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Abstract

Large language models (LLMs) have demon-
strated significant potential in enhancing dense
retrieval through query augmentation. How-
ever, most existing methods treat the LLM and
the retriever as separate modules, overlooking
the alignment between generation and rank-
ing objectives. In this work, we propose Ex-
pandR, a unified LLM-augmented dense re-
trieval framework that jointly optimizes both
the LLM and the retriever. ExpandR employs
the LLM to generate semantically rich query
expansions, which are leveraged to enhance the
retriever’s training. Simultaneously, the LLM
is trained using Direct Preference Optimization
(DPO), guided by a carefully designed reward
function that balances retrieval effectiveness
and generation consistency. This joint opti-
mization paradigm enables mutual adaptation
between the LLM and the retriever, resulting
in query expansions that are both informative
and well-suited for retrieval. Experimental re-
sults on multiple benchmarks show that Ex-
pandR consistently outperforms strong base-
lines, achieving more than a 5% improvement
in retrieval performance. All codes are avail-
able at https://github.com/NEUIR/Expan
dR.

1 Introduction

Dense retrievers (Karpukhin et al., 2020; Xiong
et al., 2021a) encode both queries and documents
into the same embedding space, enabling efficient
similarity-based retrieval via approximate KNN
search (Johnson et al., 2019). While effective, their
performance remains highly sensitive to the quality
of the input query. In practice, user queries (Belkin
et al., 1982; Ingwersen, 1996) are often short and
ambiguous, leading to a significant semantic gap
between the query and relevant documents, mak-
ing it challenging for dense retrievers to accurately
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capture the underlying information need.

Recent advances in Large Language Models
(LLMs) (Wei et al., 2022a,b; Chen et al., 2025;
Huang et al., 2025b) offer promising solutions to
this challenge through query augmentation. Ex-
isting methods along this line of research can be
categorized into two groups. The first direction
leverages LLM-generated reformulations as super-
vision signals to train dense retrieval models, typ-
ically through contrastive training (Zhang et al.,
2025; Ma et al., 2025) or ranking probability dis-
tillation (Shi et al., 2024; Kim and Baek, 2025).
However, the effectiveness of this approach is con-
strained by the limited capacity and scalability of
dense retrievers (Fang et al., 2024). The second
direction focuses on augmenting dense retrievers
by prompting LLMs to generate additional terms at
inference time (Wang et al., 2023a; Mackie et al.,
2023). These terms aim to increase lexical overlap
with relevant documents, thereby reducing the se-
mantic gap between queries and documents. While
such expansions are often semantically rich, they
are typically misaligned with the retriever, as the
LLM is not explicitly optimized for retrieval objec-
tives. As a result, the retriever struggles to effec-
tively utilize the LLM-augmented content.

In this work, we propose ExpandR, a unified
LLM-augmented dense retrieval framework that
jointly optimizes both the LLM and the dense
retriever. ExpandR first prompts the LLM to
generate semantically enriched query expansions,
which enhance query representations and improve
the retriever’s ability to rank relevant documents.
Rather than treating the LLM and retriever as
separate modules, ExpandR integrates generation
and retrieval under a shared training objective—
promoting higher ranks for ground-truth documents
given a query. Specifically, we optimize the dense
retriever via contrastive training, and train the LLM
using Direct Preference Optimization (DPO) with a
combination of self-consistency and retrieval-based

19036

Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 1903619054
November 4-9, 2025 ©2025 Association for Computational Linguistics


https://github.com/NEUIR/ExpandR
https://github.com/NEUIR/ExpandR

rewards. Through this joint optimization, the two
components mutually reinforce each other, leading
to more effective expansions and improved overall
retrieval performance.

Our experiments on the BEIR bench-
mark (Thakur et al., 2021) demonstrate the
effectiveness of ExpandR, yielding over a 5.8%
improvement in supervised dense retrieval. Further
analysis shows that the query expansions generated
by ExpandR lead to better alignment with relevant
documents compared to those from baseline
methods. By jointly leveraging self-consistency
and retrieval-based rewards, the LLM is better
optimized to generate expansions that are both
semantically rich and retriever-aligned. Specif-
ically, the self-consistency reward encourages
the LLM to generate content that is semantically
closer to the ground-truth document, while the
retrieval-based reward captures the retriever’s
ranking behavior. Together, these rewards guide
the LLM to produce expansions that are both
relevant and retriever-friendly.

2 Related Work

Dense retrievers (Xiong et al., 2021a; Izacard et al.,
2021; Yu et al., 2021; Xiong et al., 2021b; Li et al.,
2021, 2025) conduct semantic matching by en-
coding queries and documents into a shared em-
bedding space, thereby alleviating the vocabulary
mismatch problem (Belkin et al., 1982). To fur-
ther improve the quality of semantic matching, re-
cent work has focused on refining this embedding
space through contrastive learning with relevance
supervision (Karpukhin et al., 2020; Zhan et al.,
2021) or leveraging weakly supervised training sig-
nals (Xie et al., 2023). While effective, a persistent
bottleneck in information retrieval lies in the qual-
ity of the user-issued queries themselves (Jiang
et al., 2025). In particular, queries are often under-
specified, ambiguous, or semantically incomplete,
which limits the retriever’s ability to accurately
locate relevant content (Belkin et al., 1982; Ingw-
ersen, 1996).

Recent advances in LLMs (Huang et al., 2024a;
Zhao et al., 2024; Liu et al., 2024; Liu et al.)
offer new opportunities to address this issue by
leveraging their rich knowledge and powerful gen-
erative capabilities to enrich or reformulate user
queries (Yu et al., 2020; Lin et al., 2020; Ye et al.,
2023). These augmented queries are often used as
supervision signals or distillation targets to train

dense retrievers more effectively. For instance,
methods such as LLM-QL (Zhang et al., 2025)
and DRAMA (Ma et al., 2025) propose leveraging
LLMs to generate new queries or training triplets
for dense retriever optimization. RePlug (Shi et al.,
2024) has been proposed to distill the knowledge of
LLMs into a lightweight retriever. While these ap-
proaches enhance supervised retrieval performance,
they mainly focus on query synthesis, often over-
looking the limited semantic expressiveness of the
original queries (Wang et al., 2023b). Moreover,
their effectiveness is fundamentally constrained by
the limited capacity and scalability of dense retriev-
ers (Huang et al., 2024b).

LLM-based query expansion has emerged as
a widely adopted approach for query augmenta-
tion (Lei et al., 2024; Xia et al., 2024), effectively
enriching the semantic content of original queries.
These methods prompt LLMs to generate query-
related documents (Wang et al., 2023a; Jagerman
et al., 2023; Gao et al., 2023), leverage Chain-of-
Thought (CoT) reasoning results (Wei et al., 2022b;
Trivedi et al., 2023), or utilize specific keywords (Li
et al., 2024b; Jagerman et al., 2023) to expand
queries, thereby enhancing the ranking capabilities
of lexical matching based retrieval models (Jager-
man et al., 2023; Wang et al., 2023a), dense re-
trieval models (Wang et al., 2023a), and reranking
models (Li et al., 2024b). However, these LLM-
generated expansions are often directly incorpo-
rated into the retrieval process without retraining or
adapting the retriever. Consequently, the retriever
fails to fully leverage the enriched signals of LLMs,
resulting in limited improvements in retrieval per-
formance (Wang et al., 2023a).

Moreover, existing approaches that incorpo-
rate LLMs into retrieval systems often train the
LLM (Jiang et al., 2025) or the retriever inde-
pendently (Kim and Baek, 2025), resulting in
preference misalignment between the generation
and retrieval components. Some works, such as
RaFe (Mao et al., 2024), attempt to align LLM
rewriting with retrieval signals by using reranker
scores as feedback. However, these approaches rely
on a separate reranking model rather than incorpo-
rating direct training signals from dense retrievers.
In contrast, our approach introduces a joint training
framework that simultaneously optimizes the LLM
and the dense retriever, enabling stronger align-
ment between the two components to conduct a
more effective retrieval result.
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Step A: Optimizing Dense Retriever through LLM-Guided Contrastive Training
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Figure 1: Illustration of Our ExpandR Model. ExpandR optimizes both dense retriever and LLM using the LLM-
guided contrastive training method and the ranking preference alignment method.

3 ExpandR: An LLM Augmented Dense
Retriever Method

As illustrated in Figure 1, this section introduces
ExpandR, our LL.M-augmented dense retrieval
model that leverages query expansions to improve
retrieval performance. We begin by describing the
overall architecture of ExpandR (Sec. 3.1). We then
present how LLM-generated query expansions are
used to guide the training of the dense retriever
(Sec. 3.2). Finally, we detail a preference-based
optimization strategy for the LLM to generate more
effective and tailored query expansions (Sec. 3.3).

3.1 Toward a Framework for LLM-Guided
Dense Retrieval

This section illustrates how LL.Ms can be leveraged
to enhance dense retrieval. We first introduce the
architecture of a standard dense retriever, and then
present our proposed method, ExpandR, which in-

corporates LLM guidance to improve the retrieval
model’s effectiveness.

Dense Retrieval. Given a query ¢ and a docu-
ment collection D = {dj, ..., dx}, dense retrieval
models (Karpukhin et al., 2020; Xiong et al., 2021a;
Gao and Callan, 2021) first encode the query ¢ and
the i-th document d; into embeddings ¢ and d; us-
ing PLMs, such as BERT (Devlin et al., 2019):

= BERT,(q), d; = BERT,(d,). (1)

Then the relevance score S(q, d;) is calculated to

estimate the relevance between ¢ and d;:

S(g, di) = sim(q, di), @

where sim is the dot product operation. Fi-

nally, dense retrieval models conduct a KNN

search (Douze et al., 2024) to retrieve the top-
ranked documents to satisfy the user needs.
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ExpandR. Unlike traditional dense retrieval
models (Karpukhin et al., 2020), ExpandR lever-
ages the knowledge encoded in LLM to guide
dense retrievers via query expansions d?, aiming to
achieve more accurate retrieval results.

Specifically, we first prompt the LLM M to gen-
erate a query expansion d? as follows:

d? = M(Instructgpg, q), 3)

where Instructyq denotes an instruction prompt-
ing the LLM to generate an informative expansion
for the input query (Jagerman et al., 2023). We
then model the joint probability of retrieving the
ground truth document d., conditioned on the origi-
nal query q as:

P(d« | q;®,0) = P(d. | ¢, d*;®) - P(d" | ¢;©), (4)

where ® and O represent the parameters of the re-
triever and the LLM, respectively. This formulation
can be rewritten as:

log P(d« | ¢;®,0) =

5
log P(d« | q,d?; ®) + log P(d? | q; ©). ®)

Our objective is to jointly optimize the retriever
(®) and the LLM (©) to maximize the above log-
likelihood. To enhance training efficiency, we up-
date both components simultaneously using a con-
current strategy (Wang et al., 2024a). The individ-
ual optimization details for the retriever and the
LLM are presented in Section 3.2 and Section 3.3,
respectively. This method allows us to accelerate
the overall optimization process while maintaining
optimal performance.

3.2 Optimizing Dense Retriever through
LLM-Guided Contrastive Training

To maximize P(d. | ¢; ®,©) by optimizing the
retriever parameters ¢, we train the dense retriever
using both the original query ¢ and its correspond-
ing expansion d?:

log P(d« | ¢; ®,©)

=log P(d. | ¢,d*; @) +log P(d" | ¢;©).  (6)

Optimize w.r.t. Fixed

To optimize the retriever, we fix © and update only
® by maximizing the retriever-related term:

" = arg max log P(d« | q,d%; ®). @)

To incorporate the knowledge of d?, we simply
average the embeddings of both ¢ and d? as the
final query representation ¢ *P:

gop = T4

5 (®)

Then we treat the expanded query ¢®*P as the new
query and compute the similarity score sim(g*P, d)
between ¢®*P and each candidate document d. The
retriever can be contrastively trained using the train-
ing loss Lpg:

eSim(qexP ydx)

Sim(q*P,d. sim(q
esSim( )+ ep-€

Lpr = —log woay O
where D~ represents the set of negative docu-
ments, which are sampled from in-batch nega-
tives (Karpukhin et al., 2020).

3.3 Optimizing LLM for Aligning with
Ranking Preference

To maximize the probability P(d. | q; ®,0), we
optimize only the LLM parameters (©) while keep-
ing the dense retriever parameters (P) fixed.

As shown in Eq. 5, updating © alone still affects
both terms of the joint probability. Therefore, we
optimize © as follows:

0" = arg mgx[log P(d. | q,d%; ®)
+log P(d? | q; ©)].

10)

This objective indicates that a well-generated d?
can not only directly increase the likelihood term
log P(d? | ¢q;®), but also indirectly improve re-
trieval performance by providing more informative
expansions for the term log P(d | q,d?; ®). To
realize this dual effect, we optimize the LLM pa-
rameters through a reward-driven approach. The
optimization process involves two steps: first, we
define the reward modeling objective (Eq. 10); then,
we train the LLM using the Direct Preference Opti-
mization (DPO) method (Amini et al., 2024).

Reward Modeling. We define a reward func-
tion R(d?) to evaluate each candidate expansion
d? € D1. The reward combines two complemen-
tary signals:

R(dq) = Rself(dq) + Rretriever(dq)v (11

where Rger(d?) and Ryegiever(d?) represent the self-
reward and the retriever reward, respectively.
Self-Reward. To promote the likelihood term
log P(d? | ¢; ©), we incorporate a self-reward that
leverages the LLM’s self-consistency. Specifically,
we prompt the LLM to generate an answer y accord-
ing to the query ¢ and the ground-truth document
e y = /\/l(Instructqza7 q,dx), (12)
where Instructy, guides the LLM to produce an
answer y to q. We then treat the answer y as a
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query and rank the expansion candidates D? to
compute the self-reward score:

Ra(d') = gz (13)
where Rank(y, d?) denotes the rank of document
d? based on its relevance score sim(y,d?). A
higher rank indicates stronger semantic similarity
and consistency between y and d9.

Retriever Reward. While the self-reward en-
sures the semantic plausibility of the candidate
expansion d9, it does not necessarily guarantee
its usefulness for retrieval, i.e., contributing to
log P(d, | q,d?; @) (Weller et al., 2024). To ad-
dress this limitation, we incorporate a retriever re-
ward that captures the preferences of the retriever.
Specifically, we compute the Mean Reciprocal
Rank (MRR) by treating the ground-truth docu-
ment d, as a pseudo-query and ranking the expan-
sion candidates DY:

Rrank(dq) = mv (14)
where Rank(d., d?) denotes the rank of d based on
the similarity score sim(d,,d?). A higher reward
indicates that the expansion is more similar to the
ground-truth document, and thus more likely to
improve retrieval performance.

LLM Optimization. We fine-tune the LLM M
using preference modeling via DPO. Specifically,
we first prompt the LLM to generate a set of expan-
sion candidates D9 = {df, ..., d} } for each query
q, by sampling with varying temperature:

d? ~ M(Instructgog, g)- (15)

Then we construct training triples (g, d%., d% ) using
the reward model R(-) (Eq. 11):

R(d%) > R(d%), (16)

and follow the DPO method to optimize the LLM
(M) using the loss function £(M; MRef):

L(M; M) = ~E(g,a? a0 )~p [logg(

M(d | q) Mwum)y an

1 T YR Th JDr’ 10 1~
I8 ST ) 8 M T )

— Blog
where o is the sigmoid function, g is a scaling
hyperparameter, and MR is a frozen reference

model. The training set P is composed of prefer-
ence pairs sampled based on reward scores.

Dataset Setting #Query
Train Dev Test
o LLM 27,000 3,000 -
Retrieval 637,866 70,874 -
MS MARCO Retrieval - - 6,980
BEIR Retrieval - - 46,379

Table 1: Statistics of the datasets used in our experi-
ments. The ES dataset is used for joint training of the
LLM and the retriever, while MS MARCO and BEIR
are used exclusively for evaluation.

4 Experimental Methodology

In this section, we introduce the datasets, evalua-
tion metrics, baselines, and implementation details
used in our experiments.

Dataset. We utilize various datasets for training
and evaluation. Data statistics are shown in Table 1.
More details on data generation and processing are
shown in Appendix A.2.

Training. We use the publicly available E5
dataset (Wang et al., 2024b; Springer et al., 2024) to
train both the LLMs and dense retrievers. We con-
centrate on English-based question answering tasks
and collect a total of 808,740 queries. From this set,
we randomly sample 100,000 queries to construct
the DPO data for training LLM, while the remain-
ing queries are used for contrastively training the
dense retrieval model. During the construction of
DPO preference pairs, we first prompt LLMs to
generate documents as query expansions (Wang
et al., 2023a). We then filter out queries whose
generated documents exhibit low semantic similar-
ity to the original queries. This results in a final
dataset comprising 30,000 high-quality queries.

Evaluation. We evaluate retrieval effectiveness
using two retrieval benchmarks: MS MARCO (Ba-
jaj et al., 2016) and BEIR (Thakur et al., 2021).

Evaluation Metrics. We use nDCG@10 as the
evaluation metric, which is the official evaluation
metric of BEIR (Thakur et al., 2021). Statistical
significance is tested using a permutation test with
p < 0.05.

Baselines. We compare our ExpandR model
with four representative retrieval models, including
BM25 (Robertson et al., 2009), DPR (Karpukhin
et al., 2020), CoCondenser (Gao and Callan, 2022),
and ANCE (Xiong et al., 2021a).

Then we use different retrievers as backbone
models and optimize them using different training
strategies. Three encoders as backbone retrievers to
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Task | BM25 DPR CoCondenser ANCE | BERT Contriever AnchorDR

‘ ‘ Raw! FT° ExpandR ‘ Raw! FT° ExpandR ‘ Raw’ FT®° ExpandR
MS MARCO 28 177 16.2 37.0 | 029 22687 23547 | 2055 32967 33650 | 25.66 36350 37.14f
Trec-COVID 65.6 332 40.4 62.1 | 373 1972t 19.12F | 27.45 30.03" 47987 | 5144 53.717  78.851°
NFCorpus 325 189 28.9 234 | 260 21.02F 2398f° | 3173 3233  34.807 | 31.23 31.04  32.13°
NQ 329 474 17.8 429 | 040 15617 2964 | 2537 3372F 50397 | 26.24 40307  55.91f°
HotpotQA 603 39.1 34.0 47.1 | 077 16.100 29707 | 48.07 58.78"  70.507° | 52.46° 47.84  63.407°
FiQA 236 112 25.1 293 | 0.59 11167 15407 | 2450 26.06" 3240 | 24.04 28207 34.17%°
ArguAna 315 175 44.4 402 | 819 3936F 37.57f | 37.90 53.48" 55397 | 2950 48517  49.16f
Touche-2020 367 131 11.7 236 | 039 282t 5891 | 16.68° 1046  17.38° | 12.37 13.76F  24.53f¢
CQADupStack 299 153 30.9 28.8 | 1.10 17.10f  16.47" | 28.43 31.607 33.007 | 30.30 34.72f 35.18%
Quora 78.9 248 82.1 847 | 3629 77.38" 72041 | 8350 84.98" 84.67" | 8349 85.061 79.34
DBPedia 313 263 21.5 265 | 157 14.087  23.057 | 29.16 36.467 42.321° | 33.58 3455  40.731°
Scidocs 158 77 13.6 113 | 070 6.04F 943t | 1491 1494 17.85% | 1657 1577  16.82°
FEVER 753 562 61.5 68.1 | 024 36597 5749t | 6820 82497 87.077 | 62.98 77.43F  84.57f°
Climate-FEVER | 214  14.8 16.9 19.8 | 0.61 11.52F 24.63% | 1550 23.047 29777 | 23.44 26.631 31.76f°
Scifact 66.5 31.8 56.1 502 | 281 42357 46271 | 64.92 68.84" 69.68" | 59.84 60.51  63.43%
Avg BEIR14 430 255 34.6 399 | 429 2363 2933 |36.88 4194 4809 | 3839 4272  49.28
Avg.All 417 250 334 397 | 402 2357 2895 | 3579 4134 4712 | 37.54 4229 4847
Best on 1 0 0 0 0 0 0 0 0 7 0 1 6

Table 2: Overall Performance of ExpandR. We follow previous work (Izacard et al., 2021) and report the average
performance on 14 BEIR tasks (BEIR14) and all tasks (All). Bold and underlined scores indicate the best and
second-best results. f, ¢ denote significant improvements over the Raw and FT training settings of each retriever.

examine the generalization ability of our ExpandR,
including vanilla BERT (Devlin et al., 2019), Con-
triever (Izacard et al., 2021), and AnchorDR (Xie
et al., 2023). Contriever pretrains PLMs on unla-
beled text pairs by encouraging semantically simi-
lar sentences to have closer representations in the
embedding space. In contrast, AnchorDR leverages
the relationships between anchor texts and their
linked documents to enhance pretraining. Each re-
triever is evaluated under three training strategies:
(1) Raw: directly encoding both queries and doc-
uments without fine-tuning; (2) FT: standard su-
pervised fine-tuning using query-document triples;
and (3) ExpandR: it integrates LLM-based query
expansion to augment dense retriever and jointly
optimizes both LLM and retriever.

Implementation Details. For our query expan-
sion model, we deploy the Meta-LL.aMA-3-8B-
Instruct (Al@Meta, 2024) as the backbone. The
batch size is set to 16, and the learning rate is
set to 2e — 5. Optimization is performed using
the AdamW optimizer. We employ LoRA (Hu
et al., 2022) to efficiently fine-tune the model for
2 epochs. The temperature for the construction of
the DPO data varies across 7 € {0.8,0.9,1.0,1.1},
with each setting sampled eight times. For the
dense retrievers, we utilize three retrievers with dif-
ferent structures: BERT (Devlin et al., 2019), Con-
triever (Izacard et al., 2021) and AnchorDR (Xie
et al., 2023) as the backbone. During training, we
set the batch size to 1,024 and the learning rate to
le — 5, with the model trained for 3 epochs.

5 Evaluation Results

This section presents the overall performance of Ex-
pandR, followed by ablation studies. Then we ana-
lyze the semantic distribution of query-document
embeddings under different training strategies and
evaluate the effectiveness of various reward models.
A case study is provided in Appendix A.13.

5.1 Overall Performance

The retrieval performance measured by nDCG@10
across various baselines and training configurations
is summarized in Table 2. Additional comparisons
with mainstream retriever baselines and extended
evaluation results are provided in Appendix A.3
and Appendix A.5, respectively.

As shown in the evaluation results, ExpandR
achieves more than 9% improvements over previ-
ous retriever models, such as BM25 and ANCE,
highlighting its effectiveness. By substituting dif-
ferent retrieval backbone models, ExpandR further
demonstrates strong generalization ability, consis-
tently outperforming both zero-shot retrieval (Raw)
and standard supervised fine-tuning (FT). Specifi-
cally, it achieves an average improvement of 15.6%
over Raw and 5.8% over FT across three backbone
retrievers on all tasks, validating the benefit of in-
corporating LLLM guidance into dense retrieval.

Notably, ExpandR achieves the best perfor-
mance on 7 out of 15 tasks when using Contriever,
and on 6 tasks with AnchorDR, indicating that its
effectiveness holds even with stronger backbone
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Model MARCO Trec-COVID NQ HotpotQA FiQA DBPedia FEVER Scifact | Avg.
Contriever
Query 20.55 27.45 25.37 48.07 24.50 29.16 68.20 64.92 | 38.53
w/ Retriever Training 32.96 30.03 33.72 58.78 26.06 36.46 82.49 68.84 | 46.17
ExpandR 33.65 47.98 50.39 70.50 32.40 42.32 87.07 69.68 | 54.25
w/o LLM Training 33.45 38.64 47.20 66.45 29.74 40.97 85.18 70.55 | 51.52
w/o Retriever Training 25.20 59.66 43.26 65.82 30.12 38.20 82.80 67.74 | 51.60
w/o Self-Reward 33.05 44.07 47.74 69.62 30.74 42.24 87.63 70.65 | 53.21
w/o Retriever Reward 33.47 42.17 49.75 69.12 32.12 40.31 86.52 69.96 | 52.92
AnchorDR
Query 25.66 51.44 26.24 52.46 24.04 33.58 62.98 59.84 | 42.03
w/ Retriever Training 36.35 53.71 40.30 47.84 28.20 34.55 77.43 60.51 | 47.36
ExpandR 37.14 78.85 55.91 63.40 34.17 40.73 84.57 63.43 | 57.28
w/o LLM Training 35.17 70.56 51.24 59.22 29.84 36.11 80.69 61.58 | 53.05
w/o Retriever Training 29.59 78.50 42.30 57.41 2491 38.67 79.00 63.40 | 51.72
w/o Self-Reward 36.56 75.75 54.81 62.74 32.31 40.42 84.41 63.07 | 56.25
w/o Retriever Reward 37.07 73.75 55.19 61.59 32.97 40.20 82.02 62.47 | 55.65

Table 3: Ablation Analysis of Key Components in ExpandR on Contriever and AnchorDR. We examine the
contributions of LLM training, retriever training, and reward modeling to retrieval performance on 8 important
datasets in BEIR. MARCO denotes the MS MARCO dataset.

retrievers. The performance gains are particularly
pronounced on challenging datasets such as NQ,
HotpotQA, and TREC-COVID, where bridging the
semantic gap between queries and documents is
more difficult. These results illustrate the capabil-
ity of ExpandR to mitigate the semantic mismatch
in complex retrieval scenarios. Additional results
using different LL.Ms as the backbone for query
expansion are provided in Appendix A.6, showing
consistent improvements and further validating the
robustness of ExpandR across model variants.

5.2 Ablation Study

In this subsection, we conduct comprehensive abla-
tion studies under both Contriever and AnchorDR
as backbone retrievers to understand the contribu-
tion of each component in ExpandR. We evaluate
the impact of different reward modeling methods,
LLM optimization strategies, and retriever training.

As shown in Table 3, we first include two base-
lines: “Query” uses raw queries without training,
and “w/ Retriever Training” applies contrastive
training using raw queries. These settings serve
as control groups to isolate the contributions of our
LLM optimization and expansion-based retriever
training. In both Contriever and AnchorDR back-
bones, we observe substantial improvements of
ExpandR over these baselines, demonstrating that
our joint optimization strategy yields significant
gains over standard query-only training.

We further assess the role of LLM optimiza-

tion by removing the DPO training. This results
in a 2.73% and 4.23% performance drop on Con-
triever and AnchorDR, respectively, underscoring
the importance of aligning LLM outputs with rank-
ing preferences via preference modeling. Addi-
tionally, removing retriever training while retain-
ing LLM optimization significantly impairs perfor-
mance (2.65 and 5.56 point drops), demonstrating
that expansions optimization alone is insufficient
unless the retriever is also jointly adapted to lever-
age them. These findings validate the core moti-
vation of ExpandR that joint optimization of gen-
eration and retrieval is key to improving retrieval
performance.

Finally, we conduct ablation studies by individu-
ally removing the self-reward and retriever reward
to assess the impact of each reward modeling strat-
egy during LLM training. We observe performance
degradation in both cases, especially on QA bench-
marks such as NQ and HotpotQA, demonstrating
their complementary benefits in enhancing genera-
tion quality and aligning with retriever preferences.
Notably, removing the retriever reward results in a
slightly larger drop, indicating that retrieval-guided
feedback plays a more crucial role in guiding effec-
tive query expansion.

5.3 Visualization of Alignment in the
Semantic Embedding Space

We visualize the embeddings of queries and doc-
uments using T-SNE to investigate how different
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(a) Raw Query. (b) Vanilla LLM.

*  Query
@® Document

(c) ExpandR (w/o DPO). (d) ExpandR.

Figure 2: Embedding Visualization of Different Models.

query expansion strategies and retriever configura-
tions affect their semantic alignment. Specifically,
we randomly sample 10 query-document pairs and
project their embeddings into a two-dimensional
space. Each pair is assigned a unique color, with
the query represented by a star and the document by
a circle, facilitating a direct visual assessment of se-
mantic proximity under various settings. Through-
out this analysis, we employ AnchorDR as the base
dense retriever to encode queries and documents.
As shown in Figure 2, when using original
queries with the base retriever (Figure 2(a)), we
observe that query and document embeddings are
widely scattered, suggesting a substantial semantic
gap between the raw query formulation and its tar-
get document. Incorporating expansions generated
by a vanilla LLLM leads to modest improvements
(Figure 2(b)), as some queries shift closer to their
corresponding documents. However, the alignment
remains inconsistent, and many query-document
pairs still appear poorly matched. Fine-tuning the
retriever alone results in further improvement (Fig-
ure 2(c)), making the embedding space more com-
pact and pulling many expanded queries closer to
their paired documents. Nevertheless, the most
significant alignment gain is observed when both
the query expansion model and the retriever are
jointly optimized via preference alignment (Fig-
ure 2(d)). In this setting, query-document pairs
exhibit significantly tighter and more coherent clus-
tering, suggesting that the combined optimization
of the expansion model and the retriever substan-
tially improves semantic consistency and retrieval

12 [ ExpandR (w/o Retriever Reward)
10.69

o]

EExpandR (w/o Self-Reward)
OExpandR 7.15

BLEU

BLEU
@

w

NQ HotpotQA NQ
Datasets

HotpotQA
Datasets

(a) Similarity with Answers. (b) Similarity with Golden
Documents.

Figure 3: Effect of Reward Modeling on the Semantic
Alignment of Query Expansions.

accuracy. These observations further underscore
the importance of jointly aligning both components
in dense retrieval systems.

5.4 Effectiveness of Reward Modeling in
Optimizing ExpandR

Figure 3 presents an evaluation of the reward model
designed in ExpandR, measured by the text simi-
larity between query expansions and either LLM-
generated answers or golden documents. We com-
pare three variants: the full model (ExpandR), w/o
Retriever Reward, and w/o Self-Reward.

We first assess the similarity between query
expansions and LLM-generated answers (Fig-
ure 3(a)). ExpandR w/o Retriever Reward produces
expansions most aligned with LLM-generated an-
swers, yielding the highest BLEU score. In con-
trast, ExpandR w/o Self-Reward achieves the low-
est score, indicating that relying solely on the re-
triever reward is less effective in guiding ExpandR
to align with the information in answers, which
is particularly important for QA tasks. When the
self-reward is incorporated, the BLEU score im-
proves notably, demonstrating its effectiveness in
enhancing the factual precision of the expansions.

We then evaluate the similarity between query
expansions and ground-truth documents (Fig-
ure 3(b)). ExpandR w/o Retriever Reward again
performs worst, suggesting that the self-reward
alone is insufficient to ensure alignment with
golden documents. Conversely, ExpandR w/o Self-
Reward performs better, showing the utility of the
retriever reward in guiding the model to produce se-
mantically relevant expansions. The full model, in-
tegrating both rewards, achieves the highest BLEU
score, highlighting the complementary strengths
of self-reward and retriever reward in optimizing
LLMs to generate high-quality expansions.
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6 Conclusion

This paper presents ExpandR, a joint optimization
framework that leverages LLM-guided query ex-
pansions to enhance retriever training. By jointly
training dense retrievers and LLMs, ExpandR im-
proves the effectiveness and compatibility of query
expansions within retrieval systems. Experimen-
tal results demonstrate that ExpandR consistently
boosts performance and offers a new perspective
on end-to-end alignment between generative and
retrieval components in retrieval pipelines.

Limitations

Despite the effectiveness of ExpandR in improving
dense retrieval through LLM-guided query expan-
sions, several limitations remain. First, the quality
of expansions is still constrained by the genera-
tive capacity of the LLM. If the LLM produces
low-quality or biased expansions, the downstream
retriever may be misled, even with reward-based
supervision. Additionally, although the end-to-end
optimization improves alignment between genera-
tion and retrieval, it introduces additional compu-
tational overhead from both expansion generation
and joint training.
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A Appendix

A.1 License

The authors of 4 out of the 15 datasets in the
BEIR benchmark (NFCorpus, FIQA-2018, Quora,
Climate-Fever) and the authors of ELI5 in the ES
dataset do not report the dataset license in the paper
or a repository. We summarize the licenses of the
remaining datasets as follows.

MS MARCO (MIT License); FEVER, NQ, and
DBPedia (CC BY-SA 3.0 license); ArguAna and
Touche-2020 (CC BY 4.0 license); CQADupStack
and TriviaQA (Apache License 2.0); SciFact (CC
BY-NC 2.0 license); SCIDOCS (GNU General
Public License v3.0); HotpotQA and SQuAD (CC
BY-SA 4.0 license); TREC-COVID (Dataset Li-
cense Agreement).

All these licenses and agreements permit the use
of their data for academic purposes.

A.2 Additional Experimental Details

This subsection outlines the components of the
training data and presents the prompt templates
used in the experiments.

Training Datasets. Following the setup of
Wang et al. (2024b); Huang et al. (2025a), we
use the following datasets: ELIS (sample ratio
0.1) (Fan et al., 2019), HotpotQA (Yang et al.,
2018), FEVER (Thorne et al., 2018), MS MARCO
passage ranking (sample ratio 0.5) and document
ranking (sample ratio 0.2) (Bajaj et al., 2016),
NQ (Karpukhin et al., 2020), SQuAD (Karpukhin
etal., 2020), and TriviaQA (Karpukhin et al., 2020).
In total, we use 808,740 training examples.

Prompt Templates. Table 4 lists all the prompts
used in this paper. In each prompt, “query” refers
to the input query for which query expansions
are generated, while “Related Document” denotes
the ground truth document relevant to the original
query. We observe that, in general, the model tends
to generate introductory phrases such as “Here is
a passage to answer the question:” or “This is the
answer to the query:”. Before using the model
outputs as query expansions or answer signals, we
first filter out these introductory phrases to ensure
cleaner and more precise expansion results.

A.3 Comparison with Mainstream Retrievers

To further contextualize the performance of Ex-
pandR, we compare it with a range of widely used
dense retrievers on the BEIR and MS MARCO
datasets, as shown in Table 5. The baselines include

Query Expansion
Prompt for Q2D:
Please write a passage to answer the question:
Question: {}
Passage:

Question Answering
Prompt for Q2A:
You are given a query and a related document. Based on
the query, generate a direct and relevant answer using the
information in the document. If the query is a statement,
expand on it. If it is a question, provide a direct answer.
Avoid any extra description or irrelevant content.
Query: {}
Related Document: {}
Answer:

Table 4: Prompt Templates Used in ExpandR. These
prompts are used to generate query expansion results
and produce the responses to answer the question.

RocketQA (Ren et al., 2021), BGE-M3-EN (Chen
et al., 2024), TAS-B (Hofstitter et al., 2021), Gen-
Q, ColBERT (Khattab et al., 2021), E5S (Wang
et al., 2022), WebDRO (Han et al., 2023), and
Nomic-Embed (Nussbaum et al., 2024), covering
both general-purpose and specialized retrieval mod-
els.The base retriever of the ExpandR method is
AnchorDR.

ExpandR achieves the highest average perfor-
mance across all datasets (48.5%), consistently out-
performing all baselines. Even when excluding MS
MARCO—which some retrievers may be specifi-
cally optimized for—ExpandR retains its leading
position with an average score of 49.3%, suggest-
ing strong generalization across a wide range of
domains and task formats.

Among the baselines, E5 and Nomic-Embed
stand out as strong retrievers. E5 performs
competitively on several QA-style datasets such
as MS MARCO and NQ, while Nomic-Embed
excels on tasks like ArguAna and HotpotQA.
However, both models exhibit noticeable perfor-
mance drops on other benchmarks—for instance,
Nomic-Embed underperforms on MS MARCO and
Touche-2020—indicating limitations in generaliza-
tion. In contrast, ExpandR demonstrates more con-
sistent performance across the board, achieving top-
tier results without compromising on robustness.
This highlights the robustness and generalizability
of our approach across diverse retrieval scenarios.

A4 Comparison with LLM-Based Query
Expansion Methods

In addition to mainstream retrieval baselines,
we further compare against representative LLM-
based query expansion methods, including
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Task ‘ RocketQA BGE-M3-EN TAS-B Gen-Q ColBERT E5 WebDRO Nomic-Embed | ExpandR
MS MARCO 232 352 40.8 40.8 40.1 43.1 40.6 26.4 37.1
Trec-COVID 67.5 44.6 48.1 61.9 67.7 61.7 78.0 67.1 78.9
NFCorpus 29.3 32.7 31.9 31.9 30.5 35.1 31.2 35.5 32.1
NQ 59.5 29.8 46.3 35.8 524 60.0 47.2 51.2 55.9
HotpotQA 35.6 68.3 58.4 534 59.3 524 574 69.1 63.4
FiQA 30.2 28.3 30.0 30.8 31.7 37.9 28.4 37.8 342
ArguAna 45.1 61.5 429 49.3 23.3 514 48.0 54.2 49.2
Touche-2020 24.7 13.5 16.2 18.2 20.2 28.3 27.6 19.0 24.5
CQADupStack 19.3 40.2 314 34.7 35.0 28.3 35.2 49.6 352
Quora 31.2 88.7 83.5 83.0 85.4 87.9 85.8 88.4 79.3
DBPedia 35.6 19.0 384 32.8 39.2 33.8 38.1 394 40.7
Scidocs 16.5 9.6 14.9 14.3 14.5 19.0 153 19.2 16.8
FEVER 67.6 64.3 70.0 66.9 77.1 58.2 70.9 60.3 84.6
C-FEVER 18.0 18.3 22.8 17.5 18.4 15.4 18.9 27.0 31.8
Scifact 56.8 71.5 64.3 64.4 67.1 73.1 62.2 71.8 63.4
Avg.BEIR14 38.3 422 42.8 42.5 444 459 46.0 49.2 49.3
Avg.All 37.3 41.7 42.7 424 44.1 45.7 45.6 47.7 48.5

Table 5: Performance Comparison of More Mainstream Retriever Baselines on the Beir and MS MARCO Datasets
(nDCG@10). The base retriever of the ExpandR method is AnchorDR.

Query2Doc (Wang et al., 2023a), HyDE (Gao et al.,
2023), and InteR (Feng et al., 2024), which gener-
ate pseudo-documents or hypothetical answers to
augment queries but treat these generations as fixed
retrieval inputs without adapting the retriever itself.
For fairness, we unify the backbone for all meth-
ods; specifically, we use LLaMA3-8B-Instruct for
the LLMs and AnchorDR for the retriever, and eval-
uate on 15 BEIR datasets using nDCG@10. Since
Quora is a query-to-query matching task where
document-style generations are less effective, we
also report the average results excluding Quora,
denoted as Avg.w/o Quora, to more clearly demon-
strate the effectiveness of these query expansion
methods.

As shown in Table 6, ExpandR achieves con-
sistently higher performance than the LLM-based
query expansion baselines across most datasets.
Notably, it improves by 24 and 17 percentage
points in nDCG@ 10 over InteR on ArguAna and
FiQA, respectively, and yields a 12% relative gain
on the “Avg.w/o Quora” metric, demonstrating con-
sistent benefits across diverse retrieval tasks.

A.5 Evaluating Retrieval Completeness
through Recall@100

To more comprehensively assess the retrieval ca-
pabilities of ExpandR, we report its performance
under the Recall@100 metric on both the BEIR
and MS MARCO datasets. This metric reflects
the model’s ability to retrieve a broad set of rel-
evant documents, complementing earlier evalua-
tions based on ranking accuracy. The results are

Task ‘ BM25 query2doc HyDE InteR ExpandR
MS MARCO | 2238 1480 2048 19.13  37.14
Trec-COVID 65.6 66.51 7202 7736 7885
NFCorpus 325 24.09 27.15 2534 3213
NQ 329 37.21 4239 4481 5591
HotpotQA 60.3 46.37 5416 5695  63.40
FiQA 23.6 15.10 1840 17.17 3417
ArguAna 315 2378 2694 2499  49.16
Touche-2020 36.7 2875 3063 28.10 2453
CQADupStack | 29.9 13.58 1895 1521 3518
Quora 78.9 3.11 474 326 7934
DBPedia 3130 3281 3591 4197  40.73
Scidocs 15.8 11.99 1480 1655  16.82
FEVER 75.3 77.34 80.71 8233  84.57
C-FEVER 214 30.78 3138 3003 3176
Scifact 66.5 55.83 6327 6580 6343
Avg.w/o Quora | 39.01 34.21 3837 3898 4627
Avg.All 41.67 32.14 36.13  36.60 4847
Best on 3 0 0 1 11
Table 6: Comparison of Retrieval Performance

(nDCG@10) Across LLM-based Query Expansion
Methods.

presented in Table 7.

Across all retriever backbones, ExpandR con-
sistently achieves the highest Recall@ 100 scores,
surpassing both the original query (Raw) and super-
vised retriever (FT) baselines. The improvements
are particularly notable on complex multi-hop and
fact-seeking datasets such as NQ, HotpotQA, and
FEVER, where purely lexical signals are often in-
sufficient for comprehensive retrieval.

These findings suggest that ExpandR not only
improves ranking precision but also significantly
enhances semantic recall, demonstrating its abil-
ity to uncover a wider range of relevant documents.
This further validates the robustness and general ap-
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Task | BM25 DPR  CoCondenser ANCE | BERT | Contriever | AnchorDR
| | Raw FT ExpandR | Raw FT  ExpandR | Raw  FT  ExpandR
MSMARCO | 658 552 582 838 | 332 6729 69.06 |67.19 8281  83.64 |7495 8456  84.83
Trec-COVID | 49.8 212 7.0 96 | 071 205 330 | 368 319 658 |1070 10.67 1444
NFCorpus 250 208 29.1 223 | 866 2140 2579 [29.41 1597 3407 |2872 2893  30.78
NQ 760  88.0 67.9 822 | 281 6582 8323 |77.12 88.18 94.88 | 8042 89.67  94.30
HotpotQA 740 59.1 54.7 588 | 597 4257 6095 |7045 7564 8733 | 6586 6689  78.72
FiQA 53.9 342 60.3 582 | 466 3945 4752 |56.19 61.04 7003 | 5489 61.07 6544
ArguAna 942 751 93.0 923 | 4573 9545 9538 |90.11 9843  99.00 | 80.65 96.51  96.80
Touche-2020 | 53.8  30.1 27.1 452 | 133 1430 3037 |3736 3152 4635 | 3991 3830  47.00
CQADupStack | 60.6 403 60.3 571 | 705 4281 4278 | 6140 6520 67.39 | 6241 6644  66.37
Quora 973 470 98.5 98.6 | 70.10 9696  96.06 | 98.71 99.09 9355 | 9571 98.11  96.15
DBPedia 39.8 349 34.8 30.8 | 3.85 2592 3469 |4529 4822 5400 | 4394 4373  48.83
Scidocs 356 219 34.1 252 | 567 2255 2728 [3599 37.10 40.50 | 3699 3515 3678
FEVER 93.1 840 89.6 91.1 | 191 7848 8869 |93.56 9593 9694 |93.65 93.09  95.05
C-FEVER 436 390 37.0 456 | 423 4401 5684 | 44.14 5856 6456 | 60.08 60.25  64.81
Scifact 908 727 91.4 814 |2239 8036 8147 [9260 9400 9600 |90.77 9143  93.43
AvgBEIRI4 | 634 483 56.1 570 | 1322 4801 5531 |59.71 6229 6794 | 6034 6287  66.35
Avg.All 636 477 56.2 588 | 1256 4929 5623 | 6021 63.66 6899 | 6131 6432  67.58
Best on 2 0 0 0 0 0 0 0 1 10 0 0 2
Table 7: Overall Performance of ExpandR on Recall@ 100.
plicability of our LLM-augmented strategy across Task \ Contriever
diverse retrieval scenarios. | Raw FT  ExpandR
. MS MARCO 20.55 3296 33.32
A.6 Robustness under Different LLM Troe.COVID 5745 3003 4818
Backbones NFCorpus 3173 3233 34.58
. . NQ 25.37 33.72 50.86
To examine the robustness of ExpandR across dif- HotpotQA 1307 5878 70.04
ferent language model backbones, we replace the FiQA 2450 26.06  31.98
LLM used for query expansion with Qwen2.5-7B- ArguAna 3790 5348  55.15
I % 12004 hich lity Chi Touche-2020 16.68 10.46 18.09
nstruct (Yang et al., 2024), a high-quality Chinese- CQADupStack | 2843 3160  32.95
English bilingual model trained with instruction Quora 83.50 84.98  84.58
tuning. We keep Contriever as the base retriever. ]SDBCI;ed‘a %Z' ;? ?g'gi ‘1‘;':;
. C1docCs . . o
The results are shown in Table 8. FEVER 6820 8249 8721
The results show that ExpandR consistently out- C-FEVER 1550 23.04  30.50
performs both the original query baseline (Raw) Scifact 6492 6884  70.00
and the supervised retriever trained with raw Avg.BEIRI4 | 3688 4194  48.08
. . Avg.All 3579 4134 47.09
queries (FT), achieving the best performance on 14 Best on 0 1 14

out of 15 datasets. The performance trend closely
mirrors that observed in our original experiments
using LLaMA, indicating that the improvements
are not tied to a specific LLM architecture. Instead,
ExpandR captures a generally effective joint opti-
mization strategy that transfers well across different
language models.

A.7 Evaluation on Stronger Retriever
Backbones

In this subsection, we investigate the generalization
ability of ExpandR on larger retrievers. Specifi-
cally, we additionally evaluate on the recent ES-
large-unsupervised model (Wang et al., 2024b),
which represents a more advanced dense retriever
with enhanced representation capacity.

Table 9 reports results on 15 BEIR datasets un-
der three settings: Raw, FT, and ExpandR applied

Table 8: Extended Comparison Results under Qwen?2.5-
7B-Instruct (nDCG@10). The basic retriever in this
experiment is Contriever.

on top of ES. Across most datasets, ExpandR con-
sistently yields improvements over both Raw and
FT variants. In particular, it achieves substantial
gains on knowledge-intensive tasks such as TREC-
COVID (12.25% over FT) and FEVER (5.18% over
FT). On average, ExpandR improves over Raw E5
by 7 percentage points in nDCG@ 10, and outper-
forms FT by a clear margin. Moreover, it achieves
the best performance on 12 out of 15 datasets,
demonstrating stable advantages across diverse re-
trieval domains. These results confirm that the
benefits of our expansion framework are robust and
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Task Raw FT  ExpandR
MS MARCO 26.15 40.21 41.33
Trec-COVID 61.80 64.72 76.97
NFCorpus 33.70 35.46 38.02
NQ 4174 50.94 54.90
HotpotQA 5221 56.96 58.29
FiQA 43.26 44.20 44.25
ArguAna 44.37 47.13 48.32
Touche-2020 19.78 19.64 2191
CQADupStack | 38.85 41.25 41.62
Quora 86.06 87.70 87.57
DBPedia 37.10 39.30 41.46
Scidocs 21.88 20.19 19.84
FEVER 68.59 81.45 86.63
C-FEVER 15.73 3245 36.04
Scifact 72.34 74.55 74.52
Avg.BEIR14 4553 49.71 52.17
Avg.All 4424  49.08 51.44
Best on 1 2 12

Table 9: Retrieval Performance of ExpandR on the ES
Retriever across BEIR Datasets (nDCG@10).

extend to stronger architectures.

A.8 Generalization to In-Domain and
Out-of-Domain Tasks

To examine the robustness of ExpandR under distri-
bution shifts, we partition the BEIR benchmark into
in-domain (ID) and out-of-domain (OOD) subsets
based on its official taxonomy (Thakur et al., 2021)
and whether they overlap with our training data.
The ID subset (9/15 tasks) includes MS MARCO,
ArguAna, Touche-2020, FEVER, Climate-FEVER,
FiQA, NQ, HotpotQA, and DBPedia, all of which
overlap with the training corpus of E5. The remain-
ing 6 datasets are treated as OOD, representing
unseen domains.

As shown in Table 10, ExpandR consistently out-
performs the Raw and FT settings in both ID and
OOD scenarios. The gains are larger in the ID sub-
set, with improvements exceeding 5% on several
tasks, but remain substantial in the OOD datasets,
with average improvements surpassing 3%. These
results indicate that the method generalizes robustly
across distribution shifts.

A.9 Query Expansion Quality of ExpandR

This section evaluates the quality of query expan-
sion of ExpandR. As shown in Figure 4, we ran-
domly select 100 samples from each dataset to
assess the improvement in retrieval performance
before and after applying ExpandR.

MARCO ¢ L

Dataset

NQ ¢ —_—
|
HotpotQA T ee———
-1.0 -0.5 0.0 0.5 1.0
Improvement

(a) Unsupervised Dense Retriever.

,_/\/:\f\m

t
_— e

MARCO

Dataset

NQ ————
___A_

HotpotQA ¢+ +* . T ;
1
-1.0 -0.5 0.0 0.5 1.0

Improvement

(b) Supervised Dense Retriever.

Figure 4: Improvements of ExpandR in Both Unsuper-
vised and Supervised Dense Retrievers. We plot the
change of nDCG @10 scores before and after the query
expansion using our ExpandR model.

Overall, the evaluation results demonstrate that
ExpandR consistently improves retrieval perfor-
mance in both unsupervised (Figure 4(a)) and su-
pervised (Figure 4(b)) settings. However, for the
MS MARCO dataset, ExpandR demonstrates lim-
ited effectiveness in the supervised setting. This
can be attributed to the fact that MS MARCO pro-
vides higher-quality training signals, allowing the
dense retriever to learn sufficient matching signals
from relevance labels. In contrast, ExpandR leads
to more substantial performance improvements on
the NQ and HotpotQA datasets. This indicates that
ExpandR provides essential matching signals for
dense retrievers, particularly in retrieval scenarios
where high-quality training signals are scarce.

A.10 Effect of Expansion Faithfulness on
Retrieval Performance

To examine how the quality of LLM-generated
query expansions affects retrieval performance, we
conduct a bucket-based analysis (Dechter, 2013)
using an LLM-as-judge protocol (Li et al., 2024a).
Specifically, GPT-40 is prompted to assign faithful-
ness scores ranging from 1 to 5 to each expansion,
measuring how well it reflects both the original
query and its ground-truth document. Queries are
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‘BMZS DPR CoCondenser ANCE‘

BERT

‘ Contriever ‘ AnchorDR

Task

‘ ‘ Raw FT  ExpandR ‘ Raw FT  ExpandR ‘ Raw FT  ExpandR
Avg.ID 3731 27.03 27.68 37.17 | 145 18.88 27.43 31.77 39.72 46.54 3225 39.29 46.82
Avg.OOD | 4820 21.95 42.00 4342 | 7.87 30.60 31.22 41.82 43.79 48.00 45.48 46.80 50.96

Table 10: Average Retrieval Performance on In-Domain and Out-of-Domain Subsets of BEIR using nDCG@10.

then grouped into three categories: hallucinated
with scores 1 to 2, moderately faithful with scores
3 to 4, and faithful with a score of 5. We report the
average nDCG@ 10 scores for each bucket across
five representative BEIR datasets: HotpotQA, NQ,
SciFact, MS MARCO, and NFCorpus.

As shown in Table 11, expansions rated as
faithful consistently yield stronger retrieval perfor-
mance (e.g., 77.55 on HotpotQA), whereas halluci-
nated expansions exhibit a notable drop (e.g., 51.42
on HotpotQA). Interestingly, in some cases such
as HotpotQA and NQ, even hallucinated expan-
sions outperform a retriever fine-tuned trained on
raw queries, likely because they introduce implicit
cues absent from the original input. These results
highlight both the benefits of high-quality expan-
sions and the risks of hallucination, underscoring
the importance of faithfulness-aware control mech-
anisms.

Task ‘ Hallucinated Moderately Faithful Faithful
MS Marco 36.79 37.09 37.61
NFCorpus 28.30 48.78 64.87
NQ 47.66 57.47 61.26
HotpotQA 51.42 73.66 77.55
Scifact 55.62 65.90 76.01

Table 11: Performance across Datasets under Different
Levels of Expansion Faithfulness.

A.11 Generalization Analysis of
Ranking-Aligned LLM Expansions

To examine the generalizability of our ranking-
aligned query expansions beyond the retriever used
during training, we evaluate ExpandR under two
structurally distinct dense retrievers—AnchorDR
and BGE-large-1.5—while keeping the reward sig-
nals derived from Contriever fixed.

As shown in Table 12, the results show that re-
trieval using expansions generated by ExpandR
consistently yields better performance than using
either the original queries or expansions produced
by a vanilla LLM, across both retrievers. Although
the LLM is optimized using reward signals from
Contriever, it achieves strong performance under

360
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Figure 5: Average Length of Query Expansions Gener-
ated by Different Models.

both AnchorDR and BGE, obtaining the best re-
sults on 12 out of 15 datasets in each setting. No-
tably, even on BGE—an already highly effective
retriever—ExpandR still achieves further gains, in-
dicating that the learned expansions do not simply
overfit to the behavior of a specific model, but in-
stead capture a transferable ranking preference that
generalizes across different retrieval architectures.

A.12 More Insights into the Self-Reward

While the primary purpose of introducing the self-
reward is to enhance the semantic relevance be-
tween the generated expansions and the gold an-
swer, we observe that it also serves as an effec-
tive regularizer for controlling generation quality.
Specifically, we compare the average lengths of
the expansions produced by three variants of our
model. As shown in Figure 5, removing the self-
reward leads to significantly longer generations,
which are not necessarily more informative and
may introduce hallucinated or off-topic content—a
known issue in preference-based tuning methods
such as DPO.

With the self-consistency signal in place, the
model generates shorter and more focused expan-
sions. To further assess the semantic faithfulness of
these generations, we conduct a natural language
inference (NLI) based entailment evaluation. As
shown in Table 13, although removing the self-
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AnchorDR

BGE-large-1.5

Task Query VanillaLLM ExpandR | Query VanillaLLM ExpandR
MS MARCO 25.7 28.9 294 42.0 39.4 40.3
Trec-COVID 51.4 719 77.1 64.5 77.8 78.5
NFCorpus 31.2 31.3 314 36.8 372 39.3
NQ 26.2 39.2 43.0 51.7 59.6 60.8
HotpotQA 52.5 58.0 59.3 74.3 75.2 76.7
FiQA 24.0 24.9 254 44.3 44.3 46.2
ArguAna 29.5 28.0 28.2 63.5 61.6 62.6
Touche-2020 12.4 235 25.6 242 25.3 26.3
CQADupStack | 30.3 31.1 31.6 41.7 4222 42.6
Quora 83.5 63.2 66.4 89.0 87.9 88.0
DBPedia 33.6 38.8 39.3 421 45.1 45.2
Scidocs 16.6 16.9 17.0 20.9 22.9 23.7
FEVER 63.0 71.5 79.7 84.6 86.5 88.6
C-FEVER 23.4 29.7 30.0 28.4 30.6 31.7
Scifact 59.8 62.4 63.2 73.5 75.1 75.3
Avg.BEIR14 384 433 4.1 52.8 55.1 56.1
Avg.All 375 42.4 43.1 52.1 54.0 55.1
Best on 2 1 12 3 0 12

Table 12: Cross-Retriever Evaluation of Ranking-Aligned Expansions (nDCG@10).

Model NQ HotpotQA

NLI Score  Avg. Length | NLI Score  Avg. Length
Vanilla LLM 6.44 221.76 16.38 129.63
ExpandR (w/o Retriever Reward) 8.12 174.20 17.81 102.60
ExpandR (w/o Self-Reward) 6.65 192.76 13.75 178.29
ExpandR 8.64 185.11 18.67 120.52

Table 13: Comparison of NLI Entailment Scores and Average Lengths of Extensions Generated by Different Models.

reward increases the average length, it results in
lower entailment scores, suggesting reduced seman-
tic alignment with the gold answer. In contrast, the
full model—trained with both the retriever-based
and self-rewards—achieves the highest entailment
scores while keeping the generation length moder-
ate, indicating a better balance between informa-
tiveness and faithfulness.

These results suggest that the self-reward not
only enhances log P(d? | ¢; ©), but also implicitly
constrains the LLM from over-generating, thereby
mitigating hallucination and improving the over-
all quality of the query expansions during DPO
training.

A.13 Case Study

To further demonstrate the effectiveness of Ex-
pandR, we conduct a case study by randomly sam-
pling a query from the evaluation dataset. We
then compare retrieval performance using the raw
queries, expanded queries by vanilla LLM, and
expanded queries by ExpandR.

As shown in Table 14, query expansion signifi-
cantly improves retrieval effectiveness over using
the raw query, with both LLM-generated variants

achieving higher nDCG@10. While the vanilla
LLM introduces relevant terms such as “temper-
ature” and “humidity”, its expansions are often
verbose and include redundant or inconsistent con-
tent (e.g., conflicting temperature ranges). This
reflects a lack of alignment between generation and
retrieval utility.

In contrast, ExpandR produces expansions that
are more concise and semantically aligned with
the golden passage, incorporating key concepts
such as “human behavior”, “environmental fac-
tors”, and ““virus transmission”. These expansions
better match the relevance signals favored by the
retriever, leading to improved ranking performance.
This example illustrates how preference-guided
fine-tuning in ExpandR enables the LLM to gener-
ate expansions that are both informative and behav-
iorally aligned with the retrieval model.
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Query: How does the coronavirus respond to changes in the weather?

Golden Pagssage: Epidemics ... occur during the winter months. ... Two major contributing factors are the changes in
environmental parameters and human behavior. Studies have revealed the effect of temperature and humidity on respiratory
virus stability and transmission rates. More recent research highlights the importance of the environmental factors,
especially temperature and humidity ...

Raw Query
nDCG@10: 22.01%
Original Query: How does the coronavirus respond to changes in the weather?

Vanilla LLM

nDCG@10: 76.63%

Expanded Query: The coronavirus, like many other viruses, has been observed to respond to changes in the weather by
experiencing fluctuations in transmission and spread. ... the virus tends to thrive in environments with high humidity,
typically above 40%, and a temperature range of 37°C to 46°C. ... studies have found that the virus can survive on surfaces
for longer periods at lower temperatures and humidity levels, ...

ExpandR

nDCG@10: 100.00%

Expanded Query: The coronavirus responds to changes in the weather by adapting its transmission and spread patterns.
This is because temperature, humidity, and other environmental factors can affect the stability and survival of the virus on
surfaces, ... research suggests that the virus may thrive in cooler and more humid environments, ... such as air circulation,
ventilation, and human behavior.

Table 14: Case Study. All experiments are conducted based on the Contriever model under the zero-shot setting. To
facilitate evaluation, we highlight the potential matching phrases between the golden passage and both the original
and expanded queries. Different colors are used to annotate these matched phrases for each method: Green for
Direct Retrieval, Red for Vanilla LLM, and Blue for ExpandR.
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