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Abstract

Detecting LLM-generated text in specialized
and high-stakes domains like medicine and law
is crucial for combating misinformation and
ensuring authenticity. However, current zero-
shot detectors, while effective on general text,
often fail when applied to specialized content
due to domain shift. We provide a theoretical
analysis showing this failure is fundamentally
linked to the KL divergence between human,
detector, and source text distributions. To ad-
dress this, we propose DivScore, a zero-shot
detection framework using normalized entropy-
based scoring and domain knowledge distilla-
tion to robustly identify LLM-generated text in
specialized domains. We also release a domain-
specific benchmark for LLM-generated text
detection in the medical and legal domains.
Experiments on our benchmark show that Di-
vScore consistently outperforms state-of-the-
art detectors, with 14.4% higher AUROC and
64.0% higher recall (0.1% false positive rate
threshold). In adversarial settings, DivScore
demonstrates superior robustness to other base-
lines, achieving on average 22.8% advantage
in AUROC and 29.5% in recall. Code and data
are publicly available1.

1 Introduction

As Large Language Models (LLMs) produce text
of increasing fluency and realism, the need for reli-
able machine-generated text detection has become
critical. This is especially true in high-stakes do-
mains like healthcare and law, where undetected AI-
written content could undermine trust and safety.

Initial approaches to detecting LLM-generated
text employed supervised learning, such as GPT-2
detector (Solaiman et al., 2019) and GPT-3.5 de-
tector (Guo et al., 2023). While effective on the
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Figure 1: Fast-DetectGPT (Bao et al., 2023) and Binoc-
ulars (Hans et al., 2024) detector scores of LLM/Human
texts in specialized (legal, medical) and general domain.
In specialized domain, both detectors failed to create
scoring gap necessary for detecting LLM-generated text

data they were trained on, such supervised detec-
tors show clear shortcomings when faced with new
domains or more advanced language models. For
instance, a detector trained on law articles may
falter on healthcare text, and a classifier tuned to
GPT-2 outputs may misclassify text from a newer
LLM. Furthermore, every new LLM or domain re-
quires the creation of a fresh labeled dataset and
retraining of the detector, rendering the process
resource-intensive and inefficient.

In response, researchers have developed detec-
tors that require no training examples and instead
exploit statistical irregularities of LLM-generated
text. For instance, DetectGPT (Mitchell et al.,
2023) uses an LLM’s probability curvature to flag
generated passages without any finetuning, while
Binoculars (Hans et al., 2024) contrasts the outputs
of two language models to achieve state-of-the-art
detection accuracy with zero training data.

However, most existing zero-shot detection stud-
ies focus on general domain data. Specialized do-
mains such as healthcare literature or legal docu-
ments present several additional challenges that
make LLM-generated text detection more diffi-
cult. These domains typically have: (1) Sparse
labeled data. Few or no annotated examples of
LLM-generated text for training. (2) Complex lan-
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guage. Domain-specific jargon and intricate writ-
ing styles that differ markedly from common text.
(3) Unfamiliar content. Topic areas and facts that
even advanced LLMs may not have seen frequently
during pre-training.

As a result, detection methods that perform well
on general text often struggle under such domain
shift. As shown in Figure 1, we observe that Fast-
DetectGPT (Bao et al., 2023) and Binoculars (Hans
et al., 2024) both tend to compress in special-
ized domains: both human and LLM-generated
texts yield similar detector scores, eroding the gap
needed for reliable discrimination. To address these
gaps, we propose DivScore – a normalized entropy-
based divergence metric for domain-specific, zero-
shot detection of LLM-generated text in specialized
domains. Our approach is specifically designed to
be robust across different domains.

In essence, DivScore works by normalizing the
domain-specific entropy of a candidate text against
an estimated baseline, thereby measuring how sur-
prising the text is relative to what a reference lan-
guage model expects for that domain. Our method
first highlights domain-specific alignment, and
then applies entropy normalization to accentuate
the differences between human-written and LLM-
generated text, thereby enhancing the contrast nec-
essary for detection. We implement DivScore us-
ing an unsupervised domain knowledge distillation
framework, maintaining a zero-shot setting that
requires no labeled data. In our evaluations, DivS-
core outperforms state-of-the-art (SOTA) zero-shot
baselines under significant domain shifts, while
remaining competitive in general domain settings.
We make the following key contributions:

• We introduce DivScore. To the best of our
knowledge, it is the first zero-shot detec-
tion method designed for identifying domain-
specific LLM-generated text, inspired by do-
main alignment and entropy normalization.

• We release a high-quality benchmark for de-
tecting LLM-generated text in specialized do-
mains. It includes professional legal and medi-
cal corpora, along with knowledge distillation
datasets and an adaptation pipeline for detec-
tor evaluation and finetuning.

• We conduct extensive experiments and anal-
ysis. The results show that DivScore outper-
forms SOTA baselines by 14.4% in AUROC
and 64.0% in recall (0.1% false positive rate),

while also exhibiting strong robustness under
adversarial conditions.

2 Related Work

Machine-generated text detection is typically for-
mulated as a binary classification problem (Su et al.,
2023; Bao et al., 2023; Mitchell et al., 2023; So-
laiman et al., 2019; Hans et al., 2024). Supervised
detectors, such as RoBERTa-based models (So-
laiman et al., 2019), perform well on in-domain
data, but require additional manual annotation, with
limited scalability and flexibility (Bakhtin et al.,
2019; Su et al., 2023; Mitchell et al., 2023).

Another group of studies aims to construct zero-
shot detectors based on the discrepancy in LLM-
measured statistical signatures between human
and machine-generated text. Text statistics-based
detectors such as LLM text entropy (Lavergne
et al., 2008), log-probability (Solaiman et al., 2019)
and per-token rank (Gehrmann et al., 2019) have
proven to be effective in general LLM text detec-
tion. Mitchell et al. (2023) proposed DetectGPT to
detect LLM-generated passages by the curvature
of LLM text log-probability function under con-
trolled text perturbations. Fast-DetectGPT (Bao
et al., 2023) substitutes the perturbation method in
DetectGPT with a more efficient LLM sampling
step. Hans et al. (2024) further discovered that
contrasting the LLM text perplexity of two closely
related language models can effectively distinguish
LLM-generated content.

However, the zero-shot property comes at the
cost of limited adaptability in specialized domains.
Current zero-shot detectors, including Binocu-
lars (Hans et al., 2024), mainly focus on general
domain content, such as news, essays, and social
media posts (Narayan et al., 2018; Guo et al., 2023;
Fan et al., 2018; Wu et al., 2025a; Dugan et al.,
2024). Relying on general domain LLMs for sta-
tistical signature scoring, current methods implic-
itly assume sufficient domain familiarity from the
detector. In specialized domains with rare knowl-
edge (e.g., medical or legal), both human and LLM-
generated texts could be unfamiliar to these detec-
tors, collapsing the statistical gap and degrading
detection performance. Our DivScore is designed
for avoiding such problems.

3 Methodology

In this section, we first formalize why zero-shot
detectors falter when the text distribution shifts to
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Figure 2: The overall framework of DivScore

a specialised domain, setting the theoretical stage
for DivScore. Guided by this analysis, we derive
our core detector and then introduce a domain-
knowledge distillation step that narrows the gap
between the detector and specialised language,
markedly strengthening robustness and accuracy.
The framework of DivScore is shown in Figure 2.

3.1 Theoretical Analysis: Why Do Zero-Shot
Detectors Fail under Domain Shift?

Most zero-shot detectors, such as entropy-based
scoring (Lavergne et al., 2008) or perplexity-based
Binoculars (Hans et al., 2024), assume that LLM-
generated text exhibits statistical signatures (e.g.,
lower entropy, distinctive perplexity) that are dis-
tinguishable from human-written text.

However, when applied to corpus from special-
ized domains (see Figure 1), these signals often col-
lapse: both human- and machine-generated texts
may appear equally "surprising" or "familiar" to
a general domain LLM. To formalize this phe-
nomenon, we analyse the theoretical performance
of a general zero-shot detector that scores a text X
based on its entropy HQ(X) with a detector LLM.
Specifically, we present the following theorem,
which characterizes the relationship between detec-
tor performance and the effective Kullback–Leibler
(KL) divergence.
Theorem 1. Given a zero-shot LLM-generated text
detector D with detection score mapped from the
detector LLM’s text entropy HQ(X) by any strictly
monotonic function f : R → R :

D(X) = f(HQ(X)), (1)

where Q represents the text distribution calculated
from D. The area under the receiver operating

characteristic curve (AUROC) of D, denoted as
AUROC(D(X)), satisfies:

AUROC(D(X)) ∝+ δKL, (2)

where ∝+ denotes positive monotonic association,
and δKL, effective KL divergence, is given as:

δKL = DKL(P ∥ Q)−DKL(Q
′ ∥ Q), (3)

with Q′ indicating text distribution from the real
source. P denotes text distribution from human.
DKL(·||·) denotes KL divergence.

Theorem 1 shows that the performance of a zero-
shot detector depends on the extent to which the
detector distribution Q diverges more from human
distribution P than from the real source distribu-
tion Q′. In specialized domains (e.g., medical or
legal) with distinctive linguistic characteristics, the
detector distribution Q may more closely resemble
P than the source LLM distribution Q′. Conse-
quently, a reduction in δKL diminishes the detec-
tor’s ability to distinguish machine-generated text
within such domains. See detailed theorem proof
in Appendix A.

3.2 DivScore: Normalized Entropy-based
Scoring

Building on the theoretical analysis, we design a
detector that leverages the entropy of a domain-
adapted LLM M∗ (see subsection 3.3) to quantify
how predictable or familiar a sentence x1:L is under
its distribution. Given a x1:L = (x1, ..., xL), the
mean token entropy is defined as:

HM∗(x1:L) = − 1

L

L∑

i=1

pM∗(xi | x<i)

· log pM∗(xi | x<i)

(4)

Ideally, if M∗ is well aligned with the distribution
of LLM-generated text in the designated domain,
LLM-generated text should yield lower entropy
than human-written text. However, in practice, this
assumption may not always hold due to subtle do-
main mismatches or the presence of highly pre-
dictable (i.e., low-entropy) human texts.

To address this, we introduce a normalization
scheme based on the cross-entropy between a gen-
eral LLM M and the domain-adapted LLM M∗.
The cross-entropy is defined as:

CEM,M∗(x1:L) = − 1

L

L∑

i=1

pM(xi | x<i)

· log pM∗(xi | x<i)

(5)
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The above cross-entropy quantifies the degree of
disagreement between the two models’ probabil-
ity estimates for text. For LLM-generated text in
a specialized domain, the domain-adapted M∗ is
expected to diverge significantly from the general
LLM M, resulting in a high cross-entropy score.
In contrast, for human-written text that is unfamil-
iar to both models, the disagreement is typically
lower, leading to a lower cross-entropy value. This
intuition is further supported by a detailed statisti-
cal analysis in Section 4.4. The final DivScore is
computed as:

DM,M∗(x1:L) =
HM∗(x1:L)

CEM,M∗(x1:L)
(6)

A higher DM,M∗(x1:L) driven by high entropy
(unfamiliarity) and low cross-entropy (low model
disagreement), indicates that x1:L is more likely
to be human-written. Conversely, a lower score
suggests that the text is machine-generated. This
DivScore normalization enhances the separation be-
tween human and LLM-generated text, especially
in specialized domains where entropy-based sig-
nals alone are insufficient.

3.3 Enhancing the Detector via Unsupervised
Domain Knowledge Distillation

DivScore employs two paired LLMs (M,M∗),
consisting of one general-purpose and domain-
adapted model, for scoring. In the basic DivScore
setup, M∗ can be any LLM adapted for the tar-
get domain. Further, motivated by Theorem 1 and
aiming to enhance detection performance in highly
specialized domains, we introduce a tailored im-
provement: constructing M∗ by distilling domain-
specific knowledge into the general model M. The
goal of this enhancement is to reduce the KL diver-
gence DKL(Q

′ ∥ Q) by aligning the detector’s dis-
tribution with the domain-specific LLM-generated
text. The process is as follows:

1. Teacher Model Selection: Select a large lan-
guage model (LLM) with extensive domain
expertise and a substantial parameter count to
act as the teacher model (e.g., DeepSeek-R1).

2. Domain Seed Knowledge Construction:
Collect a set of questions representative of
the specialized domain. Using seed knowl-
edge, prompt the teacher LLM to generate
detailed and in-depth questions based on the
initial input.

3. Distillation Knowledge Generation: Use the
teacher LLM to generate high-quality answers
and narrative explanations to the seed ques-
tions, forming a domain-specific distillation
knowledge base.

4. Student Learning: Perform supervised fine-
tuning of the general LLM M of DivScore
with the generated domain-specific knowl-
edge base, yielding the enhanced model M∗

adapted to this specialized domain.

This distillation process for building M∗ trans-
fers domain knowledge from a teacher LLM to
the general LLM M of DivScore, narrows the
gap between the detector and the LLM text dis-
tributions, and thus increases δKL in Theorem 1,
improving detection performance. The entire ap-
proach operates in a zero-shot manner, requiring
no human-labeled text for training and inference,
which makes it highly practical for real-world de-
ployment in specialized domains.

We release all the above resources as a bench-
mark, which consists of (1) domain-specific knowl-
edge distillation datasets and adaptation pipelines
for medical and legal domains, and (2) 4,000 high-
quality professional legal and medical documents
paired with LLM-generated counterparts for detec-
tor evaluation.

4 Experiments

In this section, we evaluate DivScore’s effective-
ness in detecting machine-generated text within
legal and medical domains. We further assess its
robustness to adversarial attacks that attempt to
bypass detection. Additionally, we analyse how do-
main knowledge distillation influences text scoring,
and present ablation studies examining the effects
of detector LLM selection, knowledge distillation,
and scoring components on overall performance.

4.1 Implementation Details
This study investigates zero-shot, black-box de-
tection settings that realistically reflect real-world
deployments. In the zero-shot scenario, a detec-
tor must identify LLM-generated text without any
task-specific labeled examples. The black-box
constraint further withholds information about the
source LLM and its logits, so detectors must rely
on surrogate models for scoring. Together, these
constraints mirror practical situations in which nei-
ther in-domain reference data nor the identity of
the generating LLM is available.

19234



Text Source GPT-4o O3-mini DeepSeek-V3 DeepSeek-R1

Datasets MIMIC PubMed OALC LawStack MIMIC PubMed OALC LawStack MIMIC PubMed OALC LawStack MIMIC PubMed OALC LawStack

AUROC

RoB-base 66.79(↓31.55) 85.79(↓9.63) 58.33(↑19.86) 65.10(↓29.98) 67.98(↓26.71) 98.70(↑14.13) 58.07(↑0.67) 73.35(↓9.02) 69.11(↓30.89) 82.39(↓17.33) 23.20(↓75.07) 56.54(↓43.33) 68.99(↓20.11) 99.63(↑9.46) 65.24(↑10.69) 74.73(↓13.16)
RoB-large 93.05(↓5.29) 91.69(↓3.73) 81.23(↑42.76) 72.36(↓22.72) 94.21(↓0.48) 99.66(↑15.09) 77.29(↑19.89) 85.55(↑3.18) 91.10(↓8.9) 92.14(↓7.58) 52.31(↓45.96) 67.82(↓32.05) 87.35(↓1.75) 99.84(↑9.67) 84.22(↑29.67) 86.36(↓1.53)
Entropy 68.52(↓29.82) 98.29(↑2.87) 33.30(↓5.17) 91.85(↓3.23) 84.73(↓9.96) 96.95(↑12.38) 38.23(↓19.17) 83.53(↑1.16) 94.40(↓5.6) 99.87(↑0.15) 87.14(↓11.13) 98.22(↓1.65) 68.21(↓20.89) 99.39(↑9.22) 58.92(↑4.37) 94.70(↑6.81)
Rank 71.97(↓26.37) 87.54(↓7.88) 29.97(↓8.5) 85.73(↓9.35) 98.66(↑3.97) 96.36(↑11.79) 58.52(↑1.12) 92.58(↑10.21) 86.86(↓13.14) 94.56(↓5.16) 68.35(↓29.92) 93.33(↓6.54) 92.34(↑3.24) 92.49(↑2.32) 65.19(↑10.64) 87.16(↓0.73)
Log-Rank 83.37(↓14.97) 98.75(↑3.33) 32.40(↓6.07) 91.19(↓3.89) 95.07(↑0.38) 98.89(↑14.32) 47.05(↓10.35) 88.34(↑5.97) 99.57(↓0.43) 99.96(↑0.24) 94.09(↓4.18) 99.03(↓0.84) 87.92(↓1.18) 99.31(↑9.14) 67.70(↑13.15) 95.02(↑7.13)
Log-Likelihood 81.29(↓17.05) 98.30(↑2.88) 32.32(↓6.15) 90.15(↓4.93) 94.08(↓0.61) 98.20(↑13.63) 47.32(↓10.08) 86.77(↑4.4) 99.37(↓0.63) 99.94(↑0.22) 93.79(↓4.48) 98.70(↓1.17) 88.18(↓0.92) 99.14(↑8.97) 70.36(↑15.81) 94.73(↑6.84)
DetectGPT 53.71(↓44.63) 42.39(↓53.03) 31.05(↓7.42) 57.51(↓37.57) 63.15(↓31.54) 54.10(↓30.47) 32.55(↓24.85) 86.05(↑3.68) 78.68(↓21.32) 73.45(↓26.27) 47.36(↓50.91) 89.30(↓10.57) 87.74(↓1.36) 80.95(↓9.22) 43.36(↓11.19) 97.07(↑9.18)
Fast-DetectGPT 96.23(↓2.11) 87.79(↓7.63) 46.32(↑7.85) 69.19(↓25.9) 90.38(↓4.31) 77.55(↓7.02) 71.91(↑14.51) 58.81(↓23.56) 99.89(↓0.11) 99.65(↓0.07) 98.22(↓0.05) 98.59(↓1.28) 89.63(↑0.53) 74.86(↓15.31) 65.24(↑10.9) 53.50(↓34.3)
Binoculars 98.34 95.42 38.47 95.08 94.69 84.57 57.40 82.37 100.00 99.72 98.27 99.87 89.10 90.17 54.55 87.89

DivScore (med) 99.86(↑1.52) 99.07(↑3.65) 99.17(↑60.7) 99.27(↑4.19) 99.99(↑5.3) 99.87(↑15.3) 99.45(↑42.05) 99.76(↑17.39) 99.97(↓0.03) 99.87(↑0.15) 98.51(↑0.24) 99.93(↑0.06) 99.98(↑10.88) 99.98(↑9.81) 99.28(↑44.73) 99.99(↑12.1)
DivScore (law) 99.86(↑1.52) 99.61(↑4.19) 98.65(↑60.18) 99.54(↑4.46) 99.99(↑5.3) 99.81(↑15.24) 99.25(↑41.85) 99.87(↑17.5) 99.97(↓0.03) 99.81(↑0.09) 98.61(↑0.34) 99.94(↑0.07) 99.94(↑10.84) 99.93(↑9.76) 99.37(↑44.82) 99.99(↑12.1)
DivScore 99.87(↑1.53) 99.90(↑4.48) 98.88(↑60.41) 99.84(↑4.76) 100.00(↑5.31) 99.96(↑15.39) 99.20(↑41.8) 99.87(↑17.5) 99.99(↓0.01) 99.99(↑0.27) 98.54(↑0.27) 99.99(↑0.12) 99.99(↑10.89) 100.00(↑9.83) 99.56(↑45.01) 100.00(↑12.11)

TPR @ 0.1% FPR

RoB-base 0.00(↓68.4) 35.40(↑30.3) 0.10(↓0.4) 0.00(↓27.7) 0.00(↓14.3) 62.60(↑62.6) 0.10(↓0.1) 0.10(↓0.3) 0.00(↓99.7) 36.90(↑1.8) 0.00(↓74.5) 0.20(↓84.8) 0.04(↓8.26) 59.20(↑59.2) 0.20(↑0.2) 0.10(↓0.2)
RoB-large 9.80(↓58.6) 26.70(↑21.6) 1.90(↑1.4) 0.70(↓27.0) 5.08(↓9.22) 78.80(↑78.8) 0.90(↑0.7) 0.30(↓0.1) 0.94(↓98.76) 23.20(↓11.9) 0.10(↓74.4) 0.30(↓84.7) 0.62(↓7.68) 82.30(↑82.3) 2.80(↑2.8) 1.30(↑1.0)
Entropy 0.00(↓68.4) 28.80(↑23.7) 0.10(↓0.4) 0.00(↓27.7) 0.60(↓13.7) 10.20(↑10.2) 0.00(↓0.2) 0.00(↓0.4) 5.90(↓93.8) 89.20(↑54.1) 4.40(↓70.1) 0.00(↓85.0) 0.00(↓8.3) 37.10(↑37.1) 0.10(↑0.1) 0.00(↓0.3)
Rank 13.50(↓54.9) 9.80(↑4.7) 0.00(↓0.5) 5.10(↓22.6) 34.30(↑20.0) 14.20(↑14.2) 0.00(↓0.2) 5.30(↑4.9) 33.30(↓66.4) 28.90(↓6.2) 2.80(↓71.7) 19.50(↓65.5) 14.40(↑6.1) 3.20(↑3.2) 0.00(↑0) 0.40(↑0.1)
Log-Rank 0.90(↓67.5) 59.90(↑54.8) 0.10(↓0.4) 0.00(↓27.7) 4.30(↓10.0) 48.70(↑48.7) 0.00(↓0.2) 0.00(↓0.4) 66.30(↓33.4) 98.00(↑62.9) 4.40(↓70.1) 0.00(↓85.0) 1.10(↓7.2) 63.20(↑63.2) 0.10(↑0.1) 0.00(↓0.3)
Log-Likelihood 0.20(↓68.2) 42.00(↑36.9) 0.10(↓0.4) 0.00(↓27.7) 1.50(↓12.8) 23.40(↑23.4) 0.00(↓0.2) 0.00(↓0.4) 40.20(↓59.5) 96.90(↑61.8) 4.40(↓70.1) 0.00(↓85.0) 0.30(↓8.0) 48.60(↑48.6) 0.10(↑0.1) 0.00(↓0.3)
DetectGPT 0.00(↓68.4) 0.00(↓5.1) 0.00(↓0.5) 0.00(↓27.7) 0.00(↓14.3) 0.00(↑0) 0.00(↓0.2) 0.20(↓0.2) 0.00(↓99.7) 0.00(↓35.1) 0.00(↓74.5) 0.10(↓84.9) 0.00(↓8.3) 0.00(↑0) 0.00(↑0) 2.70(↑2.4)
Fast-DetectGPT 42.20(↓26.2) 7.30(↑2.2) 0.90(↑0.4) 1.70(↓26.0) 12.50(↓1.8) 1.50(↑1.5) 0.80(↑0.6) 0.00(↓0.4) 92.70(↓7.0) 82.20(↑47.1) 73.80(↓0.7) 60.90(↓24.1) 7.70(↓0.6) 1.60(↑1.6) 0.50(↑0.5) 0.00(↓0.3)
Binoculars 68.40 5.10 0.50 27.70 14.30 0.00 0.20 0.40 99.70 35.10 74.50 85.00 8.30 0.00 0.00 0.30

DivScore (med) 94.10(↑25.7) 71.80(↑66.7) 81.00(↑80.5) 72.00(↑44.3) 99.20(↑84.9) 95.90(↑95.9) 71.10(↑70.9) 83.70(↑83.3) 98.30(↓1.4) 91.10(↑56.0) 77.00(↑2.5) 94.70(↑9.7) 97.60(↑89.3) 98.70(↑98.7) 88.30(↑88.3) 99.20(↑98.9)
DivScore (law) 91.20(↑22.8) 51.40(↑46.3) 66.60(↑66.1) 80.20(↑52.5) 97.80(↑83.5) 83.90(↑83.9) 48.10(↑47.9) 93.50(↑93.1) 97.70(↓2.0) 76.20(↑41.1) 78.00(↑3.5) 97.30(↑12.3) 94.20(↑85.9) 92.60(↑92.6) 89.70(↑89.7) 99.70(↑99.4)
DivScore 90.40(↑22.0) 94.50(↑89.4) 69.60(↑69.1) 88.00(↑60.3) 99.60(↑85.3) 99.50(↑99.5) 42.80(↑42.6) 96.50(↑96.1) 98.80(↓0.9) 99.10(↑64.0) 77.30(↑2.8) 98.10(↑13.1) 98.80(↑90.5) 99.90(↑99.9) 89.90(↑89.9) 99.90(↑99.6)

Table 1: Main Experiment - Detection AUROC score and TPR (at 0.1% FPR) of baseline methods and DivScore
on medical (MIMIC, PubMedQA) and legal datasets (OALC, LawStack). Methods are benchmarked against the
Binoculars detector, with arrows indicating performance differences (↑/↓) relative to Binoculars. Bold indicates the
best result, and underline denotes the second-best.

DivScore Detector DivScore employs Mistral-
7B-v0.2 (Jiang et al., 2023) as the general LLM for
text scoring and domain adaptation. The domain-
adapted LLM is developed through a process of
domain knowledge distillation, by finetuning on
the Mistral-7B-v0.2. A combined knowledge distil-
lation in both the medical and legal domains is con-
ducted to optimize the detector’s capability within
these specialized fields. In the main experiment,
we additionally evaluate two variants of DivScore
that undergo partial knowledge distillation in either
the medical or legal domain alone, referred to as
DivScore (med) and DivScore (law).

Domain Knowledge Distillation
We select DeepSeek-R1 (DeepSeek-AI, 2025) as

the teacher LLM due to its strong medical and legal
expertise (Tordjman et al., 2025; Yu et al., 2025)
and its permissive MIT license, which allows full
knowledge distillation. Medical seed knowledge is
sourced from 22,000 GPT-4o-generated, verifiable
medical questions by Chen et al. (2024). Legal seed
knowledge is drawn from: (1) EQUALS (Chen
et al., 2023), with 6,909 legal questions from
professional law consultations; (2) Open Legal
QA (Butler, 2023), with 2,124 GPT-4-synthesized
questions based on Australian legal cases; and (3)
Pile-of-Law (Henderson et al., 2022), with 15,393
legal questions from Reddit forums. Distillation
knowledge is then generated by DeepSeek-R1 in
the form of question answering. The resulting
outputs are used to finetune the detector’s general

LLM with Low Rank Adaptation (LoRA). Details
for seed knowledge construction and LoRA fine-
tuning are provided in Appendix B.3.

Datasets We select four representative datasets
in medical and legal domain to evaluate Di-
vScore and baselines: (1) MIMIC-IV-Note
(MIMIC) (Johnson et al., 2023), deidentified hos-
pital notes for patients, (2) PubMedQA (Jin et al.,
2019), questions and answers for biomedical re-
search papers collected from PubMed, (3) Open
Australia Legal Corpus (OALC) (Butler, 2023), a
collection of Australian legislative and judicial doc-
uments, (4) LawStack (Moslem, 2025), legal ques-
tions and answers collected from Stack Exchange.
Within each dataset, we select 1,000 pairs of texts,
each consisting of a human-written text and its
LLM-generated counterparts. The source LLMs
for LLM-generated text are chosen from two model
families: GPT-4o (OpenAI, 2024), O3-mini (Ope-
nAI, 2025), DeepSeek-V3 (DeepSeek-AI, 2024)
and DeepSeek-R1 (DeepSeek-AI, 2025), represent-
ing current SOTA LLMs available to the public.
Detailed settings are provided in Appendix B.1.

Baseline Detectors We benchmark DivScore
against a comprehensive set of zero-shot and su-
pervised detection methods. For zero-shot de-
tectors, we include Log-Likelihood (Solaiman
et al., 2019), Entropy (Lavergne et al., 2008),
Rank, Log-Rank (Gehrmann et al., 2019), Detect-
GPT (Mitchell et al., 2023), Fast-DetectGPT (Bao
et al., 2023), and Binoculars (Hans et al.,
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Datasets MIMIC PubMedQA OALC LawStack

Attacks w/o Paraphrase Substitute w/o Paraphrase Substitute w/o Paraphrase Substitute w/o Paraphrase Substitute

AUROC

RoB-base 66.79(↓31.55) 47.08(↓40.06) 55.01(↓21.28) 85.79(↓9.63) 68.59(↓17.15) 66.86(↓8.16) 58.33(↑19.86) 41.92(↑4.25) 40.87(↑23.97) 65.10(↓29.98) 51.62(↓35.65) 49.83(↓14.62)
RoB-large 93.05(↓5.29) 65.76(↓21.38) 60.94(↓15.35) 91.69(↓3.73) 78.72(↓7.02) 60.31(↓14.71) 81.23(↑42.76) 59.50(↑21.83) 45.04(↑28.14) 72.36(↓22.72) 48.53(↓38.74) 35.68(↓28.77)
Entropy 68.52(↓29.82) 9.84(↓77.30) 23.88(↓52.41) 98.29(↑2.87) 82.56(↓3.18) 75.96(↑0.94) 33.30(↓5.17) 10.28(↓27.39) 9.73(↓7.17) 91.85(↓3.23) 61.45(↓25.82) 61.77(↓2.68)
Rank 71.97(↓26.37) 57.54(↓29.6) 11.82(↓64.47) 87.54(↓7.88) 82.75(↓2.99) 52.59(↓22.43) 29.97(↓8.50) 27.23(↓10.44) 9.65(↓7.25) 85.73(↓9.35) 72.22(↓15.05) 43.18(↓21.27)
Log-Rank 83.37(↓14.97) 18.42(↓68.72) 25.53(↓50.76) 98.75(↑3.33) 90.89(↑5.15) 74.79(↓0.23) 32.40(↓6.07) 12.68(↓24.99) 8.71(↓8.19) 91.19(↓3.89) 67.26(↓20.01) 50.54(↓13.91)
Log-Likelihood 81.29(↓17.05) 14.78(↓72.36) 24.79(↓51.50) 98.30(↑2.88) 88.05(↑2.31) 69.89(↓5.13) 32.32(↓6.15) 11.37(↓26.30) 8.43(↓8.47) 90.15(↓4.93) 65.63(↓21.64) 48.53(↓15.92)
DetectGPT 53.71(↓44.63) 32.92(↓54.22) 34.30(↓41.99) 42.39(↓53.03) 38.82(↓46.92) 22.19(↓52.83) 31.05(↓7.42) 11.73(↓25.94) 9.49(↓7.41) 57.51(↓37.57) 42.18(↓45.09) 26.05(↓38.40)
Fast-DetectGPT 96.24(↓2.10) 87.82(↑0.68) 78.01(↑1.72) 87.77(↓7.65) 79.99(↓5.75) 39.75(↓35.27) 46.32(↑7.85) 48.69(↑11.02) 19.30(↑2.40) 69.19(↓25.90) 70.46(↓16.81) 26.39(↓38.06)
Binoculars 98.34 87.14 76.29 95.42 85.74 75.02 38.47 37.67 16.90 95.08 87.27 64.45

DivScore 99.88(↑1.54) 78.74(↓8.40) 97.03(↑20.74) 99.64(↑4.22) 93.85(↑8.11) 95.21(↑20.19) 98.88(↑60.41) 88.07(↑50.40) 94.63(↑77.73) 99.84(↑4.76) 91.29(↑4.02) 94.09(↑29.64)

TPR @ 0.1% FPR

RoB-base 0.00(↓68.40) 0.00(↓11.30) 0.00(↓8.10) 35.40(↑30.30) 14.20(↑13.80) 14.50(↑14.20) 0.10(↓0.40) 0.00(↓0.30) 0.00(↑0.00) 0.00(↓27.70) 0.00(↓4.60) 0.00(↓0.60)
RoB-large 9.80(↓58.60) 0.70(↓10.60) 0.00(↓8.10) 26.70(↑21.60) 7.80(↑7.40) 2.60(↑2.30) 1.90(↑1.40) 0.50(↑0.20) 0.40(↑0.40) 0.70(↓27.00) 0.20(↓4.40) 0.00(↓0.60)

Entropy 0.00(↓68.40) 0.00(↓11.30) 0.00(↓8.10) 28.80(↑23.70) 0.40(↑0.00) 0.10(↓0.20) 0.10(↓0.40) 0.00(↓0.30) 0.00(↑0.00) 0.00(↓27.70) 0.00(↓4.60) 0.00(↓0.60)
Rank 13.50(↓54.90) 0.90(↓10.40) 0.00(↓8.10) 9.80(↑4.70) 1.50(↑1.10) 0.00(↓0.30) 0.00(↓0.50) 0.00(↓0.30) 0.00(↑0.00) 5.10(↓22.60) 0.40(↓4.20) 0.00(↓0.60)
Log-Rank 0.90(↓67.50) 0.00(↓11.30) 0.00(↓8.10) 59.90(↑54.80) 5.60(↑5.20) 0.80(↑0.50) 0.10(↓0.40) 0.00(↓0.30) 0.00(↑0.00) 0.00(↓27.70) 0.00(↓4.60) 0.00(↓0.60)
Log-Likelihood 0.20(↓68.20) 0.00(↓11.30) 0.00(↓8.10) 42.00(↑36.90) 1.10(↑0.70) 0.00(↓0.30) 0.10(↓0.40) 0.00(↓0.30) 0.00(↑0.00) 0.00(↓27.70) 0.00(↓4.60) 0.00(↓0.60)
DetectGPT 0.00(↓68.40) 0.00(↓11.30) 0.00(↓8.10) 0.00(↓5.10) 0.00(↓0.40) 0.00(↓0.30) 0.00(↓0.50) 0.00(↓0.30) 0.00(↑0.00) 0.00(↓27.70) 0.00(↓4.60) 0.00(↓0.60)
Fast-DetectGPT 41.80(↓26.60) 5.90(↓5.40) 4.60(↓3.50) 6.90(↑1.80) 2.10(↑1.70) 0.00(↓0.30) 0.90(↑0.40) 0.00(↓0.30) 0.00(↑0.00) 1.70(↓26.00) 1.50(↓3.10) 0.00(↓0.60)
Binoculars 68.40 11.30 8.10 5.10 0.40 0.30 0.50 0.30 0.00 27.70 4.60 0.60

DivScore 96.40(↑28.00) 12.80(↑1.50) 43.40(↑35.30) 85.80(↑80.70) 28.80(↑28.40) 23.00(↑22.70) 69.60(↑69.10) 3.40(↑3.10) 11.20(↑11.20) 88.00(↑60.30) 6.10(↑1.50) 12.30(↑11.70)

Table 2: Detector Robustness - Detection AUROC score and TPR (0.1% FPR) for baselines and DivScore on GPT-4o-
generated datasets with and without Adversarial Attacks (Paraphrase, Word Substitution). “w/o” indicates datasets
without attacks. Methods are benchmarked against the Binoculars (SOTA), with arrows indicating performance
differences (↑/↓) relative to Binoculars. Bold indicates the best result, and underline denotes the second-best.

2024). For supervised detectors, we evaluate two
RoBERTa-based classifiers (RoB-base and RoB-
large) released by OpenAI (Solaiman et al., 2019).
In the zero-shot experiment setting, supervised de-
tectors are assessed without further training on the
current domain detection tasks. Detailed baseline
definitions are provided in Appendix B.2.

Evaluation Metrics Previous studies (Su et al.,
2023; Yu et al., 2024; Wu et al., 2025b) mainly use
AUROC to assess detector performance. However,
AUROC, as an aggregate metric, may not reflect
performance in low false positive regimes, which is
crucial in specialized domains where misclassify-
ing human-written texts as LLM-generated can be
highly harmful. Therefore, in addition to AUROC,
we report the True Positive Rate (TPR) at a False
Positive Rate (FPR) of 0.1%, following the evalu-
ation protocol of Hans et al. (2024). This metric
reflects the TPR when, out of 1,000 human-written
texts, at most one false positive is permitted.

4.2 Main Results

Table 1 shows the detection performance of base-
lines and DivScore on four medical and legal
datasets generated by GPT-4o, O3-mini, DeepSeek-
V3 and DeepSeek-R1, respectively. As shown,
DivScore and its variants with partial knowl-
edge distillation—DivScore (med) and DivScore
(law)—demonstrate substantial performance gains
over the Binoculars benchmark. For DivScore
(med), it yields on average a 14.3% gain in AU-

ROC and a 62.1% gain in TPR. For DivScore (law),
it achieves a similar performance with 14.3% av-
erage gain in AUROC and 57.4% in TPR. The
full DivScore, enhanced by distillation from both
medical and legal domains, further pushes the aver-
age improvement to 14.4% in AUROC and 64.0%
in TPR. These results underscore DivScore’s abil-
ity to detect specialized LLM-generated content
with few false positives. Additionally, the improve-
ments of DivScore over its domain-specific vari-
ants indicate its generalizability across different
specialized domains, showing its potential in cross-
domain specialized LLM-generated text detection.
Appendix C.1 and Figure 6 provide a more detailed
analysis of detection performance and the true vs.
false positive trade-off for all detectors.

4.3 Detector Robustness

Recent studies show that paraphrasing (Sadasivan
et al., 2023; Krishna et al., 2023) and word-level
perturbations (Peng et al., 2023; Liang et al., 2023)
can effectively evade current AI-text detectors by
altering lexical and syntactic features. To assess
DivScore’s robustness in real-world applications,
we employ paraphrase (Krishna et al., 2023) and
word-level substitution Peng et al. (2023) attacks
on the GPT-4o texts. As shown in Table 2, both at-
tacks substantially reduce the performance of zero-
shot and supervised baselines. In contrast, DivS-
core remains robust, achieving an average AUROC
22.8% higher and an average TPR 29.5% higher
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Mean Token Cross-Entropy Mean Token Entropy Detector Score

Mean± Std LLM Human LLM Human LLM Human

w/o Distillation
MIMIC 1.81 ± 0.17 1.97 ± 0.21 0.98 ± 0.11 1.24 ± 0.15 0.54 ± 0.04 0.63 ± 0.04
PubMed 1.70 ± 0.25 2.74 ± 0.47 0.99 ± 0.17 2.07 ± 0.40 0.58 ± 0.07 0.75 ± 0.04
OALC 1.81 ± 0.30 1.80 ± 0.38 1.12 ± 0.22 1.35 ± 0.29 0.61 ± 0.06 0.75 ± 0.05
LawStack 1.87 ± 0.21 2.42 ± 0.37 1.13 ± 0.14 1.72 ± 0.31 0.61 ± 0.05 0.71 ± 0.07
Avg. 1.79 ± 0.23 2.23 ± 0.36 1.05 ± 0.16 1.60 ± 0.29 0.59 ± 0.06 0.71 ± 0.05

w/ Distillation
MIMIC 3.56 ± 0.29 2.80 ± 0.30 0.46 ± 0.07 0.88 ± 0.13 0.13 ± 0.03 0.31 ± 0.03
PubMed 4.56 ± 0.16 4.42 ± 0.14 0.37 ± 0.08 1.21 ± 0.32 0.08 ± 0.02 0.28 ± 0.04
OALC 4.03 ± 0.37 3.04 ± 0.31 0.44 ± 0.09 0.68 ± 0.18 0.11 ± 0.02 0.23 ± 0.04
LawStack 5.19 ± 0.27 4.32 ± 0.32 0.36 ± 0.06 0.90 ± 0.20 0.07 ± 0.01 0.21 ± 0.05
Avg. 4.33 ± 0.27 3.64 ± 0.27 0.41 ± 0.07 0.92 ± 0.21 0.10 ± 0.02 0.26 ± 0.03

Table 3: Statistics (mean ± standard deviation) of DivS-
core and its components: cross-entropy, entropy for each
dataset. Statistics are computed across four text source
LLMs, with and without domain knowledge distillation.
The "Avg." row shows dataset-averaged values.
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Figure 3: Text statistical signatures in DivScore for
MIMIC and LawStack datasets with and without domain
knowledge distillation. The data consists randomly se-
lected 100 human-written and 100 GPT-4o-generated
texts. Knowledge distillation greatly enlarges the cluster
gap thereby enhances DivScore’s performance.

than Binoculars. This robustness is likely due to
the proposed knowledge distillation, which aligns
the detector with LLM knowledge in specialized
domains. Since adversarial attacks must preserve
semantic and domain-specific content for usabil-
ity, DivScore can still effectively recognize LLM-
generated text, maintaining high detection accuracy
even under strong perturbations. Detailed settings
are provided in Appendix B.4.

4.4 Knowledge Distillation Analysis

In this section, we examine how domain knowledge
distillation influences the statistical signatures used
by DivScore. We analyse the statistics of DivScore
and its components - mean token entropy and mean
token cross entropy with and without distillation.
Mistral-7B-v0.2-Instruct, finetuned only on gen-
eral instructions, serves as M∗ for the "without

w/o Adaption Med Law Comb. Med Law Comb.
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Figure 4: Comparison of detector AUROC scores across
three settings: baseline (w/o domain adaptation), human
domain text finetuning, and LLM domain knowledge
distillation. For the later two settings, three variants are
included: adaptation to medical, legal domain and their
combination. AUROC scores are averaged across all
evaluation datasets.

distillation" baseline. As shown in Figure 3, knowl-
edge distillation enhances the separability between
LLM-generated and human-written texts, which
is essential for accurate detection. Table 3 addi-
tionally reports the mean and standard deviation
of these signatures for both LLM and human text,
giving the following findings.

(1) Cross-Entropy & Entropy. Knowledge dis-
tillation reduces the standard deviation of entropy
(by 56.3% for LLM texts and 27.6% for human
texts), making both clusters more compact. It
also increases the centroid (mean) distance for
cross-entropy by 36.2%, enlarging the gap between
LLM and human text clusters. These results, as
shown in Table 3, confirm that knowledge dis-
tillation improves the separability of LLM- and
human-generated texts. Cross-entropy statistics
further support the hypothesis presented in Sec-
tion 3.2, namely that LLM-generated texts yield
higher cross-entropy due to the disagreement be-
tween the domain-adapted LLM and the general-
domain LLM.

(2) Detector Score. The proposed detector score,
being the ratio of the above statistical signatures,
shares a collective impact from knowledge dis-
tillation. As shown in Table 3, distillation leads
to an overall 33.3% increase in inter-group cen-
troid (mean) distance, 66.7% decrease in LLM text
score std and 40% decrease in human text score std.
These results demonstrate that domain knowledge
distillation enhances the distinguishability of LLM-
generated texts by increasing the gap between LLM
and human texts (centroid distance) and reducing
intra-group variation (standard deviation).
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Figure 5: Detector performance (AUROC %) of LLM
distillation (proposed) and human text finetuning across
finetuning epochs. AUROC scores are averaged across
all evaluation datasets.

4.5 Ablation Studies

Ablation on Domain Knowledge Distillation. In
Section 3.3, we analysed the motivation for incor-
porating LLM domain knowledge distillation to
improve DivScore’s performance. We further em-
pirically assess its impact on detection. Specifi-
cally, we compare DivScore with: (1) three vari-
ants where the domain adaptation for general LLM
M is constructed by finetuning on human-written
texts in medical, legal domain, and their combina-
tion, and (2) the baseline DivScore without domain
adaptation, as referred in Section 4.4.

Figure 4 presents the AUROC averaged across
all datasets and text source LLMs. Incorporating
LLM domain knowledge distillation significantly
enhances detection performance, with respective
AUROC improvements of 18.6% and 7.1% com-
pared to DivScore variants adapted from human
text corpus and the baseline. These findings sug-
gest that LLM distillation is highly effective for
constructing domain-adapted LLMs for DivScore,
outperforming the baselines and the human text
finetuning approach. We further investigated the
impact of the number of finetuning epochs on the
performance of each variant. As illustrated in Fig-
ure 5, all variants reach their peak or near-peak
AUROC at epoch 8, after which performance de-
clines. This observation supports our choice of
finetuning epochs and ensures fair comparisons in
the ablation studies. Intuitively, insufficient train-
ing leads to inadequate domain adaptation, while
excessive finetuning may lead to forgetting of LLM
linguistic characteristics in general domain, reduc-
ing detection effectiveness.

Methods
Text Source LLMs

MIMIC PubMedQA OALC LawStack Avg

Entropy (Mistral) 99.32 99.78 85.43 99.27 95.95
Cross-Entropy (Mistral) 12.69 83.17 21.91 52.45 42.56
DivScore (Mistral) 99.96 99.96 99.04 99.93 99.72

Entropy (Falcon) 94.69 99.49 89.34 98.12 95.41
Cross-Entropy (Falcon) 25.37 73.19 54.26 46.58 49.85
DivScore (Falcon) 99.70 99.13 95.87 99.13 98.46

Entropy (Qwen) 98.81 99.88 89.03 99.38 96.78
Cross-Entropy (Qwen) 20.86 94.97 19.73 61.36 49.23
DivScore (Qwen) 99.96 94.43 97.45 99.33 97.79

Entropy (Llama) 98.01 99.89 86.75 99.12 95.94
Cross-Entropy (Llama) 10.31 64.55 17.10 32.23 31.05
DivScore (Llama) 99.91 99.87 99.03 99.86 99.67

Table 4: Ablation results (AUROC %) for DivScore
and its scoring variants across four detector LLM archi-
tectures, showing that the proposed design consistently
outperforms entropy or cross-entropy alone. AUROC
scores are averaged across all text source LLMs.

Ablation on Detector Components. We further
validated DivScore’s design for two key detector
components: the choice of LLM architecture and
the effectiveness of the scoring mechanism. We
compared four open-source LLMs: Falcon-7B (Al-
mazrouei et al., 2023), Qwen2.5-8B (Qwen, 2025),
Llama3-8B (Grattafiori et al., 2024), and the pro-
posed LLM, Mistral-7B-v0.2. We also evaluated
each scoring component by comparing the overall
detector score with its components: token entropy
and token cross-entropy. The detector performance,
averaged across all datasets and source LLMs (Ta-
ble 4), yields three main findings: (1) DivScore
achieves robust detection (Avg. AUROC > 95)
across all LLM architectures, with Mistral-7B per-
forming best; (2) the full detector scoring mecha-
nism outperforms its components, confirming the
necessity of the DivScore design. See detailed ab-
lation settings in Appendix B.5.

5 Conclusions

In this work, we introduce DivScore, a theoreti-
cally grounded, zero-shot detector for identifying
LLM-generated text in specialized and high-stakes
domains such as medicine and law. Our analysis re-
veals that existing general zero-shot detectors suffer
in these settings due to a distributional mismatch.
To address this, DivScore leverages a normalized
entropy-based scoring mechanism, augmented by
domain knowledge distillation, to robustly detect
LLM-generated specialized content. Empirical re-
sults on medical and legal domains show that DivS-
core consistently surpasses SOTA baselines, while
remaining robust to adversarial attacks.
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6 Limitations

We identify the following limitations of our work:
(1) Domain Adaptation Requirement. Our ap-
proach requires tailored adaptation to the target
specialized domains. While the proposed detec-
tor demonstrates generalizability beyond a single
domain, effective adaptation remains essential for
high detection performance. This adaptation pro-
cess may pose practical challenges, particularly
in low-resource settings. Future work could fo-
cus on improving the efficiency and scalability of
domain adaptation. (2) Language Scope. Like
most existing studies, our work focuses on detect-
ing machine-generated text written in English. The
performance of DivScore in other languages, es-
pecially non-English and low-resource languages,
remains unexamined. Expanding detection capabil-
ities across languages—particularly in specialized
and high-stakes contexts—could be a critical direc-
tion for future research.
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A Proof of Theorem

Theorem 1. Given a zero-shot LLM-generated text
detector D with detection score mapped from the
detector LLM’s text entropy HQ(X) by any strictly
monotonic function f : R → R :

D(X) = f(HQ(X)), (7)

where Q represents the text distribution calcu-
lated from D. The performance of D, denoted
as AUROC(D(X)), satisfies:

AUROC(D(X)) ∝+ δKL, (8)

where ∝+ denotes positive monotonic association,
and δKL, effective KL divergence, is given as:

δKL = DKL(P ∥ Q)−DKL(Q
′ ∥ Q), (9)

with Q′ indicating text distribution from the real
source. P denotes text distribution from human.
DKL(·||·) denotes Kullback–Leibler(KL) diver-
gence.

Proof. We begin the proof by considering the LLM
entropy detector dH(X) as a special case of D(X).
Detector dH classifies sampled text x as machine-
generated if its entropy under Q falls below a
threshold τ :

dH(x) =

{
1 if HQ(x) < τ

0 otherwise
(10)

where HQ(x) denotes the LLM’s sample entropy
of text x sampled from X . Based on LLM distribu-
tion Q, HQ(x) is given by:

HQ(x) =
∑

xi

pQ(xi|x<i) log pQ(xi|x<i) (11)

Distributional Assumptions:
Assume the text variable X’s LLM entropy val-

ues follow normal distributions:

HQ(X) ∼ N (µQ′ , σ2
Q′) if X ∼ Q′

HQ(X) ∼ N (µP , σ
2
P ) if X ∼ P

(12)

with means derived from cross-entropy of detector
distribution Q, human distribution P and LLM text
generation distribution Q′:

µQ′ = H(Q′) +DKL(Q
′ ∥ Q)

µP = H(P ) +DKL(P ∥ Q)
(13)
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ROC Curve Construction:
The True Positive Rate (TPR) and False Positive

Rate (FPR) are defined as:

TPR = PX∼Q′(HQ(x) < τ)

FPR = PX∼P (HQ(x) < τ)
(14)

given Equation 12,

TPR(τ) = Φ

(
τ − µQ

σQ′

)

FPR(τ) = Φ

(
τ − µP

σP

) (15)

where Φ(·) is the CDF of the standard normal dis-
tribution.

AUROC Derivation:
The AUROC is the integral of TPR over FPR,

denote FPR as p for simplicity:

AUROC =

∫ 1

0
Φ

(
Φ−1(p)

σP
σQ′

+
δKL

σQ′

)
dp

(16)
where µP − µQ → δKL.

Let z = Φ−1(p), then dp = ϕ(z)dz, where ϕ(z)
is the Cumulative Density Function (CDF) of stan-
dard normal distribution. Equation 16 simplifies
to:

AUROC =

∫ ∞

−∞
Φ

(
σP
σQ′

z +
δKL

σQ′

)
ϕ(z)dz

= Φ


 δKL√

σ2
P + σ2

Q′




(17)
Since the CDF of normal distribution is monoton-

ically increasing, then, for detector dH , we have:

AUROC(dH(X)) ∝+ δKL (18)

We further extend such conclusion to the complete
definition of D(X). Let s(x) = f(HQ(x)), where
f : R → R is any strictly monotonic function. For
any x1, x2 ∈ X :

HQ(x1) > HQ(x2) ⇐⇒
{
s(x1) > s(x2) (f ↗)

s(x1) < s(x2) (f ↘)

(19)
Equation 19 implies s(·) preserves/reverses the

exact ranking induced by HQ(·). For any threshold
τs for detector s, define equivalent HQ threshold:

τH := HQ(f
−1(τs)) (20)

Suppose f ↗, for any τs:

TPR(τs) = PX∼Q′(s(x) < τs)

FPR(τs) = PX∼P (s(x) < τs)
(21)

According to Equation 20:

TPR(τs) = PX∼Q′(HQ(x) < τH)

FPR(τs) = PX∼P (HQ(x) < τH)
(22)

Similarly, for f ↘, for any τs:

TPR(τs) = PX∼Q′(HQ(x) < τH)

FPR(τs) = PX∼P (HQ(x) < τH)
(23)

The ROC curves are therefore identical for de-
tector s(X) and HQ(X) in either settings, giving:

AUROC(D(X)) = AUROC(dH(X)) (24)

Therefore, we have

AUROC(D(X)) ∝+ δKL. (25)

B Experimental Settings

This section describes the experimental configura-
tions for our main evaluation, adversarial attacks,
and ablation studies. Table 5 provides detailed
specifications of the large language models used
throughout our tests. All experiments were per-
formed on a Linux server with 8 NVIDIA H100-
80G GPUs.

B.1 Text Detection Datasets
In this study, we focus on detecting LLM-generated
text within written English. All detection texts are
originally composed in English. The datasets are
organized in two formats: (1) Documents: The
MIMIC (Johnson et al., 2023) and OALC (But-
ler, 2025) datasets consist of independent, human-
written medical and legal documents; (2) QA
pairs: The PubMedQA (Jin et al., 2019) and Law-
Stack (Moslem, 2025) datasets contain paired,
human-written questions and answers. To com-
pile our test set, we generate 1,000 samples for
each dataset and each source model (GPT-4o, O3-
mini, DeepSeek-V3, DeepSeek-R1) by calling API
service.

For the document datasets, we generate corre-
sponding LLM-generated texts by using the first
one-third of each document’s tokens as a prompt
and instructing the text source LLMs to continue
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Model Model File/Service Parameters Usage

GPT-4o (OpenAI, 2024) OpenAI/gpt-4o NA Text Source
O3-mini (OpenAI, 2025) OpenAI/O3-mini NA Text Source
DeepSeek-R1 (DeepSeek-AI, 2025) deepseek-ai/DeepSeek-R1 671B (MoE) Text Source
DeepSeek-V3 (DeepSeek-AI, 2024) deepseek-ai/DeepSeek-V3 685B (MoE) Text Source

DIPPER (Krishna et al., 2023) kalpeshk2011/dipper-paraphraser-xxl 11B Paraphrase Attack
BERT-base (Devlin et al., 2019) google-bert/bert-base-uncased 110M Word Substitution Attack

Llama3 (Grattafiori et al., 2024) meta-llama/Meta-Llama-3-8B 8B Detector Model
Mistral-v0.2 (Jiang et al., 2023) mistral-community/Mistral-7B-v0.2 7B Detector Model
Qwen2.5 (Qwen, 2025) Qwen/Qwen2.5-7B 7B Detector Model
Falcon (Almazrouei et al., 2023) tiiuae/falcon-7b 7B Detector Model
Falcon-Instruct (Almazrouei et al., 2023) tiiuae/falcon-7b-Instruct 7B Detector Model
T5 (Raffel et al., 2020) google-t5/t5-3b 3B Detector Model
GPT-Neo (Black et al., 2021) EleutherAI/gpt-neo-2.7B 2.7B Detector Model
GPT-J (Wang and Komatsuzaki, 2021) EleutherAI/gpt-j-6B 6B Detector Model
RoBERTa-base (Solaiman et al., 2019) openai-community/roberta-base-openai-detector 110M Detector Model
RoBERTa-large (Solaiman et al., 2019) openai-community/roberta-large-openai-detector 340M Detector Model

Table 5: Details of LLMs used in the experiments, including machine-generated text source models, adversarial
attack models and detector models

[
{"role": "system", "content": "Continue this
hospital discharge summary."},
{"role": "user", "content": "<prefix: 1/3 docu-
ment content> "}
]

Table 6: Prompt Template for MIMIC Dataset

[
{"role": "system", "content": "Continue to
write this legal text."},
{"role": "user", "content": "<prefix: 1/3 docu-
ment content> "}
]

Table 7: Prompt Template for OALC Dataset

the writing. To ensure a fair comparison, the
human-written texts are also truncated, retaining
only the remaining two-thirds of the original doc-
ument. For the QA pair datasets, the human text
consists of the human-authored answers, while the
LLM-generated text is produced by prompting the
questions to the text source LLMs. Specifically,
we initiate the text generation process by sending
the following prompt to the LLM API service, as
shown in Table 6, Table 7 and Table 8.

[
{"role": "system", "content": "Answer this
question truthfully:"},
{"role": "user", "content": "<prefix: ques-
tion>"}
]

Table 8: Prompt Template for PubMedQA and Law-
Stack Dataset

B.2 Baseline Detectors

In this section, we present the benchmark detec-
tors and their configurations used in the main
experiments. For zero-shot detectors, classification
scores are obtained by extracting the logits from
the detector’s surrogate language model (and its
variants). Classical zero-shot methods, including
Log-Likelihood, Rank, Log-Rank, and Entropy,
are set to employ Mistral-7B-v0.2 as text scoring
LLM to ensure consistency with DivScore setup.
Recent zero-shot detectors, such as DetectGPT,
Fast-DetectGPT, and Binoculars, are implemented
using the original LLM configurations as specified
in their respective publications. For supervised de-
tectors, we utilize the pre-trained models released
by the original authors and apply them directly
for out-of-distribution (OOD) text detection in our
main experiments. Detailed descriptions of the
baseline methods are provided below:

Log-Likelihood This zero-shot method uses
a language model to compute the log-probability of
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each token in a given text (Solaiman et al., 2019).
Specifically, the averaged log-probability across
all tokens is used as the detection score. A higher
score corresponds to an increased probability of
the text being generated by LLM.

Rank This zero-shot method utilizes the ab-
solute ranking of tokens as determined by a
language model (Gehrmann et al., 2019). By
computing the mean rank score, a higher average
value indicates an increased probability that the
text is machine-generated.

Log-Rank An enhanced version of Rank
method. This zero-shot method applies logarithmic
transition to each token’s absolute rank (Gehrmann
et al., 2019). A higher mean log-rank value
indicates a higher likelihood that the text is
machine-generated.

Entropy This zero-shot approach leverages
a language model to calculate the mean entropy
score across all tokens in a given text (Lavergne
et al., 2008). Since human-written content
tends to exhibit greater unpredictability from the
perspective of an LLM, a lower mean entropy
score suggests a higher likelihood of the text being
machine-generated.

DetectGPT A zero-shot method using prob-
abilistic curvature for detection (Mitchell et al.,
2023). The approach involves perturbing text
samples and analysing the resulting changes in a
pretrained language model’s log-likelihood. The
underlying theory suggests that LLM-generated
texts tend to occupy local optima in the LLM’s
log probability space, causing perturbations to
mostly decrease their probability scores. In
contrast, human-written texts does not follow
such property. In our experiments, DetectGPT
utilizes its default optimal setting in the literature:
GPT-Neo-2.7B (Black et al., 2021) as the surrogate
model and T5-3B (Raffel et al., 2020) as mask-
filling model.

Fast-DetectGPT Bao et al. (2023) proposed a new
zero-shot approach to address issue of high com-
putational cost in DetectGPT. It employs an LLM
sampling method to replace the perturbation step
of DetectGPT. Leveraging conditional probability
curvature as detection metric, Fast-DetectGPT
identifies the word-choice pattern differences

[
{"role": "system","content": "You are a med-
ical professional, reply the medical question
with professional knowledge."},
{"role": "user", "content": "<prefix: question>.
Answer:"}
]

Table 9: Prompt Template for Medical Seed Knowledge

[
{"role": "system","content": "You are a legal
professional, reply the legal consult with pro-
fessional knowledge."},
{"role": "user", "content": "<prefix: question>.
Answer:"}
]

Table 10: Prompt Template for Legal Seed Knowledge

in between LLM and human text. We choose
the optimal settings reported in the literature,
using GPT-Neo-2.7B as the scoring model and
GPT-J-6B (Wang and Komatsuzaki, 2021) as the
reference model.

Binoculars Hans et al. (2024) proposed a
zero-shot detection method that leverages a pair of
LLMs to compute the ratio of a text’s perplexity to
its cross-perplexity. This perplexity ratio measures
how one model reacts to another’s token-level
predictions, exploiting systematic differences in
LLM and human-generated text. A lower score
indicates higher likelihood of machine-generated
origin, as LLM-produced text tends to be less
surprising “relative to the baseline perplexity
of an LLM acting on the same string” (Hans
et al., 2024). In the main experiments, we choose
the optimal detector settings reported in the
literature, using Flacon-7B (Almazrouei et al.,
2023), Flacon-7B-Instruct (Almazrouei et al.,
2023) as observer and performer model.

OpenAI RoBERTa Detectors A set of pop-
ular and competitive supervised detectors with
RoBERTa architecture. Solaiman et al. (2019)
introduced a labelled dataset comprising GPT-
2-generated outputs and WebText samples for
supervised training on LLM-generated text
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[
"role": "system", "content": "You are a legal
document translator.",
"role": "user", "content": "Translate this text
into English: <question prefix>. Translation
output:"
]

Table 11: Prompt Template for EQUALS legal question
translation

detection. Leveraging this dataset, they finetuned
two classifiers based on RoBERTa-base and
RoBERTa-large model, achieving over 95%
accuracy on GPT-2 text detection. In the main
experiments, we adopt the original model weights
released by OpenAI and evaluate their OOD
detection performance on LLM-generated medical
and legal texts without additional training.

B.3 LLM Knowledge Distillation

Domain Seed Knowledge To facilitate detector do-
main adoption, seed knowledge serves as a catalyst,
prompting the teacher LLM to generate more elab-
orate and detailed domain knowledge based on its
initial information. The prompt of seed knowledge
is formulated in QA format and sent to DeepSeek-
R1 through its official API service.

In this work, we focus on knowledge distilla-
tion using written English text. All seed knowl-
edge datasets, except for EQUALS, are originally
composed in English, and all prompted responses
from DeepSeek-R1 are generated in English. For
the EQUALS (Chen et al., 2023) dataset, whose
original legal questions are in Chinese, we utilize
DeepSeek-V3 to translate the questions into En-
glish prior to prompting the teacher LLM. Table 11
shows the prompt for translation.
Distillation Knowledge base We construct the dis-
tillation knowledge base using the response con-
tent generated by the teacher LLM (DeepSeek-R1).
Since the reasoning content produced by R1 reflects
the model’s internal self-reasoning rather than pro-
fessional expert output, it is not utilized for detector
domain adaptation. A summary of the medical and
legal distillation knowledge bases is provided in
Table 12.
Student Learning We conduct LoRA finetuning
on student LLM (Mistral-7B-v0.2) to enforce do-
main adaptation in DivScore. The hyperparameters

Knowledge Base Seed Knowledge Com-
position

Tokens Size

DivScore (med) Verifiable Medical
Questions (Chen et al.,
2024)

9.2M

DivScore (law) EQUALS (Chen et al.,
2023), Open Legal
QA (Butler, 2023),
Pile-of-Law (Hender-
son et al., 2022)

17.3M

DivScore Combined from above 26.5M

Table 12: Domain Adaptation: Distillation Knowledge
Base Summary. (M: Million Tokens)

are configured as follows: LoRA rank 64 and alpha
scaling factor 128. Supervised finetuning selec-
tively updates the self-attention projection matrices
(query, key, value) and feed-forward network com-
ponents (gate, up projections) within the Mistral
architecture. The finetuning is conducted with a
bfloat16 parameter precision with number of train-
ing epoch set as 8, learning rate set as 2e−4, batch
size set as 12 and maximum sequence length set as
2048.

B.4 Detector Robustness

To assess DivScore’s robustness in real-world sce-
narios, we apply two types of adversarial attacks to
the dataset. For the paraphrase attack, we utilize the
DIPPER paraphraser introduced by Krishna et al.
(2023), an 11B-parameter T5-based LLM finetuned
for paragraph-level paraphrasing with controllable
perturbation strength, determined by lexical diver-
sity and content reordering. DIPPER receives the
candidate text along with these two parameters as
input and generates paraphrased outputs at the spec-
ified perturbation level. In our experiments, both
the lexical diversity and content reordering factors
are set to 20%, representing a moderate attack in-
tensity.

For the word substitution attack, we follow the
protocol of Peng et al. (2023), selecting the most
frequent words in the text for semantically coher-
ent replacement using a BERT-base model (Devlin
et al., 2019). Specifically, the BERT model oper-
ates at its maximum sequence length (512 tokens),
replacing the top 20% most frequent words within
a 50-token context window. Common stop-words,
which lack substantial semantic content, are ex-
cluded from substitution.
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Knowledge Base Seed Knowledge Com-
position

Tokens Size

Human (med) iCliniq (Li et al.,
2023), MedAl-
paca (Han et al., 2023),
MedRAG (Xiong
et al., 2024)

9.5M

Human (law) Indian-Legal-
Text (Yashaswat,
2024), Legal-
LAMA (Chalkidis
et al., 2023)

19.6M

Combined Combined from above 29.1M

Table 13: Domain Adaptation: Human Corpus Sum-
mary (M: Million Tokens)

B.5 Ablation Study
In the ablation study on domain knowledge distil-
lation, we benchmark the proposed domain adap-
tation approach with human text finetuning. For
human text finetuning, we select medical and le-
gal corpus to conduct the same LoRA finetuning
as knowledge distillation with detailed settings re-
ferred in Section B.3. As shown in Table 13, human
corpus consists of text in medical and legal domain
matching the distillation knowledge base in token
size. The baseline detectors refers to the same
setting in Section 4.4 where we employ Mistral-
7B-v0.2-Instruct as M∗ to represent the "without
distillation" scenario where the detector failed in
gaining specialized knowledge. In the ablation
study on detector components, details of LLM ar-
chitectures are listed in Table 4. All detectors have
the same settings in domain knowledge distillation.

C Additional Results

This section records the additional results in the
experiments.

C.1 Main Experiment
We present the main experiment’s additional visu-
alization results in this appendix section. Figure 6
visualizes the AUROC curves of all baseline detec-
tors and the proposed detector in the main experi-
ments. The x-axis (false positive rate) uses a log10
scale to better illustrate detection performance at
low false positive rates. This visualization comple-
ments the main experiment’s metric (TPR at 0.1%
FPR) by providing a more comprehensive view of
low-FPR performance.

As shown in Figure 6, the proposed detector
enhanced with knowledge distillation in medical,

legal domain and their combination achieves the
best overall AUROC score in all test cases. No-
tably, under strict FPR thresholds (below 10−3 to
10−1), the performance gaps between our detector
and baseline methods become particularly signif-
icant. This indicates DivScore’s ability to detect
LLM-generated profession texts with minimal false
positive harm.

C.2 Detection Performance on General
Domain Texts

The main focus of this study is to detect LLM-
generated content in specialized domains. In this
appendix section, we further evaluate the proposed
detector’s performance in general domain LLM-
generated text detection which is more well stud-
ied by current research. We choose the HC3
dataset (Guo et al., 2023) for LLM-generated
text detection. Specifically, we evaluate three
sub-datasets: Reddit posts, Open-QA pairs and
Wikipedia content in HC3, covering general LLM-
generated text detection scenarios in social media,
daily question answering and general encyclopedia
content facing the public.

We employ the same settings in the main ex-
periments, randomly selecting 1000 human texts
from each datasets and 1000 LLM texts generated
with GPT-4o and O3-mini. The prompt is in the
QA format shown in Table 8. We then benchmark
the proposed detector with two state-of-the-art gen-
eral domain detectors: Fast-DetectGPT (Bao et al.,
2023) and Binoculars (Hans et al., 2024). As shown
in Table 14, the proposed detector demonstrates
strong performance across general domain datasets.
Notably, DivScore (law) achieve substantial AU-
ROC and TPR improvements over Binoculars on
detecting O3-mini generated texts, with the aver-
aged AUROC (%) gains reaching 19.79 and TPR
(%) gains reaching 35.63. For GPT-4o paradigm,
the proposed method, while showing slightly lower
AUROC scores in Reddit and Wiki dataset, still
achieves an overall higher recall at low false posi-
tive rates.

These results confirm that DivScore, though tai-
lored for specialized domains, generalizes well
beyond specialized domains. It remains highly
competitive and often superior to SOTA methods
in general domain LLM-generated text detection
tasks.
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Figure 6: ROC Curves of Baseline Detectors and DivScore in the Main Experiment

C.3 Case Study

This section present four representative case stud-
ies, drawn from key experimental datasets —
MIMIC, PubMedQA, OALC, and LawStack —
with GPT-4o serving as the source LLM. These
cases were chosen for their high level of detec-
tion difficulty. Notably, for all four cases, state-
of-the-art detectors, including Binoculars (Hans
et al., 2024) and Fast-DetectGPT (Bao et al., 2023),
failed to identify the generated content.

We start from the MIMIC dataset, containing
de-identified hospital discharge summaries. The
hospital discharge summary typically includes in-
formation about the patient’s admission, diagnosis,
treatment, response to treatment, and discharge

plan. It is a crucial medical document that extends
beyond hospital use, playing a pivotal role in com-
mercial sectors such as healthcare insurance by
ensuring precise patient care documentation and
facilitating efficient claims processing. Table 15
demonstrates the selected MIMIC detection case
with GPT-4o as the text source LLM.

In the MIMIC case, GPT-4o generated a con-
tinuation of the discharge report using the back-
ground information from the first third of the text
as the prompt. Enhanced by LLM medical domain
knowledge distilled from DeepSeek-R1, the pro-
posed detector created a significant scoring gap
between the LLM-generated and authentic human
text (0.103241 → 0.275714), indicating confident
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Methods
GPT-4o O3-mini

Reddit OpenQA Wiki Reddit OpenQA Wiki

AUROC

Fast-DetectGPT 86.11(↓1.23) 76.26(↓4.83) 96.29(↓1.92) 79.41(↑2.83) 61.24(↑4.76) 89.31(↓4.17)
Binoculars 87.34 81.09 98.21 76.58 56.48 93.48

DivScore (med) 79.22(↓8.12) 97.10(↑16.01) 94.84(↓3.37) 88.90(↑12.32) 97.27(↑40.79) 98.86(↑5.38)
DivScore (law) 80.67(↓6.67) 96.17(↑15.08) 96.77(↓1.44) 89.17(↑12.59) 97.55(↑41.07) 99.37(↑5.89)
DivScore 78.13(↓9.21) 95.96(↑14.87) 90.72(↓7.49) 88.02(↑11.44) 97.19(↑40.71) 97.70(↑4.22)

TPR @ 0.1% FPR

Fast-DetectGPT 14.93(↑14.33) 1.50(↑1.2) 21.62(↑0) 6.61(↑6.31) 0.10(↑0) 4.39(↑1.06)
Binoculars 0.60 0.30 21.62 0.30 0.10 3.33

DivScore (med) 6.31(↑5.71) 17.65(↑17.35) 28.27(↑6.65) 12.53(↑12.23) 11.52(↑11.42) 54.75(↑51.42)
DivScore (law) 12.73(↑12.13) 5.22(↑4.92) 57.84(↑36.22) 26.85(↑26.55) 1.90(↑1.8) 81.83(↑78.5)
DivScore 4.41(↑3.81) 16.25(↑15.95) 13.90(↓7.72) 16.43(↑16.13) 15.43(↑15.33) 43.94 (↑40.61)

Table 14: General Domain LLM-generated Text Detection Performance, AUROC (%) & TPR (at 0.1 % FPR) of
selected methods on HC3-reddit, HC3-OpenQA, HC3-Wiki dataset with GPT-4o and O3-mini as text source LLMs.
Methods are compared against the Binoculars benchmark, with arrows indicating performance differences (↑/↓)
relative to Binoculars.

zero-shot classification. The main contribution to
such gap is the Cross-Entropy component, where
base and enhanced LLM show great disagreement
on LLM-generated text (4.218750) while holding
a similar probability estimation on human text
(2.734375). This case is expected to be correctly
classified with detector threshold set by below 0.1%
FPR (i.e., fewer than 1 false-positive case in detec-
tion).

Table 16 presents a case from the OALC dataset,
with formal legislative and judicial documents from
Australia government and courts. Legal documents
such as statutes and regulations are characterized
by their precise language, formal structure, and
strict logical consistency. In this OALC case, the
LLM-generated continuation closely mirrors the
formal tone and structure of the original court doc-
ument, with similar structure ans linguistic charac-
teristic, leading to detection failures in SOTA det.
The proposed detector, leveraging domain-specific
legal knowledge distilled from DeepSeek R1, dis-
tinguishes the LLM-generated text from the au-
thentic human-written document with a clear scor-
ing gap (0.163043 → 0.084449). The decreased
entropy, again plays the key role in the detection
(0.820312 → 0.443359). With the detector thresh-
old set at less than 0.1% FPR, both the human and
LLM-generated texts are confidently and correctly
classified, demonstrating the detector’s robustness
in handling highly specialized legal content.

Table 17 shows the case selected from Pub-
MedQA. PubMedQA contains paired questions

and answers extracted from biomedical research
papers in the PubMed database. Texts with similar
forms of biomedical research QAs play a crucial
role in public health promotion, doctor training
and evidence-based medical practice. In the Pub-
MedQA case, enhanced by LLM medical domain
knowledge distilled from DeepSeek-R1, the pro-
posed detector created a notable scoring gap be-
tween the LLM-generated and authentic human
text (0.272876 → 0.116497). Such gap is at-
tributed to a significant smaller entropy estimation
in LLM-generated text (0.535156), compared to
human text (1.304688). The entropy gap could be
the result of a successful knowledge distillation on
LLM’s medical knowledge. Enhanced with LLM
medical knowledge, the scoring LLM is expected
to show lower entropy in LLM-generated answers,
as the model tends to produce more predictable
and consistent patterns compared to the broader
diversity found in human writing. This finding
highlights the role of entropy component in the
proposed detection framework.

Table 18 shows a case from the LawStack
dataset, which contains legal question-answer pairs
covering a wide range of jurisdictions and legal
topics. Such QA pairs are commonly used in legal
consulting, compliance training, and public legal
education. In this case, the LLM-generated an-
swer receives nearly one-third of detection score
compared with the human-written answer, indicat-
ing a confident classification from DivScore. Such
gap, as shown in Table 18, is a collective result of
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both scoring components. With entropy and cross-
entropy both shifting as expected, the DivScore
detector could successfully classify both LLM and
human texts at the most restrictive threshold (FPR
below 0.1%).
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MIMIC: Hospital Discharge Summary

System Prompt: Continue this hospital discharge summary.
User Prompt:
Name: ___ Unit No: ___ Admission Date: ___ Discharge Date: ___ Date of Birth: ___ Sex: F Service: OBSTET-
RICS/GYNECOLOGY Allergies: Patient recorded as having No Known Allergies to Drugs Attending: ___. Chief
Complaint: none Major Surgical or Invasive Procedure: none History of Present Illness: ___ yo G1P0 at 9 weeks gestation
with T1 DM, sent by Dr. ___ for diabetic control. She was on Lantus and Humalog prior to pregnancy and on NPH and
Humalog during pregnancy. Reports fingersticks have been average 250’s. She feels well and is without complaints. Past
Medical History: PRENATAL COURSE (1)LMP ___ (2)No initial prenatal yet PAST OBSTETRIC HISTORY G1 PAST
GYNECOLOGIC HISTORY - no abnl paps or STIs PAST MEDICAL HISTORY - T1DM PAST SURGICAL HISTORY
- ureteral reimplantation at age ___ Social History: ___ Family History: non-contributory Physical Exam: VITALS: T
96.8, HR 96, BP 128/70, RR 26, O2 100%RA GENERAL: NAD HEART: RRR LUNGS: CTAB ABDOMEN: soft, NT
EXTREMITIES: NT/NE PELVIC US: live IUP confirmed
Pertinent Results: ___ WBC-8.3 RBC-4.26 Hgb-13.0 Hct-37.0 MCV-87 Plt-314 ___ WBC-9.5 RBC-4.30 Hgb-13.2
Hct-36.5 MCV-85 Plt-314 ___ Neuts-61.8 ___ Monos-4.8 Eos-2.0 Baso-0.3 ___

Human Text:
BLOOD HBsAg-NEGATIVE, HIV Ab-NEGATIVE ___ URINE pH-7 Hrs-24 Volu-1500 Creat-86 TotProt-<6 ___ URINE
24Creat-1290 RUBEOLA ANTIBODY, IgG (Final ___ POSITIVE BY EIA) RAPID PLASMA REAGIN TEST (Final ___
NONREACTIVE) Rubella IgG/IgM Antibody (Final ___ POSITIVE by Latex Agglutination) EARLY OB ULTRASOUND
IMPRESSION: Single live intrauterine gestation. Size equals dates.
Brief Hospital Course: ___ G1 with poorly controlled T1DM admitted at 9wks for glycemic control. Ms ___ had
fingersticks ranging from 151-236 on arrival to the emergency room. She had no complaints and electrolytes were normal.
Her hemoglobin A1C was 10.0%. She was admitted to the antepartum floor and ___ consulted and continued to follow
her closely throughout this admission. Initially, it was unclear whether her recent elevated fingersticks were due to insulin
omission or increased requirements. Nutrition was consulted. Her regimen was titrated to achieve optimal glycemic control.
She was continued on NPH in the am as well as an NPH sliding scale at night. She had a humalog sliding scale with meals.
Her regimen was increased and by hospital day #4 her fingersticks were improved. She was discharged home and will have
close outpatient management with ___ and the Diabetes in Pregnancy clinic. She was instructed to call with fingersticks
greater than 200 for two hours. During this admission, Ms ___ had an early OB ultrasound which showed a live IUP, size
equal to dates. Prenatal labs were done and were unremarkable. She was seen by social services due to her uncertain
psychiatric history. Please see OMR note for details.
Medications on Admission: prenatal vitamins NPH 36 units qam and 20 units qhs Humalog per sliding scale with meals
Discharge Medications: 1. Insulin NPH Human Recomb Subcutaneous 2. Please follow the insulin doses and sliding
scale as detailed on the attached sheet. 3. Humalog Subcutaneous 4. B Complex-Vitamin C-Folic Acid 1 mg Capsule
Sig: One (1) Cap PO DAILY Discharge Disposition: Home Discharge Diagnosis: Type 1 Diabetic admitted for glycemic
control Discharge Condition: stable Discharge Instructions: Please call your ob doctor please call if you experience vaginal
bleeding, leakage of fluid or any other concerns. Please continue current insulin regimen. Followup Instructions: ___
DivScore DM,M∗(x): 0.275714, Entropy HM∗(x): 0.753906, Cross-Entropy CEM,M∗(x): 2.734375

LLM Text:
Patient discharged with the following instructions and management plan: Discharge Medications: 1. Insulin Therapy:
Continue current regimen of NPH and Humalog as managed during the hospital stay. Patient provided with updated dosage
chart and instructed to monitor blood glucose levels at home. 2. Prenatal Vitamins: One tablet daily. 3. Folic Acid: 0.4 mg
daily.
Discharge Instructions: 1. Glycemic Control: Regular blood sugar monitoring at home. Aim for fasting blood glucose levels
of 70-95 mg/dL and postprandial levels <140 mg/dL. Contact healthcare provider if experiencing episodes of hypoglycemia
or persistent hyperglycemia. 2. Dietary Recommendations: Continue diabetic-friendly diet. Referral to a registered dietitian
for nutritional counseling has been made. 3. Prenatal Care: Schedule an initial prenatal appointment with Dr. ___. Regular
prenatal visits are important for monitoring maternal and fetal health. 4. Activity Restrictions: No specific restrictions.
Engage in normal physical activity as tolerated. 5. Warning Signs: Seek immediate medical attention if experiencing
symptoms such as abdominal pain, vaginal bleeding, decreased fetal movement, or signs of hyperglycemia/hypoglycemia.
Follow-Up: 1. Primary Care Provider: Appointment scheduled for follow-up on insulin management. 2. Obstetrician:
Appointment scheduled within 1 week post-discharge for prenatal evaluation and further obstetric care planning. Prognosis:
The patient is stable on discharge with well-controlled Type 1 Diabetes Mellitus in pregnancy. Regular follow-up and
adherence to treatment plan will support a healthy pregnancy outcome. Conclusion: The patient was discharged in good
condition, with detailed instructions provided for managing her diabetes and prenatal care. She exhibited understanding
and agreement with the discharge plan. Please contact Dr. ___ or the OB/GYN clinic at ___ for any further questions or
concerns regarding this discharge plan.
DivScore DM,M∗(x): 0.103241, Entropy HM∗(x): 0.435547, Cross-Entropy CEM,M∗(x): 4.218750

Detector Threshold@0.1%FPR: 0.206166

Table 15: MIMIC Case Study: Comparison of human and LLM generated hospital discharge summary with
detection scores
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OALC: Open Australia Legal Corpus

System prompt: Continue write this legal text.
User prompt:
FEDERAL COURT OF AUSTRALIA Van der Velde v Ng [2008] FCA 480 TERRY VAN DER VELDE AND DAVID
STIMPSON AND RIBY PTY LTD (ACN 081 153 219) IN LIQUIDATION AS TRUSTEE FOR THE JADE TRUST
v KYM HON YOKE NG, THE OFFICIAL TRUSTEE AS TRUSTEE OF THE PROPERTY OF ROSS HASTINGS
(A BANKRUPT) AND RAMS MORTGAGE CORPORATION LIMITED ABN 48 065 912 932 QUD 405 OF 2007
DOWSETT J 4 FEBRUARY 2008 BRISBANE IN THE FEDERAL COURT OF AUSTRALIA QUEENSLAND DISTRICT
REGISTRY QUD 405 OF 2007 BETWEEN: TERRY VAN DER VELDE AND DAVID STIMPSON First Applicant RIBY
PTY LTD (ACN 081 153 219) IN LIQUIDATION AS TRUSTEE FOR THE JADE TRUST Second Applicant AND: KYM
HON YOKE NG First Respondent THE OFFICIAL TRUSTEE

Human Text:
AS TRUSTEE OF THE PROPERTY OF ROSS HASTINGS (A BANKRUPT) Second Respondent RAMS MORTGAGE
CORPORATION LIMITED ABN 48 065 912 932 Third Respondent JUDGE: DOWSETT J DATE: 4 FEBRUARY 2008
PLACE: BRISBANE REASONS FOR JUDGMENT
1 In both Fraser v Deputy Commissioner of Taxation & Official Trustee (1996) 69 FCR 99 and Scott v Bagshaw (1999)
95 FCR 37, the relevant applicant was seeking to enforce a provable debt although, in the latter case, that may not have
appeared from the statement of claim. In those circumstances, s 58(3) of the Bankruptcy Act 1966 (Cth) clearly applied.
2 That is not the present case, as I understand it. In those circumstances, I am of the view that leave is not necessary.
However, should in the course of the trial it emerge otherwise, we can revisit the question. I certify that the preceding two
(2) numbered paragraphs are a true copy of the Reasons for Judgment herein of the Honourable Justice Dowsett.
Associate: Dated: 14 April 2008 Solicitor for the First Applicant: Mills Oakley Counsel for the Second Applicant: The
Second Applicant did not appear Counsel for the First Respondent: The First Respondent did not appear Solicitor for the
Second Respondent: Rodgers, Barnes & Green Counsel for the Third Respondent: Mr D S Piggott Solicitor for the Third
Respondent: Mallesons Stephen Jacques Date of Hearing: 4 February 2008 Date of Judgment: 4 February 2008
DivScore DM,M∗(x): 0.163043, Entropy HM∗(x): 0.820312, Cross-Entropy CEM,M∗(x): 5.03125

LLM Text:
AS TRUSTEE OF THE PROPERTY OF ROSS HASTINGS (A BANKRUPT) Second Respondent RAMS MORTGAGE
CORPORATION LIMITED ABN 48 065 912 932 Third Respondent JUDGE: DOWSETT J DATE OF ORDER: 4
FEBRUARY 2008 WHERE MADE: BRISBANE REASONS FOR JUDGMENT
Introduction 1. This matter involves a complex set of legal proceedings concerning multiple parties and a series of claims
arising from financial transactions, property interests, and trust management. The applicants, Terry Van der Velde and
David Stimpson, along with Riby Pty Ltd acting as trustee for the Jade Trust, seek remedies against the respondents, who
include Kym Hon Yoke Ng, the Official Trustee managing the bankruptcy estate of Ross Hastings, and RAMS Mortgage
Corporation Limited.
Background 2. The facts of the case date back to transactions undertaken in 2005, where the applicants allege financial
mismanagement and breaches of fiduciary duty by the first respondent, leading to significant financial detriments and
potential loss of property interests administered under the Jade Trust.
3. The involvement of the Official Trustee arises from the concurrent bankruptcy proceedings associated with Ross Hastings,
necessitating the management of his financial affairs, while the third respondent, RAMS Mortgage Corporation Limited, is
implicated due to its interests in mortgage securities tied to the disputed property.
Legal Issues 4. The key legal issues revolve around the fiduciary duties allegedly breached by the first respondent, the
implications of these breaches on the trust’s financial stability, the proper scope of actions available by the liquidated
Riby Pty Ltd against the respondents, and the determination of priority among the creditors, including RAMS Mortgage
Corporation Limited.
5. Additional questions concern the jurisdiction of this Court in managing disputes related to bankruptcy and asset recovery,
with particular attention to cross-claims presented by the second respondent regarding the equitable distribution of assets.
Proceedings and Orders 6. The Court will undertake a detailed examination of the evidence presented, including financial
statements, transaction records, and testimonial accounts provided by all parties. This examination will allow for an
informed judgement on breaches of duty and mismanagement claims.
7. Interim orders will be considered to safeguard the property interests of the applicants pending final resolution, including
potential injunctions against foreclosure actions by mortgage holders.
Conclusion 8. The outcomes of this case will clarify the obligations of trustees and managers of financial trusts and provide
guidance for creditor priorities within bankruptcy contexts, contributing to the broader understanding of fiduciary and
financial stewardship in corporate and trust law. * * * I certify that the preceding text forms the official reasons for judgment
handed down by the Honourable Justice Dowsett, on the 4th day of February, 2008. [Signature of Justice Dowsett]
DivScore DM,M∗(x): 0.084449, Entropy HM∗(x): 0.443359, Cross-Entropy CEM,M∗(x): 5.25000

Detector Threshold@0.1%FPR: 0.118119

Table 16: OALC Case Study: Comparison of Human and LLM-generated Legal document with detection scores
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PubMedQA: Answer to Biomedical Research Questions

System Prompt: Answer this question truthfully.
User Prompt: Is adjustment for reporting heterogeneity necessary in sleep disorders?

Human Text:
Sleep disorders are common in the general adult population of Japan. Correction for reporting heterogeneity using anchoring
vignettes is not a necessary tool for proper management of sleep and energy related problems among Japanese adults. Older
age, gender differences in communicating sleep-related problems, the presence of multiple morbidities, and regular exercise
should be the focus of policies and clinical practice to improve sleep and energy management in Japan.
Detection Score DM,M∗(x): 0.272876, Entropy HM∗(x): 1.304688, Cross-Entropy CEM,M∗(x): 4.78125

LLM Text:
Adjustment for reporting heterogeneity can be necessary in sleep disorders research to ensure accurate and reliable results.
Reporting heterogeneity refers to variations in how information is documented or reported, which can stem from differences
in assessment tools, study design, participant demographics, cultural differences, and subjective interpretations of symptoms.
In sleep disorders, symptoms and their severity can be perceived differently by individuals due to personal, cultural, or
situational factors. Without adjusting for these differences, there can be inconsistencies in data interpretation, potentially
leading to skewed or misleading findings. Therefore, employing methods to adjust for reporting heterogeneity can enhance
the validity and comparability of research outcomes across different studies or populations.
DivScore DM,M∗(x): 0.116497, Entropy HM∗(x): 0.535156, Cross-Entropy CEM,M∗(x): 4.59375

Detector Threshold@0.1%FPR: 0.130639

Table 17: PubMedQA Case Study: Comparison of Human and LLM-generated answers to biomedical research
questions with detection scores
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LawStack: Answer to Legal Questions

System Prompt:
Answer this question truthfully:
User Prompt:
I have read the question and answer here: Are parking tickets enforcable But I would like to know that if a person got a
parking ticket in Pennsylvania for a street sweeper violation and didn’t know until they got a registered letter from the city.
In that letter, they state that a person can plead not guilty (and send in a bond amount) or guilty. Which leads me to think
that it’s a criminal offense and not a civil one. If it’s a criminal offense, wouldn’t the burden of proof be on the city to prove
that a particular person (and not just the owner) did the parking? Or is it really sufficient to serve the person who they think
is the owner? Can they really issue a warrant for arrest if the owner might not have ever set foot in that state before? If
personal service isn’t made (as outlined in the above question) then is a parking ticket in PA really enforceable? What if the
owner of the car doesn’t live in Pennsylvania and instead lives in Texas? Can they be extradited to PA from TX or placed
under arrest somehow?

Human Text:
The procedure depends on the local rules. For example, Philadelphia. In Philadelphia, parking offences are civil, not
criminal - other governments may be different. Irrespective of if it is civil or criminal, the burden is on the city. All that
is different is the burden: for civil it is the preponderance of the evidence (or balance of probabilities), for criminal it is
beyond reasonable doubt. Under Philadelphia law, anyone driving with the ownerś permission is an agent of the owner so
serving them is serving the owner. There is an exemption that car rental companies can avail themselves of. The can take
whatever enforcement action the law allows - this may include issuing an arrest warrant. Serving by post or affixing to the
vehicle is legally service. If there is a valid warrant, they can be extradited from anywhere subject to relevant extradition
law - most extradition laws require the crime to be "serious" - parking violations probably aren’t.
DivScore DM,M∗(x): 0.203187, Entropy HM∗(x): 0.796875, Cross-Entropy CEM,M∗(x): 3.921875

LLM Text:
In Pennsylvania, as in many other jurisdictions, parking violations, including those for street sweeper offenses, are generally
considered civil infractions rather than criminal offenses. This means that the violation is typically against the vehicle and
not directly against the individual who parked it. As such, the burden of proof is generally on the city to show that the
vehicle was parked in violation of the law, rather than proving who specifically parked the car. The registered letter you
received offering options to plead not guilty or guilty and pay a bond amount is a common procedural step in handling such
civil infractions. While parking tickets are civil matters, failure to address them can lead to additional consequences, such
as fines, vehicle registration holds, or even a bench warrant for failing to respond to the citation, which can create legal
complications. Regarding jurisdiction, if the owner of the vehicle resides out of state, such as in Texas, Pennsylvania cannot
extradite the individual solely for an unpaid parking ticket. Extradition typically applies to criminal offenses. However,
unresolved parking tickets can lead to complications like increased fines or affecting the owner’s ability to register their
vehicle, depending on interstate compacts or agreements. If you believe that the ticket was issued in error or you have
compelling reasons to challenge it, you may wish to contest the ticket through the legal process outlined in the letter. It can
also be helpful to seek legal advice to understand the specific options and implications based on the circumstances of the
case.
DivScore DM,M∗(x): 0.078887, Entropy HM∗(x): 0.404297, Cross-Entropy CEM,M∗(x): 5.125000

Detector Threshold@0.1%FPR: 0.099856

Table 18: LawStack Case Study: Comparison of Human and LLM-generated answers to legal issue with detection
scores
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