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Abstract

Recent work proposed state-space mod-
els (SSMs) as an efficient alternative to
transformer-based LL.Ms. Can these models
be pruned to further reduce their computation
costs? We adapt several pruning methods to the
SSM structure, and apply them to four SSM-
based LLMs across multiple tasks. We find
that such models are quite robust to some prun-
ing methods (e.g., WANDA), while using other
methods lead to fast performance degradation.!

1 Introduction

Selective-State Space models (SSMs, Gu et al.,
2022) have recently gained attention as an appeal-
ing alternative to transformers (Gu and Dao, 2024;
Dao and Gu, 2024). SSMs leverage both selec-
tive memory capabilities and RNN (Elman, 1990)
properties, showing comparable results against
transformer-based peers. However, SSM-based
LLMs are still parameter-heavy, which raises the
question of how well they can be compressed.

In this work, we focus on one of the key com-
pression methods—pruning (LeCun et al., 1989).
Modern LLM pruning methods have been devel-
oped and tested mostly for transformer components
such as self-attention and feed-forward. Here we
study how well SSM-based LLMs can be pruned.

We adapt several structured pruning methods to
SSMs, e.g., pruning different SSM heads using dif-
ferent criteria, or merging existing heads (Fig. 1).
We apply these methods to four SSM-based LLMs,
along with WANDA (Sun et al., 2024), an unstruc-
tured pruning method that requires no adaptation.
We compare all methods across six different tasks.

Our results show that all models are robust to
unstructured pruning with WANDA, even when
reducing up to 50% of the SSM parameter count.
We also observe that pruning SSM states leads to

Ywww. github. com/schwartz-1lab-NLP/SSM-Pruner
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Figure 1: Pruning SSM-based LLMs. Right: the
Mamba SSM block: the input is linearly projected using
five projection matrices (Wz ,Wx , Wg,Wec,Wa), to be
used in later parts of the block. Every SSM head is
represented using two vectors (two rows for InProj and
two columns for OutProj). Left: our different structure
pruning methods. Each yellow cell represents a pruned
element in the corresponding head. (1) State pruning:
head extraction from Wg and W tensors then pruning
the corresponding convld filters; (2) Head dimension
pruning: head extraction from Wx, Wz, W4, Wp and
W, and pruning the corresponding conv1d filters and
OutProj rows; (3) Head Merging: mean-pooling ev-
ery two BC-heads and all corresponding components;
(4) SSM-FLAP: adapting FLAP to SSMs, which prunes
whole heads on all InProj sub-components heads and
their correspondingly conv1d and OutProj.

small degradation in almost all cases. In contrast,
pruning the SSM heads leads to a sharp drop in
performance in all cases. We also show that the
output projection in SSM-based LLMs is much
more sensitive to pruning than the input projection.
Our results hint that SSM-based LLMs can indeed
be made more efficient, but the choice of pruning
method has a large effect on the pruning quality.
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2 Background

In this section, we discuss recent SSM architectures
and some of the best performing pruning methods
commonly used with transformer-based models.

2.1 SSM Architectures

State Space Models (Gu et al., 2022) are a class
of seq2seq models that represent inputs via hidden
states evolving over time. Unlike attention-based
architectures, SSMs leverage structured representa-
tions to achieve sub-quadratic complexity.

Recent work has shown that SSM-based LLMs
can be trained and reach competitive performance
to transformers-based LLMs. Mamba (Gu and Dao,
2024) uses a “selective” SSM variant that adap-
tively focuses on certain parts of the input at each
time step. Mamba-2 (Dao and Gu, 2024) builds
upon structured space duality framework, which
bridges the gap between recurrent-style processing
and attention-like operations. This enables the use
of hardware optimizations made for attention. By
producing SSM parameters in parallel and simpli-
fying its core layer, Mamba-2 is 2—-8x faster than
its predecessor while maintaining performance on
par with transformers across various benchmarks.

The SSM component in Mamba-2 is composed
of several sub-components (Fig. 1). The input
is first passed through a linear layer (InProj),
composed of the following tensors: Wx , W, €
RO Wy We € RPHN W, € RPH | This
results in five matrices: X, B, C, A, and Z.> Then,
X, B, and C are passed through a 1-D convolution
layer. Its output, along with WA and two learned
parameter matrices W4, Wpe RYH | are passed to
the SSD algorithm (Dao and Gu, 2024). Its output
is then joint with Wz and normalized using RMS
Norm (Zhang and Sennrich, 2019), and projected
back to D—the model dimension.

Multi-head patterns in SSM-based LLMs
Similarly to group-query attention in transform-
ers (GQA; Ainslie et al., 2023), SSM-based LLMs
allow grouping some of the SSM subcomponents.
The choice of which components to merge is
referred to as the multi-head pattern (Dao and
Gu, 2024). In contrast to the commonly used
GQA pattern in transformers, different SSM-based
LLM:s use different patterns. For example, Mamba-
2 (Dao and Gu, 2024) groups the Wg,Wc ma-
trices, while Hybrid-Llama3-Mamba2-3B (HLM-

Where D is the model dimension, H is the number of
heads, P is the head dimension, and N is the state dimension.

3B; Wang et al., 2024) groups Wx and Wp.

2.2 Pruning Methods

Pruning is frequently used to compress LLMs. Be-
low we describe common pruning methods.

Unstructured pruning induces sparsity in the
model weights. Such methods reduce model size,
though it is hard to translate this sparsity to runtime
gains. A common implementation of this approach
is magnitude pruning, which prunes unimportant
parameters based on their absolute values (Frankle
and Carbin, 2019). A recent highly effective vari-
ant of magnitude pruning is WANDA (Sun et al.,
2024), which also takes activations into account.
Importantly, WANDA does not require fine-tuning,
making it highly efficient for compressing LLMs.

Structured pruning removes entire sections of
model weights rather than individual elements (Ma
et al., 2023; Molchanov et al., 2019; Fan et al.,
2019). One such method is FLAP (An et al., 2023),
which prunes based on the fluctuation of each input
channel. It determines whether the output feature
map can be recovered after pruning a column from
the weight matrix. FLAP avoids the need for re-
training and requires only a single forward pass
for both pruning and bias compensation. Finally,
group-query attention (GQA), which merges dis-
tinct attention KV heads using mean-pooling, can
also be thought of as a structured pruning method.

3 Pruning SSM-based LLMs

We aim to study the effect of different pruning
methods on SSM-based LLMs. Below we describe
how we adapt different pruning methods, devel-
oped for transformers, to SSMs. We note that
within the Mamba-2 SSM component (Fig. 1), the
layer dimension dictates the shapes for the matrices
within the input projection (InProj), which com-
prise approximately 67% of all parameters in the
SSM component. The output projection (OutProj)
and the 1d convlution layer (conv1ld) are roughly
32% and < 1%, respectively.

WANDA is an unstructured pruning method,
which can be applied to SSM layers with minimal
adjustments, as it originally operates on linear lay-
ers of any size without further restrictions.

We also adapt four structural pruning methods
to SSMs.
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State pruning Each head in the W and W ma-
trices of Mamba-2 is composed of a D x N matrix.
Therefore, we can prune the least important tensors
according to a desired ratio. In our experiments, we
use the second order Taylor approximation-based
importance estimator (Molchanov et al., 2019), and
then average this score per tensor in each head to es-
timate its importance. To do so, we perform model
pass on 20 wikitext2 samples (Merity et al., 2016)
and accumulate gradients to calculate importance.
To preserve the dimensionality correctness within
the rest of the flow, we prune the OutProj matrix
and the conv1d layer weights accordingly.

Head Dimension Pruning Similarly, each head
in the Wx tensor is composed of P matrices, and
thus can be pruned along with W in the same way.

Merging Heads Inspired by the grouping of KV
heads in attention (Ainslie et al., 2023; Jin et al.,
2024), we consider pruning SSMs by grouping the
BC or X B heads, while maintaining the multi-
head pattern, e.g., further merging the already
grouped heads (see Sec. 2). To do so, we use mean
pooling on consecutive heads. An exception to the
pattern preservation policy is Mamba-2, as it has
only a single BC head, so we merge its X heads.

SSM-FLAP We adapt FLAP to prune SSM-
based LLMs by applying its calculated pruning
masks to the submatrices of InProj and pruning
the corresponding elements in the rest of the flow.
To enable bias compensation, we add a bias term
similar to how FLAP operates with attention. Since
FLAP prunes a different number of heads per layer,
in an MHA based model where the number of BC'
heads and X heads is the same, we prune both
groups, while in a GVA based model, we exclude
the BC' heads and limit the pruning to round the
number of kept X heads to the closest larger multi-
plier of BC heads, keeping the number of X heads
dividable by the number of BC' heads.

4 Experiments

Models There aren’t many competitive SSM-
based LLMs. We consider four main models in
different sizes and base architectures: MAMBA-
2-2.7B, which is configured with a multi-value
attention head pattern; PHI-MAMBA-1.5B (Bick
et al., 2024), which is distilled from PHI-1.5 (Li
et al., 2023). It preserves the same MLP, em-
beddings and LM head layers and converts the
attention layer to be an SSM component. This

model is configured with grouped-value attention;
Hybrid-Llama3-Mamba2-3B (HLM-3B; Wang
et al., 2024) is a hybrid model of interleaving at-
tention and SSM layers distilled from LLAMA-3.1-
70B-INSTRUCT (Grattafiori et al., 2024) but initial-
ized using LLAMA-3.2-3B (Grattafiori et al., 2024)
weights. It converts only the attention layer but fine-
tunes all model layers. Unlike the original architec-
ture of Mamba-2, this model uses grouped query
attention (GQA) since its initializing weights come
from LLama, which is GQA based; Finally, we
distill SMOL-MAMBA-1.9B, 3, a Mamba model
from SMOL2-1.7B (Allal et al., 2025), using the
MOHAWK method (Bick et al., 2024). We note
that Mamba-2 is a pure SSM LLM. That is, it only
contains SSM blocks. In contrast, the other three
models contain interleaving SSM and FEN layers.

Experimental setup For WANDA, state, head,
and SSM-FLAP pruning, we prune models by 25%
and 50%. For merging heads, we merge 50%
and 75% of the heads. In all cases we report the
topline—the unpruned models. Pruned models are
finetuned on wikitext2. We use LORA (Hu et al.,
2021) targeting both the SSM and MLP layers. We
use the KD loss with the teacher set as the original
model pre-pruning.* For each setup, we also re-
port the ratio of pruned parameters of the full SSM
component. See App. B for more details.

Benchmarks We use the EleutherAl LM Har-
ness’ to experiment with lambada (Paperno et al.,
2016), hellaswag (Zellers et al., 2019), piga (Bisk
et al.,, 2020), arc-easy (Clark et al., 2018),
arc-challenge (Clark et al., 2018), and wino-
grande (Sakaguchi et al., 2019).

Results Table 1 shows our pruning results for all
methods except head merging (shown in Tab. 2),
averaged across tasks.® WANDA tends to preserve
model quality across models, especially at mod-
erate pruning (25%) in 3/4 models, and does not
collapse even at 50%. The exception is Mamba-2-
2.7B, which drops more quickly. This is somewhat
expected, as in that case there are no FFN layers.’

3We release the model at https://huggingface.co/
schwartz-1lab/Smol2-Mamba-1.9B.

*Preliminary experiments show that it outperforms stan-
dard CE loss, see Tab. 4 in App. A.

Swww. github.com/EleutherAI/
Im-evaluation-harness

6See App. C for full results on all tasks.

"We also compare the effect of WANDA pruning on a
similar transformer-based model (App. D, Tab. 11), observing
a similar drop in performance for both.
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Model Ratio WANDA State Head SSM-FLAP
w/oFT | w/oFT w/FT Comp. | w/oFT w/FT Comp. | w/oFT Comp.
Phi-Mamba-1.5B Dense 0.59 0.59 N/A 0% 0.59 N/A 0% 0.59 0%
(SSM & MLP.s) 25% 0.59 0.58 0.59 10% 0.40 0.54 25% 0.57 26%
50% 0.57 0.54 0.58 20% 0.33 0.47 50% 0.49 51%
HLM-3B Dense 0.64 0.64 N/A 0% 0.64 N/A 0% 0.64 0%
(SSM & MLPs) 25% 0.64 0.30 0.31 20% 0.30 0.32 5% 0.29 5%
50% 0.63 0.29 0.30 41% 0.29 0.31 10% 0.29 10%
Smol-Mamba-1.9B Dense 0.61 0.61 N/A 0% 0.61 N/A 0% 0.61 0%
(SSM & MLPs). 25% 0.60 0.59 0.60 13% 0.29 0.30 5% 0.51 26%
50% 0.56 0.47 0.59 25% 0.28 0.30 10% 0.41 49%
Mamba-2-2.7B Dense 0.60 0.60 N/A 0% 0.60 N/A 0% 0.60 0%
(only SSM)' 25% 0.53 0.53 0.54 0.5% 0.29 0.30 24% 0.30 25%
50% 0.33 0.47 0.48 1% 0.29 0.29 47% 0.30 49%

Table 1: Results for pruning SSM components in different ratios, with Dense being an unpruned baseline. The State,
Head, and SSM-FLAP methods report their SSM component compression (Comp.) values, along with the average
benchmark accuracy before (w/o FT) and after (w/ FT) fine-tuning. Results for WANDA and FLAP are only w/o
FT, as that they do not require fine-tuning to work well in practice. “N/A” denotes that no fine-tuning is performed.

| Model |Heads| Comp. |w/o FT w/FT|
Phi-Mamba-158 | -2 | 0% | 059 N/A
(SSM & MLPs) 16 | 20% | 034 054
8 | 30% | 031 048
HLM-3B 8 0% | 0.64 N/A
(SSM & MLPs) 4 10% | 0.30 031
2 | 14% | 029 030
Smol-Mamba-1.98| 32 | 0% | 0.61  N/A
(SSM & MLPs) 16 | 25% | 029 0.44
8 | 38% | 029 041
Mamba-2-2.7B 80 0% | 0.60  N/A
(only SSM) 40 | 49% | 029 029
20 | 70% | 028 0.8

Table 2: Merging heads pruning results. Heads is the
number of heads retained, Comp. is the SSM component
compression rate. The topline is the first row per model.

Our structured pruning approaches show larger
variance across models. PHI-MAMBA-1.5B main-
tains reasonable performance across state, head and
SSM-FLAP pruning, even at 50% ratios. SMOL-
MAMBA-1.9B also performs well across most
methods, except head pruning. In contrast, HLM-
3B and MAMBA-2-2.7B suffer severe degrada-
tions in almost all cases, even at moderate pruning
ratios (25%) and post-finetuning.

Analysis We study whether MAMBA-2-2.7B,
the most sensitive to pruning, exhibits different be-
havior to pruning different components. To do so,
we apply WANDA exclusively on InProj, OutProj,
or both, and report perplexity on wikitext2. Our
results (Fig. 2) show that pruning OutProj yields a
drastic spike in perplexity, even at moderate prun-

ing ratios (30-40%), while InProj can be pruned
more aggressively without catastrophic effects. Im-
portantly, this is despite InProj having more than
twice the number of parameters of OutProj.

To estimate the advantage of structural prun-
ing, we measure the decoding throughput (to-
kens/second) of Smol-Mamba-1.9B before and af-
ter applying FLAP in App. D, Tab. 12. Pruning
50% produces a speedup of 5-17%, while pruning
25% produces a speedup of 0-6%.

Aiming to find the breaking point of WANDA
pruning, we sweep the pruning ratio 0-90% on
Smol-Mamba-1.9B and report results on the same
benchmarks in Tab. 3. The steepest drop occurs
between 70% and 80%, where model performance
drops substantially on several datasets, most no-
tably LAMBADA.

Takeaways SSM-based LLMs seem robust to
WANDA pruning. Among structured pruning meth-
ods, state pruning seems most effective, leading to
small to negligible performance drop in 3/4 models.
In contrast, all models crash when applying head
pruning, even at moderate rates. The other two
methods (SSM-FLAP and head merging) work for
some models but not others.

5 Conclusions

We adapted different pruning methods for SSM-
based LLMs. Our results show that such LLMs
can be pruned successfully with unstructured meth-
ods (WANDA), or even structured ones (state-
pruning) with little to no performance degradation
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Ratio ARC-C ARC-E HellaSwag PIQA Winogrande LAMBADA Average
0.00 0.430 0.750 0.510 0.770 0.630 0.570 0.610
0.25 0.420 0.750 0.500 0.770 0.630 0.560 0.605
0.50 0.370 0.720 0.470 0.760 0.590 0.420 0.555
0.60 0.379 0.658 0.621 0.748 0.580 0.370 0.559
0.70 0.328 0.587 0.555 0.717 0.526 0.195 0.485
0.80 0.260 0.446 0.421 0.648 0.500 0.027 0.384
0.90 0.239 0.320 0.280 0.547 0.491 0.000 0.313

Table 3: Higher sparsity exploration for Smol-Mamba-1.9B with WANDA. Pruning ratio sweep between 0-0.9 in
steps of 0.1. Performance drops most significantly between 0.7 and 0.8.
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Figure 2: The effect of WANDA pruning ratios on dif-
ferent MAMBA-2-2.7B components. OutProj layer is
substantially more sensitive to pruning than InProj.

in some cases. Our results hint at the potential of
making SSM-based LLMs even more efficient.

Limitations

Drawing direct conclusions from our experiments
is not straightforward. The four LLMs we exper-
iment with differ, among other, in size, head pat-
tern, training data, and structure. These choices are
due to the scarcity of SSM-based LLMs, and the
computational costs of training or distilling various
models to control for specific variables.

In addition, the structure pruning methods we
consider also differ in their effect on the models, as
indicated by the different compression ratios in Ta-
bles 1 and 2. The challenges here stem from the dif-
ferent constraints imposed by the different methods.
E.g., in state pruning we prune BC'-heads, which
cap the compression by the number of parameters
Wpg and W occupy in the Mamba-2 component,
especially when the model configuration is GVA
which translates to fewer BC-heads. Another ex-
ample is when pruning Head-Dim we are obliged
to prune large portions of OutProj to keep dimen-
sionality correctness in the flow, leading to pruning
potentially important parameters from it.

Despite these issues, we believe the signals we

observe are valuable. For instance, the robustness
of SSM-based LLMs to state pruning is demon-
strated by the modest performance drop for 50%
pruning ratios (e.g., a 1% drop both with a 20%
compression ratio for in PHI-MAMBA-1.5B, and
25% compression ratio for SMOL-MAMBA-1.9B),
compared to a huge drop with head pruning for
a 25% pruning ratio, sometimes with the same
model (e.g., a 30% drop for both HLM-3B and
SMOL-MAMBA-1.9B with 5% compression ratio).

We also focused our experiments exclusively on
pruning the Mamba-2 components and excluded
feed-forward networks, assuming that prior work
on transformer pruning had already addressed those
extensively. Future work could address pruning all
model components to study the interaction between
the different components, as well as potential to
get more significant computational savings.
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A Selecting the Loss Function

Recovering performance in purned models is usu-
ally done by finetuning the model on a calibra-
tion dataset, however, this comes with the risk of
over-fitting the dataset or regaining performance
back in the area the dataset focuses on. Therefore,
we checked the effect of using KD loss instead of
Cross-Entropy (CE) loss in the data set. As can be
seen in Tab. 4, it is clear that using KD loss helps
the model regain overall performance along most
benchmarks, while using CE, the model regains
some performance in some tasks (e.g., lambada)
but doesn’t improve much on other benchmarks.

B Experimental Details

We finetune all models for 10K steps with batch
size of 6 and learning rate of 5e — 5, using bf16.
We use LoRA with rank=8 and a=16. We run our
experiments on a single NVIDIA A100 80GB.

C Full Results

Tables 5 to 10 show our results on all benchmarks
for the different models.

D MAMBA Pruning Advantage
Experiments

Task accuracy under WANDA sparsity (Ta-
ble 11). Table 11 contrasts the accuracy of the
transformer-based Smoll7 (TF) and its Mamba
distilled version Smol-Mamba-1.9B when pruned
with WANDA at 0 %, 25 %, and 50 % sparsity.
At 25 % sparsity, both architectures preserve their
dense performance: the average score declines by
only 0.3 pp for Smol17 (TF) and 0.4 pp for Smol-
Mamba-1.9B, a relative drop below 1 %. Pruning
50 % of the parameters yields a moderate degrada-
tion of 6.5 % relative to the transformer and 8 %
for the Mamba variant. These results indicate that
WANDA can nullify up to 25 % of weights from
both model families with negligible impact, and
as much as 50 % while retaining useful accuracy,
with a slightly larger advantage for the transformer
based model.

End-to-end throughput with FLAP pruning (Ta-
ble 12). Table 12 reports batch inference through-
put on a single NVIDIA A100-40 GB (host: 128
GB RAM, 128 CPU cores) when only Mamba
blocks are pruned using FLAP. With 50 % spar-
sity (FLAP p0.5), throughput improves by 5-17 %
relative to the dense Smol-Mamba-1.9B baseline,

the largest gains occurring for longer sequences
and larger batch sizes (e.g., +17 % at batch 16, seq
128). At 25 % sparsity (FLAP p0.25), the speed
increases shrink to 0—6 %, and the lightly pruned
model occasionally falls slightly below baseline for
the longest sequences, suggesting that mild spar-
sity does not offset the overhead of sparse kernels
when memory bandwidth dominates. To conclude,
these findings demonstrate that aggressive but still
accuracy-preserving FLAP pruning of Mamba com-
ponents offers measurable end-to-end acceleration,
particularly when high throughput is desired in a
practical deployment.

LLAMBA 1B checks (Table 14 Table 13). Ina
concurrent work (Bick et al., 2025) to ours there
was a release of additional family of Mamba dis-
tilled models from transformer base models, we
ran pruning with WANDA and FLAP and ran the
same benchmarks and put the results in Table 13
and Table 14.
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arc_challenge arc_easy hellaswag lambada_openai piqa  winogrande Average

Baseline 0.418 0.739 0.461 0.500 0.755 0.716 0.598
w/o FT. 0.378 0.713 0.433 0.349 0.747 0.651 0.545
CE loss 0.385 0.721 0.413 0.405 0.748 0.682 0.559
KD loss 0.410 0.726 0.454 0.452 0.753 0.693 0.581

Table 4: Comparing loss choice. Phi-Mamba-1.5B with pruned SSM states according to Taylor importance
estimation, by 50% and fine-tuning using LoRA with different losses. The baseline model is the (full) fine-tuned
model. KD loss consistently outperforms CE loss.

Model Ratio FT  arc_challenge arc_easy hellaswag lambada piga winogrande
HLM-3B 025 wlo 0.18 0.37 0.27 0.06 0.54 0.51
HLM-3B 025 w/ 0.20 0.34 0.27 0.06 0.56 0.51
HLM-3B 050 wlo 0.22 0.26 0.26 0.00 0.55 0.50
HLM-3B 050  w/ 0.17 0.35 0.27 0.06 0.56 0.51
Phi-Mamba-1.5B 050 wlo 0.18 0.40 0.27 0.00 0.60 0.52
Phi-Mamba-1.5B 050  w/ 0.29 0.65 0.38 0.22 0.71 0.54
Phi-Mamba-1.5B 025 wlo 0.25 0.60 0.30 0.06 0.69 0.50
Phi-Mamba-1.5B 025  w/ 0.36 0.70 0.42 0.35 0.74 0.63
Mamba-2-2.7B 025 wlo 0.21 0.27 0.26 0.00 0.53 0.50
Mamba-2-2.7B 025  w/ 0.22 0.25 0.26 0.00 0.52 0.45
Mamba-2-2.7B 050 wlo 0.22 0.26 0.25 0.00 0.52 0.50
Mamba-2-2.7B 050  w/ 0.23 0.26 0.26 0.00 0.53 0.50
Smol-Mamba-1.9B  0.25  w/o 0.22 0.25 0.26 0.00 0.52 0.49
Smol-Mamba-1.9B 025  w/ 0.18 0.33 0.26 0.00 0.55 0.52
Smol-Mamba-1.9B  0.50  w/o 0.20 0.26 0.26 0.00 0.50 0.49
Smol-Mamba-1.9B  0.50  w/ 0.19 0.32 0.26 0.00 0.54 0.51

Table 5: Head dimension pruning benchmarks results. See Fig. 3 for radar plot visualization.

Model Ratio arc_challenge arc_easy hellaswag lambada piga winogrande
Phi-Mamba-1.5B 0.25 0.41 0.74 0.46 0.50 0.76 0.72
Phi-Mamba-1.5B 0.50 0.39 0.72 0.45 0.40 0.75 0.69
Mamba-2-2.7B 0.25 0.31 0.63 0.42 0.49 0.72 0.58
Mamba-2-2.7B 0.50 0.20 0.35 0.28 0.02 0.57 0.54
HLM-3B 0.25 0.51 0.80 0.55 0.55 0.77 0.68
HLM-3B 0.50 0.51 0.80 0.54 0.54 0.76 0.66
Smol-Mamba-1.9B  0.25 0.42 0.75 0.50 0.56 0.77 0.63
Smol-Mamba-1.9B  0.50 0.37 0.72 0.47 0.42 0.76 0.59

Table 6: WANDA pruning benchmarks results. See Fig. 4 for radar plot visualization.

model Heads FT  arc_challenge arc_easy hellaswag lambada piqa winogrande
Phi-Mamba-1.5B 16 w/o 0.39 0.72 0.47 0.42 0.75 0.59
Phi-Mamba-1.5B 16 w/ 0.45 0.73 0.49 0.43 0.76 0.62
Phi-Mamba-1.5B 8 w/o 0.38 0.71 0.46 0.41 0.74 0.57
Phi-Mamba-1.5B 8 w/ 0.41 0.72 0.47 0.42 0.75 0.58
Mamba-2-2.7B 40 w/o 0.21 0.27 0.26 0.00 0.52 0.50
Mamba-2-2.7B 40 w/ 0.21 0.27 0.25 0.00 0.52 0.50
Mamba-2-2.7B 20 w/o 0.21 0.26 0.26 0.00 0.51 0.48
Mamba-2-2.7B 20 w/ 0.21 0.26 0.26 0.00 0.52 0.48
Smol-Mamba-1.9B 16 w/o 0.20 0.27 0.26 0.00 0.53 0.49
Smol-Mamba-1.9B 16 w/ 0.27 0.59 0.41 0.14 0.70 0.53
Smol-Mamba-1.9B 8 w/o 0.22 0.26 0.26 0.00 0.52 0.48
Smol-Mamba-1.9B 8 w/ 0.32 0.66 0.40 0.25 0.72 0.54
HLM-3B 4 w/o 0.20 0.25 0.24 0.00 0.50 0.47
HLM-3B 4 w/ 0.22 0.27 0.26 0.00 0.53 0.50
HLM-3B 2 w/o 0.21 0.24 0.25 0.00 0.51 0.46
HLM-3B 2 w/ 0.23 0.28 0.27 0.00 0.54 0.49

Table 7: Head merging benchmarks results. See Fig. 5 for radar plot visualization.
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model arc_challenge arc_easy hellaswag lambada piga winogrande
Smol-Mamba-1.9B 0.43 0.75 0.51 0.57 0.77 0.63
Mamba-2-2.7B 0.33 0.70 0.50 0.70 0.76 0.64
Phi-Mamba-1.5B 0.41 0.74 0.46 0.50 0.76 0.72
HLM-3B 0.51 0.80 0.55 0.55 0.77 0.67

Table 8: Models baseline results for the benchmarks.
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Model Ratio arc_challenge arc_easy hellaswag lambada piqa winogrande
Phi-Mamba-1.5B 0.25 0.39 0.72 0.44 0.44 0.75 0.66
Phi-Mamba-1.5B 0.50 0.34 0.69 0.40 0.17 0.74 0.58
HLM-3B 0.25 0.22 0.27 0.26 0.00 0.52 0.49
HLM-3B 0.50 0.24 0.27 0.26 0.00 0.51 0.45
Mamba-2-2.7B 0.25 0.23 0.28 0.25 0.00 0.51 0.48
Mamba-2-2.7B 0.50 0.25 0.28 0.25 0.02 0.50 0.44
Smol-Mamba-1.9B  0.25 0.34 0.69 0.44 0.27 0.74 0.55
Smol-Mamba-1.9B  0.50 0.26 0.57 0.37 0.06 0.69 0.52
Table 9: FLAP benchmark results. See Fig. 10 for radar plot visualization.
Model Ratio FT arc_challenge arc_easy hellaswag lambada piqa winogrande
HLM-3B 025 w/o 0.25 0.25 0.24 0.02 0.49 0.49
HLM-3B 0.25 w/ 0.26 0.27 0.25 0.01 0.51 0.50
HLM-3B 0.50 w/o 0.23 0.24 0.26 0.02 0.50 0.49
HLM-3B 0.50 w/ 0.17 0.35 0.27 0.06 0.56 0.51
Mamba-2-2.7B 025 w/o 0.30 0.59 0.37 0.32 0.7 0.59
Mamba-2-2.7B 0.25 w/ 0.31 0.59 0.38 0.32 0.69 0.59
Mamba-2-2.7B 0.50 w/o 0.30 0.57 0.37 0.32 0.69 0.59
Mamba-2-2.7B 0.50 w/ 0.30 0.57 0.38 0.32 0.69 0.59
Phi-Mamba-1.5B 025 w/o 0.40 0.73 0.45 0.36 0.75 0.67
Phi-Mamba-1.5B 0.25 w/ 0.40 0.74 0.46 0.46 0.75 0.71
Phi-Mamba-1.5B 0.50 w/o 0.38 0.71 0.43 0.34 0.75 0.65
Phi-Mamba-1.5B 0.50 w/ 0.41 0.72 0.45 0.45 0.75 0.69
Smol-Mamba-1.9B  0.25  w/o 0.40 0.73 0.48 0.53 0.76 0.61
Smol-Mamba-1.9B  0.25 w/ 0.42 0.74 0.50 0.55 0.77 0.62
Smol-Mamba-1.9B  0.50  w/o 0.31 0.63 0.40 0.27 0.70 0.52
Smol-Mamba-1.9B  0.50 w/ 0.40 0.74 0.49 0.54 0.76 0.60

Table 10: State pruning benchmarks full results. See Fig. 6 for radar plot visualization.

Model Ratio arc_challenge arc_easy hellaswag lambada piqa winogrande Average
Smol-Mamba-1.9B  0.50 0.37 0.72 0.47 0.42 0.76 0.59 0.56
Smol-Mamba-1.9B  0.25 0.42 0.75 0.50 0.56 0.77 0.63 0.61
Smol-Mamba-1.9B 0 0.43 0.75 0.51 0.57 0.77 0.63 0.61

Table 11: WANDA pruning on SMOL models. With 25% sparsity both transformer and Mamba variants show
negligible loss; at 50% the transformer drops 4% while the Mamba variant (Smol-Mamba-1.9B) drops ~4%. See
Fig. 7 for radar plot visualization.

Batch  Seq FLAP p0.5 FLAP p0.25 Smol-Mamba-1.9B
Size Len. (tokens/s) (tokens/s) (tokens/s)
1 128 3328.13 (x0.99) 3341.27 (x1.00) 3346.05 (x1.00)
1 512 9110.18 (x1.15) 8284.75 (x1.04) 7925.90 (x1.00)
1 1024  10315.85 (x1.05)  9992.27 (x1.01) 9866.42 (x1.00)
4 128 9012.99 (x1.17) 8145.97 (x1.06) 7668.75 (x1.00)
4 512 1241547 (x1.13)  11319.67 (x1.03) 10997.28 (x1.00)
4 1024 13007.35 (x1.12)  11682.80 (x1.00) 11650.94 (x1.00)
16 128  12395.10 (x1.16)  11284.14 (x1.06) 10647.40 (x1.00)
16 512 13635.86 (x1.14)  12373.93 (x1.04) 11931.12 (x1.00)
16 1024 14216.09 (x1.10)  12733.21 (x0.98) 12964.43 (x1.00)

Table 12: Batch-inference throughput (tokens / s) on a single NVIDIA A100-40GB (128 GB RAM, 128 CPU cores).
FLAP models are pruned only in the Mamba component; figures in parentheses show speed-up over the baseline.
Pruning 50% yields 5—-17% gains, while 25% pruning gives 0—6%.

Model Ratio arc_challenge arc_easy hellaswag lambada piga winogrande
LLAMBA-1B  0.50 0.32 0.68 0.43 0.43 0.73 0.58
LLAMBA-1B  0.25 0.33 0.69 0.45 0.48 0.74 0.60
LLAMBA-1B 0 0.33 0.70 0.45 0.49 0.74 0.61

Table 13: WANDA pruning benchmarks results for LLAMBA 1B. See Fig. 8 for radar plot visualization.
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Model Ratio arc_challenge arc_easy hellaswag lambada piga winogrande

LLAMBA-1B  0.25 0.27 0.64 0.37 0.27 0.70 0.52
LLAMBA-1B  0.50 0.18 0.37 0.28 0.01 0.60 0.51

Table 14: FLAP benchmark results for LLAMBA 1B. See Fig. 9 for radar plot visualization.
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E Radar Plot Visualizations

This section contains radar plot visualizations cor-
responding to the results tables in the appendix.
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PIQA Wino WANDA Pruning - Smol-Mamba-1.9B
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Figure 3: Radar plots showing the effect of head dimen-
sion pruning ratios on Phi-Mamba-1.5B and HLM-3B
across all benchmarks.
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Figure 4: Radar plots showing the effect of WANDA
pruning ratios on all four models across all benchmarks.
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Figure 5: Radar plots showing the effect of head merg-
ing on all four models across all benchmarks.
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Figure 6: Radar plots showing the effect of state pruning
ratios on all four models across all benchmarks.
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WANDA Pruning: Transformer vs Mamba (Smol-Mamba-1.9B)
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Figure 7: Radar plot comparing WANDA pruning
effects on transformer (Smoll7) vs Mamba (Smol-
Mamba-1.9B) variants across all benchmarks and prun-
ing ratios.
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Figure 8: Radar plot showing the effect of WANDA
pruning ratios on LLAMBA-1B across all benchmarks.
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Figure 9: Radar plot showing the effect of FLAP prun-
ing ratios on LLAMBA-1B across all benchmarks.
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Figure 10: Radar plots showing the effect of FLAP
pruning ratios on all four models across all benchmarks.
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