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Abstract

With the emergence of new topics on social me-
dia as sources of rumor propagation, address-
ing the domain shift between the source and
target domain and the target domain samples
scarcity remains a crucial task in cross-domain
rumor detection. Traditional deep learning-
based methods and LLM-based methods are
mostly focused on the in-domain condition,
thus having poor performance in cross-domain
setting. Existing domain adaptation rumor de-
tection approaches ignore the data generaliza-
tion differences and rely on a large amount of
unlabeled target domain samples to achieve do-
main adaptation, resulting in less effective on
emerging topic rumor detection. In this paper,
we propose a Gradient Coherence guided Meta-
Learning approach (GCML) for emerging top-
ics rumor detection. Firstly, we calculate the
task generalization score of each source task
(sampled from source domain) from a gradi-
ent coherence perspective, and selectively learn
more “generalizable” tasks that are more benefi-
cial in adapting to the target domain. Secondly,
we leverage meta-learning to alleviate the tar-
get domain samples scarcity, which utilizes
task generalization scores to re-weight meta-
test gradients and adaptively updates learning
rate. Extensive experimental results on real-
world datasets show that our method substan-
tially outperforms SOTA baselines.

1 Introduction

The rapid and wide spread of rumors on social me-
dia especially around emerging topics poses huge
threats to public trust and social cohesion (He et al.,
2023). Detecting rumors on emerging topics aims
to automatically identify inaccurate and intention-
ally misleading news during the early stage of a
topic’s emergence. Deep learning-based methods
have become mainstream in rumor detection.
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Figure 1: Domain Shift. Existing models trained on
the source domain fail to detect rumors on the target
domain (emerging topic domain).

Traditional deep learning-based methods mainly
depend on news content (Yu et al., 2017; Ma et al.,
2018), propagation structures (Bian et al., 2020;
Matheven and Kumar, 2022), or user informa-
tion (Huang et al., 2022; Gao et al., 2022) for rumor
detection and have made significant progress. Re-
cently, approaches based on large language models
(LLMs) have also achieved desirable rumor de-
tection results through prompt engineering (Chen
et al., 2023a; Wan et al., 2024), in-context learn-
ing (Hu et al., 2024), or supervised fine-tuning
(SFT) (Yang et al., 2024; Wan et al., 2024). How-
ever, these methods detect rumors under in-domain
conditions, i.e., assuming that the training and test
datasets are from the same data distribution. In
practice, social platforms frequently release various
news claims in diverse domains. Different domain
presents their own characteristics (e.g., word usage,
topic, writing style) as shown in Fig. 1. Thus, a
model trained on the source domain will result in
serious performance degradation when testing on
newly emergent domain due to the domain shift.

To address the challenges of domain shift, some
studies proposed crowdsourcing (Kou et al., 2022b;
Chen et al., 2023b; Shang et al., 2024), which lever-
ages domain experts or online resources to acquire
domain knowledge. However, these methods re-
quire extensive human annotation costs. Another al-
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ternative approach is domain adaptation (Yue et al.,
2022; Zeng et al., 2022; Yue et al., 2023), which
transfers knowledge from the source domain to the
target domain. These methods mitigate the domain
shift by feature space alignment (Shu et al., 2022;
Ran and Jia, 2023) or data space alignment (Shi
et al., 2023; Chen et al., 2025). However, the above
approaches still have two limitations: (1) They
learn all source tasks1 from the source domain
equally without considering the generalization dif-
ferences among tasks. Learning from source tasks
with a large generalization gap to the target domain
can lead to suboptimal performance. (2) Exist-
ing domain adaptation rumor detection methods,
including semi-supervised (Li et al., 2021), and
unsupervised methods (Mackey et al., 2021; Ran
and Jia, 2023), mainly rely on a large amount of
unlabeled target data to achieve domain adaptation.
Since newly emergent domain topics are difficult to
acquire sufficient data in time (Ran and Jia, 2023),
these methods are less effective in few-shot learn-
ing scenarios where only few-shot target samples
are available for emerging topic rumor detection.

In this paper, we propose a Gradient Coherence
guided Meta-Learning approach (GCML) for
cross-domain emerging topic rumor detection,
which improves domain generalization from both
task-level selective learning and parameter-level
adaptive update. For lacking generalization differ-
ence consideration, we introduce the Gradient Sig-
nal to Noise Ratio (GSNR) (Liu et al., 2020) to mea-
sure the generalization from a gradient coherence
perspective. By comparing the model parameters’
gradient coherency on the source task with that on
few-shot target samples, we obtain the task gener-
alization score of each source task for selectively
learning more “generalizable” source tasks, which
are more helpful in improving model generaliza-
tion to the target domain. For addressing the target
domain data scarcity, inspired by MAML (Finn
et al., 2017), we propose a meta-learning based
framework for few-shot domain adaptation. Our
method aims to learn the generalization feature
from the source data under the guidance of lim-
ited target samples. We first sample data batches
from the source domain as source tasks to train
the model. Then, we evaluate the updated model
on the few-shot target samples to derive second-
order meta-test gradients with respect to the orig-

1As defined in § 3, batches of source data from the source
domain are sampled as different “source tasks”.

inal parameters. Finally, we fine-grained update
the initial model parameters with re-weighted meta-
test gradients based on task generalization scores,
and adaptively update the learning rate of param-
eters with the high gradient coherency. Extensive
domain adaptation experiments conducted on mul-
tiple datasets show that our method outperforms
existing state-of-the-art (SOTA) baselines.

Our contributions are four-fold: (1) We propose
GCML, a domain adaptation method for cross-
domain emerging topic rumor detection, which
‘learns-to-adapt’ to target data distribution from
both task-level and parameter-level. (2) We pro-
pose a GSNR-guided generalization calculation
method to selectively learn more “generalizable”
source tasks for addressing domain shift. (3) We
propose a gradient coherence based meta-learning
framework, which leverages task generalization
scores to re-weight meta-test gradients and adap-
tively updates learning rate for few-shot domain
adaptation. (4) Extensive experiments on real-
world datasets show the effectiveness of GCML.

2 Related Work

Rumor Detection. Deep learning-based rumor
detection methods can be categorized into three
types: (1) content-based methods (Yu et al., 2017;
Ma et al., 2018) employ deep learning models to
capture the textual features of rumors for detecting
rumors. (2) propagation structure-based methods
capture temporal dynamics (Wu et al., 2020; Lu
et al., 2022) and spatial structures (Bian et al., 2020;
Sun et al., 2022a,b) in the news propagation process
to identify rumors. (3) user-based methods (Huang
et al., 2022; Gao et al., 2022) utilize user attributes
and historical behavior for rumor detection.

Recently, some research has explored using
LLMs as rumor detectors (Wang et al., 2024; Chen
and Shu, 2024; Pelrine et al., 2023; Yang et al.,
2024), and leveraging their commonsense reason-
ing to provide supplementary explanations for ru-
mor detection. Cheung and Lam (2023) employ
LoRA-tuning to train an LLaMA-based rumor de-
tector. Hu et al. (2024) integrate LLMs to provide
multi-perspective rationales for improved rumor
detection. Tian et al. (2025) propose an SFT-based
LLM rumor detection model with influence-guided
sample selection and game-based multi-perspective
analysis. However, these methods focus on improv-
ing in-domain performance, and their performance
is poor in cross-domain rumor detection settings.
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Domain Adaptation. Domain adaptation aims
to train a model on a source dataset that can gener-
alize well to a target dataset, even if the data distri-
butions of source and target datasets differ (Singhal
et al., 2023; Li et al., 2023). Such methods mini-
mize the representation discrepancy (Kang et al.,
2019; Na et al., 2021; Lu et al., 2023a; Singhal
et al., 2023) between source and target domains to
learn domain-invariant features. Domain adapta-
tion has been applied to mitigate domain discrep-
ancies in cross-domain rumor detection (Nan et al.,
2022; Liu et al., 2025). Lin et al. (2022); Shu et al.
(2022); Lu et al. (2023b) use domain-adversarial
training to learn generalizable features for cross-
domain rumor detection. Mosallanezhad et al.
(2022) propose a reinforcement learning domain-
aware feature extraction method for fine-grained
domain adaptation. Ran and Jia (2023) adapt con-
trastive learning with cross-attention for unsuper-
vised domain adaptation. However, these methods
are not suitable for few-shot domain adaptation
scenarios, and their equal learning from all source
tasks limits their generalization performance.

Gradient-based Generalization. Generaliza-
tion is considered the key to the performance of
deep neural networks (Zhang et al., 2021; Chat-
terjee and Zielinski, 2022). Some studies (Chat-
terjee, 2020) indicate that stronger gradient coher-
ence enhances a model’s generalization capabil-
ity. Liu et al. (2020) use the concept of gradient
signal to noise ratio (GSNR) to establish a quan-
titative relationship between gradient coherence
and model generalization. Subsequently, smooth-
ing gradients to reduce sample gradient variance
has been applied in tasks such as neural archi-
tecture search (Sun et al., 2023; Bai et al., 2025)
and domain generalization (Michalkiewicz et al.,
2023). Fort et al. (2019) introduce stiffness to mea-
sure the generalization, which focuses on how gra-
dients in one sample affect loss changes in another.
In this paper, we use gradient coherence to evaluate
the task generalization for selective learning.

3 Problem Formulation

In this paper, we study the cross-domain emerg-
ing topic rumor detection, which is defined as a
few-shot domain adaptation problem from a single-
source domain2 DS to a target domain3 DT .

2A high-resource domain with adequate annotated data.
3A low-resource domain that has a limited amount of data

during the early stage of the emerging topic.

Definition 1. Source data (DS): From source
domain DS , we can obtain a source labeled training
dataset DS = {(xi, yi)}Ni=1. The input xi is a news
claim, the corresponding label yi 2 {0, 1} (i.e.,
false or true). During training, batches of source
data are sampled as different “source tasks”.

Definition 2. Few-shot target samples (Dl
T ): we

can access limited labeled data of the target domain
during the early stage of the emerging topic. In
our setting, we assume that only a K-shot subset
D

l
T from DT ✓ DT is provided for training, i.e.,

D
l
T = {(xj , yj)}Kj=1, and the label yj 2 {0, 1}.
By utilizing source data DS and limited few-shot

target samples Dl
T , the objective of cross-domain

emerging topic rumor detection is to train a ru-
mor detection model f(✓) that optimizes the per-
formance on the target test data DT (DT 6= D

l
T )

from DT . Mathematically, the overall objective is
minimizing the loss L of ✓ on DT as Eq. (1):

min
✓

L(✓, DT ) (1)

4 Methods

4.1 Overview
Our method consists of two parts, as shown in
Fig. 2. (1) The GSNR-guided generalization cal-
culation module (§ 4.2) proposes task generaliza-
tion score, which utilizes GSNR with few-shot tar-
get samples to measure the generalization of each
source task for selectively learning more benefi-
cial source tasks; (2) The gradient coherence based
meta-learning module (§ 4.3) is a bi-level optimiza-
tion framework consisting of Meta-Train, Meta-
Test and Meta-Optimization. It leverages task gen-
eralization score (obtained from § 4.2) to re-weight
meta-test gradients and adaptively update learning
rates for bidirectional adaptation to target domain.
The algorithm of our method is shown in App. A.

4.2 GSNR-Guided Generalization Calculation
To selectively learn source tasks that are more ben-
eficial for enhancing the model’s generalization to
the target domain, we propose task generalization
score that utilizes GSNR to measure the general-
ization of each source task, which is defined as the
similarity of the model’s gradient coherence on the
source tasks to that on the few-shot target samples.

Existing domain adaptation methods learn
equally from all source tasks without considering
the distinctive generalization of each task, leading
to suboptimal performance. Therefore, considering
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Figure 2: The overview of our framework. The process begins with the left top part, which trains the model on
source tasks and derives task gradients. Then, we evaluate the updated model on the meta-test set (i.e., few-shot
target samples) to derive meta-test gradients. Next, the middle part computes the generalization score of each
source task. Finally, the right top part updates the initial model parameters with re-weighted meta-test gradients,
accompanied by adaptive learning rate updates. The bottom-right part is the base rumor detection model.

this distinctive generalization is crucial for domain
adaptation. Our GSNR-guided generalization cal-
culation involves two steps as follows.

Task-Wise GSNR. We quantify the generaliza-
tion of each source task using the model parame-
ters’ GSNR on these tasks. GSNR is the ratio of
squared mean and variance of parameters’ gradi-
ents on a particular data distribution, which repre-
sents gradient coherency and measures the general-
ization performance. Liu et al. (2020) prove that a
higher GSNR exhibits a smaller generalization gap,
i.e., stronger generalization.

Given a source dataset DS , a rumor detection
model parameterized by ✓, we sample batches of
source data from the source domain as different
“source tasks”. For source task i with corresponding
data Bi, we first calculate the task gradients gSi (✓j)
of the loss function LS(✓,Bi) with respect to each
parameter ✓j trained on Bi as Eq. (2):

g
S
i (✓j) =

@LS(✓,Bi)

@✓j
(2)

for the j-th parameter ✓j , we can obtain its mean
and variance of the data distribution Bi within the
current source task i, enabling the calculation of the
individual parameter ✓j’s GSNR r

S
i (✓j) as Eq. (3):

r
S
i (✓j) =

E2
(x,y)⇠Bi

(gSi (x, y, ✓j))

Var(x,y)⇠Bi
(gSi (x, y, ✓j))

(3)

for model parameter {✓1, ..., ✓j , ..., ✓m}, where m

denotes the number of parameters, we can obtain
m GSNR: RS

i = [rSi (✓1), ..., r
S
i (✓j), ..., r

S
i (✓m)].

Similarly, we can calculate the GSNR for each pa-
rameter ✓j on the few-shot target samples Dl

T based

on the gradients gT (✓j), resulting in corresponding
GSNR: RT = [rT (✓1), ..., rT (✓j), ..., rT (✓m)].

Task Generalization Score Calculation. We ob-
tain the generalization score of source task by com-
paring the model’s gradient coherence (i.e., GSNR)
on source task to that on few-shot target samples.

The GSNR of model parameters is positively
correlated with the generalization. Thus, a source
task with model parameters’ GSNR similar to that
of the few-shot target samples results in a small
generalization gap, making it more beneficial for
adapting to the target domain.

We calculate the similarity between the two se-
quences of GSNR R

S
i and R

T as the task general-
ization score in Eq. (4):

si = Cos(RS
i , R

T ) (4)

In each iteration, we sample n source tasks from
source domain and compute the task generalization
score for each source task with the few-shot target
samples. These scores [s1, s2, ..., sn] are converted
into probability weights via softmax function, i.e.,
s = softmax(s1, s2, ..., sn), which will be utilized
to re-weight the meta-test gradients in § 4.3 for
fine-grained updating the initial model parameters.

4.3 Gradient Coherence based Meta-Learning
To mitigate the target domain data scarcity and im-
prove the model’s performance to the target domain
with limited target samples, we propose a gradient
coherence based meta-learning domain adaptation
framework, which leverages task-level generaliza-
tion scores and parameter-level adaptive learning
rate for effective few-shot domain adaptation.
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Meta-learning, or “learning-to-learn”, enables
quick adaptation to new tasks by learning general
feature representations from multiple source tasks
with the guidance of limited target samples. There-
fore, we employ meta-learning to optimize the ini-
tial model parameters for optimal performance on
unseen few-shot target tasks. Specifically, our meta-
learning involves a series of loops over the “Meta-
Train”, “Meta-Test” and “Meta-Optimization”.

Meta-Train on Source Tasks. Given the model
f with initial parameters ✓, source dataset DS , and
few-shot target samples D

l
T , we first sample n

source tasks from DS as the meta-train set in each
iteration. Each source task’s data is formalized
as Bi = {(x1, y1), (x2, y2), . . . , (x|Bi|, y|Bi|)},
where |Bi| is the number of samples. The loss of
model f on the current source task i is as Eq. (5):

LS(✓,Bi) =
1

|Bi|
X

xj ,yj2Bi

L(f(xj ; ✓), yj) (5)

Then, we perform a pseudo-update on the model
parameters with Eq. (6). After several steps of
gradient descent, the parameters locally converge.
We donate the updated parameters as �i.

�i = ✓ � ↵O✓LS(✓,Bi) (6)

where ↵ denotes the task learning rates and
O✓LS(✓,Bi) represents the task gradient.

Meta-Test on Few-Shot Target Samples. After
the pseudo-update in the meta-train phase, we cal-
culate the meta-test loss of the model f(�i) on the
K-shot target samples Dl

T as Eq. (7):

LT (�i, D
l
T ) =

1

|Dl
T |

·
X

xj ,yj2Dl
T

L(f(xj ;�i), yj) (7)

We derive the gradient of the meta-test loss with
respect to the initial parameters ✓ via the chain
rule (Finn et al., 2017), which is second-order meta-
test gradient as Eq. (8):

dLT (�i, D
l
T )

d✓
=

d�i

d✓
r�iLT (�i, D

l
T ) (8)

Meta-Optimization by Gradient Coherence. In
the meta-optimization, our objective is to learn
optimal model parameters ✓ that minimize the
meta-test loss on the few-shot target samples
D

l
T . After obtaining the task gradient O✓LS(✓,Bi)

of source task i and the meta-test gradients

d�i
d✓ r�iLT (�i, D

l
T ), we can calculate the task gen-

eralization score si for source task i as illustrated
in § 4.2. Finally, we use si to re-weight correspond-
ing meta-test gradient and update the initial model
parameters as Eq. (9):

✓ = ✓ � �

nX

i

si ·
d�i

d✓
r�iLT (�i, D

l
T ) (9)

where � is learning rate during meta-optimization.
This approach finds more “generalizable” source
tasks and assigns larger weights to their correlated
meta-test gradient. In this way, we can fully ex-
ploit the source domain knowledge and improve
the model’s performance on the target domain.

Adaptive Learning Rate Update. To further
improve generalization and convergence, we pro-
pose a GSNR-based adaptive learning rate update
strategy to optimize the meta-train. Previous stud-
ies (Antoniou et al., 2018) have theorized that us-
ing a static learning rate for all parameters not only
reduces the generalization performance but also
increases the hyperparameter tuning cost.

Therefore, we argue learning different learning
rates for each iteration of the parameters whose
GSNR in R

T exceeds a set threshold ⌧ during the
meta-train phase. Specifically, there will be m

learning rates for corresponding parameters, i.e.,
(↵1

i , ...,↵
j
i , ...,↵

m
i ) in the source task i’s learning

rates ↵i of Eq. (6). We update each learning rate
↵
j
i through the adaptive learning steps as Eq. (10):

↵
j
i = ↵init � ⌘ · d�i

d↵
j
i

r�iL(�i, D
l
T ), if rj � ⌧ (10)

where ⌘ represents learning rate for updating ↵.

5 Experiment

5.1 Experiment Setting
Datasets. We conduct experiments on multiple
real-world source and target datasets. Follow-
ing Yue et al. (2022, 2023), we use FEVER (Thorne
et al., 2018), GettingReal (Risdal, 2016), Gossip-
Cop (Shu et al., 2020), LIAR (Wang, 2017) and
PHEME (Buntain and Golbeck, 2017) as the source
datasets. For target datasets, we adopt CoAID (Cui
and Lee, 2020), Constraint (Patwa et al., 2021) and
ANTiVax (Hayawi et al., 2022). The details of
datasets are listed in the App. B.1.

Baselines. We compare our model with two types
of baselines. (1) State-of-the-art domain adaptation
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Source Target CoAID Constraint ANTiVax
Metric BA " Acc. " F1 " BA " Acc. " F1 " BA " Acc. " F1 "

FEVER

CANMD 0.626 0.918 0.956 0.684 0.683 0.686 0.650 0.679 0.749
ACLR 0.721 0.935 0.965 0.648 0.651 0.697 0.739 0.758 0.805
ProtoNet 0.751 0.869 0.925 0.784 0.788 0.812 0.748 0.716 0.718
MAML 0.780 0.939 0.967 0.812 0.808 0.797 0.826 0.808 0.823
MetaAdapt 0.829 0.875 0.927 0.828 0.826 0.829 0.868 0.880 0.904
CADM+ 0.654 0.928 0.958 0.671 0.668 0.667 0.661 0.709 0.778
GCML(Ours) 0.856 0.938 0.966 0.834 0.833 0.838 0.911 0.908 0.928

GettingReal

CANMD 0.669 0.935 0.965 0.744 0.742 0.737 0.582 0.632 0.729
ACLR 0.693 0.928 0.961 0.683 0.689 0.736 0.660 0.695 0.751
ProtoNet 0.720 0.639 0.757 0.672 0.664 0.608 0.736 0.756 0.804
MAML 0.813 0.937 0.965 0.808 0.803 0.786 0.819 0.802 0.819
MetaAdapt 0.830 0.928 0.960 0.819 0.819 0.823 0.886 0.882 0.902
CADM+ 0.689 0.925 0.955 0.731 0.727 0.717 0.604 0.654 0.751
GCML(Ours) 0.860 0.934 0.963 0.825 0.838 0.845 0.920 0.912 0.931

GossipCop

CANMD 0.685 0.931 0.963 0.802 0.803 0.817 0.761 0.777 0.823
ACLR 0.687 0.933 0.964 0.712 0.715 0.744 0.811 0.809 0.835
ProtoNet 0.708 0.609 0.731 0.786 0.782 0.770 0.730 0.715 0.736
MAML 0.816 0.926 0.959 0.813 0.809 0.801 0.826 0.810 0.826
MetaAdapt 0.824 0.918 0.954 0.826 0.826 0.833 0.896 0.907 0.930
CADM+ 0.712 0.929 0.959 0.778 0.778 0.782 0.752 0.770 0.815
GCML(Ours) 0.855 0.928 0.965 0.841 0.837 0.846 0.904 0.915 0.933

LIAR

CANMD 0.770 0.894 0.940 0.815 0.814 0.818 0.755 0.784 0.834
ACLR 0.766 0.938 0.966 0.756 0.760 0.786 0.805 0.793 0.814
ProtoNet 0.793 0.910 0.950 0.738 0.746 0.788 0.599 0.576 0.581
MAML 0.813 0.938 0.966 0.813 0.809 0.800 0.824 0.807 0.824
MetaAdapt 0.815 0.910 0.949 0.820 0.820 0.828 0.873 0.883 0.906
CADM+ 0.780 0.891 0.941 0.728 0.730 0.742 0.712 0.715 0.765
GCML(Ours) 0.848 0.933 0.962 0.830 0.834 0.844 0.903 0.909 0.930

PHEME

CANMD 0.531 0.938 0.967 0.559 0.565 0.624 0.653 0.676 0.704
ACLR 0.709 0.939 0.967 0.716 0.719 0.746 0.733 0.754 0.804
ProtoNet 0.721 0.780 0.808 0.693 0.686 0.644 0.628 0.635 0.685
MAML 0.800 0.939 0.967 0.816 0.812 0.802 0.819 0.805 0.823
MetaAdapt 0.828 0.909 0.949 0.818 0.818 0.828 0.896 0.880 0.902
CADM+ 0.581 0.932 0.954 0.643 0.654 0.730 0.675 0.732 0.810
GCML(Ours) 0.861 0.932 0.961 0.819 0.821 0.838 0.911 0.905 0.926

Table 1: Cross-domain rumor detection results, the best and second best results are in bold and underlined.

and few-shot learning rumor detection methods:
ProtoNet (Snell et al., 2017), MAML (Finn et al.,
2017), CANMD (Yue et al., 2022), ACLR (Lin
et al., 2022), MetaAdapt (Yue et al., 2023),
CADM+ (Zeng et al., 2024). (2) LLM-based meth-
ods: we select LLaMA (Touvron et al., 2023) and
Alpaca (Taori et al., 2023) as rumor detectors to
conduct zero-shot prompting, few-shot prompting,
and supervised fine-tuning (SFT). We provide more
baseline details in the App. B.2.

Metric. Following Yue et al. (2023), we adapt
balance accuracy (BA), accuracy (Acc.), and F1
score (F1) to evaluate the performance.

Implementation Details. Similar to (Yue et al.,
2022), we leverage Roberta (Liu et al., 2019) as
the base rumor detection model. We follow the
previous works (Kou et al., 2022a; Yue et al., 2022)
and divide the dataset into training, validation, and
test sets with the ratio of 7:2:1. We employ the 10-
shot setting for few-shot domain adaptation. The

batch size is set to 4. The learning rates for both
the meta-train and meta-optimization are initialized
to 1e� 5, and 3 source tasks are sampled in each
meta-train iteration. More implementation details
are provided in App. B.3.

5.2 Main Results
Cross-domain adaptation results. The results
of all source-target combinations in cross-domain
adaptation experiments are shown in Tab. 1. It can
be observed that our method outperforms all base-
lines in all source-target adaptation scenarios in the
BA metric. Specifically, on the CoAID dataset with
imbalanced label classes4, our method achieves the
most significant improvement in BA compared to
the baselines despite being slightly inferior in Acc.
and F1. For instance, our method surpasses the
second-best baseline MetaAdapt by an average of
3.1% on the CoAID target domain.

4Since the CoAID dataset contains over 90% positive la-
bels, the BA metric is more reliable than Acc. and F1 for
evaluating performance on this dataset.

19153



Metric CoAID Constraint ANTiVax
BA " Acc. " F1 " BA " Acc. " F1 " BA " Acc. " F1 "

Ours 0.856 0.933 0.963 0.829 0.831 0.842 0.910 0.908 0.929
w/o Task Generalization 0.816 0.912 0.952 0.809 0.806 0.810 0.865 0.857 0.882
w/o Adaptive LR 0.802 0.922 0.957 0.814 0.810 0.805 0.864 0.864 0.886
w/o Meta-Learning 0.794 0.929 0.959 0.805 0.797 0.775 0.846 0.846 0.873

Table 2: Ablation study. w/o Task Generalization: removing GSNR-guided generalization calculation module; w/o
Adaptive LR: removing adaptive learning rate module; w/o Meta-Learning: removing meta-learning module.

The superiority of our method can be attributed
to the following factors: first, the task generaliza-
tion score helps to learn domain-invariant features
that are more conducive to adapting to the target
domain; second, we employ meta-learning to ac-
quire relatively equitable features, alleviating the
imbalanced target domain label distribution.

Comparison to LLMs. To further validate the
effectiveness of our method in domain adaptation
rumor detection, we compare our approach with
LLM-based methods. Specifically, we use LLaMA
and Alpaca to conduct zero-shot prompting, few-
shot prompting, and SFT on the target domain
dataset, with the results presented in Tab. 3.

The performance of most LLM-based meth-
ods with SFT significantly outperforms zero-shot
and few-shot prompting methods. This indicates
that LLM-based methods without SFT lack task-
specific knowledge for rumor detection, while
LLMs with SFT acquire this during fine-tuning.
Our method enables smaller language model
Roberta to outperform fine-tuned LLMs. For ex-
ample, our method achieves a higher BA on the
ANTiVax dataset by 16.8% compared to LLAMA-
SFT and by 14.3% compared to Alpaca-SFT.

5.3 Ablation Study
To demonstrate the effectiveness of the proposed
component, we conduct ablation study: w/o Task
Generalization: the variant without GSNR-guided
generalization calculation (§ 4.2); w/o Adaptive
LR: the variant without adaptive learning rate up-
date; w/o Meta-Learning: the variant without meta-
learning(§ 4.3), i.e., learning with first-order ap-
proximation. The results of a single target dataset
are averaged across the five source datasets.

As shown in Tab. 2, each component is essential
for the effectiveness of our method. Specifically,
the performance of variants w/o Task Generaliza-
tion and w/o Adaptive LR drops by 3.5% and 3.8%
in BA metric on average. This indicates that the
GSNR-guided generalization calculation and adap-

Setting Dataset BA " Acc. " F1 "

LLaMA-Zero-shot
CoAID 0.460 0.239 0.308
Constraint 0.501 0.485 0.258
ANTiVax 0.573 0.466 0.383

Alpaca-Zero-shot
CoAID 0.488 0.211 0.252
Constraint 0.498 0.482 0.234
ANTiVax 0.561 0.445 0.333

LLaMA-Few-shot
CoAID 0.500 0.906 0.951
Constraint 0.500 0.523 0.687
ANTiVax 0.500 0.664 0.798

Alpaca-Few-shot
CoAID 0.515 0.908 0.952
Constraint 0.537 0.559 0.704
ANTiVax 0.528 0.681 0.806

LLaMA-SFT
CoAID 0.749 0.874 0.928
Constraint 0.724 0.721 0.718
ANTiVax 0.742 0.756 0.811

Alpaca-SFT
CoAID 0.766 0.818 0.892
Constraint 0.688 0.686 0.689
ANTiVax 0.767 0.779 0.828

Ours
CoAID 0.856 0.933 0.963
Constraint 0.829 0.831 0.842
ANTiVax 0.910 0.908 0.929

Table 3: Comparison to large language models, the best
and second best results are in bold and underlined.

tive learning rate update substantially contribute to
the effectiveness of our method. Furthermore, the
variant w/o Meta-Learning that replaces second-
order Grads with first-order approximation results
in the largest performance decrease, suggesting that
meta-learning enables transferring knowledge from
source domain to target domain effectively.

5.4 Analysis of Target Domain Sample Size

To validate the effectiveness of our method under
different number of few-shot target samples, we
compare our method with the naive-learning (Yue
et al., 2023) method on three target datasets. Naive-
learning indicates fine-tuning the model pre-trained
on the source domain using few-shot target sam-
ples. Specifically, we set the number of available
target domain samples to 0, 5, 10, 15, and 20, re-
spectively, then compare BA between these two
methods and calculate the performance gain. For
the 0-shot setting, we train the model on source
dataset and directly evaluate on target test data.
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Figure 3: Cross-domain emerging topic rumor detection performance with respect to the number of few-shot target
samples, as the number of target samples increases from 0 to 20.

(a) Naive-Learning (b) MetaAdapt (c) Ours

Figure 4: The 3D loss surface comparison between Naive-Learning, MetaAdapt, and Ours. It can be seen that our
method significantly smooths and flattens the loss surface, i.e., improving the model generalization.

As shown in Fig. 3, we observe: (1) our method
outperforms naive-learning across all settings. As
the number of target samples increases, the perfor-
mance gap between our method and naive-learning
widens. This highlights that our method enables
more effectively utilizing the limited few-shot tar-
get samples; (2) the performance gain of our
method increases rapidly during the initial stage
(i.e., 0-shot to 5-shot) and then gradually stabilizes
as the number of samples further increases. This
indicates the stronger generalization ability of our
method in scenarios with fewer target samples.

5.5 Analysis of Model Generalization
To have a visualization look at the model general-
ization, we present the loss landscapes of different
methods. We follow Li et al. (2018) and show
the 3D loss surface results in Fig. 4. Foret et al.
(2021) prove that flatter and smoother regions of
the loss surface are associated with better general-
ization performance. It can be observed that our
method has flatter and smoother surfaces compared
to others, which indicates that our method improves

the generalization of models effectively. We also
provide additional analysis of task generalization
differences and the generalization results about the
GSNR of model parameters over time in App. C.

6 Conclusion

In summary, we propose a gradient coherence-
guided meta-learning approach for cross-domain
emerging topic rumor detection, which improves
domain generalization from both task-level selec-
tive learning and parameter-level adaptive updating.
Firstly, we calculate the task generalization score
of each source task by comparing the model’s gra-
dient coherence between the source task and few-
shot target samples, which are used to selectively
learn more “generalizable” source tasks. Secondly,
we introduce a meta-learning based framework to
learn the generalization feature from the source
data and adaptively update parameters and learning
rates under the guidance of limited target samples.
Extensive experiments on real-world datasets show
the superiority of our approach over baselines.
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Limitations

Although our method produces promising results
on multiple real-world datasets, it has certain limi-
tations. We will continue to investigate these con-
cerns in the future.

Firstly, we only use text content for rumor de-
tection but ignore multi-modal information like
images. In social media, news typically contains
text and images, where images can serve as supple-
mentary information for rumor detection. However,
it is worth mentioning that many existing studies
also only focus on text. Our future research will
consider incorporating multi-modal information to
achieve comprehensive rumor detection.

Secondly, we do not consider the domain adap-
tation setting from multi-source domains to the
target domain. In practice, much research also only
explores domain adaptation with a single source
domain. Future research will conduct domain adap-
tation rumor detection from the multi-source do-
mains to the target domain.
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A Algorithm of Our Method

The algorithm of our method is shown in Alg. 1.

Algorithm 1 GCML Algorithm
Require: Model parameters ✓, source domain data

DS , K-shot target samples D
l
T , number of

iterations T , number of tasks n
1: for t = 1 ! T do
2: for i 2 {1, ..., n} do
3: Sample source task data Bi from DS

4: Meta-Train:
5: Update parameter ✓ using Bi with Eq. (6)
6: Derive the task gradient with Eq. (2)
7: Meta-Test:
8: Calculate meta-test loss and meta-test gra-

dients using D
l
T as Eq. (7) and Eq. (8)

9: GSNR Generalization Calculation:
10: Compute each parameter’s GSNR on

source task Bi and D
l
T as Eq. (3)

11: Calculate task generalization score si for
source task i with Eq. (4)

12: end for
13: Meta-Optimization:
14: Update original parameter ✓ with Eq. (9)
15: Adaptive update learning rate with Eq. (10)
16: end for

B Experiment Setting Details

B.1 Datasets
We use FEVER (Thorne et al., 2018), Gettin-
gReal (Risdal, 2016), GossipCop (Shu et al., 2020),
LIAR (Wang, 2017) and PHEME (Buntain and
Golbeck, 2017) as the source datasets. For tar-
get datasets, we adopt CoAID (Cui and Lee,
2020), Constraint (Patwa et al., 2021) and ANTi-
Vax (Hayawi et al., 2022). In the following, we
provide the details of source and target datasets.
The statistics of these datasets are shown in Tab. 4,
where “Neg.” and “Pos.” indicate the proportions
of rumor and non-rumor samples in the dataset,
“Avg.Len” is the average token length of the text,
and “Content Type” denotes the source type of the
text. It is worth noting that CoAID is highly imbal-
anced, with over 90% positive samples.

• FEVER (Thorne et al., 2018) is a fact verifica-
tion dataset which contains claims extracted and
altered from Wikipedia.

• GettingReal (Risdal, 2016) is a fake news
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Datasets Neg. Pos. Avg.Len Content Type

FEVER 29.6% 70.4% 9.4 Statement
GettingReal 8.8% 91.2% 738.9 News
GossipCop 24.2% 75.8% 712.9 News
LIAR 44.2% 55.8% 20.2 Statement
PHEME 34.0% 66.0% 21.5 Social Network
CoAID 9.7% 90.3% 54.0 News / Statement
Constraint 47.7% 52.3% 32.7 Social Network
ANTiVax 38.3% 61.7% 26.2 Social Network

Table 4: Statistics of the datasets.

dataset from Kaggle5. It contains text and meta-
data from online websites.

• GossipCop (Shu et al., 2020) is a part sub-dataset
from the FakeNewsNet dataset, which includes
news content, social context, and dynamic infor-
mation from social media platforms.

• LIAR (Shu et al., 2020) is a public available
dataset for fake news detection. LIAR comprises
manually labeled short statements in various con-
texts collected from PolitiFact.com.

• PHEME (Buntain and Golbeck, 2017) contains
a collection of Twitter rumors and non-rumors
posted during breaking news. It also provides in-
formation about the structure of the conversation.

• CoAID (Cui and Lee, 2020) is a COVID-19
healthcare misinformation dataset, which in-
cludes fake news and related user engagements.

• Constraint (Patwa et al., 2021) is a manually
annotated collection of social media posts and
articles labeled as real or fake. It was released as
the shared task at the CONSTRAINT workshop.

• ANTiVax (Hayawi et al., 2022) a Twitter dataset
for COVID-19 vaccine misinformation detection.
It is a collection of over 15,000 tweets related
to COVID-19 vaccines, annotated using reliable
sources and validated by medical experts.

B.2 Baselines
We compare our method with several state-of-the-
art domain adaptation and few-shot learning rumor
detection baselines and large language model based
methods. The details are described below:

Domain Adaptation Detection Baselines.

• ProtoNet (Snell et al., 2017) uses prototypical
networks to learn a metric space where classifi-
cation is performed by computing distances to

5https://www.kaggle.com/datasets/mrisdal/fake-news

prototype representations of each class for few-
shot classification. We use the same label space
and base transformer model as the encoder for
few-shot domain adaptation rumor detection.

• MAML (Finn et al., 2017) is a meta-learning
algorithm that trains model parameters to enable
rapid adaptation to new tasks with only a few gra-
dient steps. MAML first updates model param-
eters on sampled tasks, then computes the meta-
loss and derives second-order gradients with re-
spect to the original parameters.

• CANMD (Yue et al., 2022) uses pseudo label-
ing and label correction to generate target sam-
ples and correct label shifts, and integrates a con-
trastive adaptation loss to learn domain-invariant
features. We obtained the CANMD’s results by
incorporating the few-shot target samples into
the training process.

• ACLR (Lin et al., 2022) presents an adversar-
ial contrastive learning framework to improve
cross-domain rumor detection performance with
language alignment and supervised contrastive
training. We replace the original graph convolu-
tion networks with our base transformer model
for content-based rumor detection.

• MetaAdapt (Yue et al., 2023) is a meta-learning
method for domain adaptive few-shot misinfor-
mation detection. It adapts models to target
domains using limited data by rescaling meta-
gradients based on gradient similarity.

• CADM+ (Zeng et al., 2024) is an unsupervised
domain adaptation framework, which uses adver-
sarial domain mixup and contrastive learning to
transfer knowledge from a source domain to a
target domain for cross-domain rumor detection.

LLM-based Baselines. We select two represen-
tative LLMs: LLaMA2-7B (Touvron et al., 2023)
and Alpaca2-7B (Taori et al., 2023) to conduct
zero-shot prompting, few-shot prompting, and su-
pervised fine-tuning on target domain for rumor
detection. We adopt the following prompt template
to perform zero-shot and few-shot prompting:
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Question: Given the following news, pre-
dict its veracity. If it is more likely to be real
news, return 1; otherwise, return 0. Do not
return any extra content. Please refrain from
providing ambiguous assessments such as
undetermined. The news is: [news text].
Input/output examples: [Optional for few-
shot prompting].
Answer: [A predicted veracity label].

We design the following supervised fine-tuning
(SFT) template:

Instruction: Next, I will give you a news
claim; please determine whether the news
is a rumor or not.
Input: News: [news text].
Output: The news label.

B.3 Implementation Details
We preprocess the data following Yue et al. (2022).
Specifically, we convert special symbols (e.g., emo-
jis) to English, remove special characters from the
input text, and tokenize hashtags, mentions, and
URLs. We implement our method and other base-
lines by applying PyTorch with CUDA 10.0 on
Ubuntu 18.04.5 LTS servers with NVIDIA A100
GPU. For model optimization, we use AdamW
with 0.01 weight decay. For the few-shot domain
adaptation setting, we follow Yue et al. (2023) and
select the first k samples (with 10-shot as default)
from the original validation set and use the remain-
ing samples for validation. The threshold ⌧ is set
based on the magnitude of GSNR values in R

T .
The balanced accuracy (BA) in evaluation metric is
defined as the average value of sensitivity and speci-
ficity as Eq. (11), which evaluates the adaptation
performance in both classes equally, thus enabling
a better and more reliable evaluation of domain
adaptation performance under label imbalance.

BA =
1

2
(TPR + TNR) =

1

2

✓
TP

TP + FN
+

TN
TN + FP

◆
(11)

where TPR denotes sensitivity, and TNR represents
specificity. TP, TN indicate true positive and true
negative, FP and FN represent false positive and
false negative. For the results of domain adapta-
tion baselines, we use the results from the origi-
nal paper if provided. Otherwise, we reimplement
the baseline methods following the original paper
and its hyperparameter configuration. For LLM-

based methods, supervised fine-tuning(SFT) is per-
formed using low-rank adaptation (LoRA) (Hu
et al., 2022), where the dimension lora_r of the
LoRA low-rank matrix is 64, and the scaling fac-
tor lora_alpha of the LoRA low-rank matrix is
128. The batch size of LORA is 128, and the
max token length is 1024. The regular expression
used in LORA is [q_proj, v_proj, k_proj, o_proj,
gate_proj, down_proj, up_proj]. In the meta-train
phase, we pseudo-update the model three times on
each source task to make it locally converge. We
train the model for 500 iterations and validate it
every 50 iterations. The best-performing model is
then evaluated on the target test set.

C Additional Experiment Results

C.1 Analysis of Task Generalization
To validate that each source task contributes dif-
ferently to adapt to the target domain (i.e., varying
generalization gaps), we compare the one-step gen-
eralization ratios (OSGR) of the model training
on different source tasks. The OSGR (Liu et al.,
2020) is a metric that quantifies the ratio of the
expected test loss decrease to the expected training
loss decrease in one single training step. A higher
OSGR, closer to 1, indicates better generalization
performance, as it suggests that the model’s im-
provements on the training set translate effectively
to the test set. Specifically, we sample three source
tasks from the source domain as the training set,
with the target domain serving as the test set un-
der the “PHEME ! ANTiVax” scenario, and the
model’s OSGR results are shown in Fig. 5.

We observed: (1) the training loss decreases
faster than the test loss, and 0 < OSGR(t) < 1,
resulting in a non-zero generalization gap between
source task and target task at the end of training;
(2) different source tasks have varying impacts on
the model’s OSGR. In Fig. 5 (a), the OSGR(t)
remains large in the entire training process, indicat-
ing a small generalization gap at the end of train-
ing and showing good generalization capability of
the model. In contrast, Fig. 5 (c) shows a small
OSGR(t), resulting in a slower test loss decrease,
corresponding to a larger generalization gap.

C.2 GSNR of Model Parameters over Time
To validate whether our approach enhances the
overall GSNR of the model’s parameters over time,
we calculate an average GSNR of all parameters on
few-shot target samples over the training period. A
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(a) High OSGR(t) (b) Middle OSGR(t) (c) Low OSGR(t)

Figure 5: OSGR results under different source tasks. If OSGR(t) is large (closer to 1) throughout the training
process, the generalization gap would be small, representing the good generalization ability of the model.

higher GSNR signifies better generalizability. The
experiment is conducted under the “PHEME !
COAID” domain adaptation scenario.

As shown in Fig. 6, our method demonstrates
a higher GSNR compared to the baseline, which
confirms that our approach enhances the model pa-
rameters’ GSNR, i.e., improving the generalization
capability on the target domain.

Figure 6: Our approach enhances the model’s GSNR
over time, compared to the baseline.
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