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Abstract

Multimodal Large Language Models (MLLMs)
have achieved strong performance across
vision-language tasks, but suffer from sig-
nificant computational overhead due to the
quadratic growth of attention computations
with the number of multimodal tokens. Though
efforts have been made to prune tokens in
MLLMS, they lack a fundamental understand-
ing of how MLLMs process and fuse multi-
modal information. Through systematic anal-
ysis, we uncover a three-stage cross-modal
interaction process: (1) Shallow layers recog-
nize task intent, with visual tokens acting as
passive attention sinks; (2) Cross-modal fu-
sion occurs abruptly in middle layers, driven
by a few critical visual tokens; (3) Deep lay-
ers discard vision tokens, focusing solely on
linguistic refinement. Based on these findings,
we propose VisiPruner, a training-free pruning
framework that reduces up to 99% of vision-
related attention computations and 53.9% of
FLOPs on LLaVA-v1.5 7B. It significantly out-
performs existing token pruning methods and
generalizes across diverse MLLMs. Beyond
pruning, our insights further provide action-
able guidelines for training efficient MLLMs
by aligning model architecture with its intrinsic
layer-wise processing dynamics. Our code is
available at: https://github.com/EIT-NLP/
VisiPruner.

1 Introduction

Multimodal Large Language Models (MLLMs)
(Yin et al., 2024) extend the reasoning power of
Large Language Models (LLMs) to other modal-
ities like vision (Li et al., 2023a), audio (Guzhov
et al., 2021), and video (Alayrac et al., 2022; Tong
et al., 2025b), typically by aligning modality en-
coders (e.g., ViT (Dosovitskiy et al., 2021)) with
LLMs through lightweight projectors (Liu et al.,
2023a; Lin et al., 2025; Chen et al., 2025a; Zhao
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Figure 1: Illustration of the three-stage discontinuous
information processing in Multimodal Large Language
Models (MLLMs). The framework separates visual-text inte-
gration into three key stages: Shallow Layers focus on task
recognition, Middle Layers highlight the cross-modal fusion
of sparse, task-relevant visual tokens, and Deep Layers focus
on linguistic refinement after vision integration.

et al., 2024). However, visual encoders often pro-
duce far more tokens than text due to higher infor-
mation density. This not only inflates the sequence
length but also results in a quadratic increase in
attention computation. While recent efforts like
token pruning (Ye et al., 2024a; Shang et al., 2024;
Lin et al., 2024), dynamic resolution (Arif et al.,
2024; Li et al., 2024), and sparse attention mech-
anisms (Zhang et al., 2024b; Li et al., 2025) aim
to mitigate this issue, their effectiveness remains
limited due to a fundamental gap in understanding
how MLLMs actually process and integrate visual
information across layers.

Existing analyses of cross-modal interactions in
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MLLMs predominantly rely on attention scores
as proxies for information flow (Wu et al., 2024;
Zhang et al., 2025a, 2024c). This has led to
widespread but misleading conclusions, e.g., the
assumption that cross-modal fusion mainly occur
in shallow layers. We move beyond attention maps
to understand how and when visual information is
actually utilized, revealing three insights that revise
the current understanding of MLLMs:

» Shallow Layers as Task Recognizers: Contrary
to prior beliefs (Wu et al., 2024; Zhang et al.,
2025a, 2024c), cross-attention in early layers
serves no meaningful role in visual-text fusion.
Visual and textual tokens evolve independently,
with shallow layers functioning solely to recog-
nize task from text instructions, while visual to-
kens act merely as ‘attention sinks” (Xiao et al.,
2024).

* Sparse Critical Tokens in Middle Layers:
Cross-modal integration occurs abruptly in in-
termediate layers, but only a few critical visual
tokens drive this process. Conventional attention-
based methods fail to identify these tokens, as
their importance correlates with feature similar-
ity rather than attention weights.

* Instruction Alignment in Deep Layers: Once
visual information has been integrated into the
text encoder, deeper layers discard vision tokens
and transition to pure linguistic refinement to
output final answers.

Building on these insights, we introduce
VisiPruner, a training-free pruning framework that
exploits both layer-wise and token-wise redun-
dancy in MLLMs. For layer-wise compression,
our method disables cross- and self-attention in
shallow visual layers and removes visual tokens
in deep layers, allowing seamless integration with
existing token pruning methods. For token-wise
compression, we propose a novel influence-based
method to dynamically identify and retain only the
most interactive visual tokens from middle layers.
Together, these strategies reduce up to 99.0% of
visual-related attention computations and 53.9%
of total FLOPs, all while preserving performance
across a range of MLLMs and benchmarks.

Our findings further offer actionable guide-
lines for designing efficient MLLMs. While
VisiPruner demonstrates the principles in a training-
free paradigm, embedding them directly into

MLLM training pipelines should further optimize
performance-efficiency tradeoffs. Overall, our
work makes four key contributions: (1) To the best
of our knowledge, we are the first systematic analy-
sis revealing the discontinuous, sparse, and decou-
pled nature of cross-modal interactions in MLLMs,
particularly highlighting the counter-intuitive find-
ing that shallow layers operate independently of
vision; (2) Exposing the inadequacy of attention-
based analysis for understanding visual token util-
ity by attention merging; (3) A training-free prun-
ing framework validated across diverse MLLMs
and benchmarks; and (4) Actionable guidelines for
designing efficient MLLMs that align with their
intrinsic mechanics.

2 Background

Modern MLLMs integrate perceptual modalities
(e.g., vision) with linguistic reasoning using a
vision encoder, projection, and language back-
bone (Liu et al., 2023b; Chu et al., 2024).

Modality-Specific Encoding Let inputv € V
(e.g., an image) and text instruction z € X'. Each
modality is encoded independently:

Visual encoder: E, = V(v) € RNvXdv,
Textual encoder: E; = T (t) € RNe*de,

where V (e.g., ViT) and T (i.e., LLM tokenizer)
map inputs to sequences of embeddings. Typically,
N, > N, due to the high information density of V,
e.g., N, = 576 for a 336 x 336 image with patch
size 14 (Chen et al., 2024a).

Cross-Modal Projection A projector P aligns

visual embeddings to the LLM’s text space H&O):

H" = P(E,) € RNV,

where d;, matches the LLM’s hidden dimension.

Layer-Wise Cross-Modal Fusion The fused in-
put is defined as H(®) = HY ¢ HEO) (0 denotes
concatenation), which is processed through L trans-
former layers. At layer [, cross-attention and self-
attention are computed as (Zhao et al., 2025):

Q¥ =H{ "Wy, KO VO =HI YW,

v v v

) (pe O\ T
AW = softmax (Qt (Ko') ) e RN=xNv,

I_Igz)ss = A(l)Vq(;l)7
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Hgl) = TransformerBlock(Hgl_l) + H((:Q)ss)a

A key computational bottleneck in MLLMs
arises from the large number of visual to-
kens (Zhang et al., 2025a). In most scenarios,
N, > N,, the cross-attention matrix AW €
RN=*No grows significantly, making its compu-
tation a dominant cost factor. We believe that not
all visual tokens contribute meaningfully to text-
driven reasoning. To address this, we seek to (1)
Understand cross-modal information flow and (2)
Reduce unnecessary visual-text interaction.

3 Shallow Layers: Task Recognition

Shallow layers in MLLMs are often assumed to
be crucial for cross-modal fusion due to two obser-
vations: (1) High cross-attention scores between
instruction tokens and vision tokens in early lay-
ers (Wu et al., 2024; Zhang et al., 2025a); and (2)
Performance degradation when cross-attention in
shallow layers is masked (Zhang et al., 2024c). We
systematically re-evaluate these claims and present
evidence that contradicts these assumptions.

3.1 Attention Scores # Information Utility

Although attention scores are often interpreted as
measures of token importance, we provide two key
counterarguments that challenge this assumption.

Counterpoint 1: Static Attention Patterns We
first visualize attention maps across shallow, mid-
dle and deep layers (App. D). A striking pattern
emerges: the most attended vision tokens remain
unchanged regardless of the input instruction in
shallow layers. Whether the task involves color
identification (e.g., “What color is the dog?”) or
scene understanding (e.g., “Is there any scooter?”),
the same image regions consistently receive the
highest attention. Although it is counterintuitive
that different tasks attend to the same visual fea-
tures, these visual tokens may contribute to global
understanding of the image (Darcet et al., 2024).

Counterpoint 2: Masking Highly Attended To-
kens has No Effects To further test if highly at-
tended tokens encode global information, we mask
the top 10% most attended vision tokens in lay-
ers 1-2 and evaluate performance. If these tokens
were essential, their removal should degrade per-
formance. However, results show minimal change
(Tab. 7). This directly contradicts the claim that
attention scores reflect information utility. Appar-

ently, high attention scores in shallow layers do
not imply high information utility.

Model GQA MME” POPE MMB

1507.6 85.9 64.3

LLaVA-v1.5 7B 62.0

+ Mask 62.0 1506.6 85.7 64.3
LLaVA-v1.5 13B 63.3 1531.3 85.9 67.7
+ Mask 63.2 1518.6 86.3 68.9
InternVL2.5 8B 63.6 1700.0 90.6 84.6
+ Mask 63.2 1689.5 90.6 84.3
MobileVLM-v2 3B 61.0 1440.5 84.7 63.2
+ Mask 60.9 1440.8 84.6 63.3

Table 1: Performance after masking top 10% attended
visual tokens in the first two layers on diverse MLLM:s.
See App. B for results under different selection criteria.

3.2 Redundant but Necessary?

Given that high attention # information utility, we
now examine whether shallow-layer visual tokens
serve any information utility at all.

The Redundancy Paradox Following our pre-
vious result that masking top 10% most attended
tokens has no effect, if cross-modal fusion does
occur in shallow layers, it would have to reside in
the remaining 90% of tokens. We now mask the
remaining 90% tokens to see if these tokens alone
are sufficient for multimodal fusion. Surprisingly,
we again find minor degradation in overall accu-
racy! (72.6 — T71.5, suggesting that neither the
most attended nor the least attended vision tokens
carry essential information! To further probe the
necessity of individual tokens, we randomly mask
half of the visual tokens and measure performance
changes:

 Left Half Masking (removing first 288 of 576
tokens): 72.6 — 72.6

» Right Half Masking (removing last 288 tokens):
72.6 — 72.4.

We can see that the performance remains stable
regardless of which tokens are masked, implying
that visual tokens in shallow layers are largely re-
dundant in terms of content transfer.

During decoding, we observe the same as in
pre-filling stage (see Sec. 3.4), confirming the ab-
sence of cross-modal fusion in shallow layers. It

! Averaged over four benchmarks (GQA, MME, POPE and
MMB) and two MLLMSs (LLaVA-v1.5 7B and 13B). Note that
the score for MME is divided by 20 before averaging.
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Figure 2: Merge visual attention weights into a single token
to stabilize the attention distribution of the first layer.
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is likely that visual tokens in shallow layers do not
contribute to information fusion in a meaningful
way. Instead, their presence—regardless of which
specific tokens remain—appears to be necessary
for stability rather than content transfer.

3.3 Vision as Attention Stabilizers

Given that no individual vision tokens carry essen-
tial cross-modal information, it is paradoxical that
cross attention knockout in shallow layers leads to
significant loss in visual perception (Zhang et al.,
2024c; Geva et al., 2023). Hence, we hypothesize
that their role is to stabilize shallow-layer attention
distributions without transmitting meaningful con-
tent. To test this, we propose Attention Merging,
forcing all cross-attention weights in shallow layers
to focus on a single visual token (Fig. 2):

QR
A(l) — {Z’UEV Ai,v lf] =k (1)

i .
7 0 otherwise

where V represents all vision tokens and k is the
randomly selected index of the merged token. If
shallow vision tokens were performing useful fu-
sion, constraining attention to a single token should
degrade performance. However, we observe no
meaningful change across different choices of k
(see App. G), confirming that no specific vision
token is necessary for shallow-layer computation.
The model simply requires some tokens to absorb
attention weights. Even further, we show that the
stabilization is needed only in the first layer:

* layer 1: masking all vision tokens significantly
degrades average performance (72.6 — 65.2),
confirming that a visual attention sink is needed.

* layer 2-7: system prompts can replace vision
tokens as attention sinks, with no performance
drop (72.6 — 72.1) (see App. E).

This dichotomy arises from diverging value vec-
tor distributions: early vision token values (Vz(,o))
differ significantly from text tokens (Vg(co)), neces-

sitating modality-specific sinks initially (App. F).

Overall, these results suggest that shallow-layer
vision tokens primarily serve as a stabilization
mechanism for attention, rather than contributing
to meaningful cross-modal fusion of information.

3.4 Null Effects in Decoding Stage
The cross-modal fusion happens in two stages:

* Prefill Phase: The entire input sequence, includ-
ing visual and text embeddings, is processed in a
single forward pass. This initializes hidden states
for subsequent decoding.

* Decoding Phase: Tokens are generated autore-
gressively, where each new token attends to pre-
viously generated tokens while interacting with
visual representations.

Apart from the prefilling stage, we also remove
vision tokens from the key-value (KV) cache at
different depths in the decoding stage. As can be
seen in Tab. 2, the result is even better after re-
moving the KV cache (see App. J). This further
supports our claim that shallow visual tokens do
not meaningfully contribute to content information.
Instead, their role appears to be largely structural
rather than informational.

Model Layers | MM-Vet GQA

- 31.2 62.0

1-8 33.8 61.8

LLaVA-v1.57B 9-15 28.3 61.8
26-32 31.1 61.9

1-32 26.1 61.7

Table 2: Performance with visual information re-
moved from specific KV Cache layers. MM-Vet is a
benchmark requiring key visual information to remain
in the KV Cache (Yu et al., 2024).

3.5 Role of Shallow Layers

Having confirmed the absence of meaningful cross-
modal information flow, and the visual and text
layers evolve largely independently. We further
investigate the actual roles of shallow layers.

Shallow Text Layers: Task Recognition To an-
alyze what shallow text layers are mainly doing,
we analyze the semantic content of the final token’s
hidden state by projecting it through the model’s
unembedding matrix (nostalgebraist, 2020):

Diage = softmax(Wy,hiyg), )

where Dy, represents the probability distribution
over vocabulary tokens. We find that shallow-
layer representations align with task semantics
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rather than visual content. For example, interme-
diate layers produce activations aligned with task-
relevant words: - “How many cars...” — “number”
(Layer 10) - “What kind of...” — “type” (Layer 7)
(App. H).

Beyond the latent representation of the final in-
put token, we further observe that the value-output
matrix also encodes task information in shallow
layers, reinforcing our finding (App. I).

Dy, = softmax (W, - VA 0), 3)

last

These findings suggest that shallow text layers
are primarily responsible for task recognition, op-
erating independently from visual processing.

Shallow Visual Layers: Feature Alignment
Knowing that little cross-modal interaction is per-
formed in shallow visual layers, we further inves-
tigate whether intra-modal fusion occurs. Specifi-
cally, we mask self-attention among visual tokens,
forcing each token to be processed independently.
As shown in Tab. 3, this modification results in
only a minimal performance drop, indicating that
self-attention plays a negligible role.

These results suggest that the primary function
of shallow visual layers is neither cross, nor intra-
modal fusion, but rather the alignment of ViT fea-
tures with the LLM’s internal representation space,
implying that the attention mechanism in these lay-
ers may be largely redundant.

Layers Masking #Token Merging GQA
- - N/A N/A 61.95

C 576 No 57.41

12 575 Yes 61.98
576 No 56.08

C&V 575 Yes  61.96

C 576 No 57.18

127 575 Yes 61.51
576 No 54.63

C&V 535 Yes  60.78

Table 3: Impact of vision on cross-attention stability. Lay-
ers refer to layers with attention masked. # Tokens indicates
the number of masked vision tokens. “C” represents cross at-
tention masking; “V” represents visual self attention masking.

3.6 Strategy for Efficient MLLM Design

Based on these findings, we propose a simple yet
effective pruning strategy for shallow layers: (1)
Merge visual attention in layer 1 to serve as an at-
tention sink; (2) Skip visual-textual attention com-
putation for all vision tokens in layers 2+; and (3)
Remove visual self-attention.

65.00-
61.95
60.00-

55.00-

Shallow-to-Deep

<
8 50.00- Deep-to-Shallow

45.00-
40.00-

36.87

35.00-

5 10 15 20 25 30
Layer

Figure 3: Masking ranges of layers, from shallow-to-deep
and deep-to-shallow, exhibit a clear reduction in cross-modal
fusion at both shallow and deep layers.

4 Middle Layers: Sparse Grounding

Beyond certain stage, we find that fully masking
cross-attention begins to significantly deteriorate
performance again from around 9th layer as shown
in Fig. 3, suggesting a transition into middle layers.

4.1 Confirming Cross-Modal Fusion

Given our prior analysis of shallow layers, this per-
formance drop may also result from disruptions in
the attention distribution rather than cross-modal
interaction, so we perform two key analyses: atten-
tion merging and key visual token masking.

Re-examine Attention Merging We examine
the impact of attention merging (Sec. 3.3) in middle
layers . Compared to simple cross-attention mask-
ing, attention merging results in worse performance
with GQA on LLaVA-v1.5 7B: 61.95 — 51.73 —
49.42, suggesting that the drop is not merely due
to attention distribution disruption.

Key Visual Token Masking Next, we examine
whether middle-layer attention is instruction rele-
vant. We mask the top and bottom 10% attended
visual tokens for comparison in layers 9-15:

* Top 10% tokens: GQA 61.95 — 54.09
* Bottom 10% tokens: GQA 61.95 — 61.93

The significant performance drop when mask-
ing highly attended visual tokens, compared to the
negligible impact of masking least-attended tokens,
suggests that in the middle layers, cross-attention is
focused on instruction-relevant regions, confirming
meaningful cross-modal fusion in these layers.

4.2 Sparsity of Cross-Modal Fusion

Given that middle layers are fusing visual features,
we explore this fusion requires all visual tokens or
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only a sparse subset of them.

Selective Vision Masking We apply cross-
attention-based selection, retaining only the top
5% most attended tokens unmasking, discarding
remaining 95%. The model still maintains a com-
parable performance (72.6 — 71.3), confirming
that middle layers start to focus on a sparse subset
of vision tokens, rather than the entire image.

Visual Focus Tracking While each middle layer
may shift its focus to different visual regions when
searching for the answer, we visualize the loca-
tions of critical visual tokens on the image and find
that the model consistently focuses on instruction-
relevant regions across layers (see App. K).

These results imply that (1) cross-modal fusion
in middle layers is sparse, only a few critical visual
tokens are required; and (2) critical visual tokens
stay unchanged across layers, there is no need to
re-identify critical tokens at each layer.

4.3 Identifying Critical Visual Tokens

Regarding this sparsity, we aim to develop a
method that accurately identifies these critical
visual tokens to reduce complexity. The most
straightforward method is based on cross-attention
weights. However, we find this approach is limited
by (1) Visual Attention Sink Tokens: The visual
attention sink phenomenon is present across all lay-
ers, introducing irrelevant tokens in attention-based
selection; (2) Difficulty Isolating Single Token In-
fluence: Attention weights are distributed across
all tokens, which can introduce uncertainty when
isolating the impact of individual tokens; and (3)
Static Thresholds on Tokens Number: Attention-
based selection requires setting a fixed threshold,
which reduces flexibility across different tasks.
Another intuitive approach to measure the in-
fluence of each vision token is to mask them indi-
vidually and observe their effect on the final out-
put. However, this requires propagating changes
through all layers, making it computationally ex-
pensive. Instead, we propose a more efficient
method that directly evaluates the impact of each
vision token on the attention output of the last input
token, which determines the first answer token.

Attention Computation Recap The attention
weight matrix is calculated as:

T

Vi

W = softmax( + M) 4)

where (), K are the query and key matrices, W is
the attention weight,and M is a causal mask. The
attention output is then computed by:

O = Reshape( Z wW-V) 5)
heads

where V is the value matrix, O the attention output.

Token Masking Procedure To evaluate the in-
fluence of token j on token ¢ at layer ¢, we modify
the attention weight matrix as follows:

which masks the ability of token 7 to attend to token
7 across all attention heads. Using this masked at-
tention weight, we recompute the attention output:

O’ = Reshape( Y W/, V) (7)
heads
Influence Measurement The influence of token
7 on token 7 is quantified by comparing the original
attention output of token ¢ and the masked attention
output of token ¢ using two complementary metrics:
cosine similarity and L2 distance.
We measure the directional similarity between
the original and masked outputs:

0;- O

i masked )
H()iHQ H()gma,skedH2

Cosine Similarity,, ; =

where || - ||2 is the L2-norm. A lower similarity
indicates a stronger influence of token j on token 1,
as masking token j significantly alters the output.

In addition to directional changes, we also mea-
sure the magnitude of change using the L2 distance:

L2 Distancej;j = |05 — Of agkedl2- (8)

A larger L2 distance reflects a greater impact of
token j on token ¢, as it quantifies the absolute
difference in output magnitude after masking.

By combining cosine similarity and L2 distance,
we capture both directional and magnitude-based
influences of vision tokens, offering a better way to
identify the most critical tokens than using atten-
tion weights (See Tab. 4 for detailed comparison).

4.4 Strategy for Efficient MLLM Design

Given the sparsity of cross-modal fusion in middle
layers, we propose an adaptive, training-free prun-
ing strategy that retains only the most influential
vision tokens: If masking a vision token reduces
the cosine similarity below 0.995, we define this
layer as a filtering layer, implying the visual input
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starts to contribute to the answer generation. Then,
at this filtering layer, we discard vision tokens with
a L2 distance below 0.2, as they have a negligible
impact on the last input token. Using this method,
we prune 576 vision tokens down to an average of
10.3 after the filtering layer, maintaining compet-
itive performance with only a 0.7% drop in GQA.
Moreover, our middle-layer pruning offers a new
interpretability lens on vision token redundancy by
lowering the minimum visual tokens retained.

Strategy POPE GQA VQA' MMVet

Attn®(last) 85.9 60.3 57.1 25.4
Attn (text) 85.9 58.0 55.6 23.8
Attn (vis) 85.9 55.2 52.0 20.9
Value-aware 86.1 61.3 57.8 31.9

Table 4: Value-aware pruning in middle layers consis-
tently outperformances attention-based methods, par-
ticularly in multi-token generation tasks like GQA,
TextVQA and MM Vet, indicating a stronger ability to
retain instruction-relevant visual information.

5 Deep Layers: Linguistic Alignment

As seen in Figure 3, we observe that beyond cer-
tain layers, masking all cross-attention connections
once again has minimal impact on performance,
which indicates a transition to deep layers.

5.1 Discontinuous Vision Dependence

To explore the role of vision tokens in different lay-
ers, we compare the performance impact of discard-
ing visual tokens versus skipping visual processing
only at specific layers. This allows us to better
understand when vision tokens can be discarded.

Skipping # Discarding When we discard all
visual tokens from layer 20 and beyond, we ob-
serve a noticeable drop in performance on the GQA
dataset, from 61.95 to 59.13. However, when we
only skip the visual processing at layer 20 and allow
visual information to continue through subsequent
layers, the performance degradation is minimal,
from 61.95 to 61.66. This suggests that while vi-
sual tokens remain relevant beyond layer 20, the
processing in this layer itself is not essential. There-
fore, we conclude that vision dependence may not
be continuous. Specifically, skipping one layer of
visual processing does not necessarily imply that
skipping all subsequent layers yields the same.

Top 10 visual tokens most attended by the final text token,
instruction tokens and visual tokens at layer 16.

Layers Top words in vocabulary space

32 The, In, All, """, There, L, Lux, I
A, It, Lux

31  The, All, In, """, There, L, the, all
A, It, Lux

30 All, The, all, Lux, the, In, lux, L
A, It, There

25 Lux, lux, all, scene, the, scene, Scene
The, A, It, There

Figure 4: Top vocabulary tokens from the semantic projection
of the last input token at each layer.

Discarding in Deep Layers Next, we investigate
the impact of discarding visual tokens from layer
26. On GQA, we observe negligible performance
change, from 61.95 to 61.91, indicating that the
visual information processed in earlier layers is al-
ready sufficiently integrated. However, when we
skip visual processing at layer 26 and allow subse-
quent layers to process the visual information, the
performance drops more significantly, from 61.95
to 61.40. This suggests that by layer 26, visual
tokens have already been integrated into the textual
representation, and the visual information starts to
introduce noise or redundancy in later layers.

Further supporting this, we observe minimal per-
formance loss when masking cross-attention in
deeper layers (Fig. 3), as well as when removing
vision from the deep-layer KV Cache (Sec. 3.4).
These results reinforce the idea that after a certain
layer, vision tokens can be safely discarded without
significantly affecting performance.

5.2 Behavior: Linguistic Alignment

Using the prompt "What are all the scene text in
the image?", we project the hidden state of the
last input token to the semantic space (Eq. 2). As
shown in Fig. 4, by layer 25, the model generates
the correct visual answer "Lux", but struggles to
structure it into a coherent response, "The scene text
is "Luxmi Jewellers’." While visual content is cor-
rectly identified, it is initially misplaced linguisti-
cally. As we move to deeper layers, the model grad-
ually refines the output, prioritizing tokens "7The"
to form a grammatically correct sentence.

These findings suggest that deep layers are re-
sponsible for aligning the generated content with
natural language conventions.

5.3 Strategy for Efficient MLLM Design

Having known that deep layers no longer rely on
vision tokens, we introduce a pruning strategy to
detect the completion of vision-to-text fusion: Af-
ter identifying and the only retaining critical vi-
sion tokens from middle layers (Sec. 4.4), we con-
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Table 5: Performance of VisiPruner across various MLLMs and benchmarks. These benchmarks include visual
question answering datasets GQA (Hudson and Manning, 2019), MME (Fu et al., 2024), MMBench (Liu et al.,
2024), and MMStar (Chen et al., 2024b), visual reasoning benchmark SQA (Lu et al., 2022), OCR benchmark
TextVQA (Singh et al., 2019), and the object hallucination benchmark POPE (Li et al., 2023b).

Method Vis Attn Computation | MMB  SQA' GQA MME’ VQA" POPE MMVet | Avg.
LLaVA-v1.5 7B 100.0% | 643 668 620 15076 582 859 312 | 634
PDIop retained=192 —86.4% 632 702 571 14198 561 823 305 | 615
Sparse VLM reuined=192 —86.4% 641 687 595 14411 561 853 331 | 627
FastVis =075 —87.3% 635 687 575 14589 562 810 279 | 6Ll
PDIop retained=64 —97.6% 333 692 419 9823 459 559 307 | 466
Sparse VLM repinea=64 —97.6% 60.1 698 538 13514 534 775 249 | 582
FitPrune reduction=09 —98.0% 554 678 524 12102 521 605 242 | 533
Ours —98.3% 620 667 603 14283 552 844 291 | 613

Table 6: Compare VisiPruner with training-free token-wise compression baselines, including: FastV (Chen
et al., 2024a), which keeps tokens selected by the last-to-vision attention; FitPrune (Ye et al., 2024b), which prunes
tokens according to attention-distribution saliency; SparseVLM (Zhang et al., 2025b), which drops tokens based on
cross-attention importance; and PyramidDrop (Xing et al., 2024), which progressively reduces visual tokens.

tinuously track their influence. If these kept to-
kens show no measurable impact for two consec-
utive layers, we define the latter layer as the vi-
sion exit layer ({..;;). Beyond /.., those retained
vision tokens are removed, further eliminating re-
dundant computations. On LLaVA-v1.5 7B, this
method identifies an average vision exit at layer
23.9, while still maintaining the performance on
GQA 62.0 — 61.3 — 61.0, confirming that deep
layers operate independently of vision.

6 VisiPruner and Future MLLMs

Based on key insights into the role of vision tokens
and cross-modal interactions within LLaVA-v1.5
7B, this section aims to (1) validate the general-
ization ability of our conclusions across diverse
MLLMs and (2) provide actionable recommenda-
tions for future model design.

Generalization Ability We apply our analyti-
cal methods and pruning strategies to multiple
MLLMs with different architectures, including

LLaVA-v1.5 13B, MobileVLM-V2-3B (Chu et al.,
2024), Qwen2-VL 7B (Wang et al., 2024) and
InternVL2.5-8B (Chen et al., 2025b). InternVL2.5
and Qwen2-VL are recently released MLLMs that
dynamically generates image tokens, allowing us to
verify the scalability of our conclusions in models
with more flexible visual processing. MobileVLM
3B is a compact model with significantly fewer im-
age tokens, enabling us to test the applicability in a
MLLM with less parameters.

Complexity Analysis By eliminating visual-
relevant attention in shallow layers and deep lay-
ers while adaptively pruning to 10 vision tokens
in middle filtering layers, we reduce cross-modal
attention operations to minimal levels, achieving
98.3% reduction in visual-related attention compu-
tation and a 53.9% reduction in FLOPs compared
to baseline. Building on our vision-independent
layer identification, we maintain only the most in-
teractive vision tokens on average in middle layers
while completely excluding visual tokens from KV
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caching in shallow and deep layers. This strate-
gic retention reduces the original visual KV cache
memory and further lowers computational over-
heads in long-sequence decoding scenarios. Details
about FLOPs calculation are in App. M.

Method Comparison Given that our method dis-
ables visual attention in shallow layers, we use the
visual attention FLOPs reduction ratio as the evalu-
ation criterion to ensure a fair comparison. Notably,
our layer-wise compression strategy is compati-
ble with token pruning approaches and can further
reduce computational overhead through shallow-
layer visual attention merging and early vision exit.

Suggestions for Future MLLLMs Based on our
findings, we propose several guidelines to im-
prove the efficiency and interpretability of future
MLLMs: (a) Truncate shallow visual layers and
eliminate cross/self-attention Since shallow layers
contribute little to cross-modal fusion, computa-
tional overhead can be reduced by processing vi-
sual tokens only up to the middle layers. The model
can be trained to recognize the start of middle lay-
ers, or adapted to a fixed starting point. (b) Train
models to attend sparsely By training for sparse
attention in middle layers, the model directly identi-
fies critical tokens, bypassing the need for post-hoc
attention scores or influence measurements. (c) En-
able early exiting in deep visual layers once modal-
ity fusion is established. Given the established
linguistic alignment behavior in deep layers, we
recommend incorporating vision exit mechanisms
into MLLM training pipelines to automatically skip
out when fusion is finished.

7 Conclusions

We propose a three-stage MLLM frame-
work—where shallow layers handle intra-modal
task interpretation, middle layers integrate task-
relevant visual tokens into textual embeddings, and
deep layers focus on linguistic alignment. Building
on these insights, we introduce stage-specific
optimizations that boost computational efficiency,
and validated our framework across multiple
MLLM architectures, confirming its general
applicability. Finally, we distill our findings into
practical guidelines for future MLLM design.

Limitations

While our study provides a principled and general
framework for understanding the mechanisms of

vision-language models, there are several limita-
tions. First, training the projector to align vision
tokens with semantic representations and inserting
them until later layers could further strengthen our
findings regarding intra-modal processing in shal-
low layers. Second, due to hardware constraints,
our analysis was limited to models with up to 13
billion parameters. Future work could replicate our
approach using larger models, potentially uncov-
ering additional insights through our three-stage
analytical framework.
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A Related Work

A.1 Cross-modal Information Flow in
MLLMs

Research on cross-modal information flow in
MLLMs has shown that visual information is grad-
ually integrated into the generation of subsequent
textual tokens (Neo et al., 2024; Wu et al., 2024,
Zhang et al., 2024c; Tong et al., 2025a). However,
there is still disagreement about how and when this
fusion occurs within the model. Neo et al. (2024)
suggest that key visual information is primarily ex-
tracted in the middle to late layers of the model. In
contrast, based on attention weight analysis, Wu
et al. (2024) and Zhang et al. (2025a) argue that
visual information is fused into textual tokens in
the shallow layers, highlighting the role of vision
tokens early in the process. Similarly, Zhang et al.
(2024c) report that the model is constantly fusing
visual information, starts with perceiving the entire
image and then extracting key visual details.

A.2 In-VLM Vision Compression

Identifying and retaining important tokens that are
crucial for generation is a key aspect of effective
training-free token pruning (Xiao et al., 2024;
Zhang et al., 2023; Liu et al., 2023c). To make
vision compression more adaptive to user instruc-
tions, in-VLM compression has become a key area
of research. Chen et al. (2024a) observe the signif-
icant of redundancy of vision tokens via the spar-
sity of attention for vision tokens within VLMs,
and propose a pruning method named FastV to
pick the most important vision tokens based on
attention each vision token received from the last
token. Building on FastV, PyramidDrop drops vi-
sion tokens in multiple stages (Xing et al., 2024).
SparseVLM selects visual-relevant text tokens to
evaluate the importance of vision tokens based on
the self-attention matrix, then prunes the vision
tokens using a rank-based strategy and token recy-
cling to maximize sparsity while retaining essential
information (Zhang et al., 2024a).

B Mask Highly Attended Visual Tokens
in Shallow Layers Using Different
Selection Criteria

To further validate that highly attended visual to-
kens has no effects, we conducted experiments on
additional selection criteria:
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Criterion GQA MME? VQA'" POPE
vanilla 62.0 1507.6 582 85.9
attn (last — vis)  62.0  1506.6  57.9 85.7
attn (text — vis)  62.0  1503.6  58.1 85.7
pos (near text) 62.0 1501.1 58.1 85.7

Table 7: Performance after masking top 60 attended
visual tokens in the first two layers using different selec-
tion criteria.

C Comparison of Cross-Attention
Masking Across Different Stages

We also compare the performance on different dif-
ferent benchmarks with cross attention masked in
different stages as shown in Tab. 8. The shallow
and deep layers exhibit significantly cross-modal
information fusion compared with middle layers.

Model Layers | GQA' MME” VQA”
Dense 62.0 1507.6 58.2
1-7 615 14112 56.8
LLaVA-VLSTB g s 517 726 511
27-32 | 61.8  1488.5 58.1

Table 8: Performance on Various Benchmarks with
Cross-Attention Masked in Specific Layers.

D Visualization of visual attention sink
phenomenon

In Fig. 5, we visualize the attention distribution on
the input image across shallow, middle and deep
layers to highlight the visual attention sink phe-
nomenon. Ideally, attention distribution should
adapt dynamically based on the input, directing
focus to different areas for different tasks. How-
ever, our visualizations reveal an intriguing pattern:
tokens with high attention scores—highlighted in
the image—tend to appear consistently in the same
regions across various instructions in both shallow
and deep layers. This finding suggests that cer-
tain vision tokens act as attention sinks, drawing
focus but failing to provide meaningful contribu-
tions to the model’s reasoning. As a result, these
tokens may not be essential for generating accurate
responses.

Moreover, in the middle layers, we observe that
the model starts to concentrate its attention on the
more instruction-relevant areas. This reinforces
our conclusion that MLLMs undergo a three-stage
information processing approach, where shallow
layers focus on task recognition, middle layers se-

lectively fuse instruction-relevant visual informa-
tion, and deep layers refine and align the response
with the instruction.

Another interesting finding is that the first layer
exhibits clear attention window, the lower half of
vision tokens receive more attention from the last
input token.

E Detailed Analysis on Visual Attention
Sink Tokens

E.1 Lower L1 Norm of Value Vectors for Sink
Tokens

As shown in the lower subplot of Fig. 7, visual
sink tokens with high attention weights exhibit sig-
nificantly lower magnitudes in their value vectors.
This suggests that visual sink tokens function simi-
larly to textual sink tokens, acting as bias terms in
the softmax computation.

E.2 Attention Redistribution After Removing
Visual Sink Tokens

After identifying the visual sink tokens in an exam-
ple, we remove these tokens before the first layer.
We observe that the attention weight previously al-
located to the visual sink tokens is redistributed to
the textual sink tokens in the system prompt.

Attn Weight in System Prompt

13,0.562011719 Attn w/o visual sink tokens

0.5 13, 0.530273438 Attn w visual sink tokens

1,0.319091797
1,0.300292969

Attn Weight
°

1234567 8 91011121314151617181920212223242526272829303132333435

Token Index

Figure 6: Textual sink tokens in the system prompt
absorb the attention weight when visual sink tokens are
removed in the third layer.

Sum of attention weight from visual sink tokens:
0.053352. Difference in attention weight of textual
sink tokens with and without visual sink tokens:
0.0505371009.

F L1 Norm of Value Vectors

As illustrated in Fig. 7, the value vectors for textual
and visual tokens show distinct patterns in the first
layer. This likely indicates that the model differen-
tiates between modalities at this stage, highlighting
the necessity of modality-specific sinks.
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Figure 5: Visualization of attention map and distribution on image with different instruction across shallow, middle
and deep layers using LLaVA-v1.5 7B
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Figure 7: Visualization of attention map and distribu-
tion on image with different instruction across shallow,
middle and deep layers using LLaVA-v1.5 7B

G Random Selection of Visual Attention
Merging Token

To ensure the visual token selection for merging is
not index-dependent, we randomly choose a visual
token and merge all visual cross-attention into it.

Visual Token Index GQA
vanilla 61.95

- 57.41

1 61.98

576 61.55

128 61.83

288 61.76

Table 9: Performance of random visual token merging
on GQA.

H Complete Results on Semantic
Projection of the Last Input Token

In this section, we present a more detailed analysis
of the semantic projection of the last input token
for different user instructions.

H.1 USER: How Many Cars Are in the
Image?

As shown in Tab. 11, when given the user instruc-
tion "How many cars are there in the image?", the
model accurately identifies it as a number-related
task.

H.2 USER: What Kind of Apple Is This?

As shown in Tab. 12, when given the user instruc-
tion "What kind of apple is this?", the model cor-
rectly identifies it as a type-related task.

I Task Recognition: Projection of
Value-Output Matrix on Semantic
Space

The value-output matrix plays a key role in in-
context learning by summarizing task-related infor-
mation. Building on the approach from (Dar et al.,
2023), we project this matrix into the semantic
space as follows:

D = Wu(‘/last : O) (9)

where V is the value vector, O is the output matrix,
and W, is the word unembedding matrix.

I.1 USER: Where is the place of origin?

Given the instruction "Where is the place of ori-
gin?", the model recognizes this as a location-
related task Tab. 13.

Layer Head Top words in vocabulary space
14 31 names,Names,NAME,jit,Names
13 31 location,locations,map,Location,Map
12 31 thy,thee,thou,Gemeins, Tu

Table 13: Top 5 tokens from the semantic projection
of the value-output matrix of the last input token at
different layers.

1.2 USER: How many apples are there in the
image?

Given the instruction "How many apples are there

in the image?", the model recognizes this as a

counting-related task Tab. 14.

Layer Head Top words in vocabulary space
13 31 two,another,deux,atori,three
12 31 counting,counts,numbers,count,count
11 31 1/} ,your,you,vous,yourself

Table 14: Top 5 tokens from the semantic projection
of the value-output matrix of the last input token at
different layers.

1.3 USER: What is the make of the car on the
left?

Given the instruction "What is the make of the car
on the left?", the model recognizes this as a brand-
related task Tab. 15.
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Model Layers Vision Text Math Overall
Recognition OCR  Spatial awareness | Knowledge Generation | Math
Dense 36.1 23.9 26.3 17.1 224 11.5 31.2
0-7 39.5 252 28.8 214 26.9 154 33.8
LLaVA-v157B 8-14 34.0 214 26.5 16.1 19.0 7.7 29.2
25-31 359 222 232 18.6 224 11.2 31.1
0-31 33.1 135 23.5 142 16.6 7.7 26.1

Table 10: Performance Breakdown of LLaVA-v1.5 7B on MM-Vet with Vision Removal from Specific Layers
in the KV Cache. "Layers" column indicates the layers from which visual information was removed.

Layers  Top words in vocabulary space

19 four, three, five, several, six, many, seven
two, Several, dozen

18 four, three, several, two, five, dozen, lots, many
number, multiple

17 four, three, several, two, dozen, five, number
mehrere, lots, multiple

16 four, three, number
two, five, dozen, several
many, mehrere, lots

15 four, number, three, Ges, dozen, several, lots
five, count, multiple

14 four, number, three, Ges, two, érique, count
lots, There, ieri

13 number, three, count, number, four, érique
none, ocker, multip, estaven

12 number, arden, rita, Number, multip, three
NUM, licz, number, NUM

11 number, arden, rita, Number, none, licz
number, Sa, three, Ges

10 number, arden, rita, ubre, nim, konn, eben
multip, >4, two

9 number, rita, multip, nim, arden, platz, iken
zero, un, VS

Table 11: Top tokens from the projection of the last
input token at each layer.

Layers  Top words in vocabulary space

9 sterd, publique, typen, Hinweis, penas, ohl, bpe
Hero, Sob, ermeister

8 sterd, typen, publique, pazdzier, 5=, schrift
IR, intrag, penas, Hinweis

7 sterd, penas, quelle, typen, iR, teil, wohl
pazdzier, M, intrag
6 sterd, pazdzier, strij, sierp, kwiet, penas, Sci

Wikispecies, wohl, konn

Table 12: Top tokens from the projection of the last
input token at each layer.

Layer Head Top words in vocabulary space
14 31 different, Wat,isse,iesen,newer
13 31 brand,companies,company,Brand,brand
12 31 loro,ihnen,your,their,nx

Table 15: Top 5 tokens from the semantic projection
of the value-output matrix of the last input token at
different layers.

J Analysis of Vision Removal Impact on
MM-Vet Performance in KV Cache

To further probe the role of shallow layers, we con-
ducted a vision removal experiment using MM-Vet,
a benchmark requiring extended responses where
key visual information must be preserved in the
KV Cache. Specifically, we examined whether the
model relies on vision information from shallow
layers during the decoding process. A detailed
breakdown of MM-Vet with vision removal on
specific layers to determine whether performance
degradation or improvement is attributed to vision
or text generation. After pruning visual informa-
tion from the first eight layers, the model performed
better than the original configuration, further con-
solidating that the model does not utilize visual
information from shallow layers (see Tab. 10). Ad-
ditionally, removing vision tokens in deep layers
also have a minimal influence on the performance,
indicating that the model focuses on processing
textual information to align with instruction.

K Visualization of Instruction-Relevant
Focus Across Middle Layers

Figure 8: The Most Instruction-Relevant Region
Highlighted in Red Boxes.

18900



Given the user instruction "What kind of apple
is this?" and the image in Fig. 8, we observe that
the last token in the middle layers consistently fo-
cuses on the most instruction-relevant region (see
Tab. 16).

Layers  Top 10 Visual Tokens Indices

22 107, 108, 129, 130, 60, 222, 155, 255, 512, 162
21 107,108, 129, 130, 60, 222, 155, 255, 512, 162
20 107, 108, 60, 162, 161, 222, 163, 61, 399, 255
19 108, 107, 60, 222, 255, 387, 399, 61, 207, 299
18 108, 222, 107, 207, 60, 502, 155, 88, 355, 399
17 107, 222, 108, 155, 60, 512, 130, 156, 255, 129
16 107, 108, 222, 155, 60, 156, 131, 355, 109, 340
15 107, 108, 222, 60, 61, 255, 88, 163, 399, 155

14 222,107, 355, 108, 340, 159, 574, 255, 398, 131
13 222,107, 355, 108, 340, 398, 574, 255, 60, 155
12 222, 355, 340, 398, 270, 155, 574, 107, 272, 207
11 222, 355, 340, 574, 575, 398, 108, 107, 155, 156
10 222,575, 355, 574, 340, 398, 207, 571, 272, 108

Table 16: Top 10 most attended vision tokens from
the last input token at each layer. Green indicates the
most critical visual tokens, while red marks the visual
attention sink tokens.

L. Layer-wise Cross-Attention Masking
on MobileVLM 3B

Compared to LLaVA-v1.5 7B, MobileVLM v2 3B
has a broader range of shallow layers and fewer
deep layers. This suggests that smaller models may
require more computations on task recognition.

60-
55-
g 50- to-Deep
Ic] Deep-to-Shallow Masking
45-
40-
35-

5 10 15 20 25 30
Layer

Figure 9: Impact of masking layer ranges from shallow-
to-deep and deep-to-shallow, showing a clear reduction
in cross-modal fusion in both shallow and deep layers.

M FLOPs Analysis on LLaVA-1.5 7B

Our proposed method greatly reduces vision-
related self-attention, cross-attention and FFN,
leading to an overall FLOPs reduction of > 60%.
Here is a detailed analysis:

The total computation in MLLMs primarily con-
sists of two components: attention computation and

feed-forward network (FFN) computation. Among
these, attention computation scales quadratically
with sequence length, making it the primary com-
putational bottleneck—especially in models like
Qwen2-VL, which can generate up to 12,000 vi-
sual tokens. For instance, in LLaVA-1.5 7B, the
FLOPs for attention computation can be expressed
as 2n2d. The reduction ratio for visual attention
computation is given by:

L2+« 2(n!)2d + L' (n! ng)d

=1 32 % (2(n2d + nyny))

where the L' the number of cross-modal interac-
tion layers, n), represents the number of retained
visual tokens. If the input sequence consists of 650
tokens (576 visual tokens and 74 text tokens), our
approach eliminates attention computation in shal-
low and deep layers, retaining only a few critical
tokens for cross-modal fusion. This results in a
99% reduction at maximum in attention computa-
tion.

FLOPs Calculation. In LLaMA 2 7B (Touvron
et al., 2023), the primary flops include FFN and
self-attention. The flops for FFN is 3ndm, where n
is the number of input tokens, d is the hidden state
size, and m is the intermediate size of the FFN.
Hence, the FLOPs overall calculation for visual
tokens follows:

Linidaie
> (4nld® + 2n7d + 3n),dm)
=0
Lshallow
+ > (4nyd® + 3n,dm)
=0

This optimization leads to an overall visual FLOPs
reduction of 62.8% under the given setting (576
visual tokens and 74 text tokens), significantly en-
hancing efficiency while maintaining performance.
Given that the efficiency gain scales with longer tex-
tual or visual inputs, our pruning framework offers
much greater benefits for longer text instructions
or when multiple images are provided.

Additionally, following our actionable guide-
lines for optimizing MLLMs, the visual computa-
tion overhead within shallow layers in FEN should
be able to be further reduced through training.

N Failure Case Analysis

In this section, we present an analysis on failure
cases in GQA, where our pruned model produced
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1,125 mismatched answers compared to the vanilla
LLaVA-v1.5 7B over 12,000 samples.

e 234 answers were correct in our model but
incorrect in the vanilla model.

¢ 325 answers were incorrect in our model but
correct in the vanilla model.

Upon closer inspection, we found that misclassi-
fications were often related to variations in word
choice rather than fundamental misunderstandings.
Below are some examples:

N.1 '"Which kind of vehicle is in front of the
flag?\nAnswer the question using a single
word or phrase."

¢ Ground Truth Answer: "van"

¢ Vanilla Model: "truck"”

¢ Ours: "van"

N.2 "What is sitting in front of the table that

looks yellow and black?\nAnswer the
question using a single word or phrase."

* Ground Truth Answer: "luggage"

* Vanilla Model: "backpack”

¢ Ours: "suitcase"

N.3 '"What is in front of the poster?\nAnswer

the question using a single word or
phrase."

¢ Ground Truth Answer: "monitor"
¢ Vanilla Model: "monitor"

* QOurs: "computer”
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