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Abstract

Graph-theoretic problems arise in real-world
applications like logistics, communication net-
works, and traffic optimization. These prob-
lems are often complex, noisy, and irreg-
ular, posing challenges for traditional algo-
rithms. Large language models offer poten-
tial solutions but face several challenges, in-
cluding limited accuracy, input length con-
straints, and suboptimal algorithm selection.
To address these challenges, we propose MA-
GTS (Multi-Agent Graph Theory Solver), a
multi-agent framework that decomposes these
complex problems through agent collaboration.
MA-GTS maps the implicitly expressed text-
based graph data into clear, structured graph
representations and dynamically selects the
most suitable algorithm based on problem con-
straints and graph structure scale. We vali-
date MA-GTS using the G-REAL dataset, a
real-world-inspired graph theory dataset we
created. Experimental results show that MA-
GTS outperforms state-of-the-art methods in
cost-effectiveness, accuracy, and scalability,
achieving strong results on multiple bench-
marks (G-REAL 93.6%, GraCoRe 96.9% NL-
Graph 98.4%) with robust performance on
both closed- and open-source base models.
MA-GTS and G-REAL are open-sourced at
https://github.com/ZIKEYUAN/MA-GTS.git.

1 Introduction

Graph-theoretic problems have extensive applica-
tions in domains such as logistics scheduling, com-
munication networks, production planning, and
traffic optimization (Li et al., 2023b). These prob-
lems typically involve a large number of nodes
and edges, coupled with complex constraints and
dynamic variations, making their solution highly
challenging (Bondy and Murty, 2008). Despite sig-
nificant advancements in graph theory and algorith-
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Figure 1: MA-GTS leverages multi-agent collaboration
to overcome noise and semantic loss in real-world graph
problems, leading to better answers.

mic design, traditional approaches remain compu-
tationally expensive and inefficient when handling
large-scale, high-complexity problems. Existing
methods, including exact algorithms, greedy strate-
gies, and dynamic programming (Bellman, 1966),
perform well on small-scale instances. However,
as problem size increases, their computational com-
plexity and memory requirements grow exponen-
tially, rendering them impractical for real-world
applications. While heuristic methods (Kokash,
2005) can improve performance under specific con-
ditions, they often suffer from local optima and
require extensive parameter tuning and model se-
lection. Therefore, developing efficient and scal-
able solution frameworks capable of addressing
the computational demands and structural variabil-
ity of complex graph-theoretic problems remains a
critical research challenge.

Recent advancements in LLMs have spurred
interest in their applications for graph-theoretic
problems. Leveraging their natural language pro-
cessing (NLP) capabilities, LLMs can serve as
scene interpreters (mapping real-world problems
to graph models), graph extractors (identify-
ing graph structures from unstructured data), and
graph algorithm invokers (assisting in solving
and optimizing graph-based problems), address-
ing certain limitations of traditional algorithms.
However, significant challenges remain in exist-
ing methods (LLMs and simple multi-agent frame-
work). Figure 1 clearly illustrates the challenges
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Figure 2: MA-GTS framework for solving real-world graph problems, consisting of three layers: Information
Extraction, Knowledge Integration, and Algorithm Execution, each with specialized agents.

existing methods face when addressing real-world
graph problems. Firstly, LLMs rely on statisti-
cal pattern matching rather than strict mathemat-
ical computations, limiting their reasoning accu-
racy and making them unreliable for NP-hard prob-
lems (Hochba, 1997). Secondly, their ability to
handle large-scale graphs is limited by the Trans-
former (Vaswani, 2017) architecture’s context win-
dow and computational complexity, which restricts
their capacity to capture global information. Fi-
nally, LLMs lack the ability to decompose and
map real-world graph theory problems, which often
contain complex textual noise and implicit graph
structures. In summary, existing methods struggle
to effectively handle long texts and graph problems
in real-world scenarios. Problems like disordered
nodes, noisy text, and poor algorithm choices can
all affect the quality of graph modeling, text un-
derstanding, and the interpretability of reasoning.
These limitations highlight the inadequacy of exist-
ing methods for solving complex graph-theoretic
problems in real-world applications and underscore
the need for more efficient and scalable paradigms.

To tackle these challenges, we propose MA-
GTS(Multi-Agent Graph Theory Solver), an in-
novative multi-agent framework designed to ad-
dress complex real world graph-theoretic problems
through agent collaboration and competition. Fig-
ure 2 illustrates the framework, which incorporates
a multi-agent coordination mechanism allowing
agents to perform local searches independently
while sharing information and cooperating, thus
improving solution efficiency and accuracy. MA-
GTS analyzes the original real-world problem tex-
tual data, filters out noise, and extracts key graph
data and problem-specific details, reducing the text
length that LLMs must process and enhancing rea-
soning efficiency. MA-GTS selects the optimal
graph algorithm based on refined text and adjusts

the graph’s textual representation to match the al-
gorithm, improving reasoning and solution qual-
ity. This coordination mitigates the limitations of
LLMs in implicit graph structure modeling, en-
suring efficient solutions for complex graph tasks.
Additionally, dynamic agent interactions enable
the framework to address large-scale problems and
adapt to complex constraints and dynamic changes.

To validate the effectiveness of the multi-agent
framework, we introduce the G-REAL dataset, de-
signed to simulate complex graph theory problems
relevant to real-world scenarios. Unlike traditional
datasets that rely on simple textual descriptions
of graph structures, G-REAL better reflects prac-
tical applications for large-scale models. Exper-
iments comparing MA-GTS with state-of-the-art
open-source and closed-source LLMs (including
three closed-source and three open-source mod-
els), as well as with a general multi-agent frame-
work and a graph-specific multi-agent framework,
show that MA-GTS significantly outperforms ex-
isting LLMs and multi-agent frameworks in terms
of efficiency and accuracy, under both direct rea-
soning and Chain of Thought (CoT) (Wei et al.,
2022) reasoning settings. Notably, it excels in solv-
ing large-scale problems with complex constraints,
offering superior scalability, robustness, and cost-
effectiveness. The primary contributions of this
study are as follows:
• First, we propose an innovative multi-agent

framework, MA-GTS, which overcomes the lim-
itations of traditional graph theory algorithms in
large-scale complex problems, achieving state-
of-the-art performance in our tests.

• Second, we constructed a real-world graph the-
ory dataset, G-REAL, that aligns with practical
needs, providing the necessary data support for
validating the effectiveness of the algorithm.

• Finally, by introducing novel collaboration mech-
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G-Real TIEA

PIEA

GSIEA

GTA

SGIA

ASA
Network Monitoring Problem

Problem Type: Vertex Cover

Wireless Channel Allocation Problem
Problem Type: Coloring

Delivery Logistics Problem
Problem Type: TSP

Our company has 8 computers connected by 
several communication links. These computers 
are named: ... ...

Problem: How can we select the minimum 
number of computers to deploy monitoring 
devices, such that every communication link is 
monitored by at least one device? 

Communication links as follows: ... ...

I am designing a public Wi-Fi network for my 
city, with ... The network will cover 8 major 
locations in the city: ... ...

The interference relationships between the base 
stations are as follows: ... ...

Can you help me come up with a solution for 
frequency allocation to ensure stable and 
reliable network performance across all 
locations?

Our company handles deliveries across a busy 
urban area, and today we have 7 distinct 
delivery points to cover ... ...

Here is the distance table showing the 
approximate distance (in kilometers) between 
each pair of locations: ... ...

Based on this distance table, we need to 
determine the optimal delivery route that ... 
return to warehouse with the shortest possible 
total distance.

Function:  Extracts problem type, 
constraints, and optimization objectives for 
graph theory solutions.

Tool Use: False

Output Format: 
• objective: The goal of the problem
• constraints: Key constraints in the problem.
• optimization: Optimization objectives

Function:  Extracts and standardizes graph 
data from text, identifying nodes, edges, 
weights, and topology for efficient downstream 
processing.
Tool Use: False
Output Format: 
• nodes: List of nodes in the graph
• edges: Connected nodes with attributes like 

weight or direction
• graph type: The type of graph 

Function:  Extracts background, entities, 
and definitions from text to provide semantic 
context for problem analysis.
Tool Use: False
Output Format: 
• context: The background and contextual 

description of the problem.
• entities: List of key entities or concepts 

mentioned.
• definitions: Definitions and explanations of 

terms involved

Graph Theory 
Knowledge Base

Function:  Integrates extracted information, 
analyzes graph properties, and searches a 
Graph Theory Knowledge Base to select the 
optimal algorithm, enhancing inference 
efficiency and solution accuracy.

Tool Use: False

Output Format: 
• problem: Type of graph theory problem.
• algorithm: Selected algorithm name.
• parameters: Required parameters for the 

algorithm.
• complexity: Time complexity of the 

selected algorithm.
• description: Why this algorithm is the best 

choice for the given problem.

Function: Converts textual graph data into a 
standardized, optimized format, ensuring 
consistency, efficiency, and compatibility for 
computational solving.
Tool Use: True
Output Format: 
• graph type: The type of graph
• adjacency list: Maps nodes to their 

neighbors and edge weights.
• node mapping: Links node names to 

numerical IDs.

Code Interpreter Graph Theory Algorithm 
Library

Function:  Executes the selected 
optimal graph algorithm by extracting and 
formatting required parameters, calling 
the Graph Theory Algorithm Library for 
computation, ensuring solution feasibility, 
and providing clear, explainable 
reasoning for the results.

Tool Use: True

Final Solution: 
The most efficient delivery route that visits 
each delivery point exactly once and 
returns to the warehouse is:

 **Route**: Warehouse → Gilded 
Archway → Jade Fountain → Zenith 
Arena → Primrose Boulevard → Temple 
Square → Pennywhistle Arcade → Lunar 
Pier → Warehouse

 **Total Distance**: 34 units
This solution ensures that the delivery is 
conducted in the most efficient manner, 
minimizing travel distance.

Figure 3: This figure details the G-REAL dataset’s composition and features, along with the full MA-GTS graph
problem-solving pipeline, outlining each component’s functions and input/output formats.

anisms and strategies, we achieve efficient and
precise graph theory problem-solving within the
multi-agent system, demonstrating its substantial
potential in real-world application scenarios.

2 Related Work

LLMs for Graph: Recent advancements in LLMs
for graph tasks have led to significant contribu-
tions in methodology and evaluation. These tasks
are often classified into Enhancer, Predictor, and
Alignment types (Li et al., 2023b). Notably, (Pan
et al.) presents a roadmap for unifying LLMs
with Knowledge Graphs (KGs), while (Chai et al.,
2023) proposes an end-to-end method for solving
graph-related problems, (Cao et al., 2024) improves
LLMs’ understanding of graph structures by ad-
dressing positional biases and incorporating an ex-
ternal knowledge base. On the evaluation front, sev-
eral benchmarks have been introduced. NLGraph
(Wang et al., 2024) offers a simple test dataset for
graph tasks, and GPT4Graph (Guo et al., 2023)
evaluates LLM capabilities on semantic tasks. Gra-
CoRe (Yuan et al., 2025) comprehensively verifies
the graph understanding and reasoning capabilities
of LLM. In addition to these representative bench-
marks, ProGraph (Li et al., 2024a), GraphArena
(Tang et al., 2024), GLBench (Li et al., 2024c),
etc. are also widely used. Other notable works
include (Liu and Wu, 2023), which assesses LLMs
in graph data analysis, and (Perozzi et al., 2024),

which designs a hint method for graph tasks.
LLM Agents: Several multi-agent frameworks
have been proposed to improve coordination and
efficiency in complex tasks. MetaGPT (Hong et al.,
2023) embeds human workflows into LLMs to re-
duce hallucinations. CAMEL (Li et al., 2023a) en-
ables autonomous agent cooperation aligned with
human goals, and its extension OWL (Hu et al.,
2025) builds on this. AutoGen (Wu et al., 2023) of-
fers a flexible framework for customizing agent in-
teractions via natural language and code. Addition-
ally, (Li et al., 2024b) addresses simple graph prob-
lems. Multi-agent frameworks like GraphTeam
(Li et al., 2024b), GCoder (Zhang et al., 2024),
and GraphAgent (Hu et al., 2024) can enhance the
reasoning ability of LLMs through multiple interac-
tions, but they are mainly applied to standard graph
structures, and their effectiveness on real-world
graph theory problems remains uncertain.

3 MA-GTS

We consider a real-world graph problem P , mod-
eled as a graph G. The system uses a graph the-
ory knowledge base KG and an algorithm library
Lcode to support problem understanding and solv-
ing. From P , it extracts the textual description T ,
identifies the problem type P , and constructs the
graph structure G. The objective is to automati-
cally select an appropriate algorithm Alg∗, apply it
to the structured graph G′, and iteratively optimize
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the solution Sn.
The MA-GTS framework adopts a hierarchi-

cal processing paradigm, comprising three lay-
ers: the Information Extraction Layer(IEL), the
Knowledge Integration Layer(KIL), and the Al-
gorithm Execution Layer(AEL). These layers
interact through a hierarchical collaborative com-
munication mechanism, enabling an end-to-end
pipeline that processes unstructured data and solves
complex graph-theoretic problems. Additionally,
to support the knowledge base of MA-GTS, we
have constructed the Graph Theory Knowledge
Base and Graph Theory Algorithm Library. More
information about them in the Appendix A.

The IEL processes text and structured data to ex-
tract graph information and identify problem types
for standardized input. The KIL builds structured
graph data using graph theory and optimization to
enhance accuracy and scalability. The AEL runs
specified algorithms and performs self-checks to
efficiently solve complex graph problems. Figure
3 shows each agent’s function by layer.

By leveraging agent collaboration, MA-GTS en-
sures efficient problem-solving, high scalability,
and adaptability to complex constraints, offering a
novel solution for real-world graph-theoretic chal-
lenges. The specific functionalities of each agent
are detailed as follows:

3.1 Information Extraction Layer (IEL)
The IEL extracts relevant information from text
and unstructured data, structures it for downstream
use, and filters out irrelevant content to sharpen
problem-specific details. It also captures implicit
graph structures to boost efficiency and reduce the
effects of text length on LLMs inference.
Textual Information Extraction Agent (TIEA):
The TIEA analyzes real-world graph problems to
extract key textual information unrelated to graph
structure or solution goals. Using NLP, it identifies
and structures context, background, entities, con-
cepts, and definitions, organizing semantic content
to support later analysis. The output is standardized
for downstream processing.
Graph Structure Information Extraction Agent
(GSIEA): The GSIEA extracts implicitly embed-
ded graph-structural information from text, par-
ticularly structured formats like tables, lists, adja-
cency matrices, or edge lists. It parses these inputs
to identify nodes, edges, weights, and other topo-
logical properties, converting them into standard-
ized graph representations (e.g., adjacency matri-

Algorithm 1 Pipeline of MA-GTS
Input: Real-world graph problem P , graph theory knowledge

baseKG , graph theory algorithm libraryLcode., self check
number Ncheck

Output: Optimized solution Sn

1: Step 1: Information Extraction Layer
2: Extract textual information: T ← ATIEA(P )
3: Identify problem type: P ← APIEA(P )
4: Extract graph structure: G← AGSIEA(P )
5: Generate extracted information set: (T ,P, G)
6: Step 2: Knowledge Integration Layer
7: Select best algorithm:
8: LP ← AGTA(T ,P,KG)
9: Alg∗ ← arg optAlgi∈LP AGTA(Algi, T )

10: Get structured graph: G′ ← ASGIA(G)
11: Define structured problem: (G′, Alg∗)
12: Step 3: Algorithm Execution Layer
13: Load algorithm code:
14: CodeAlg∗ ← AASA(Alg∗,Lcode)
15: Get algorithm output :
16: Scode ← AASACoding(CodeAlg∗ , G

′)
17: Get optimized solution Sn :
18: S0 ← AASA(Scode, Alg∗, G′);
19: for i = 1, 2, · · · , Ncheck do
20: Sn ← AASA(S

n−1, Alg∗, G′);
21: end for

ces, lists). This transformation enables downstream
agents to efficiently use the extracted data for prob-
lem solving.
Problem Information Extraction Agent (PIEA):
The PIEA leverages LLMs’ problem classification
capabilities to analyze real-world graph-theoretic
problems, identify their types, and extract key com-
ponents. It classifies problems (e.g., shortest path,
network flow, graph matching), extracts relevant
constraints and objectives, and outputs the infor-
mation in a structured format. This guidance im-
proves the accuracy and efficiency of downstream
problem-solving agents. Formally,the operation of
IEL is:

T ← ATIEA(P ),P ← APIEA(P ),

G← AGSIEA(P ), IELoutput = (T ,P, G)
(1)

where P is graph theory problem and A∗ is a differ-
ent agent in IEL, (T ,P, G) represent the extracted
text information, question information and graph
structure information respectively.

3.2 Knowledge Integration Layer (KIL)
The primary objective of this layer is to construct
structured graph data with high representational ca-
pacity and integrate graph-theoretic principles for
advanced modeling, thus enhancing the efficiency
of the solution and the quality of optimization.
Structured Graph Information Agent (SGIA):
The SGIA standardizes graph data from the GSIEA
for efficient, consistent, and usable output. It
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cleans, deduplicates, and optimizes raw data into
formats compatible with diverse environments to
ensure accuracy. Additionally, it optimizes data
storage and indexing based on algorithm require-
ments, enhancing computational efficiency for
large-scale graphs. Without this agent, data incon-
sistencies, redundancy, and unoptimized structures
could hinder algorithm performance. As a key com-
ponent of MA-GTS, it ensures data standardization
and optimization for efficient, scalable problem-
solving.
Graph Theory Agent (GTA): The GTA integrates
information from the TIEA and PIEA with a Graph
Theory Knowledge Base to analyze graph prob-
lems and find optimal solutions, improving LLM
inference efficiency. It models the input problem
by extracting key features such as type, constraints,
and structural complexity, then queries the Graph
Theory Knowledge Base to select the most suit-
able solution method from classical algorithms
(e.g., shortest path, maximum flow, graph match-
ing) (Gallo and Pallottino, 1988; Goldberg and Tar-
jan, 1988) and heuristic techniques. By matching
problems to algorithms, it reduces inefficient ex-
haustive searches, cutting computational costs and
improving solution quality. Additionally, it also
guides multi-agent collaboration, allowing the AEL
to directly invoke optimal algorithms for efficient,
scalable execution. Without it, LLMs risk poor
strategy selection, high computation, and lower ef-
ficiency. As a key MA-GTS component, it ensures
effective algorithm selection and inference in com-
plex graph tasks. Formally,the operation of KIL
is:

LP ← AGTA(T ,P,KG),

Alg∗ ← arg optAlgi∈LP AGTA(Algi, T ),
G′ ← ASGIA(G),KILoutput = (G′, Alg∗)

(2)

where LP represents the set of graph theory al-
gorithms selected by GTA based on textual and
problem-specific information, KG denotes the
Graph Theory Knowledge Base, Alg∗ refers to the
algorithm suitable for the given graph size, and G′

stands for the normalized graph structure data.

3.3 Algorithm Execution Layer (AEL)
The primary goal of this layer is to integrate mul-
tiple algorithmic paradigms, ensuring efficient,
scalable, and robust solutions under various con-
straints. Without it, the MA-GTS framework would
rely solely on LLM-based inference, leading to
high computational costs, instability, or suboptimal

outcomes. As the computational core, the AEL
enables the efficient solution of complex graph-
theoretic problems across varying scales and com-
plexities.
Algorithm Solving Agent (ASA): The ASA is
the core computational unit of the AEL, responsi-
ble for solving problems by executing algorithmic
functions based on the optimal strategy selected by
the GTA and the structured graph data processed
by the SGIA. It utilizes a Graph Theory Algo-
rithm Library that integrates exact algorithms
(Noto and Sato, 2000) and heuristic approaches,
ensuring suitable solutions across various problem
scenarios. After computation, the agent performs
result integration and verification through cross-
validation, error analysis, and constraint checking
to ensure correctness. The ASA also offers ex-
plainable reasoning with inference paths, key deci-
sions, and optimization steps for transparency. As
MA-GTS’s computational core, it delivers efficient,
robust, and scalable solutions for complex graph
problems. Formally,the operation of AEL is:

CodeAlg∗ ← AASA(Alg∗,Lcode),

Scode ← AASACoding(CodeAlg∗ , G
′),

S0 ← AASA(Scode, Alg∗, G′),

(3)

where Lcode represents the Graph Theory Algo-
rithm Library, CodeAlg∗ denotes the code obtained
after optimal algorithm matching by ASA, Scode

refers to the output generated by running the code,
and S0 represents the interpretable output obtained
by combining the code output with problem review.
Finally, ASA undergoes n rounds of self-checking,
ultimately producing the final suitable result, Sn.

4 G-REAL

Existing datasets for evaluating LLMs’ understand-
ing and reasoning on graph-structured data are ex-
plicitly constructed. However, real-world graph-
theoretic problems often involve rich textual seman-
tic information and implicitly structured represen-
tations. To assess the performance of the MA-GTS
framework on practical problems, we introduce G-
REAL, a dataset that captures real-world graph
problems. This dataset comprises four commonly
encountered graph-theoretic challenges: the Trav-
eling Salesman Problem (TSP), the Minimum
Graph Coloring Problem, the Minimum Ver-
tex Cover Problem and the Shortest Path Prob-
lem, respectively (Hoffman et al., 2013; Jensen and
Toft, 2011; Hochbaum, 1982). They correspond
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G-REAL GraCoRe NLGraph
TSP Coloring Vetex Cover Shortest Path TSP Shortest Path Cycle

#Graph 900 900 900 900 360 380 1150
Node Range 8 to 25 8 to 25 8 to 25 8 to 25 8 to 25 5 to 20 5 to 15

Real-World Problem Delivery Logistics Wireless Channel Allocation Network Monitoring Target Navigation $ $ $

Text Noise " " " " $ $ $

Table 1: Differences between different datasets.

to four common problems in real-world scenarios,
namely the Delivery Logistics Problem, the Wire-
less Channel Allocation Problem, the Network
Monitoring Problem, and the Target Navigation
Problem. The composition of G-REAL can be
seen briefly in Figure 3. In this section, we provide
a detailed description of the dataset’s composition
and construction methodology. More detail about
G-REAL in Appendix C.

4.1 Data Collection

To mitigate the risk of data contamination in LLMs,
which could lead to biased test accuracy due to
prior exposure to training data, G-REAL employs
several techniques, including randomized node
naming, synthetic node descriptions, added tex-
tual noise, and randomly structured graph represen-
tations. Node names are generated by randomly
combining the 26 letters of the alphabet, and syn-
thetic node descriptions are created with arbitrary
textual representations. For example, a node may
be described as: "Amber Plaza: A bustling cen-
tral square surrounded by cafes, boutiques, and
street performers." These fictional descriptions en-
sure that LLMs cannot leverage prior knowledge,
maintaining the integrity of the evaluation.

To improve dataset realism and obscure graph
structure, we introduce textual noise to each in-
stance, simulating real-world graph problems em-
bedded in unstructured text. Graph structures are
randomly generated, with each node assigned a
unique name to reduce prior LLM exposure. Op-
timal and approximate solutions are generated for
each problem type using established algorithms,
providing benchmarks for evaluating both LLM
and MA-GTS performance.

4.2 Data Statistics

To evaluate our framework’s effectiveness in real-
world graph-theoretic problems, we construct test
datasets with graph sizes from 8 to 25 nodes for
each problem type. Each sub-dataset includes 50
instances with distinct structures, offering both op-
timal and approximate solutions for a comprehen-
sive assessment of robustness and generalization.
A statistical summary is provided in Table 1.

4.3 Evaluation
For the TSP, Minimum Graph Coloring, Minimum
Vertex Cover, and Shortest Path problems, the out-
put includes both selected nodes and the final so-
lution, requiring dual evaluation. To fully assess
LLMs’ graph reasoning, both output types are used
as evaluation metrics. The model’s performance
is measured by verifying the accuracy of both the
selected node set and the computed solution. The
methodology for calculating the final accuracy is
as follows: ACCALL = 0.5 · ACCnodes + 0.5 ·
ACCresult, where ACCnodes and ACCresult repre-
sent the accuracy of the node set and the predicted
values, respectively, with a value of 1 for correct
predictions and 0 for incorrect ones.

5 Experiments Setup

5.1 Datasets
To evaluate the reasoning capabilities of the MA-
GTS framework across various graph-theoretic
problem types, complexities, and domains, we used
the G-REAL dataset alongside two benchmark
datasets, GraCoRe (Yuan et al., 2025) and NL-
Graph (Wang et al., 2024), covering seven distinct
graph-theoretic tasks. We selected three sub-tasks
for evaluation: the TSP, shortest path problem, and
Cycle problem in GraCoRe and NLGraph. Notably,
both GraCoRe and G-REAL include TSP instances,
both NLGraph and G-REAL include Shortest Path
instances; however, the G-REAL TSP and Shortest
Path is more complex and reflects real-world sce-
narios with implicit graph structure data. By com-
paring performance on these two types instances,
we assess the model’s ability to handle more in-
tricate problems. The simpler tasks in NLGraph
evaluate the generalization and robustness of MA-
GTS. A summary of the differences between these
datasets is provided in Table 1.

5.2 Baselines and Foundation Model
We compared three of OpenAI’s latest closed-
source models: o3-mini, GPT-4o-mini, and GPT-
3.5 (Achiam et al., 2023). Additionally, we eval-
uated three of the most recent open-source mod-
els: Llama3-7b (Touvron et al., 2023), Qwen2.5-
7b (Bai et al., 2023) and Deepseek-V3-660B (Liu
et al., 2024). For the evaluation methodology, we
adopted both direct inference and CoT reasoning
approaches. For the foundation model, we selected
the GPT-4o-mini and Deepseek-V3-660B model,
they respectively represent some of the more ad-
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G-REAL GraCoRe NLGraph
Model Method Delivery Logistics

Problem (TSP)
Wireless Channel

Allocation Problem (Coloring)
Network Monitoring

Problem (Vetex Cover)
Target Navigation

Problem (Shortest Path) TSP Shortest Path Cycle

Direct 11.8% 80.1% 68.7% 47.1% 79.7% 100.0% 97.3%o3-mini
CoT 12.9% 83.1% 72.8% 41.8% 80.0% 98.4% 97.8%

Direct 2.5% 23.4% 0.3% 7.1% 1.1% 27.3% 50.9%GPT-4o-mini
CoT 3.1% 25.1% 0.0% 6.4% 1.1% 27.6% 51.1%

Direct 0.1% 0.7% 2.5% 4.0% 1.9% 30.5% 50.0%GPT-3.5
CoT 2.1% 7.6% 4.8% 3.6% 1.6% 34.7% 49.9%

Direct 0.6% 16.2% 17.4% 4.6% 3.8% 22.1% 49.6%Qwen2.5-7B
CoT 0.6% 8.8% 8.5% 5.8% 3.0% 27.3% 52.7%

Direct 3.6% 10.1% 7.2% 4.3% 0.3% 12.6% 53.7%Llama3-7B
CoT 4.1% 14.3% 6.7% 4.2% 0.3% 19.4% 50.9%

Direct 4.9% 27.2% 21.1% 11.4% 10.5% 50.8% 78.1%Deepseek-V3-660B
CoT 5.5% 28.3% 22.2% 32.2% 18.8% 92.9% 77.8%

OWL (GPT-4o-mini) Multi-Agent 10.2% 47.4% 7.8% 19.1% 4.4% 36.3% 49.7%

GraphTeam (GPT-4o-mini) Multi-Agent 8.8% 90.0% 12.0% 87.7% 84.4% 98.4% 100.0%
MA-GTS (Deepseek-V3-660B) Multi-Agent 76.2% 88.2% 99.1%(↑26.3%) 88.2% 93.1% 93.8% 100.0%

MA-GTS (GPT-4o-mini) Multi-Agent 94.9%(↑82%) 94.5%(↑4.5%) 93.2% 91.7%(↑4%) 96.9%(↑12.5%) 97.8%(↓2.2%) 98.9%

Table 2: The performance comparison of LLMs and MA-GTS on G-REAL and two benchmarks is shown. Red
text indicates MA-GTS’s accuracy improvement over the best LLM, while green text highlights the opposite.
GPT-4o-mini was used as the base model for MA-GTS.

vanced open-source and closed-source models. Fur-
thermore, we conducted a comparative analysis of
the performance of OWL (Hu et al., 2025) and
GraphTeam (Li et al., 2024b), which respectively
represent a general-purpose multi-agent framework
and a graph-theoretic multi-agent framework. Re-
garding the final test results, for each task, we used
the accuracy of the final computed solution as the
primary evaluation metric. More details about mod-
els in Appendix B.

6 Results and Analysis

We evaluate the performance of our framework
against other LLMs on graph theory problems, with
results presented in Table 2. MA-GTS outperforms
all baselines, achieving state-of-the-art results and
matching the performance of the leading o3-mini
model on simpler problems. We also assess the
MA-GTS framework from multiple perspectives.

6.1 Performance on real-world problems
As shown in Table 2, G-REAL provides four real-
world graph theory problems, with TSP being the
most complex. Based on the results from these
problems, MA-GTS demonstrates superior perfor-
mance, achieving an accuracy rate exceeding 90%
across all tests. Notably, in the case of the TSP,
MA-GTS outperforms the o3-mini model by 82%.
Even when built upon the open-source DeepSeek
model, MA-GTS still achieves strong performance.
Furthermore, when compared to the GPT-4o-mini
model, MA-GTS significantly improves its perfor-
mance from 3.1% to 94.9%, marking a substantial
increase. This clearly underscores the effectiveness
of our framework. Additionally, it is evident that,
aside from the o3-mini model, other models exhibit
subpar performance on the G-REAL dataset. It is
particularly interesting that the performance gap be-

tween the two open-source and two closed-source
models is minimal, suggesting that the complexity
of the problems may lead to a consistent decline
in performance, an issue that warrants further in-
vestigation. Overall, MA-GTS stands out for its
advanced capabilities and generalization when han-
dling complex graph theory problems.

6.2 Performance on simple problem

Table 2 shows that for simpler graph theory prob-
lems, such as the Shortest Path and Cycle problems
from the NLGraph dataset, the o3-mini model per-
forms exceptionally well, with MA-GTS also show-
ing strong results. Specifically, for Shortest Path
problem, the gap between MA-GTS and o3-mini is
just 2.2%, and MA-GTS performs equally well on
the Cycle problem. In contrast, other models per-
form less satisfactorily. The MA-GTS framework,
based on the GPT-4o-mini model, significantly en-
hances the accuracy of the 4o model, bringing it
on par with the o3-mini. Overall, MA-GTS demon-
strates excellent performance across diverse textual
descriptions and graph structures, highlighting its
remarkable generalization capabilities.

6.3 G-REAL effectiveness analysis

To evaluate the performance of LLMs and MA-
GTS on real-world graph theory problems, we con-
structed the G-REAL dataset. As shown in Ta-
ble 2, the performance of existing LLMs on the
G-REAL dataset is suboptimal. To validate the
effectiveness of this dataset, we compared it with
the TSP problem from the GraCoRe Benchmark,
testing problems with node sizes ranging from 8
to 25, consistent with the scale of G-REAL. From
this comparison, we observe that on the G-REAL
dataset, which includes text complexity, added text
noise, and node name shuffling, the o3-mini model
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TSP Coloring VertexCover Shortest Path
Inp.Tokens(k) Out.Tokens(k) Price($) Inp.Tokens(k) Out.Tokens(k) Price($) Inp.Tokens(k) Out.Tokens(k) Price($) Inp.Tokens(k) Out.Tokens(k) Price($)

o3-mini 2.31 4.98 0.0244 0.69 6.83 0.0309 0.6 9.73 0.0443 0.87 3.12 0.0147
MA-GTS(GPT-4o-mini) 13.32 4.56(↓8.4%) 0.0047(↓80.7%) 6.79 2.57(↓62.4%) 0.0025(↓91.9%) 6.39 2.31(↓76.2%) 0.0023(↓94.8%) 7.36 2.42(↓22.4%) 0.0025(↓82.9%)

Table 3: Comparison of inference costs between MA-GTS and o3-mini model on G-REAL.

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Node Number

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rf

or
m

an
ce

(A
CC

)

MA-GTS

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Node Number

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rf

or
m

an
ce

(A
CC

)

OpenAI o3-mini

G-REAL-TSP Coloring VertexCover G-REAL-Shortest Path GraCoRe-TSP

Figure 4: Performance of different problems across
varying node numbers (MA-GTS v.s. o3-mini).

performs poorly, with its accuracy dropping from
79.7% in GraCoRe to 11.8%. In contrast, the
MA-GTS framework appears unaffected by the
complexities of real-world graph theory problems,
maintaining performance above 90%. This result
indirectly supports the validity of the G-REAL
dataset and shows the stability of the MA-GTS.

6.4 Impact of Node Size

To evaluate the impact of node scale on LLMs in
complex graph theory problems, we tested the per-
formance of MA-GTS and the o3-mini model on
four complex graph problem datasets, with node
sizes ranging from 8 to 25. The results, shown in
Figure 4, clearly demonstrate that as the number
of nodes increases, the performance of the o3-mini
model deteriorates, particularly in the TSP prob-
lem from G-REAL. For node sizes greater than 20,
the o3-mini model is unable to produce correct an-
swers. In contrast, under the MA-GTS, the effect
of node size is less pronounced. Even with more
than 20 nodes, MA-GTS maintains high prediction
accuracy and stability. It highlights both the effec-
tiveness and superiority of MA-GTS. Performance
of MA-GTS on larger node scales is discussed in
the Appendix D.

6.5 Cost Analysis

Since MA-GTS requires multiple agent calls to
model APIs for inference, cost considerations arise.
To address this, we compared the inference costs
of MA-GTS based on the GPT-4o-mini model with
the o3-mini model, as shown in Table 3. Surpris-
ingly, MA-GTS incurs significantly lower costs
than the o3-mini model. The o3-mini model, in
contrast, has hidden reasoning tokens during in-
ference, leading to long, concealed reasoning pro-
cesses even in direct inference scenarios. As shown
in the table, the inference cost of MA-GTS is about

G-REAL
TSP Coloring Vetex Cover Average error rate

GPT-4o-mini(Tool use) 30.8% 39.0% 4.6% 75.0%
w/o IEL 12.5% 42.2% 14.6% 19.4%
w/o KIL 7.8% 37.1% 12.8% 1.0%
w/o AEL 4.6% 32.1% 7.4% 3.2%

MA-GTS(GPT-4o-mini) 94.9% 94.5% 93.2% 0.5%

Table 4: Ablation Experiments for Each Layer of MA-
GTS ("Tool use" refers to the utilization of only the
algorithm library we have constructed).

Time 1 Time 2 Time 3 Time 4 Time 5 Var Std Mean
Delivery
Logistics 100% 100% 98.1% 98.1% 96.3% 2.4 1.5 98.5%

Wireless Channel
Allocation 100% 98.1% 94.4% 96.3% 92.4% 8.9 2.9 96.2%

Network
Monitoring 100% 100% 100% 100% 100% 0 0 100%

Target
Navigation 92.4% 96.3% 90.6% 92.4% 92.4% 4.4 2.1 92.8%

Table 5: Sensitivity analysis of multi-round inference.

one-tenth to one-twentieth of the o3-mini model,
requiring far fewer inference tokens. Moreover,
MA-GTS achieves far better results than o3-mini,
demonstrating its high cost-effectiveness in deliv-
ering more accurate outcomes at a lower cost. Run-
time efficiency is discussed in the Appendix D.

6.6 Ablations Studies and Analyses

To validate the effectiveness of each layer in MA-
GTS, we conducted ablation experiments, with re-
sults shown in Table 4. It demonstrates that each
layer is crucial, and removing any layer signifi-
cantly affects the final results. Although the IEL
layer has the smallest impact on accuracy, its ab-
sence leads to a substantial increase in error rate
(19%), highlighting its role in maintaining stabil-
ity. The absence of the AEL layer results in the
greatest accuracy loss. Even when a module is re-
moved, MA-GTS still improves the accuracy of the
base model, validating the framework’s effective-
ness. Additionally, when inference is performed
using only the GPT-4o-mini model with the con-
structed algorithm library, accuracy improves, but
the error rate remains high (75%). For graph sizes
larger than 10 nodes, the model struggles to cor-
rectly invoke algorithms, further demonstrating the
robustness and generalizability of MA-GTS.

6.7 Sensitivity Studies of MA-GTS

We have conducted an additional sensitivity exper-
iment for MA-GTS. For each graph dataset size,
we randomly selected 5 problems and queried MA-
GTS 5 times per problem to test the stability and
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sensitivity of the framework. As shown in Table
5, the results demonstrate that MA-GTS is highly
stable and there is no significant performance fluc-
tuation across repeated queries.

7 Conclusion

We introduces MA-GTS, a Multi-Agent Frame-
work for solving real-world graph theory problems,
validated using the G-REAL dataset. Performance
comparisons across various LLMs show that MA-
GTS achieves high accuracy, stability, and cost-
effectiveness, excelling in both complex and sim-
pler graph problems. With accuracy consistently
above 90%, MA-GTS outperforms existing meth-
ods, maintaining stability across different problem
scales and being well-suited for larger graphs. Fu-
ture work will focus on scaling to even larger prob-
lems and improving cost-efficiency.

Limitations

Although the MA-GTS framework demonstrates
significant advantages in addressing complex
graph-theoretic problems, several limitations re-
main. First, while the G-REAL dataset provides
valuable support for validating the framework’s
effectiveness, it may not fully capture the diver-
sity of real-world graph problems, thus limiting
the generalizability of the framework. Second, the
MA-GTS framework may still require substantial
computational resources when handling large-scale
problems, particularly in resource-constrained en-
vironments. Moreover, despite the improvements
made in enhancing LLMs’ graph structure model-
ing capabilities, LLMs may still encounter perfor-
mance bottlenecks when dealing with graphs that
exhibit highly dependent relationships or special-
ized structures. Finally, the current capabilities of
open-source model invocation tools are insufficient,
which may impact the stability of the MA-GTS
framework.
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A MA-GTS Details

A.1 Graph Theory Knowledge Base

The Graph Theory Knowledge Base is a graph the-
ory problem database that we have constructed,
containing a wide range of common graph theory
problems encountered in daily life, including both
complex and simple ones. Each problem is asso-
ciated with multiple optimal or approximate solu-
tion algorithms. For each algorithm, we provide a
detailed description of its complexity, applicable
conditions, and parameter settings, though it does
not include corresponding code. This database can
serve as a reference book for agents in graph theory.
A specific example can be seen in Figure 5.

A.2 Graph Theory Algorithm Library

The Graph Theory Algorithm Library is a Python
code repository that we have constructed, contain-
ing code corresponding to the graph theory algo-
rithms in the Graph Theory Knowledge Base. This
ensures the correctness of input parameters and
helps maintain the stability of the MA-GTS frame-
work. Each code snippet is accompanied by de-
tailed parameter descriptions and is designed to
accommodate various types of graph structure rep-
resentations. A specific example can be seen in
Figure 6.

A.3 Prompt Templates

In this section, I will introduce the prompts for each
agent, which will be displayed in Figures 7 to 12.

B Details on baseline models

We evaluated 6 of the latest LLMs, including Ope-
nAI o3-mini reasoning model, launched on Jan-
uary 31, 2025 and the latest open-source model,
DeepSeek-V3. Table 9 presents more details on the
models and their versions.

C Details on G-REAL

Existing graph theory benchmarks do not align with
real-world scenarios. To better evaluate the ability
of MA-GTS in solving graph theory problems in
practical contexts and to test the performance gap
between LLMs on structured textual graph data
and implicit representations, we constructed the G-
REAL dataset. This dataset contains three common
real-world problems, with detailed information pro-
vided in the G-REAL section. It generates problem
graphs of varying scales by randomly encoding

node names and structures, with the naming con-
ventions and sample problems illustrated in Figures
13 to 16.

D More experimental analysis

D.1 Large-scale node analysis

Why 8-25 enough: In our work, we chose to fo-
cus on graphs with 8–25 nodes, primarily due to
the complexity and reasoning difficulty posed by
realistic tasks. Unlike large-scale but structurally
explicit graphs, the G-REAL dataset introduces
substantial textual noise, implicit graph structures,
and randomly named nodes. These factors make
the problem setting significantly closer to real-
world semantic reasoning scenarios and increase
the overall problem difficulty. This differs from ex-
isting benchmarks, which typically construct graph-
structured data using explicitly defined and concise
textual descriptions.
More experiments: We have extended our exper-
iments to include larger graph sizes. As shown
in Table 6, we tested the TSP and Graph Color-
ing problems with 25, 30, 35, and 40-node graphs,
with 5 instances evaluated for each size. The re-
sults show that even on larger graphs, our frame-
work maintains high accuracy and stability. We
plan to include more experiments on even larger
graph sizes in future versions of the paper to further
validate the scalability of our approach.

25 30 35 40
TSP 0.8 0.6 0.8 0.8

Coloring 1 0.6 1 0.6

Table 6: This table shows the results of experiments
conducted on TSP and Coloring problems with extended
graph sizes of 25, 30, 35, and 40 nodes. For each size, 5
problem instances were tested.

D.2 Runtime analysis

G-REAL focuses on graph reasoning under com-
plex semantic conditions, which more closely re-
semble real-world user scenarios. These tasks often
contain intricate semantic information and irrele-
vant noise, posing significant challenges for LLMs.
For instance, the Delivery Logistics Problem in G-
REAL is a TSP instance. In contrast to existing
TSP benchmarks—where nodes are ordered, con-
nections are explicitly stated, and the problem type
is clearly defined—G-REAL requires the model to
infer all of this information from natural language.
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This increases the difficulty of graph construction
and makes reasoning more error.

We conducted a supplementary evaluation on
the G-REAL-TSP task by randomly selecting five
graphs with 15-node scales (Table 7). We measured
the average solution time per problem instance, in-
cluding task decomposition, tool invocation, and re-
sult verification. Compared to existing multi-agent
frameworks, MA-GTS demonstrates a clear advan-
tage in time efficiency. These results highlight that
our framework is capable of maintaining high ac-
curacy while keeping inference time relatively low,
further validating its practical applicability.

MA-GTS Graphteam OWL
Time use (s) 148.48 251.34 139.39

ACC (%) 100 0 0

Table 7: The table presents the results of testing on the
G-Real-TSP problem using 5 randomly selected graphs
with 15 nodes each.Base model is GPT-4o-mini.

E G-REAL Details

G-REAL introduces two main innovations over
existing graph reasoning benchmarks. First, it situ-
ates graph problems in realistic task contexts with
background noise, where node names are random-
ized and both node and edge descriptions contain
distracting language. This design substantially in-
creases the difficulty of structure extraction and
semantic understanding, in contrast to benchmarks
such as GraphArena that rely on clean, explicit in-
puts. Second, G-REAL effectively mitigates data
contamination by ensuring that randomized identi-
fiers and artificial noise prevent test samples from
matching pretraining corpora. As summarized in
Table 8, these features make G-REAL more repre-
sentative of real-world tasks, more robust against
leakage, and more focused on challenging seman-
tic reasoning—aligning it closely with the practical
difficulties faced by LLMs.
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G-REAL GraCoRe NLGraph GraphArena GraphInstruct
Graph Size 8-25 8-30 5-35 5-30 5-35

Real-World Problem " $ $ " $

Text Noise " $ $ $ $

Random Naming " $ $ $ $

Avoid Data Contamination " $ $ $ $
Generation Method Random Generation Random Generation Random Generation Knowledge graph extraction Random Generation

Table 8: Comparison with mainstream benchmarks.

{
    "graph_theory_problems": {
      "TSP(Traveling Salesman Problem)": [
        {
          "algorithm": "Brute Force",
          "solution_type": "Optimal",
          "description": "By exhaustively checking all possible paths, it finds the shortest route.",
          "suitable_graph_size": "Suitable for small graphs (up to 10 nodes) due to factorial time complexity 
(O(n!)), as the computation time increases drastically with more nodes.",
          "time_complexity": "O(n!)",
          "input": {
            "graph": "A complete weighted graph represented as an adjacency matrix or edge list.",
            "start_node": "The starting node for the traveling salesman problem."
          }
        },
        {
          "algorithm": "Dynamic Programming (Held-Karp Algorithm)",
          "solution_type": "Optimal",
          "description": "Uses dynamic programming to reduce repeated calculations, building the global 
solution from subproblems.",
          "suitable_graph_size": "Suitable for medium-sized graphs (up to 50 nodes). This algorithm has 
higher time complexity, so it’s more suitable for smaller to medium-sized instances.",
          "time_complexity": "O(n^2 * 2^n)",
          "input": {
            "graph": "A complete weighted graph represented as an adjacency matrix or edge list.",
            "start_node": "The starting node for the traveling salesman problem."
          }
        }, ... ...

Figure 5: Details of Graph Theory Knowledge Base

Model Version Model Link

OpenAI o3-mini o3-mini https://platform.openai.com/docs/models/o1#o3-mini
GPT-4o-mini gpt-4o-mini https://platform.openai.com/docs/models/gpt-4o-mini

GPT-3.5 gpt-3.5-turbo https://platform.openai.com/docs/models/gpt-3-5-turbo
Llama3-ins-8b Meta-Llama-3-8B-Instruct https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct

Qwen2.5-7b-ins Qwen2.5-7B-Instruct https://huggingface.co/Qwen/Qwen2-7B-Instruct
Deepseek-V3 DeepSeek-V3-0324-660B https://huggingface.co/deepseek-ai/DeepSeek-V3-0324

Table 9: More details about models.
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def transform_dict(input_dict):
    output_dict = {}
    for key, value in input_dict.items():
        new_list = []
        for item in value:
            for sub_key, sub_value in item.items():
                new_list.append((int(sub_key), int(sub_value)))
        output_dict[int(key)] = new_list
    return output_dict

def tsp_dynamic_programming(adjacency_list): ...

def tsp_greedy_nearest_neighbor(adjacency_list): ...

def graph_coloring_backtracking(adjacency_list): ...

def graph_coloring_greedy(adjacency_list):  ...

def vertex_cover_brute_force(adjacency_list): ...

Figure 6: Details of Graph Theory Algorithm Library

TIEA_SYS_PROMPT = 
"""
Your task is to extract textual information from the input real-world graph theory 
problem. This information should include background descriptions, context, 
definitions of entities or concepts, and any other details not directly related to 
graph structure or problem objectives. Output the results as a dictionary in the 
following format:

{
    "context": "The background and contextual description of the problem",
    "entities": "A list of all entities or concepts mentioned",
    "definitions": "Definitions and explanations of terms involved"
}
Based on the input, complete the extraction and ensure the format is clear.
"""

Figure 7: Details of TIEA
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PIEA_SYS_PROMPT = 
"""
Your task is to extract the problem objectives and related details from the input real-
world graph theory problem. Clearly state the problem's goal (e.g., shortest path, 
maximum flow, graph coloring), any constraints, and potential optimization 
objectives.You need to explain in detail what the goal of the problem is. If you are 
looking for a path, you need to give the starting and ending nodes. Output the results 
as a dictionary in the following format:

{
    "objective": "The goal of the problem",
    "constraints": "Any constraints associated with the problem",
    "optimization": "Any explicit optimization objectives, if applicable"
}
Based on the input, complete the extraction and ensure the format is clear.
"""

Figure 8: Details of PIEA

GSIEA_SYS_PROMPT = 
"""
Your task is to extract graph structure information from the input real-world graph theory problem. Ensure the 
information is complete and concise, even if there are many nodes or edges. Follow these steps:

1. **Nodes**: List all nodes. If the number of nodes is too large, group them logically (e.g., by properties or 
categories) and explain the grouping.

2. **Edges**: List all edges in a simplified format as tuples:
    - Each tuple contains the two connected nodes and, if applicable, essential attributes (e.g., weight, 
direction).
    If the edges are too many, group them logically (e.g., by node, weight range) and explain the grouping.

3. **Graph Type**: Specify the type of graph (e.g., undirected, directed, weighted).

Output the results as a dictionary in the following format:
{
    "nodes": ["Node1", "Node2", "Node3", ...],
    "edges": [
        ("Node1", "Node2", {"weight": 5}),
        ("Node2", "Node3", {"direction": "one-way"}),
    ],
    "graph_type": "Type of the graph (e.g., undirected, directed, weighted)"
}
If grouping is applied, clearly state the grouping method and ensure **all information is complete**.
"""

Figure 9: Details of GSIEA
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SGIA_SYS_PROMPT = """
You will receive a textual graph structure data, which contains the information of the 
nodes and edges of the graph. Please convert it into a digital graph structure data in 
a standard graph representation format. Note that you can only call the tool once. 
You can use appropriate tools or codes to complete this task. You need to use the 
"generate_adjacency_list" tool to convert the text into an adjacency list. Output the 
results as a dictionary in the following format:
{
  "graph_type": "directed" or "undirected",
  "adjacency_list": {
    node_number: [(neighbor_number, weight)]
  },
  "node_mapping": {
    node_name: node_number
  }
}

**The output "adjacency_list" should be exactly the same as the output of the tool.**
"""

Figure 10: Details of SGIA

GTA_SYS_PROMPT = """
You are an expert in graph theory algorithms, and you have access to a comprehensive library of graph algorithms. Given the following two 
pieces of information:
1. **Text Information**: This includes details about the graph, such as its structure, number of nodes, number of edges, sparsity, and other 
properties. Based on this information, you should assess the scale and characteristics of the graph.
2. **Problem Information**: This defines the specific graph theory problem to solve (e.g., shortest path, graph connectivity, minimum spanning 
tree, maximum flow, graph coloring, etc.). You should choose the most appropriate algorithm to solve the problem based on its type.
3. **Graph Theory Algorithm Library:**: A library of graph theory algorithms, including the problem and graph size that each algorithm is suitable 
for.

Your task is to:
- Analyze the graph's scale and characteristics (e.g., small vs large graph, sparse vs dense).
- Choose the most suitable graph algorithm based on the problem type and graph properties (considering time and space complexity). In 
particular, the algorithm to be used is determined based on the number of nodes obtained based on the graph structure information.
- The algorithm function to be used is determined according to the **suitable_graph_size** description in the algorithm.
- Output a dictionary that includes:
    - **problem type**: Types of graph theory problems.
    - **algorithm**: The name of the selected algorithm.
    - **parameters**: The parameters required for the algorithm.(You only need to tell the retriever to retrieve the parameter name, not the entire 
parameter input data.)
    - **complexity**: The time complexity of the selected algorithm (brief description).
    - **description**: A brief explanation of why this algorithm is the best choice for the given problem.
Output the results as a dictionary in the following format:
{
    "problem": "Types of graph theory problems.",
    "algorithm": "The name of the selected algorithm.",
    "parameters": "The parameters required for the algorithm.",
    "complexity": "The time complexity of the selected algorithm (brief description).",
    "description": "A brief explanation of why this algorithm is the best choice for the given problem."
}

"""

Figure 11: Details of GTA
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AGENT_ASA_SYS_PROMPT =  """
You are tasked with solving a graph-related problem using the provided input data. The input 
specifies the graph type, adjacency list, node mapping, problem type, and the algorithm to use.
Please use the tools according to the given algorithm to get the final answer.

Your task:
1. Identify the algorithm to use from the "algorithm" key.
2. Extract the required inputs based on the algorithm's parameters. Ensure the inputs strictly follow 
the parameter requirements and format.
3. Use the appropriate algorithm tool to solve the problem.
4. Analyze the tool's output and summarize the final answer.

**Instructions for using the tool**:
- Identify the algorithm name from the input (e.g., Dijkstra, BFS).
- Use the parameters required for the algorithm tool exactly as described in the "algorithm" input.
- Ensure the input format matches the tool's strict parameter requirements.

**Output Requirements**:
1. Summarize the problem and the algorithm used.
2. Display the tool's output clearly.
3. Finally, you need to analyze the output of the tool, combine it with the node mapping information 
and question text information, and give the final appropriate answer.
"""

Figure 12: Details of ASA

PLACE = {
    "Amber Plaza": "A bustling central square surrounded by cafes, boutiques, and street performers.",
    "Beacon Tower": "The tallest building in the city, offering panoramic views and a rotating rooftop 
restaurant.",
    "Cobalt Market": "A vibrant marketplace where merchants sell exotic goods and fresh produce from all 
over.",
    "Duskwood Park": "A sprawling urban park filled with dense trees, walking trails, and a serene lake.",
    "Echo Station": "The city’s largest transportation hub, always alive with the sound of trains and 
announcements.",
    "Flare Alley": "A narrow, colorful street lined with neon-lit bars and underground clubs.",
    "Gilded Archway": "A historic landmark leading to the city’s oldest district, adorned with intricate 
carvings.",
    "Haven Docks": "The city’s bustling port area, filled with cargo ships, seafood stalls, and lively 
taverns.",
    "Ironbridge Crossing": "A massive steel bridge connecting the industrial zone with the city center.",
    "Jade Fountain": "A tranquil plaza centered around a beautiful fountain made of green stone.",
    "King’s Row": "A luxurious shopping street lined with high-end stores and designer boutiques.",
    "Lighthouse Point": "A scenic overlook by the bay with a historic lighthouse and picnic spots.",
    "Moonlit Promenade": "A romantic walkway along the riverbank, lit by soft lanterns at night.",
    "Nimbus Plaza": "A futuristic square surrounded by glass skyscrapers and interactive digital art 
installations.",
... ...

Figure 13: Details of Random Places
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Our company handles deliveries across a busy urban area, and today we have 7 distinct delivery points to cover. The delivery driver will 
start from our central warehouse and needs to drop off packages at each location before returning to the warehouse. Since these delivery 
points are scattered throughout different parts of the city, we’re looking to find the most efficient route to minimize the total distance 
traveled. This will help us save on fuel, reduce delivery times, and improve our overall efficiency.
The warehouse, is located near the city center. Each location represents a different type of business or residential area with unique 
delivery requirements:
Zenith Arena: A state-of-the-art stadium for concerts, sports events, and major public gatherings.
Pennywhistle Arcade: A vintage entertainment district with old-style theaters, arcades, and street performers.
Gilded Archway: A historic landmark leading to the city’s oldest district, adorned with intricate carvings.
Primrose Boulevard: A tree-lined street with boutique stores, local bakeries, and street performers.
Temple Square: A historic site featuring a grand temple surrounded by artisan shops and open courtyards.
Lunar Pier: A picturesque wooden pier with food stalls, fishing spots, and a small amusement park.
Jade Fountain: A tranquil plaza centered around a beautiful fountain made of green stone.
Each pair of points has a different travel distance between them, based on city traffic patterns and street layouts. Here is the distance 
table showing the approximate distance (in kilometers) between each pair of locations:
Distances from Warehouse to each delivery point: Warehouse to Zenith Arena is 9 km, Warehouse to Pennywhistle Arcade is 8 km, 
Warehouse to Gilded Archway is 3 km, Warehouse to Primrose Boulevard is 5 km, Warehouse to Temple Square is 6 km, Warehouse to 
Lunar Pier is 3 km, Warehouse to Jade Fountain is 10 km.
Distances from Delivery Zenith Arena to each delivery point: Zenith Arena to Pennywhistle Arcade is 10 km, Zenith Arena to Gilded 
Archway is 1 km, Zenith Arena to Primrose Boulevard is 6 km, Zenith Arena to Temple Square is 6 km, Zenith Arena to Lunar Pier is 8 km, 
Zenith Arena to Jade Fountain is 4 km.
Distances from Delivery Pennywhistle Arcade to each delivery point: Pennywhistle Arcade to Gilded Archway is 8 km, Pennywhistle 
Arcade to Primrose Boulevard is 6 km, Pennywhistle Arcade to Temple Square is 5 km, Pennywhistle Arcade to Lunar Pier is 9 km, 
Pennywhistle Arcade to Jade Fountain is 8 km.
Distances from Delivery Gilded Archway to each delivery point: Gilded Archway to Primrose Boulevard is 3 km, Gilded Archway to Temple 
Square is 3 km, Gilded Archway to Lunar Pier is 8 km, Gilded Archway to Jade Fountain is 1 km.
Distances from Delivery Primrose Boulevard to each delivery point: Primrose Boulevard to Temple Square is 3 km, Primrose Boulevard to 
Lunar Pier is 10 km, Primrose Boulevard to Jade Fountain is 7 km.\nDistances from Delivery Temple Square to each delivery point: 
Temple Square to Lunar Pier is 10 km, Temple Square to Jade Fountain is 9 km.
Distances from Delivery Lunar Pier to each delivery point: Lunar Pier to Jade Fountain is 10 km.
Based on this distance table, we need to determine the optimal delivery route that allows the driver to start from the warehouse, visit each 
delivery point exactly once, and return to warehouse with the shortest possible total distance.

Figure 14: Details of TSP

I am designing a public Wi-Fi network for my city, with the goal of providing free high-
speed internet access across various public areas. The network will cover 4 major 
locations in the city: Maplewood Conservatory, Moonlit Promenade, Shadowbridge 
Arcade and Pennywhistle Arcade. 
Each of these locations will have a Wi-Fi base station, but the stations are located at 
varying distances from one another, and some may have overlapping coverage 
areas. The main issue I face is how to allocate frequencies to these base stations in 
a way that minimizes interference. I know that if two adjacent stations use the same 
frequency, their signals will interfere with each other, which will affect the network’s 
stability and speed.
 The interference relationships between the base stations are as follows: 
The Maplewood Conservatory has overlapping signal areas with Pennywhistle 
Arcade. 
The Moonlit Promenade has overlapping signal areas with Pennywhistle Arcade. 
The Shadowbridge Arcade has overlapping signal areas with Pennywhistle Arcade. 
I need to assign frequencies to the stations in such a way that no two adjacent 
stations use the same frequency, ensuring minimal interference. The ideal solution is 
to minimize the number of frequencies needed, as this would lower both the 
infrastructure costs and the ongoing maintenance expenses.
Can you help me come up with a solution for frequency allocation to ensure stable 
and reliable network performance across all locations?

Figure 15: Details of Coloring Problem
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Our company has 7 computers connected by several communication links. These computers 
are named: Server Bluewave, Server Skyhawk, Server Glacierpeak, Server Stealthwind, Server 
Oceanview, Server Ghostwind and Server Stormbreaker. 
To ensure network security, we need to install monitoring devices (such as firewalls or intrusion 
detection systems) on some of these computers so that all communication links are monitored. 
Assume that the connections between the computers (i.e., the communication links) are 
bidirectional. This means that information can flow in both directions across any link. Our goal is 
to deploy monitoring devices in a way that ensures all communication links are covered by at 
least one monitoring device. 
Problem: How can we select the minimum number of computers to deploy monitoring devices, 
such that every communication link is monitored by at least one device? 
Communication links as follows: : 
Server Bluewave is connected with Server Skyhawk, Server Glacierpeak, Server Stealthwind, 
Server Oceanview. \nServer Skyhawk is connected with Server Glacierpeak, Server Ghostwind. 
Server Stealthwind is connected with Server Oceanview, Server Ghostwind, Server 
Stormbreaker. 

Figure 16: Details of Vertex Cover Problem
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