (LCQFS),
we propose to study unstructured evidence cita-
tion, where any span of arbitrary length within the
context can be used as evidence.
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In the unstructured evidence setup, a model must
first copy spans from the context and subsequently
use those spans as evidence in the summary (see
Figure 1). As we will show, simply prompting
LLM:s to perform this task with no other interven-
tion leads to poor performance. Thus, we need to
adapt models, e.g. through fine-tuning or in-context
learning. For this, no suitable training data ex-
ist which consists of examples of long documents,
queries, summaries, and extracted evidence point-
ing to arbitrary spans in the documents. Based on
the size and cost of other datasets for LCQFS (Asai
et al., 2024; Laban et al., 2024; Santosh et al.,
2024), this would take an extensive amount of time,
money, and expertise to create manually.

To address this, we present a synthetic dataset
called the Summaries with Unstructured Evidence
Text dataset (SUnsET). SUnsET is generated using
anovel pipeline, resulting in long documents paired
with queries, summaries, and evidence spans. We
show that the data in SUnsET are high quality
and diverse, comparable to human written data.
Using SUnsET, we perform experiments across 5
models and 4 test datasets (including single- and
multi-document, human and synthetic data), lead-
ing to the following findings: 1) for base LLMs
with no fine tuning, extracting and citing unstruc-
tured evidence is challenging, and evidence is often
lost-in-the-middle; 2) training on documents with
shuffled structure (facilitated by SUnsET) can help
mitigate lost-in-the-middle, and 3) learning to cite
unstructured evidence improves citation accuracy
and coverage over fixed-granularity evidence, and
additionally improves summary quality.

In sum, our contributions are:

* A synthetic dataset (SUnsET) generated using
a novel pipeline

* The first study on unstructured evidence cita-
tion for LCQFS, demonstrating that models
adapted with SUnsET produce higher quality
evidence and summaries than baselines

* An analysis of and method to reduce the lost-
in-the-middle problem with unstructued evi-
dence

2 Challenges in LCQFS

LCQFS requires a model to be able to simultane-
ously ingest a large number of context tokens (pos-
sibly from multiple documents), retrieve and attend
to relevant information in this context given a query,
and integrate this information into a factually con-

Fixed-Granular Single Sentence Citation:
SUMMARY SNIPPET: ...[48] explains that the
legend of the Ghost Ship is often told by space
men as a cautionary tale....

EVIDENCE: [48] He had heard it spoken of in
whispers by drunken space men and professional
tellers of fairy tales.

Unstructured Citation:

SUMMARY SNIPPET: ...he, like the ship’s for-
mer crew, is doomed to wander in space, never
able to return to Earth, a haunting reminder of
what he has lost and what he can never have [2]...

EVIDENCE: [2] Doomed for all eternity to wan-
der in the empty star-lanes, the Ghost Ship
haunts the Solar System that gave it birth. And
this is its tragedy, for it is the home of spacemen
who can never go home again.

Figure 2: Examples of fixed-granular and unstructured
evidence generated by models in our study. Fixed gran-
ular citations may include irrelevant or not enough infor-
mation to support their citing sentences. Unstructured
evidence allows for more flexible and precise evidence.

sistent and relevant summary. LLMs, with their
increasingly large context sizes, have proven to be
particularly adept at performing this task (Zhang
et al., 2024a; Edge et al., 2024; Russak et al., 2024).
Yet, a number of challenges remain, both in deal-
ing with long contexts and with producing query-
focused summaries (Li et al., 2024; Russak et al.,
2024; Bai et al., 2024; Liu et al., 2024b; Shaham
et al., 2023; Ravaut et al., 2024; Laban et al., 2024;
Worledge et al., 2024; Ji et al., 2023; Ernst et al.,
2024). The main foci of our work are evidence at-
tribution (Laban et al., 2024; Worledge et al., 2024;
Lietal., 2023; Ernst et al., 2024; Fierro et al., 2024)
and evidence being lost-in-the-middle (Liu et al.,
2024b; Ravaut et al., 2024), described next.

2.1 Evidence Attribution

Improving the ability of LLMs to both generate
relevant summaries and provide accurate attribu-
tions has the potential to help improve their use-
fulness, transparency, and trustworthiness. Re-
cent work has started to explore this direction
for LCQFS, including SummHay (Laban et al.,
2024) and OpenScholar (Asai et al., 2024). How-
ever, most works focus on fixed-granularity evi-
dence (e.g., spans, sentences, paragraphs, or doc-
uments, Li et al. (2023)). Being able to flexibly
cite evidence of any arbitrary length can lead to
higher quality summaries which use precise pieces
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of evidence from the context (Wan et al., 2021;
Ernst et al., 2024; Xiao, 2023), as opposed to full
documents which contain irrelevant information or
individual sentences which may contain not enough
information (see e.g., Figure 2). To the best of our
knowledge, we provide a first study on unstructured
evidence citation in LCQFS with LLMs.

2.2 Lost-in-the-Middle

LLMs suffer from positional preferences in their
learned attention (Liu et al., 2024b), oftentimes pre-
ferring early or late tokens in their context (Zhang
et al., 2024b). While this problem was originally
demonstrated on retrieval-augmented-generation
(RAG) tasks with explicit answers such as question
answering, follow-up work has shown its persis-
tence in more abstractive tasks such as summariza-
tion (Ravaut et al., 2024) and query focused multi-
document summarization (Laban et al., 2024). A
number of solutions have been proposed, most of
which rely on manipulating either the positions
of tokens in the context or the positional embed-
dings of LLMs in order to remove their intrinsic
bias (Wang et al., 2025; He et al., 2024; Zhang
et al., 2024b). We explore and document this prob-
lem at the level of unstructured evidence citation,
demonstrating how evidence is extracted unevenly
across documents, and how this problem can be
mitigated using purely synthetic data.

3 Learning to Use Unstructured Evidence

Our task is: given a query about a long input con-
sisting of one or more documents, generate a re-
sponse to the query which cites arbitrary length
text spans from the input. This introduces chal-
lenges over the fixed-granularity case (Laban et al.,
2024; Asai et al., 2024; Li et al., 2023), as targeted,
precise evidence spans must be accurately copied
from the context which are relevant and consistent
with the summary sentences. While challenging,
this can lead to summaries with more accurate and
supportive evidence (Ernst et al. 2024).

Large scale synthetic datasets are useful for fine-
tuning task specific models at a lower cost than
manual annotation (Ziegler et al., 2024; Honovich
et al., 2023; Wang et al., 2023; Chen et al., 2024;
Xu et al., 2024). To train LLMs to use unstructured
evidence, we create SUnsET, a synthetic dataset
based on a novel inductive generation pipeline.
Training is performed using adapters (Houlsby
et al., 2019) to improve unstructured evidence ci-

P1. Titles: Generate N unique titles of fiction
and non-fiction documents.

P2. Document outline: Given a title, generate
an outline broken down into discrete sections.
P3. Queries, summaries, and evidence: Given
a document title and outline, generate 5 ques-
tions, 5 responses, and supporting passages that
will be included in the document.

P4. Document sections: Generate each section
of the document one at a time. Ensure that evi-
dence passages are included verbatim.

P5. Refinement: For each (question, summary,
evidence) tuple, refine the summary and evi-
dence based on the document.

P6. Validation: For each (question, summary,
evidence) tuple, validate that the summary fully
addresses the question, is faithful to the docu-
ment, and includes inline attribution to evidence
passages.

Figure 3: Six stage inductive data generation pipeline.
The full prompts for each stage are given in Appendix
A Figure 9 - Figure 17.

tation and mitigate the lost in the middle problem.
For the latter, previous work has shown that fine-
tuning with data augmentation (e.g., shuffling doc-
uments; Zhang et al., 2024b) can help achieve this.
Given this, we construct SUnsET so that documents
are modular: documents are broken down into dis-
crete sections, so that data augmentation through
shuffling document sections (thus shuffling global
structure) is possible. We first present the induc-
tive pipeline approach used to generate SUnsET,
followed by our two fine-tuning schemes.

3.1 Generating SUnsET

Our pipeline generates long documents paired
with queries, and summaries which address those
queries. Each summary additionally includes ci-
tations which reference relevant text spans in the
original document. We make several design deci-
sions intended to overcome known problems in syn-
thetic data generation, including the potential for
low diversity (Honovich et al., 2023; Wang et al.,
2023) and labeling errors (Chen et al., 2024). This
includes taking a six stage pipeline approach which
generates synthetic data inductively, and validation
steps which refine summaries, refine evidence, and
reject bad summaries and evidence.

The full generation process is described in Fig-
ure 3, with prompts provided in Appendix A. Di-
versity in document topic and type is accomplished
by first generating document titles which seed the
subsequent steps. We inductively build up each
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Example Document Snippet

Title: “Writing the Unwritable”

...They demonstrate that while writing the un-
writable is fraught with difficulty, it can also
yield transformative insights that resonate pro-
foundly with readers. Writing the unwritable
requires a recognition of the limitations of lan-
guage, and a willingness to push against those
boundaries. This requires not merely acceptance
of silence or ambiguity but a bold declaration
that some truths demand to be told, no matter
how fraught the endeavor may be....

Example Query

What does it mean to write the unwritable, and
what historical examples illustrate this concept?
Example Summary Snippet

To write the unwritable involves confronting and
articulating subjects and experiences that resist
verbal expression, often due to limitations of
language, social taboos, and the impact of cen-
sorship [1][2][3].

Example Evidence Snippet

[1] Writing the unwritable requires a recognition
of the limitations of language, and a willingness
to push against those boundaries.

Figure 4: Snippets from a SUnsET document.

document, starting with the queries, summaries,
and evidence passages. When generating evidence,
each evidence passage is assigned to a section in
the document so that evidence can be distributed
precisely. The summaries, queries, and assigned
evidence are then used as context to generate each
section of the document one at a time. This makes
documents modular, which we take advantage of
during training to study lost-in-the-middle. Follow-
ing this, the queries, summaries, and evidence are
refined by using the final document as context. Fi-
nally, we filter out poor summaries and evidence by
prompting to predict if the summaries fully address
the query and are fully supported by the document
(see Figure 4 for an example). In total we gener-
ate 2,352 synthetic documents, giving us 11,309
(document, question, summary) tuples.

Cost Comparison Manually annotating data of
the kind in SUnsET is highly expensive, requir-
ing annotators to read long sets of documents with
long summaries and verifying the quality of the
references. As a comparison, SQUALITY (Wang
et al., 2022) is a similar dataset to ours in terms of
document and response size, and they paid Upwork

SUnsET | Non-Pipelined |  Title + Doc

Q S DJ|Q S D|Q S D
WVl 075 0.84 0.82 [0.67 0.80 035|063 078 0.35
[y 0.81 073 0.68 [0.73 0.72 0.04 | 0.66 061 0.04
IS 13.45 226.5 3767.4|9.85 23.79 474.8|10.21 24.45 433.8

Table 1: Statistics and diversity metrics of synthetic
data. Metrics are average type-token ratio (TTR) Best-
gen (2023), embedding cosine distance (Cos), and aver-
age word length (Len). Columns differentiate between
(Q)uestion, (S)ummary and (D)ocument metrics in each
dataset. Bold is highest diversity across datasets.

Dataset Topic Diversity

Non-Pipelined 0.506

Title + Doc 0.356

SQUALITY (human, stories) 0.705
LexAbSumm (human, legal text) 0.673
ScholarQABench (human, scientific docs) 0.695
SUnsET 0.679

Table 2: Topic diversity scores using the approach from
Terragni et al. (2021). Shading indicates magnitude of
diversity score.

workers $13 to write each response, followed by $8
to review each response in their data. As we gener-
ated 11,309 responses in SUnsET, this alone would
have cost $237,468. In contrast, generating SUn-
sET, including documents, questions, responses,
and evidence, cost around $200.

Evaluation We evaluate both the quality and di-
versity of data generated using this pipeline. For
quality, we asked two independent annotators (NLP
researchers unaffiliated with the project) three ques-
tions for 100 (question, summary, evidence) tuples:
Q1) Does the summary address the question?; Q2)
Is the summary well structured and organized; and
Q3) Does the evidence fully support the summary?
Annotators responded to each question with one of
the following values: 1 - Not at all; 2 - Somewhat;
3 - Completely. We find that the data is very high
quality, acquiring scores of 2.99 for Q1, 2.97 for
Q2, and 2.90 for Q3, with an exact agreement rate
of 93.67% across all 300 annotations.

To validate SUnsET diversity, we generate two
baseline datasets. The first is generated by combin-
ing all the steps in Figure 3 into one prompt, forcing
the model to simultaneously perform all tasks to
generate each example (called Non-Pipelined). The
second includes a title generation step to seed each
document (called Title + Doc, see Figure 18 in Ap-
pendix A for prompts). We compare each dataset
using samples of 100 documents along lexical and
semantic diversity metrics in Table 1. Further, in
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Table 2 we compare the topic diversity (following
Terragni et al. 2021) between these datasets, as
well as three human-written datasets: SQUALITY
(Wang et al., 2022), LexAbSumm (Santosh et al.,
2024), and ScholarQABench (Asai et al., 2024),
(see Appendix C. Our approach generates longer
documents with longer summaries than baseline
non-pipelined approaches, which also tend to be
much more diverse. Additionally, our pipeline pro-
duces documents with topic diversity similar to that
of human written datasets.

3.2 Training Complementary Adapters

Previous work has demonstrated that altering the
position embeddings of LLMs either directly or
through fine-tuning can help to overcome positional
biases (Hsieh et al., 2024; Zhang et al., 2024b). We
design SUnsET documents so that they are mod-
ular, having global coherence at the level of the
full document and local coherence at the level of
discrete sections. Given this, we experiment with
position-aware and position-agnostic training in
order to observe their impact on evidence selec-
tion and quality, as well as summary quality. For
position-aware training, we concatenate all docu-
ment sections together in their natural order to con-
struct the context, while for position-agnostic train-
ing, we shuffle the document sections before con-
catenating them, thus randomizing the global struc-
ture of the position embeddings while maintaining
the local structure. This gives us two adapters for
each model in our experiments. The prompt we use
for training is provided in Appendix A Figure 19,
and all training is performed using supervised fine-
tuning on SUnsET data using LoRA (Hu et al.,
2022). In all cases we fine tune using the Hugging-
face Transformers implementation of LoRA (Hu
et al., 2022) with a rank and « of 16 applied to all
linear operators of each model.

3.3 Summarizing with Unstructured Evidence

To generate summaries with unstructured evidence,
we use the prompt from Asai et al. (2024), altering
it to include unstructured evidence extraction as a
first step. The full prompt is given in Figure 19
in Appendix A. We use this prompt for both in-
ference and supervised fine-tuning on SUnsET. To
deal with long contexts, we divide-and-conquer
by chunking each document by the model’s max-
imum token length, summarize each chunk, and
finally summarize the summaries. Thus, the out-
put for each (document, query) pair is a (summary,

evidence_list) pair containing the summary and a
list of evidence text from the context.

4 Experiments and Results
Our experiments focus on three research questions:

« RQ1: How well can LLMs extract and use
unstructured evidence?

¢ RQ2: Is evidence lost-in-the-middle?

* RQ3: Does learning to cite unstructured evi-
dence improve summary quality?

Test Data We use four test datasets (full descrip-
tions in Appendix B). These include three human
written datasets, forcing models trained on SUn-
sET to generalize beyond synthetic data. These
are: SQUALITY (Wang et al. 2022, short sci-fi
novels, single document, average context length:
5,200 tokens); LexAbSumm (Santosh et al. 2024,
long legal documents, single document, average
context length: 14,357 tokens); SummHay (La-
ban et al. 2024, synthetic conversations and news,
multi-document, average haystack context length:
93,000 tokens); and ScholarQABench (Asai et al.
2024, Computer Science research papers, multi-
document, average context length: 16,341 tokens).
We present here the average results from sam-
pling evenly across datasets, results on individual
datasets are presented in Appendix D.

Models We test Llama 3.2 1B, Llama 3.2 3B,
Llama 3.1 8B (Dubey et al., 2024), Mistral Nemo
2407, and Mixtral 8x7B.?> We compare four set-
tings for each LLM: base models with fixed granu-
larity evidence (Fixed Gran.), base models with un-
structured evidence citation (Unstruct. Base), train-
ing adapters on SUnsET (+ SunSET), and training
adapters on shuffled SUnsET documents (+ Shuf-
fled). Additionally, we provide an upper bound
estimate on performance using GPT 40 mini with
no fine-tuning.

Evaluation We evaluate our models using au-
toraters (Gu et al., 2024; Zheng et al., 2023; Liu
et al., 2023) along two dimensions. These dimen-
sions are Relevance and Consistency. Given a
source text, a target text, and optionally a query,
Relevance measures how well the target covers the
main points of the source, as well as how much ir-
relevant or redundant information it contains. Con-
sistency measures to what degree the target con-
tains any factual errors with respect to the source.

*Huggingface model IDs are listed in Appendix G Table 8
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Figure 5: Average relevance and consistency of evidence texts with respect to their citation sentences measured
using an autorater (DeepSeek-V3; Liu et al., 2023) based on prompts which have previously undergone human
evaluation for quality (Liu et al., 2025). Bold indicates best performance for a given model; “*” and “+” indicate
statistical significance above the fixed granularity and non-fine-tuned unstructured baselines, respectively, based on

non-overlapping 95% confidence intervals.

Model Exact Match 50% Match # Evidence
Llama 3.2 1B 0.0 35.71 14
+ SUnsET 7.69 43.26 208
+ Shuffle 5.15 22.68 97
Llama 3.2 3B 25.57 90.11 1345
+ SUnsET 52.77 85.62 3720
+ Shuffle 32.99 74.07 2337
Llama 3.1 8B 43.93 83.12 3412
+ SUnsET 78.36 97.21 4690
+ Shuffle 54.53 88.51 4684
Mistral Nemo 2407 5.48 66.13 310
+ SUnsET 82.20 97.29 2107
+ Shuffle 72.38 95.76 1959
Mixtral 8x7B 5.79 91.25 3452
+ SUnsET 33.82 90.47 4208
+ Shuffle 29.29 90.74 4288
GPT-40-mini 11.06 96.32 8159

Table 3: Evidence copy rates. We measure exact string
match (i.e. when the evidence sentence exactly appears
in the context) as well as 50% overlap between the
extracted evidence and the longest common substring.

Both scores are measured on a scale from 1-5 us-
ing DeepSeek-V3 (Liu et al., 2024a).> We use
prompts which have been previously validated to
correlate well with human annotations of relevance
and consistancy (listed in Appendix A Figure 21
and Figure 22) (Liu et al., 2025).

4.1 RQ1: Can LLMs Use Unstructured
Evidence?

Using the datasets and models just described, we
first test how well models can copy and utilize
unstructued evidence (i.e., any span of arbitrary

3We validate the robustness of the ratings from DeepSeek-
V3 in Appendix L.

length from the context). We look at two aspects:
evidence copy accuracy, and evidence quality.

Copy Accuracy To study copy accuracy, we
match each piece of evidence to its longest com-
mon substring (LCS) in the context. We present the
rate of exact evidence match and 50% LCS over-
lap for all models aggregated across all datasets in
Table 3. We see that without fine-tuning, models
struggle to copy evidence from the context. This
includes GPT 40 mini, which only copies perfectly
11% of the time. SUnsET helps models learn to
copy evidence spans in all cases except for the
smallest model (Llama 3.2 1B). We see that the
number of citations also dramatically increases.

Evidence Quality Next, we measure evidence
quality based on the relevance and consistency of
evidence spans with their citing sentences using the
autorater setup previously mentioned. We look at
two aspects: the average citation quality (Figure 5)
and the citation F1 score (Figure 6), which balances
citation quality with the total number of sentences
that contain a citation. We calculate the latter sim-
ilarly to Asai et al. (2024): for a given (summary,
evidence_list) pair, we extract all citations from
each sentence and normalize their relevance and
consistency scores to lie between 0 and 100. For
precision, we average these scores over the number
of citations, and for recall, we average the scores
over the number of sentences in the summary.

We find that the average citation quality of
unstructured evidence is better than fixed gran-
ularity evidence (Figure 5). This validates the
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Figure 6: Relevance and consistency F1 scores. Bold best performance for a given model; “*” and “+” indicate
statistical significance above the fixed granularity and non-fine-tuned unstructured baselines, respectively, based on
non-overlapping 95% confidence intervals.
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Figure 7: Distribution of location of extracted evidence in the provided source context for different methods. Test
dataset evidence location is measured by comparing to reference summaries.

unstructured evidence approach, where flexible ev-
idence extraction enables higher quality citations
to source texts. We also see that models’ ability
to extract quality evidence is improved by SUn-
sET, where our results are on par with GPT 4o
Mini. When balancing citation quality and cita-
tion quantity (Figure 6), we see that learning to
use unstructured evidence with SUnsET leads to
statistically significant improvements over fixed-
granularity and non-fine-tuned baselines across
models. This is particularly the case for medium
to larger models. For smaller models (particularly,
Llama 3.1 1B), simply fine-tuning for such a com-
plex task is insufficient, where all settings struggle

to extract and use evidence. Non-shuffled train-
ing is often better than shuffled training, though
shuffled training also improves citation quality by
a large margin. When balancing for recall, fixed-
granularity evidence tends to be better than unstruc-
tured evidence without fine-tuning, which makes
sense as a model only needs to generate references
in the fixed-granularity case. Thus, the primary
benefits to citation quality by learning from SUn-
sET are two-fold: the quality of the evidence itself
improves, and the rate of citation improves.

4.2 RQ2: Is evidence lost-in-the-middle?

Next, we quantify to what extent unstructured ev-
idence is lost in the middle. For this, we match
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based on non-overlapping 95% confidence intervals.

extracted evidence to its relative location in the
document context (based on 50% LCS overlap)
and plot the distributions in Figure 7. As a point of
reference, we also plot the distribution of summary
sentence locations within the test set documents
by matching ground truth reference summaries to
their relative locations in their context documents.*

We find that evidence is lost in the middle for
all non-fine-tuned models, most often appear-
ing at the beginning or end of the context. This
includes GPT 40 Mini, which has a sharp spike
of evidence in the early context. This stands in
contrast to ground truth summary location distri-
butions, which are uniform in all cases except for
LexAbSumm which has a bias for evidence at the
end of the context. In general, training on SUnsET
without shuffling increases the rate of evidence ex-
traction, and can help decrease the bias. Shuffling
on the other hand, increases the rate of evidence
extraction and decreases the bias in all cases ex-
cept for Mixtral 8x7B. Thus, the modular nature of
SUnsET documents, where global structure can be
shuffled while local structure is maintained, can be
utilized to help reduce positional biases in evidence
selection, better reflecting the natural distribution
of evidence based on reference data.

4.3 RQ3: Is Summary Quality Improved?

Finally, we test if using unstructured evidence has
a positive impact on summary quality. To do so,
we measure the relevance and consistency of ev-
ery summary with respect to its context and query.

“We find the relative location using cosine similarity of
S-BERT sentence embeddings (Reimers and Gurevych, 2019)

Our results are presented in Figure 8 (results on
individual datasets are given in Appendix D).

First, for fixed granularity evidence the sum-
maries tend to be similar or slightly lower in
quality than unstructured with no fine-tuning,
further motivating the unstructured approach.
This is likely because the unstructured evidence
task has two subtasks: salient evidence selection,
followed by summarization, which has been linked
to improvements in summary quality (Ernst et al.,
2024). Second, we find that training on SUnsET
leads to statistically significant improvements in
summary quality over both baselines. Standard
and shuffled training on SUnsET generally lead
to similar gains in performance over unstructured
with no fine-tuning, meaning the selection of which
approach comes down to a tradeoff between over-
all evidence quality (where standard has a slight
edge) and evidence diversity (where shuffled has
an edge). To observe the effect of number of train-
ing samples from SUnsET, we perform an ablation
where we fine-tune on different number of samples
in Appendix E Figure 23 and Figure 24, finding that
best performance only requires around 3k samples.
Third, by measuring Pearson’s R correlation be-
tween citation and summary scores, we find a
moderate correlation (0.35 for Relevance and
0.34 for Consistency), demonstrating a relation-
ship between the quality of the citations and the
quality of the summaries. Ultimately, we show
the unstructured evidence setup can lead to better
evidence and summaries, and demonstrate the util-
ity of SUnsET for learning the task across diverse,
human written data.
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5 Discussion and Conclusion

Citing precise evidence spans of any arbitrary
length for LCQFS has the potential to improve
user trust in LLM summaries, as well as the qual-
ity of the evidence. Our study highlights salient
challenges in this task, contrasts it with the fixed-
granular approach, and demonstrates an effective
method towards solving it. With no intervention,
evidence is lost-in-the-middle, which we show
across many settings for the case of unstructured
evidence. They additionally struggle to accurately
copy arbitrary length evidence from their contexts
by default. Our proposed dataset, SUnsET, serves
as a useful and inexpensive synthetic dataset to mit-
igate these issues. This intervention is at training
time, meaning the inference cost is lower than for
complex reasoning and inference chains. In addi-
tion to improving evidence quality, overall sum-
mary quality is improved. We hope this work can
be built upon to help create more reliable, trustwor-
thy, and useful summarization systems.
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Limitations

While our approach offers several benefits, there
are notable areas to improve upon. Generating
unstructured evidence directly can be prone to hal-
lucination, while it is critical for the evidence to be
exactly correct. A more precise RAG approach may
offer some benefits. While shuffling during train-
ing helps the model to pull evidence more evenly,
this also reduces the benefits in terms of evidence
quality. A more targeted approach based on di-
rectly altering positional embeddings may be more
appropriate for this (Hsieh et al., 2024). We ex-
periment with documents using a fixed number of
sections in this study; allowing for variable-length
documents could deliver greater improvements in
performance. Additionally, we acknowledge poten-
tial prompt bias influencing model outputs, and that
synthetic data may have characteristics which dif-
fer from human-written texts. Despite our efforts
to mitigate these effects, they persist as a challenge,
and using techniques such as APO (Pryzant et al.,

2023) could address these issues. Finally, while
SUnsET data is domain agnostic, it could be worth
exploring how domain-aware data could help for
more targeted applications (e.g., in the legal do-
main).

Ethical Implications

LLMs are capable of generating convincing sum-
maries from long contexts, and learning to gen-
erate unstructured supporting evidence from the
source context can help improve their reliability
and transparency. This approach is more flexible
than the fixed-granularity approach, but generation
will likely always be prone to errors. Validating
that generated evidence is authentic is then cru-
cial, as an incorrect citation presented as a ground
truth fact could potentially be more harmful than
no citation at all.

Additionally, synthetic data is clearly useful for
learning to cite unstructured evidence. But syn-
thetic data comes with its own ethical issues, includ-
ing plagiarism and copyright infringement. More
work on LLM trust and safety is needed to effec-
tively mitigate this, as we are benefitting techno-
logically from unknowing people’s free labor.
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A List of Prompts

The full set of prompts used in this study are listed
in the figures below.

A.1 Synthetic Data Generation Prompts

The prompts used to generated synthetic data are
given in Figure 9 — Figure 17.

A.2 Training and Inference Prompt

The prompt used for training and inference is given
in Figure 19

A.3 Evaluation Prompts

The prompt used to measure relevance is given in
Figure 21 and the prompt used to measure consis-
tency is given in Figure 22.

B Full Dataset Descriptions
The test datasets we use in this study include:

SQuALITY (Wang et al., 2022) is a single-
document task created from public domain short
sci-fi stories where expert annotators create origi-
nal summaries, providing both an overall narrative
and detailed responses to specific questions, chal-
lenging models to capture broad context as well as
fine-grained information.

1850


https://doi.org/10.18653/V1/2021.EACL-DEMOS.31
https://doi.org/10.18653/V1/2021.EACL-DEMOS.31
https://doi.org/10.18653/V1/2021.ACL-LONG.83
https://doi.org/10.18653/V1/2021.ACL-LONG.83
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.75
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.75
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.75
https://doi.org/10.18653/V1/2023.ACL-LONG.754
https://doi.org/10.18653/V1/2023.ACL-LONG.754
https://openreview.net/forum?id=fvkElsJOsN
https://openreview.net/forum?id=fvkElsJOsN
https://arxiv.org/abs/2411.17375
https://arxiv.org/abs/2411.17375
https://arxiv.org/abs/2411.17375
https://doi.org/10.18653/V1/2023.ACL-INDUSTRY.37
https://doi.org/10.18653/V1/2023.ACL-INDUSTRY.37
https://openreview.net/forum?id=CfXh93NDgH
https://openreview.net/forum?id=CfXh93NDgH
https://openreview.net/forum?id=CfXh93NDgH
https://doi.org/10.1162/TACL_A_00632
https://doi.org/10.1162/TACL_A_00632
https://arxiv.org/abs/2404.01430
https://arxiv.org/abs/2404.01430
https://arxiv.org/abs/2404.01430
http://papers.nips.cc/paper_files/paper/2023/hash/91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_Benchmarks.html
https://arxiv.org/abs/2409.02098
https://arxiv.org/abs/2409.02098
https://arxiv.org/abs/2409.02098

P1: Title Generation

Imagine that you must write a book. This book can be either fiction or non-fiction.
You can select any subject to write your book about. Please make the book interesting.

Please write a list of 100 possible book titles.
Please only generate the title for each book.

Please include a mix of fiction and non-fiction, and please try to cover as many genres as possible.

Please make each book title unique.

Please make the style of each book title as different as possible, and don’t repeat title styles.
Please generate titles for books which will have a broad range of appeal.

Please generate titles for books which will require a broad range of reading levels.

Please try to make each title as different as possible.

Please do not include many titles with a colon (:).

{prev_titles_prompt}

**OUTPUT FORMAT**

Please separate each book title with a newline character (“\n’)

Figure 9: Title generation prompt. {prev_titles_prompt} is filled with prompts of previously generated titles.

LexAbSumm (Santosh et al., 2024) is a single-
document task which contains legal judgments
from the European Court of Human Rights, focus-
ing on aspect-specific summaries that distill com-
plex legal arguments.

SummHay (Laban et al., 2024) is a multi-
document task composed of large-scale “haystacks”
of documents with embedded “insights” which are
relevant to the queries.

ScholarQABench (Asai et al., 2024) is a multi-
document task focused on scientific literature, com-
prising expert-crafted queries and extended an-
swers drawn from a broad corpus of open-access
research papers.

C Topic Diversity Comparison

We have measured the topic diversity of SUnsET
using the topic diversity approach from (Terragni
et al., 2021). This uses LDA to identify 200 top-
ics across each document, sums up the number
of unique words in the first 200 words of each
topic, and averages this over a maximum of 200
words * 200 topics (so the score is 1 if each
topic has at least 200 unique words, see https:
//github.com/MIND-Lab/0CTIS). We compare
this to the two baseline datasets, as well as the hu-
man test data, finding that the data in SUnsET is
indeed diverse and comparable to human data.

D Results on Individual Datasets

Results on individual datasets are given in Table 4
(citation precision), Table 5 (citation recall), and
Table 6 (F1 score based on citation precision and
recall). We see that citation precision is almost
uniformly improved across datasets when using un-
structured evidence. In other words, when evidence
is used within a summary, the evidence is higher
quality than fixed granularity evidence in all but 3
cases. This quality is generally further improved
by learning from SUnsET. Recall is also improved
by learning from SUnsET, and is often better than
fixed granularity evidence where a model simply
needs to generate reference numbers (as opposed
to unstructured where the evidence must also be
copied, making the task more challenging). For
Llama 3.1 8B and Nemo, overall F1 score is bet-
ter across all datasets, while for Mixtral and the
smaller Llama models the results are mixed across
datasets. This is generally because the recall of
the fixed granular case tends to be slightly higher,
despite referencing lower quality evidences on aver-
age. However, when looking at the averages across
datasets (Figure 6), we see that learning to cite un-
structured evidence with SUnsET leads to the best
overall performance.

For summary quality (Table 7), unstructured ev-
idence leads to the best summaries across models
and datasets most often, including the best over-
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P2: Outline

Imagine that you must write a book. This book can be either fiction or non-fiction.

This is the title of your book: {title}

Please write an outline of this book. Please include the title of the book, and a list of chapters or
sections that the book will contain. The book should have 6 sections or chapters.

**OUTPUT FORMAT**

Please output the outline as a JSON object where the keys are the chapters and the values are a

brief outline of the chapter.

In other words, as:

" python

{ ‘Chapter 1’: ‘Chapter 1 outline’,
‘Chapter 2’: ‘Chapter 2 outline’,

‘Chapter N’: ‘Chapter N outline’
poes

Figure 10: Outline generation prompt. The {title} field is replaced with the title of one document.

all performance with SUnsET fine-tuned models
within each dataset. The results on smaller models
are more mixed across datasets, likely due to the
difficulty for smaller models to learn the unstruc-
tured evidence task in general. Learning from SUn-
sET appears to be especially useful for improving
summaries on multi-document datasets (SummHay
and SQUALITY), which always see improvements
over the unstructured baseline.

E Training Data Requirements

To observe the impact of number of SUnsET train-
ing samples on summary quality, we plot relevance
and consistency vs. number of training samples for
SQUALITY and ScholarQABench in Figure 23 and
Figure 24. Interestingly, we find that performance
generally peaks with only a modest amount of data
(around 1k-3k samples depending on the model)
at which point performance plateaus or slightly
drops. It is likely that performance peaks when
there is enough data to largely cover the distribu-
tion of data which is relevant for learning the task.
Thus, more data does not result in more gains in
performance, leading to the plateaus we see. We
could potentially see additional performance gains

by controlling the style of document generated, for
example generating data which matches the target
domain.

F Data Availability Statement

We create SUnsET in this work, as well as the code
to generate SUnsET, which we release freely to
the public under the MIT license.” The data are
generated as sets of fiction and non-fiction books
in English.

G Model Descriptions

Table Table 8 presents the full set of Huggingface
model identifiers for the LLMs used in our experi-
ments. The model cards containing relevant infor-
mation on number of parameters, context length,
vocabulary size, etc. are available on their model
page on the Huggingface website. All training and
inference are performed using 1-2 Nvidia A100
GPUs with 48GB of memory. Prior to training
we ran a brief hyperparameter search to find the
parameters used in this study, sweeping over the
following values (selected values in bold):

Shttps://github.com/dwright37/
unstructured-evidence-sunset

1852


https://github.com/dwright37/unstructured-evidence-sunset
https://github.com/dwright37/unstructured-evidence-sunset

P3.1: Queries Prompt

Imagine that you must write a book. You are given the following outline of the book

{outline}

Please write a list of 5 questions about the book which summarize the book.

Please try to cover different general aspects of the content.

Please make the questions very concise.

**OUTPUT FORMAT**

Please separate each question with a single newline character (‘“\n”)

Figure 11: Query generation prompt. The {outline} is filled with the outline generated by Figure 10.

* Learning rate: [le-6, 5e-4] (5e-5)

e Batch size: {2, 4, 8, 16, 32}

e Warmup steps: {0, 10, 50, 100, 150, 200, 300}
e Train epochs: {1, 2, 3,4, 5, 8, 10, 12, 20}

e Lorarank: {2, 4,8, 12, 16, 32}

H Software Package Parameters

* NLTK (Bird, 2006): We use the punkt sen-
tence tokenizer for sentence tokenization

* VLLM: We use top p sampling at 90% with
a temperature of 1. for inference. We set
maximum new generated tokens to 2,000

* OpenAl GPT 40 Mini: We use top p sampling
at 90% with a temperature of 1 for all prompts
except title generation (temperature set to 1.2)
and filtering (deterministic highest probability
token output).

* DeepSeek-V3: We use top p sampling at 90%
with a temperature of 1 for all prompts.

I Evaluation Robustness

We use autoraters (i.e. LLM as a judge) for much
of our evaluation. While we use a previously val-
idated prompting and modeling setup (Liu et al.,
2025), we use DeepSeek-V3 as our autorater due
to its high performance and low cost. We validated
the robustness of DeepSeek-V3 as an autorater by
taking a sample of 710 outputs summaries from
our evaluation and re-evaluating them with GPT 4o
Mini (Liu et al., 2023). We measure the Pearson’s
R correlation between the ratings (2 ratings per

summary) given by GPT 40 mini and DeepSeek-
V3, finding a strong correlation of 73.29. This
indicates the robustness of our evaluation which
relies on DeepSeek-V3.
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SLTS | LASS | SMHM | SQBM

Model Relprec  Conprec ‘ Relprec  Conprec ‘ Relprec  Conpyec ‘ Relprec  Conprec
Llama 3.2 1B 12.50 12.50 30.94 20.51 50.00 0.00 37.50 50.00
Fixed Gran. 19.86 4.10 39.22 25.86 25.94 8.88 21.82 11.47
+ SUnsET 18.80 10.61 41.27 32.05 0.00 0.00 45.18 24.08
+ Shuffled 28.60 13.01 50.34 48.86 50.00 0.00 62.38 48.20
Llama 3.2 3B 34.27 20.34 62.30 55.77 54.34 44.53 52.39 39.86
Fixed Gran. 34.84 15.24 62.02 56.35 24.59 24.91 35.86 29.97
+ SUnsET 45.17 25.65 61.16 53.96 64.75 59.25 52.91 45.00
+ Shuffled 44.28 27.20 62.76 54.42 65.76 62.84 60.98 56.37
Llama 3.1 8B 42.69 27.70 67.18 61.79 62.72 57.14 49.95 39.24
Fixed Gran. 44.45 26.84 59.66 54.80 39.14 39.00 50.21 49.70
+ SUnsET 50.91 33.71 75.21 70.45 74.31 70.96 67.36 61.17
+ Shuffled 53.13 36.79 73.78 68.99 70.55 67.15 64.70 61.12
Mistral Nemo 2407  31.67 14.00 60.27 53.41 73.78 T73.78 69.49 61.38
Fixed Gran. 32.44 19.12 60.28 54.00 29.59 25.97 37.86 28.03
+ SUnsET 57.34 36.90 78.96 78.69 73.62 70.84 71.44 66.50
+ Shuffled 56.07 38.18 78.97 78.39 70.58 65.37 64.97 61.20
Mixtral 8x7B 47.82 32.79 81.58 83.76 68.54 66.53 53.67 48.02
Fixed Gran. 43.78 24.11 64.14 61.01 37.43 29.62 61.32 67.63
+ SUnsET 50.74 35.96 82.94 82.94 69.77 69.82 60.82 57.49
+ Shuffled 52.52 38.71 84.19 85.29 73.80 73.33 61.94 59.22
GPT 40 Mini 60.11 52.11 77.92 74.76 77.09 75.57 57.49 49.18

Table 4: Relevance and consistency precision of evidence sentences with respect to their citances. Precision
measures the average citation quality within a given summary. Bold indicates best overall performance, Underline
indicates best performance for individual models. S indicates single document tasks, M indicates multi-document.
SQis SQUALITY, LAS is LexAbSumm, SMH is SummHay, and SQB is ScholarQABench
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P3.2: Initial Summaries and Evidence
Imagine that you are writing a book. This is an outline of the book

{outline}
Please address the following question about the book:
{question}

Please write a summary which addresses the question. Please make the summary as specific and
detail oriented as possible. Please include actual examples from the book when possible. Please do
not write more than is absolutely necessary.

After you write the summary, please write exact quotes and passages you will include in the book,
from which the summary could be written. Please include at least {n_evidence} of these passages,
which you intend to include verbatim in the book. Please indicate the exact chapter where the
passages will be written in a separate field.

**OUTPUT FORMAT**

Please a JSON object with two fields: “summary”, “evidence”, and “chapter”. The summary field
should have the summary. The evidence field should have a list of evidence sentences from the
book. The chapter field should have the exact chapter where the corresponding evidence sentence
will appear. Please only indicate the chapter number for this field. There should be the same
number of elements in the “evidence” field as there are in the “chapter” field. In other words, as:

* “python
{
‘summary’: ‘Summary text’,
‘evidence’: [‘evidence sentence 1’, ‘evidence sentence 2, ...|
‘chapter’: [1, 4, ..]
}

(NN

Figure 12: Initial summary and evidence generation prompt. The {outline} and {question} fields are filled by
the output of the previous prompts, while the {n_evidence} field is filled by a random number between 5 and 10.
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P4.1: Document Section Generation
Imagine that you must write a book. You are given the following outline of the book

{outline}

Please write the following chapter of the book in its entirety:

{chapter}

Please also include the following sentences somewhere in the chapter. You must include these
passages verbatim (i.e., EXACTLY as is). It is imperative that you do this, otherwise the book will
be incomplete:

{evidence}

**OUTPUT FORMAT**

Please wrap the content of the chapter you write in a markdown codeblock, in other words, like:

(NN

content

(NN

Figure 13: Document section generation prompt. The {chapter} field is filled by the title of the section being
generated, as given in the outline.

P4.2: Evidence Retrieval Prompt
Please read the following book chapter:

{chapter}

The following passage should have been included in the chapter but was not:
{passage}

Please retrieve the passage from the chapter which is CLOSEST to the given passage.
**QUTPUT FORMAT**

Please wrap the passage in a markdown codeblock, in other words, like:

ENINEN

passage

ENINEN

Figure 14: Prompt to retrieve evidence from the document when previously generated evidence is not included
verbatim. The {passage} field is filled with one piece of evidence that was supposed to be included in the section.
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P5.1: Refinement Prompt
Imagine that you are giving an exam about a book. This is the book

{book}

On an exam, you are asked to summarize the book with respect to this question:
{question}

This is the summary that you are grading:

{summary}

Please rewrite this response so that it is totally accurate and fully addresses the question.

Please make the response as specific and detail oriented as possible. The following passages from
the document should help in crafting the response:

{passages}
**OUTPUT FORMAT**

Please wrap the content of the summary you write in a markdown codeblock, in other words, like:

ENINEN

content

ENINEN

Figure 15: Summary refinement prompt after content has been generated. The {book} field is filled with the entire
document, where each section is concatenated together. Other fields are filled with the output from the previous
prompts.
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P5.2: Citance generation
Imagine that you have written a research essay about a book. You have also extracted passages
from the book which you used to write the essay.

Your job is to add citations to the essay which properly reference the passages that you have
extracted.

Here is the essay:

{essay}
And here are the evidence passages from the book, each of which is given a number:
{evidence}

Please add citations to all citation-worthy statements in the essay using the numbered evidence
list, by indicating the citation numbers of the corresponding evidence. More specifically, add the
citation number at the end of each relevant sentence in the essay before the punctuation mark e.g.,
‘This work shows the effectiveness of problem X [1].” when the passage [1] in the evidence list
provides full support for the statement. Only add a citation if it is fully relevant and unambiguously
supportive of that sentence. Not all evidences may be relevant, so only cite those that directly
support the statement. Please do not add any explanations or justifications for the evidence, simply
indicate the evidence numbers if they are relevant. If a sentence does not use any of the provided
evidence, please simply copy the sentence as is and do not add anything to the end of it. If multiple
evidences support a statement, please cite them together (e.g., [1][2]). For each citation-worthy
statement, you only need to add at least one citation, so if multiple evidences support the statement,
just add the most relevant citation to the sentence.

Figure 16: Prompt to add citation references to sentences based on extracted evidence. The {essay} field is filled
with a summary and the {evidence} field is filled with its corresponding evidence.
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P6: Validation Prompt
Imagine that you are judging the quality of a summary of a book. This is the book

{book}

Here is a question about the book:

{question}

And here is the summary which addresses the question:

{summary}

Please judge if you think that the summary meets ALL of the following criteria:

1) The summary is absolutely faithful to the book (in other words, all of the information in the
summary is contained in the book)

2) The summary FULLY addresses the question

Please think carefully about your answer. If you think that ALL of the criteria are met, please
simply respond with “YES”.

Otherwise, please simply respond with “NO”.

Figure 17: Prompt to add citation references to sentences based on extracted evidence. Fields are filled with the
output of previous prompts.
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Baseline Non-Pipelined Prompt
Imagine that you must write a book. This book can be either fiction or non-fiction.

You can select any subject to write your book about. Please make the book interesting.
Please perform the following tasks and output everything in as a JSON object:

Please write the title of the book.
{title_prompt}

Then, please write an outline of this book. Please include a list of chapters or sections that the book
will contain. The book should have 6 sections or chapters.

Then, please write a list of 5 questions about the book which summarize the book.
Then, please write a summary for each question which addresses the question.

Then, please write the entire contents of the book. The book should be long, and you should write
out the ENTIRE content.

Then, extract specific passages from the book for each summary which serve as evidence for the
summary.

**QUTPUT FORMAT**
Please create a well-formatted JSON object with the following fields:

title: The title of the book (formatted as a string)

outline: The outline of the book (formatted as a string)

questions: The questions about the book (formated as a list)

summaries: The summaries addressing each question (formatted as a list of the same length as
“questions”)

document: The full book (formatted as a string)

evidence: A list of evidence passages (formatted as a list of the same length as “questions”)

Figure 18: Baseline non-pipelined prompt that we use as a point of comparison. The field {title_prompt} is
empty for the baseline without diversity enforced, and filled with a list of previous titles and the prompt “Please do
not use any of the following titles:”.
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Training and Inference Prompt

Your task is to read a document and then write an essay which addresses the following question:
{question_text}

To write your essay, you should read the document and identify key passages which will help guide
your response. Extract every passage which is directly relevant for your essay. Please copy each
extracted passage to a list in the format specified below. Please copy the exact text of each passage
(do NOT paraphrase!). Then, write your essay which addresses the query.

Please add citations to all citation-worthy statements using the extracted evidence, by indicating the
citation numbers of the corresponding evidence. More specifically, add the citation number at the
end of each relevant sentence before the punctuation mark e.g., “This work shows the effectiveness
of problem X [1].” when the passage [1] in the evidence list provides full support for the statement.
Only add a citation if it is fully relevant and unambiguously supportive of that sentence. Not all
evidences may be relevant, so only cite those that directly support the statement. Please do not add
any explanations or justifications for the evidence, simply indicate the evidence numbers if they are
relevant. If a sentence does not use any of the provided evidence, please simply copy the sentence
as is and do not add anything to the end of it. If multiple evidences support a statement, please cite
them together (e.g., [1][2]). For each citation-worthy statement, you only need to add at least one
citation, so if multiple evidences support the statement, just add the most relevant citation to the
sentence.

Please limit to only 10 pieces of evidence.
Here is the document: {context}

**OUTPUT FORMAT**
Output your response as:
EVIDENCE:

[1] Extracted passage 1
[2] Extracted passage 2
[N] Extracted passage N
RESPONSE:

response

Figure 19: Full prompt used for fine-tuning and inference. The {question_text} field is filled with a single query,
and the {context} field is filled with the document context.
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Summary Combination Prompt
Here is a list of summaries of different sections of a document with respect to the query

“{question_text}”:
{context}
Please combine these summaries into a single summary which addresses the query. If a summary

mentions that the query is not addressed, please ignore that summary. Please keep all relevant
citations in the final summary. Here is a list of the original citations:

{evidence}
Figure 20: Prompt to combine section summaries into one final summary.
SLT® | LAS® | SMHM | SQBM
Model Relgee Congec ‘ Relgee Congec ‘ Relgee Congec ‘ Relgee Congec
Llama 3.2 1B 0.10 0.10 0.94 0.69 0.27 0.00 0.06 0.08
Fixed Gran. 0.33 0.12 5.24 3.42 0.28 0.15 1.88 1.14
+ SUnsET 0.82 0.43 4.06 2.45 0.00 0.00 2.40 0.93
+ Shuffled 1.26 0.52 2.01 1.94 0.05 0.00 0.48 0.41
Llama 3.2 3B 4.85 2.82 11.64 10.13 5.75 4.90 11.22 8.36
Fixed Gran. 18.13 7.45 39.63  35.85 0.93 0.78 24.02  20.37
+ SUnsET 20.14 11.86 | 26.95 23.70 | 26.68 24.54 | 10.18 8.80
+ Shuffled 11.09 6.85 14.56 12,55 | 22.24 20.82 | 11.53 11.07
Llama 3.1 8B 8.90 5.61 2241  20.76 | 25.52 23.23 | 16.68 13.17
Fixed Gran. 14.88 8.98 36.83 33.73 | 12.22 12.19 | 33.55  32.60
+ SUnsET 21.32 14.28 | 41.31 38.72 | 47.39 45.45 | 35.28 3247
+ Shuffled 16.80  11.70 | 35.13 32,78 | 42.35 40.44 | 3231 30.86
Mistral Nemo 2407  0.47 0.20 1.13 1.08 5.18 5.17 4.94 4.54
Fixed Gran. 5.39 3.26 10.40 9.34 2.64 2.39 12.04 8.79
+ SUnsET 17.48 11.30 | 19.93 19.66 | 16.63 15.80 | 17.68  16.59
+ Shuffled 13.81 9.38 19.59 19.14 | 16.17 15.06 | 13.54 13.00
Mixtral 8x7B 15.47  11.04 | 29.99 30.85 | 29.87 28.54 | 13.92 12.46
Fixed Gran. 33.32 18.68 | 36.40 34.42 6.32 5.75 34.11 37.82
+ SUnsET 19.06 13.64 | 30.65 30.68 | 3791 37.31 | 23.06 21.80
+ Shuffled 20.40  15.40 | 31.82 32.08 | 39.55 38.65 | 27.00 26.22
GPT 40 Mini 2838 2386 | 51.15 49.07 | 55.03 53.93 | 25.82 21.99

Table 5: Relevance and consistency recall of evidence sentences with respect to their citances. Recall measures
citation quality and averages based on the total number of sentences in a summary. This penalizes models
which produce fewer citations. Bold indicates best overall performance, Underline indicates best performance for
individual models. S indicates single document tasks, M indicates multi-document. SQ is SQUALITY, LAS is
LexAbSumm, SMH is SummHay, and SQB is ScholarQABench
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Relevance Prompt
You will be given one summary written for a document based on a query about that document.

Your task is to rate the summary on one metric with respect to the query.

Please make sure you read and understand these instructions carefully. Please keep this document
open while reviewing, and refer to it as needed.

Evaluation Criteria: Relevance (1-5) - selection of important content from the source. The summary
should include only important information from the source document which is relevant for the
query. Annotators were instructed to penalize summaries which contained redundancies, excess
information, and information which does not address the query.

Evaluation Steps:

1. Read the query, the summary, and the source document carefully.

2. Compare the summary to the query and the source document and identify the main point of the
document which is relevant to the query.

3. Assess how well the summary covers the main points of the source document which are relevant
to the query, and how much irrelevant or redundant information it contains.

4. Assign a relevance score from 1 to 5.

Example:

Source Text:

{document}

Query:

{query}

Summary:

{summary}

Evaluation Form (scores ONLY): - {Relevance}

Figure 21: Relevance evaluation prompt from (Liu et al., 2025). The {document} field is filled with the document
context and the {summary} field is filled with a summary. When used to evaluate summarization, the {query?} field
is filled with the query used to generate the summary. For citation evaluation, the {query} field and all references
to queries are removed from the prompt.

1863



Consistency Prompt
You will be given one summary written for a document based on a query about that document.

Your task is to rate the summary on one metric.

Please make sure you read and understand these instructions carefully. Please keep this document
open while reviewing, and refer to it as needed.

Evaluation Criteria:

Consistency (1-5) - the factual alignment between the summary and the summarized source with
respect to the query. A factually consistent summary contains only statements that are entailed
by the source document. Annotators were also asked to penalize summaries that contained
hallucinated facts.

Evaluation Steps:

1. Read the source document carefully and identify the main facts and details it presents with
respect to the query.

2. Read the summary and compare it to the source document. Check if the summary contains any
factual errors that are not supported by the source document.

3. Assign a score for consistency based on the Evaluation Criteria.

Example:

Source Text:

{document}

Query:

{query}

Summary:

{summary}

Evaluation Form (scores ONLY): - {Consistency}

Figure 22: Consistency evaluation prompt from (Liu et al., 2025). The {document} field is filled with the document
context and the {summary} field is filled with a summary. When used to evaluate summarization, the {query} field
is filled with the query used to generate the summary. For citation evaluation, the {query} field and all references
to queries are removed from the prompt.
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SLTS | LASS | SMHM | SQBM

Model RCIF 1 COI’IFl ‘ RelF 1 COHF 1 ‘ RelF1 COI’IF 1 ‘ RelF 1 COHFl
Llama 3.2 1B 0.14 0.14 1.22 0.84 0.36 0.00 0.11 0.14

Fixed Gran. 0.40 0.13 6.67 4.40 0.39 0.19 2.27 1.35

+ SUnsET 1.18 0.62 5.43 3.59 0.00 0.00 3.13 1.26

+ Shuffled 1.85 0.80 3.14 3.04 0.08 0.00 0.85 0.72

Llama 3.2 3B 6.61 3.86 | 15.17 13.29 | 7.66 6.52 | 14.12 10.54
Fixed Gran. 21.71 9.02 | 45.80 41.44 1.37 1.13 27.77  23.49
+ SUnsET 25.36 14.76 | 33.42 29.40 | 32.21 29.59 | 13.76 11.85
+ Shuffled 1514 933 | 1945 16.80 | 26.78 25.15 | 17.45 16.55
Llama 3.1 8B 11.66 7.38 | 28.89 26.76 | 32.07 29.17 | 20.73 16.32
Fixed Gran. 18.90 11.32 | 4244 38.86 | 14.29 14.23 | 38.56 37.64
+ SUnsET 27.69 18.48 | 50.78 47.62 | 53.62 51.43 | 44.03 40.49
+ Shuffled 23.13 16.12 | 4416 41.18 | 48.72 46.50 | 41.49 39.59
Mistral Nemo 2407  0.53 0.23 1.36 1.29 6.68 6.68 6.08 5.54

Fixed Gran. 6.61 3.93 | 1336 11.95 | 3.71 3.36 | 15.05 11.03
+ SUnsET 21.71  13.99 | 23.38 23.09 | 20.73 19.71 | 22.00 20.61
+ Shuffled 17.67 11.96 | 22.85 2242 | 19.82 1838 | 16.87 16.14
Mixtral 8x7B 17.83 12.64 | 34.27 35.23 | 33.40 32.02 | 17.30 15.48
Fixed Gran. 36.35 20.33 | 42.34 40.15 8.45 746 | 40.06 44.40
+ SUnsET 22.60 16.11 | 35.81 35.81 | 42.91 42.27 | 28.61 26.94
+ Shuffled 23.79 17.85 | 3v.21 37.57 | 43.89 4298 | 32.25 31.16
GPT 40 Mini 37.39 31.70 ‘ 61.17 58.68 | 63.61 62.35 | 33.71 28.63

Table 6: Relevance and consistency F1 of evidence sentences with respect to their citances. We follow a similar
setup to (Laban et al., 2024; Asai et al., 2024) where we measure citation precision and recall in order to calculate
an overall F1 score for both relevance and consistency. Bold indicates best overall performance, Underline indicates
best performance for individual models. S indicates single document tasks, M indicates multi-document. SQ is
SQUALITY, LAS is LexAbSumm, SMH is SummHay, and SQB is ScholarQABench
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Figure 23: SQUALITY: Relevance and consistency performance vs. number of synthetic training samples.
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SLTS |  LASS | SMHM | sQBM |

Model Rel Con ‘ Rel Con ‘ Rel Con ‘ Rel Con
Llama 3.2 1B 228 163 | 3.09 288 | 3.52 3.70 | 290 2.93
Fixed Gran. 242 149 | 3.28 2.81 | 3.09 3.32 | 3.28 3.36
+ SUnsET 2.60 223|299 275 | 3.82 4.04 | 3.17 3.02
+ Shuffled 257 215 | 3.06 2.78 | 3.83 4.35 | 3.18 3.07
Llama 3.2 3B 3.66 352 | 426 4.49 | 447 483 | 3.99 4.21
Fixed Gran. 3.40 311 | 412 4.34 | 3.45 3.53 | 4.04 4.28
+ SUnsET 3.49 310 | 413 4.17 | 4.73 491 | 4.26 4.20
+ Shuffled 3.16 268 | 417 4.13 | 4.88 4.95 | 4.36 4.20
Llama 3.1 8B 4.26 4.44 | 460 4.81 | 4.84 492 | 4.07 4.24
Fixed Gran. 423 4.34 | 459 4.79 | 443 4.55 | 4.52 4.59
+ SUnsET 423 424 | 465 4.81 | 4.89 498 | 4.58 4.55
+ Shuffled 4.08 4.02 | 4.66 4.75 | 4.92 498 | 4.68 4.69
Mistral Nemo 2407 4.15 4.15 | 3.52 3.70 | 4.05 4.37 | 3.09 3.25
Fixed Gran. 4.12 4.26 | 442 4.68 | 254 2.62 | 4.06 4.23
+ SUnsET 429 431 | 424 4.39 | 4.52 4.66 | 3.65 3.77
+ Shuffled 4.41 4.38 | 4.35 4.46 | 4.50 4.73 | 3.76 3.86
Mixtral 8x7B 421 447 | 443 4.73 | 4.46 4.67 | 4.09 4.27
Fixed Gran. 4.46 4.63 | 446 4.71 | 3.93 4.08 | 4.19 4.43
+ SUnsET 448 4.64 | 454 479 | 449 4.74 | 4.29 4.43
+ Shuffled 4.55 4.67 | 4.56 4.81 | 455 4.78 | 4.20 4.43
GPT 40 Mini 4.77 4.85 ‘ 4.87 4.93 | 4.98 5.00 ‘ 4.93 4.94

Table 7: Relevance and consistency of generated summaries. Relevance and consistency are measured using an
autorater (DeepSeek-V3) (Liu et al., 2023) based on previously validated prompts (Liu et al., 2025). Bold indicates
best overall performance, Underline indicates best performance for individual models. S indicates single document
tasks, M indicates multi-document. SQ is SQUALITY, LAS is LexAbSumm, SMH is SummHay, and SQB is
ScholarQABench.
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Figure 24: ScholarQABench: Relevance and consistency performance vs. number of synthetic training samples.

1866



Model Huggingface Identifier

Llama 3.2 1B meta-1lama/Llama-3.2-1B-Instruct
Llama 3.2 3B meta-llama/Llama-3.2-3B-Instruct
Llama 3.1 8B meta-1lama/Meta-Llama-3.1-8B-Instruct
Mistral Nemo 2407 mistralai/Mistral-Nemo-Instruct-2407
Mixtral 8x7B mistralai/Mixtral-8x7B-Instruct-vo.1

Table 8: Huggingface identifiers for models used in our
experiments.
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