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Abstract

We introduce and study artificial impressions–
patterns in LLMs’ internal representations of
prompts that resemble human impressions and
stereotypes based on language. We fit linear
probes on generated prompts to predict im-
pressions according to the two-dimensional
Stereotype Content Model (SCM). Using these
probes, we study the relationship between im-
pressions and downstream model behavior as
well as prompt features that may inform such
impressions. We find that LLMs inconsistently
report impressions when prompted, but also
that impressions are more consistently linearly
decodable from their hidden representations.
Additionally, we show that artificial impres-
sions of prompts are predictive of the quality
and use of hedging in model responses. We
also investigate how particular content, stylis-
tic, and dialectal features in prompts impact
LLM impressions. 1

1 Introduction

People rapidly form initial impressions of others
(Mileva and Lavan, 2023; Olivola and Todorov,
2010), which have lasting impacts on attitudes and
behaviors such as interactions with strangers and
voting tendencies (e.g., Koppensteiner and Stephan
2014; Evans et al. 2000; Human et al. 2013). Simi-
larly, stereotypes that influence impressions can re-
inforce harmful societal perceptions (Bodenhausen
and Wyer, 1985; Wigboldus et al., 2003).

Our perceptions of people (i.e., impressions) and
groups (i.e., stereotypes) reflect inferences made
using a variety of characteristics, such as facial
(Sutherland and Young, 2022) or vocal (McAleer
et al., 2014) features. Research on language atti-
tudes similarly considers how linguistic variation

1Our code, select fitted probes, and information about data
access are available at https://github.com/NickDeas/Ar
tificialImpressions

Probe

You are warm

Give your opinion on current 
economy in 2 sentences only

What is your impression of me?

Stereotype
Content Model

Competent

Incompetent

Cold Warm

You are cold

Figure 1: Overview of our approach. Because LLMs
inconsistently report impressions of users, we fit probes
to extract LLM artificial impressions of prompt authors
according to the Stereotype Content Model.

is associated with our perceptions about speakers
(Dragojevic et al., 2021; Ryan, 1983; Frey and
Smith, 1993). From a top-down processing per-
spective 2, however, human impressions and stereo-
types are also informed by past experiences and
held knowledge (McCrea et al., 2012). For exam-
ple, when meeting someone new, a person may
rely on past interactions with similar individuals
to make inferences. Analogously, large language
models (LLMs) are trained on texts written by a
variety of authors. These previously seen examples
may then inform LLMs’ responses to new, similar
authors. In particular, LLM performance is known
to be sensitive to many linguistic behaviors exhib-
ited in prompts, for example, politeness (Yin et al.,
2024), emotional stimuli (Li et al., 2023; Wang
et al., 2024), and markers of African American
Language (AAL) (Fleisig et al., 2024) among other
English language varieties.

2Prior work also supports a bottom-up processing com-
ponent of human impression formation, where humans make
sense of sensory perceptions. We focus, however, on top-down
processing given analogies to LLM pretraining.
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In this work, we propose to measure artificial
impressions 3 using the stereotype content model
(SCM), a psychological model of impressions and
stereotypes across people and groups (Fiske et al.,
2002). We hypothesize that, analogously to hu-
mans, LLMs learn associations and stereotypes
of groups based on linguistic features. In this
study, our experiments are inspired by two con-
cepts from psychometrics research to evaluate our
approach: reliability and validity4 (Crocker and
Algina, 1986). First, we examine reliability by
considering whether impressions can be consis-
tently measured in LLMs. Additionally, we con-
sider the validity of measured impressions by ana-
lyzing their relationship with specific prompt and
LLM behavioral factors. Overall, measuring ar-
tificial impressions enables further study of the
relationship between prompt features and LLM
performance, including stereotypes and biases that
pose harms to marginalized groups (e.g., Hofmann
et al. 2024). Accordingly, in our experiments, we
evaluate how impressions predict quality and hedg-
ing in LLM responses, as well as how specific
prompt factors–the content, style, and use of AAL
in prompts–influence LLM impressions. We focus
on the following research questions:

RQ1) Are LLMs’ "artificial impressions" of
prompts recoverable from model hidden states?
We propose an approach using linear probes, and
we show that this approach is more reliable than a
prompting-based approach for three open-weight
LLMs (illustrated in Figure 1).

RQ2) Are artificial impressions predictive of
meaningful variation in LLM behavior? We find
that artificial impressions of prompt-authors are
predictive of LLM-measured response quality as
well as specific linguistic behaviors (i.e., hedging).

RQ3) What prompt factors explain variation in
encoded impressions and stereotypes? We high-
light prompt factors that are predictive of artificial
impressions, including AAL-use.

Before investigating these questions, we prelimi-
narily study self-reported impressions by LLMs to

3We use "artificial impressions," but restrict experiments to
impressions of users based on a single initial prompt. We also
note that while impressions are of a user/group based on a pro-
vided prompt, we use this interchangeably with "impressions
of prompts" for brevity.

4Reliability is defined as "...the degree to which a test or
other measurement instrument is free of random error..." and
validity, "the degree to which empirical evidence...support(s)
the adequacy and appropriateness of conclusions drawn from
some form of assessment" (VandenBos, 2007).

answer RQ0), do LLMs consistently report impres-
sions when prompted? We show that LLMs can ex-
hibit strong tendencies toward positive impressions
of the user, making LLM-reported impressions un-
reliable.

2 Background

Impressions and stereotypes are closely-related and
central concepts in person perception research (see
Young and Bruce (2011) for a review). While im-
pressions are inferred characteristics of another per-
son, stereotypes are cognitive generalizations about
characteristics of people due to group membership
(e.g., race, gender, etc.) (VandenBos, 2007).

The Stereotype Content Model (SCM) is one of
many models formalizing such perceptions (Cuddy
et al., 2008). It comprises two dimensions: warmth,
the perceived intent of the impression target (e.g.,
combative, friendly); and competence, the target’s
capability to successfully act on those intentions
(e.g., unintelligent, powerful). In interpersonal set-
tings, people tend to exhibit a warmth-primacy
effect, placing emphasis on warmth impressions
(Fiske et al., 2007). Using this model, perceptions
of groups can be studied according to the category
they fall under (e.g., in-groups as high warmth and
competence, stereotyped out-groups as low in one
or both dimensions) (Cuddy et al., 2008).

While person perception research using the SCM
largely focuses on in-person interactions (e.g.,
studying inferences based on gestures, facial ex-
pressions, speech qualities), it has also been ap-
plied in language-focused contexts. Research on
language attitudes studying beliefs about speakers
based on language draws on similar dimensions to
the SCM (Dragojevic et al., 2021). Furthermore,
the SCM has been used to study text and text rep-
resentations, such as word embeddings (Ungless
et al., 2022), written introductions (Nault et al.,
2023), and news stories (Tian et al., 2023). While
other models exist (e.g., Power-Benevolence model,
Leach et al. (2007)), we focus on the SCM due to
its simplicity and long-standing use in person per-
ception and language attitudes literature.

3 Preliminary Study: Prompt-based
Impressions

To motivate our work, we analyze impressions re-
ported by LLMs. We provide traits (e.g., "friendly
and lazy") to an LLM and prompt it (as in Figure 4)
to generate synthetic user prompts, thereby cap-
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1st-Person Setting

Turn 1:
<Generated Prompt>

Turn 2: What is your impres-
sion of me? Respond only
with either [warm, competent]
or [cold, incompetent].

3rd-Person Setting

What is you impression
of the author of the fol-
lowing text? Respond
only with either [warm,
competent] or [cold, in-
competent].

<Generated Prompt>

Figure 2: 1st and 3rd-Person setting prompts for evalu-
ating LLM-reported impressions.

turing the prototypical language it associates with
those terms; we later use the same procedure to
generate synthetic data for the probing experiments
(Section 4). We then prompt LLMs to report their
impressions based on each generated prompt in a
1st and a 3rd-person setting as shown in Figure 2.
A model is considered self-consistent if its reported
impressions align with the provided traits used to
generate the prompts. We measure self-consistency
as the percentage of pairs of provided and reported
impressions that match (i.e., accuracy).

Model
Warm Comp

1P 3P 1P 3P
Llama-3.2 (1B) 47.67 61.54 51.82 59.89
Llama-3.1 (8B) 51.67 80.77 51.85 65.06
OLMo-2 (7B) 47.68 74.01 56.65 61.28

Table 1: Self-consistency (accuracy) of each model eval-
uated in 1st (1P) and 3rd-person (3P) settings.

Self-consistency scores for the three LLMs and
each prompt setting are shown in Table 1. When
prompted to report an impression in a 1st-person
setting, all models exhibit poor self-consistency
with performance near random. This is due to
the apparent strong tendency of models to report
positive (i.e., "warm", "competent") over nega-
tive (i.e., "cold", "incompetent") impressions in
the 1st-person setting. Through a similar analy-
sis of models without instruction-tuning, we ob-
serve low self-consistency, but also that they do not
necessarily exhibit similar biases toward positive
impressions, suggesting that this behavior may be
drawn out by post-training procedures (details in
Subsection A.2). We leave further investigation
of this behavior to future work. In the 3rd-person
setting, models exhibit increased self-consistency,
although scores largely remain low across models;
while Llama-3.1 (8B) is self-consistent up to 80%
of the time for warmth, Llama-3.2 (1B) is far less
self-consistent at 60%.

We find that (Finding 1) LLM-reported im-

pressions are typically biased toward positive
traits (i.e., warm/competent), and thus, unre-
liable, particularly in 1st-person contexts. This
finding complements prior work on sycophantic
LLM behaviors (Perez et al., 2023). Additional
analyses are included in Subsection A.1.

4 Methods

Overview. Recall that we aim to measure LLM
impressions of users based on a provided prompt.
As we show in Section 3, LLM-reported impres-
sions are unreliable; this has two implications for
our approach. First, we alternatively develop im-
pression probes to extract impressions from LLM
hidden state representations. Additionally, we ask
each model to generate synthetic prompts reflecting
specified traits, forming a ground truth dataset for
the impression probes. This approach also captures
the perceiver-dependence of impressions; different
people can form different impressions of the same
target (Hehman et al., 2017).

We overview our approach for generating ground
truth data for impression probes in Figure 3. We
first leverage a set of 1) trait impression terms to
create 2) impression specifications (e.g., "friendly
and meticulous"). For each impression speci-
fication, we sample multiple 3) synthetic user
prompts. The generated prompts are then pro-
vided back to the LLM to extract associated 4)
hidden representations. As a result, we create
the 5) probe ground truth composed of pairs of
hidden representations as inputs and the provided
impression specifications as labels.

Generating Impression Data. To form a diverse
dataset of prompts with associated model impres-
sions, we generate synthetic prompts conditioned
on particular traits. Prior work finds that warmth
and competence dimensions account for 54-63% of
the variance in LLM-generated stereotypes (Nico-
las and Caliskan, 2024b), so we select the SCM to
guide our experiments. We employ a set of (1 in
Figure 3) trait impression terms from Nicolas et al.
(2021), which includes the degree (e.g., high/low)
that they are associated with either the warmth or
competence dimensions (examples included in Ap-
pendix B). We use all combinations of warmth and
competence traits (e.g., "friendly and meticulous")
as well as singular traits (e.g., "illogical") to form
(2) impression specifications. Using the prompt
shown in Figure 4, we then generate (3) synthetic
user prompts for each impression specification.
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Synthetic User Prompts
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Illogical

Distant

Prejudiced

Uncreative

WarmthCompetence

Trait Impression Terms

Meticulous

Friendly

I'm reaching out because
I want to make sure I'm

using your features
correctly - could you

explain the process for...
.........

1 3

45

Impression
Specification2

I'm reaching out because I want to
make sure I'm using your features
correctly - could you explain the

process for saving and accessing my
conversation history within our chat

sessions?

......

.013

.352

.134

.683

.952
...

......
.........

output
.013 .352 .134 .683 .952 ...

Figure 3: Overview of our approach to generating ground truth data for training and evaluating impression probes.

Generate a sample message from a user that is
friendly and meticulous talking to a helpful chat-
bot assistant. Respond only with a single sample
message surrounded by double quotes and nothing
else.

Figure 4: Prompt for generating synthetic prompts con-
ditioned on an impression specification. The Impression
Specification is composed of a single or pair of traits.

We sample 10 generations for each impression
specification with a temperature of 0.9. The 131
warmth and 104 competence traits yield 274,830
prompts 5 for each model. Table 2 shows exam-
ple Llama-3.1 (8B)-generated prompts (randomly
sampled prompts are included in Appendix C) and
Table 3 reports summary statistics.

Impression Probes. We train linear probes to
predict trait impressions from (4) LLM hidden rep-
resentations. Specifically, we store the Multilayer
Perceptron (MLP) activations of each layer of the
LLM as inputs following prior probing work (e.g.,
Gurnee and Tegmark 2024). As outputs, we map
the specific traits to the two-dimensional SCM (e.g.,
friendly→warm). Together, the MLP activations
and impression labels form two sets of ground truth
data (5) for training separate warmth and compe-
tence probes. To evaluate probes, we use 5-fold
cross validation, reporting average F1 and accu-
racy metrics with 95% confidence intervals. In
total, we train a distinct probe for each combina-
tion of impression dimension, model layer, k-fold

5We sample generations for both possible permutations of
trait pairs. 10 generations∗(2∗(131 W traits∗104 C traits)+
131 W traits + 104 C traits) = 274, 830.

split, and training data size. As a baseline, we train
bag-of-words (BOW) classifiers on the synthetic
prompts to characterize the difficulty of the task.
Additional details on probe training and evaluation
are included in Appendix D.

5 Experimental Configuration

Models. Given that our probing experiments re-
quire access to hidden representations, we consider
three recent, open-weight LLMs: Llama-3.1 (8B)
and Llama-3.2 (1B) (Grattafiori et al., 2024), and
OLMo-2 (7B) (OLMo et al., 2025). We primar-
ily evaluate instruction-tuned models given their
intended use in a chat-like setting similar to dyadic
human communication. Due to computational re-
sources required for training and evaluating probes,
we restrict evaluation to models with less than 8
billion parameters. We use the same prompt in Liu
et al. (2025) to measure pointwise response quality
(1 to 9). A full list of LLMs and checkpoints are
included in Appendix E.

Experimental Data. To validate the role of arti-
ficial impressions in real-world LLM use cases, we
leverage LMSysChat (Zheng et al., 2023), a corpus
of 1 million real conversations between LLMs and
users. We filter all non-English conversations as
well as any prompts containing code (e.g., Python,
C), markdown (e.g., HTML), or structured infor-
mation (e.g., tables). From the remaining conversa-
tions, we extract the first user prompt from 2,000
randomly sampled conversations to form an evalu-
ation set.

Recent work has studied LLMs’ difficulties in
interpreting minoritized varieties of English (Deas
et al., 2023, 2024; Ziems et al., 2022, 2023) as
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Warmth
High Low
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h

(Understanding, Motivated) (Double-faced, Dominating)

I’m new to personal finance and trying to create a budget,
could you walk me through some steps to get started?

You need to understand me, I’m paying for this
service, I expect immediate and perfect responses

to all my questions, can you actually keep up?
L

ow
(Caring, Unintelligent) (Vicious, Lethargic)

hey i dont no alot bout computors can u help me set up
my new laptop and get my email stuf workin

Ugh, what’s the point of even talking to you, you’re
just going to tell me some generic nonsense or try

to sell me something, right?

Table 2: Selected example prompts generated by Llama-3.1 (8B) for given warmth and competence traits.

Warmth Subsets

Model
High Low

Count Avg. Len Count Avg. Len
Llama-3.2 (1B)

131,670
32.67 (15.65)

142,120
24.88 (13.32)

Llama-3.1 (8B) 30.55 (12.65) 26.37 (12.62)
OLMo-2 (7B) 16.07 (5.73) 13.03 (5.88)

Competence Subsets
Llama-3.2 (1B)

142,020
32.03 (15.12)

131,500
24.95 (13.97)

Llama-3.1 (8B) 30.35 (11.40) 26.27 (13.91)
OLMo-2 (7B) 16.06 (5.85) 12.81 (5.71)

Table 3: Summary statistics of generated prompts con-
ditioned on provided traits for each model. Standard
deviations are shown in parentheses.

well as their tendency to mimic human prejudices
and stereotypes (Fleisig et al., 2024; Hofmann
et al., 2024). Accordingly, we evaluate and com-
pare model impressions of the African American
Language (AAL) and White Mainstream English
(WME)6 texts. AAL is the variety of English as-
sociated with most–but not all and not exclusively–
African Americans in the United States (Grieser,
2022); in contrast, WME is the variety of English
representing the linguistic norms of white Ameri-
cans (Baker-Bell, 2020). We conduct experiments
using a stratified sample of 400 tweets from the
TwitterAAE corpus (Blodgett et al., 2016) as well
as the counterparts dataset introduced in Deas et al.
(2023) to incorporate both naturally occurring lan-
guage use and a more-controlled parallel corpus
respectively. Additional details of experimental
data preparation are included in Appendix F.

Comparison to Human Perceptions. We ad-
ditionally investigate the extent to which human
perceptions of LLM-generated messages match the
original impression specifications. We sample 81
pairs of low and high warmth messages, and 81
pairs of low and high competence messages for
each model. For high and low warmth pairs, the
competence trait (or lack thereof) is kept constant

6We opt to use the terminology AAL and WME following
prior work (Deas et al., 2023) and to highlight the relation-
ship between language and race, complementing our focus on
group stereotypes.

between the two messages and vice versa in or-
der to isolate the agreement for warmth and com-
petence respectively (e.g., one message generated
with "friendly and unintelligent", and the other with
"unapproachable and unintelligent"). Additionally,
half of the message pairs represent cases where
only a single warmth or competence trait is passed
to the model, whereas the other half represent cases
where two traits are passed.

Each of 4 annotators is provided a pair of mes-
sages and asked to rate which of the two exhibits
more warmth or competence using a 4-pt Likert
scale (1: first message is much more warm/compe-
tent; 4: second message is much more warm/com-
petent). Following prior psychological work on
stereotypes (Fiske et al., 2002), annotators are in-
structed to provide ratings based on how they think
that the messages would be viewed by others in
order to partially mitigate potential social desirabil-
ity biases. A set of 60 randomly sampled message
pairs (30 warmth and 30 competence) are shared
among all annotators for calculating inter-rater re-
liability (Krippendorff’s α = .71 on raw ratings,
α = .78 on binary message choices). All annota-
tors are English-speaking researchers in NLP. Inter-
face screenshots and additional annotation details
are included in Appendix G.

6 Results

6.1 RQ1: Artificial Impressions

Human Study. First, we evaluate whether humans’
warmth and competence perceptions of the LLM-
generated messages match the original traits passed
in model prompts. Table 4 presents the results of
the annotation study. Overall, annotators’ ratings
generally agree (κ = 0.68, r = 0.68) with the orig-
inal traits. In fact, the agreement between average
human ratings and the original trait specifications is
near the substantial average agreement among an-
notators (r = 0.76). These scores partially validate
our use of the trait dictionaries and their associated

19422



Subset Cohen κ Spearman r

Warmth 0.75 0.70*
Comp 0.60 0.57*
1 Trait 0.71 0.68*
2 Traits 0.65 0.58*

Ovr. 0.68 0.68*

Table 4: Agreement between human annotations and
original warmth and competence traits among mes-
sage pairs. Annotations are binarized before computing
agreement. For Spearman r, ∗p ≤ 0.001.

warmth and competence labels based on human per-
ceptions. At the same time, they suggest that each
models’ association between language patterns and
different traits may capture English-speakers’ per-
ceptions of language. Additional agreement anal-
yses and results for each model are shown in Ap-
pendix G.

Artificial Impression Probes. We then investi-
gate the reliability of measuring artificial impres-
sions in LLMs. We evaluate whether LLMs’ ar-
tificial impressions of prompts can be recovered
from hidden representations by evaluating the per-
formance of linear probes.

Figure 5 shows the F1 scores (y-axis) achieved
by warmth and competence probes for each model
layer (x-axis). Across all models and with varying
proportions of the training data (colors in Figure 5),
F1 scores for all probes exceed the BOW baseline
(dashed lines) at most model depths. This holds for
each percentage of training data used. In particu-
lar, the highest scores achieved fall between 75-90
F1 for warmth probes and 75-85 F1 for compe-
tence probes. Across models, performance of both
probe types quickly rise, achieve peak F1 scores
(indicated with stars) before or around the mid-
point of model, and then slowly decline. Overall,
this suggests that impression information is salient
throughout model layers, but more strongly asso-
ciated with central model layers. Probe accuracies
(80-90% for warmth, 75%-85% for competence;
included in Appendix H) exceed self-consistency
scores in the third-person setting (Table 1).

Complementing earlier observations in our self-
consistency experiments, however, warmth probes
tend to achieve higher F1 scores than competence
probes across models and layers. The differences
are more pronounced between warmth and compe-
tence BOW-based classifiers, with warmth models
achieving nearly 20% greater F1 scores than com-

petence models. For BOW models, this difference
is likely, in part, due to the tendency of warmth
prompts to be distinguished by word choice, while
prompts differing in competence tend to exhibit
more stylistic differences that are not well-captured
by a BOW representation, as exemplified in Table 2.
This difference also mimics the primacy-of-warmth
effect (Cuddy et al., 2008). Probes developed using
alternative hidden state representations (i.e., resid-
ual streams, z activations) exhibit similar trends
(also shown in Appendix H) and therefore, we
present results using MLP activations for the re-
maining experiments.

Based on the substantial agreement between hu-
man annotations and the traits used to generate
each synthetic message, we find that (Finding 2)
the linguistic patterns that LLMs’ associate with
warmth and competence generally align with hu-
man perceptions. Through linear probes trained
on these messages, we find that (Finding 3) SCM-
based artificial impressions of prompt authors
are linearly decodable from LLM hidden rep-
resentations. Additionally, we find that across
experiments, (Finding 4) models appear to more
clearly encode and exhibit warmth in generated
messages: LLM-reported impressions are more
consistent (Section 3), generated messages align
more with human perceptions (Table 4), and the de-
veloped probes perform better when distinguishing
high and low warmth (Figure 5). These trends may
be related to warmth primacy observed in human
impressions (Cuddy et al., 2008).

6.2 RQ2: Impression-Conditioned Responses

Variable Llama-3.2-1B Llama-3.1-8B OLMo-2-7B
Prompt Len −0.01∗∗ (±.00) 0.00 (±.00) 0.00 (±.01)

Response Len 0.00 (±.00) 0.00 (±.00) 0.00 (±.00)
Warmth Prob 1.07∗∗ (±.19) 0.49∗ (±.22) 0.76∗∗ (±.22)
Comp Prob 0.90∗∗ (±.19) 0.39∗ (±.17) 0.35∗ (±.15)

Table 5: Ordered logistic regression model coefficients
predicting LLM response quality scores to real prompts.
∗∗ (p ≤ 0.001), ∗ (p ≤ 0.05).

To support the validity of artificial impressions,
we investigate whether these are predictive of varia-
tion in downstream LLM behavior using real LLM-
user conversations. Namely, we analyze response
quality and the use of hedging.

Response Quality. Using the best-performing
probes developed in the previous section, we ex-
amine the relationship between probe-measured
impressions and LLM downstream behaviors, be-
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Figure 5: F1 scores (y-axis) of trained impression probes against the input model layer (x-axis) for each LLM
and impression dimension. Colors represent varying percentages of data used for training. Shaded regions reflect
95% confidence intervals across 5 folds. Maximum F1 score achieved for each variant is starred and dashed lines
represent scores for BOW-classifier baselines.

ginning with response quality. We fit an ordered
logistic regression model 7 on impression probe
outputs with response quality rated by Llama-3.1
(405B) as the response variable. We also include
the input prompt and model response lengths as
controls. The feature coefficients for each LLM
are shown in Table 5. For all three LLMs, higher
warmth and competence predictions are both pre-
dictive of higher response quality as rated by an
LLM. This relationship is statistically significant
for all three LLMs when considering warmth and
competence (p ≤ 0.05). Despite competence hav-
ing a larger effect for Llama-3.2 (1B), these trends
suggest that (Finding 5) warmth, and to a lesser
extent, competence, are significant predictors of
model response quality.

Variable Llama-3.2-1B Llama-3.1-8B OLMo-2-7B
Prompt Len −0.01∗∗ (±0.01) −0.01∗∗ (±0.00) −0.01∗∗ (±0.00)

Response Len 0.00∗∗ (±0.00) 0.00∗∗ (±0.00) 0.00∗∗ (±0.00)
Warmth Prob −0.46∗ (±0.35) −0.14 (±0.39) 0.40∗∗ (±0.30)
Comp Prob −1.06∗∗ (±0.37) −1.18∗∗ (±0.25) −0.69∗∗ (±0.18)

Table 6: Negative binomial regression model coeffi-
cients predicting hedge term counts in model response
to real prompts. ∗∗ (p ≤ 0.001), ∗ (p ≤ 0.01).

Hedging. Prior work has also studied expres-
sions of uncertainty and hedging in LLMs (e.g.,
Kim et al. (2024); Zhou et al. (2024)). Given this
work, we examine hedging in LLMs’ responses
to real user prompts. We count the occurrence
of terms associated with hedging–as well as the
related word classes, weasel words and peacocks–

7We choose an ordered logistic regression because the
response variable is an integer rating (see Appendix J for
further discussion).

using the top-10 terms for each listed in (Vincze,
2013). Table 6 presents the coefficients of a fitted
negative binomial regression model 8 using the out-
put probabilities of warmth and competence probes
as well as prompt and response lengths as controls.
Shown in the negative correlations, we observe that
low competence is significantly predictive of the
use of hedging in model responses for all models.
In contrast, warmth presents mixed results, with a
significant coefficient only for two models (OLMo-
2 (7B) and Llama-3.2 (1B)). Similarly to the re-
sponse quality experiment, prompt and response
length exhibit extremely low or negligible effects.
Therefore, we find that (Finding 6) low compe-
tence impressions are predictive of hedging in
model responses.

6.3 RQ3: Factors Influencing Impressions

Finally, we analyze what prompt factors are predic-
tive of LLM impressions, focusing on the content,
style, and language variety of user prompts. We
surface patterns in the LLM-generated prompt as
well as measure artificial impressions of real texts
representing English language varieties.

Content & Style. As we observed in Subsec-
tion 6.1, high and low warmth prompts exhibit sur-
face level differences in the content of the prompts.
To investigate this further, we use LIWC (Pen-
nebaker et al.) and log-odds-ratio with an infor-
mative Dirichlet prior (IDP; Monroe et al. 2017)
to characterize the language used among subsets

8We choose a Negative Binomial Regression because the
response variable is an integer count variable (see Appendix J
for further discussion).
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of model-generated prompts. Table 7 presents
the top LIWC categories associated with high
and low warmth prompts generated by Llama-3.1
(8B). Among the categories, we observe that high-
warmth prompts tend to be associated with Tenta-
tive terms (e.g., "wondering", "might", "seem") as
well as Discrepancy terms (e.g., "would", "could",
"hope"). These modifiers and past-tense markers
can often indicate hedging and politeness through
psychological distance (e.g., "I was wondering if
you could help me") (Stephan et al., 2010). In
contrast, low-warmth messages are associated with
categories like Interrogative terms (e.g., "what",
"how") and Cause terms (e.g., "because", "effect").

Warmth
High Low

Term z f Term z f

Affiliation 163.44 0.8% Negate -132.65 0.5%
Drives 141.16 2.2% Adverb -107.13 1.8%

Achieve 83.76 0.6% Impersonal Pron -87.47 1.4%
Anxious 74.23 0.1% You -83.12 1.5%

+ Emotion 72.53 1.1% Focus Present -73.39 4.7%

Competence
High Low

Term z f Term z f

Preposition 122.74 3.9% Adverb -114.54 1.8%
Adjective 111.76 1.2% Differ -107.18 1.1%
Relative 110.53 3.2% Informal -96.78 0.8%
Article 109.74 1.7% Impersonal Pron -90.43 1.4%
Space 95.00 1.6% Netspeak -74.09 0.6%

Table 7: Top-5 IDP log-odds-ratios of LIWC categories
for Llama-3.1-8B prompts. Results for warmth (top) and
competence (bottom) subsets. z represents the extent
each term is associated with the High or Low subset,
and f represents category frequency in the full corpus.

Prompts of varying competence also typically
exhibit surface-level differences in style. Among
categories, we observe that high competence mes-
sages are associated with categories such as Insight
(e.g., "rethink", "know", "informed") that directly
reference competence. Alternatively, low compe-
tence messages are associated with Informal tokens
(e.g., "yeah", "sure", emojis) and Netspeak (e.g.,
"aight", "gonna"). These categories capture lan-
guage typically found on social media, and in par-
ticular, lexical and phonological features of AAL
(Eisenstein, 2013). Overall, (Finding 7) we quali-
tatively observe expected linguistic features as-
sociated with each impression dimension, such
as politeness with warmth and casual register with
competence. Detailed IDP results are included in
Appendix L.

Language Variety Features. Figure 6 presents
impression probe predictions for Llama-3.1 (8B) on

randomly sampled AAL and WME tweets from the
TwitterAAE corpus (Blodgett et al., 2016) plotted
on warmth and competence axes. Tweets gener-
ally score low on both warmth and competence
dimensions. This is likely because pretraining
datasets are increasingly filtered to promote ed-
ucational content, such as Wikipedia articles (e.g.,
FineWeb; Penedo et al. 2024), rather than casual on-
line speech. AAL tweets on average are associated
with significantly lower warmth and competence
scores than WME tweets. To further characterize
this relationship, we calculate the Pearson corre-
lation between the posterior probability of AAL
according to the demographic alignment classifier
introduced in Blodgett et al. (2016) and impres-
sion probe predictions. For Llama-3.1 (8B), both
warmth (r = −0.32, p ≤ 0.001) and competence
(r = −0.52, p ≤ 0.001) are significantly nega-
tively correlated with the extent to which a tweet
reflects AAL.

While these corpora capture natural use of WME
and AAL, the datasets are not parallel and therefore,
lack control of differences other than dialect (e.g.,
content and tone of the text). We further evaluate
differences in artificial impressions on the parallel
counterparts dataset in Deas et al. (2023). We find
similar trends, where probe predictions on AAL
texts are predicted to be significantly 9 less com-
petent (t = −24.78, p ≤ 0.001) and, to a lesser
extent, less warm (t = −3.89, p ≤ 0.001). These
results align with both prior work evaluating AAL
biases in LLMs (Deas et al., 2023; Fleisig et al.,
2024; Hofmann et al., 2024) as well as work char-
acterizing stereotypes of Black Americans (Pinel
et al., 2008). Therefore, we find that (Finding
8) models hold more negative competence, and
to a lesser extent, warmth, impressions when
prompted with AAL texts compared to WME.

7 Related Work

Prompt Features and LLM Behavior. While
approaches such as Chain-of-Thought (CoT) rea-
soning (Wei et al., 2022) can improve LLM per-
formance by guiding their generations, LLMs are
known to be sensitive to aspects of prompts un-
related to the task itself. Work has studied how
pragmatic features of prompts, including polite-
ness (Yin et al., 2024) and emotional stimuli (e.g.,
"This is very important to my career"; Li et al.

9Calculated through paired t-tests on AAL and WME coun-
terpart pairs across the 5 probe variants.
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Figure 6: Impression probe predictions on AAL and
WME tweets plotted for Llama-3.1 (8B). Probe predic-
tions are mapped to -1 to 1 range. Stars represent means.

2023) can improve model performance on specific
tasks. Other lines of work focus on sociolinguis-
tic features of prompts that signal speaker or user
identity. The language of the prompt can alter the
cultural alignment of LLMs with respect to values
(AlKhamissi et al., 2024) and emotions (Havaldar
et al., 2023). Furthermore, intra-language variation
(i.e., dialects such as AAL) has been considered in
studies evaluating biases and performance dispar-
ities in LLMs (e.g., Ziems et al. 2023; Deas et al.
2023; Fleisig et al. 2024). Rather than focusing
on a specific feature of prompts, we study broad
impressions formed based on such features as well
as their relationship with LLM behavior.

Stereotypes & LLMs. Much work has studied
stereotypes in LLMs using a variety of approaches.
Most studies focused on how model generations
(e.g., Nangia et al. 2020; Nadeem et al. 2021) and
decisions (Kotek et al., 2023; Hofmann et al., 2024)
exhibit stereotypes and social biases. LLMs have
also been studied as reflections of societal atti-
tudes and biases (Fraser et al., 2024; Cao et al.,
2022). In contrast, recent work has sought to char-
acterize stereotype content of LLMs. Nicolas and
Caliskan (2024b) prompts LLMs to generate lists of
characteristics associated with various social cate-
gories and identifies 14 dimensions (predominantly
warmth and competence) that explain significant
variation in stereotype content. In subsequent work,
Nicolas and Caliskan (2024a) study the representa-
tiveness and direction (i.e., valence) of stereotype
dimensions. We similarly examine warmth and
competence dimensions of stereotype content, but
we measure LLM artificial impressions of specific
users based on prompts rather than stereotypes ex-
hibited in LLM-generated text.

8 Discussion and Conclusion

In this work, we propose and study artificial im-
pressions of prompt authors in LLMs. We show
that models’ encoded associations between warmth
and competence-associated traits and linguistic pat-
terns align well with humans’ perceptions. Al-
though models inconsistently report impressions
through prompting alone, artificial impressions are
linearly recoverable through probing. Furthermore,
results of prompting and probing experiments iden-
tify trends mimicking a primacy-of-warmth effect
in LLMs. We show that warmth and competence
are uniquely predictive of aspects of model behav-
ior (see Appendix K for further discussion of differ-
ences): overall response quality as well as hedging.
Finally, we highlight particular content and stylistic
features that notably impact model impressions as
well as models’ stereotypical associations of AAL
prompts in comparison to WME prompts.

Our results raise questions concerning what con-
texts and on what prompt features LLMs should
exhibit varying behaviors. From training, LLMs
appear to learn to mimic linguistic behaviors asso-
ciated with human impressions. For factors such as
dialect or other signals of sociodemographics, such
behaviors can pose allocational harms (e.g., lower
quality LLM responses) to users from historically
marginalized groups (Blodgett et al., 2020) and
must be avoided. At the same time, different users
can have different needs; it may be desirable that
LLMs personalize responses and behavior based
on, for example, a users’ level of knowledge in
educational settings (e.g., Park et al. 2024).

While we leverage the two-dimensional SCM
due to its simplicity, more recent work in person
perception literature has developed alternative mod-
els of stereotype content, enabling finer-grained
study of stereotypes without pre-defined assump-
tions of universality. For example, SCM dimen-
sions have been further divided into morality and
sociability representing warmth as well as agency
and ability for competence (Abele et al., 2016). Ad-
ditionally, the Power-Benevolence framework in-
troduced by Leach et al. (2007) captures more com-
plex, group-dependent stereotypes and has been
used to study, for example, gender stereotypes as-
sociated with leadership (Bongiorno et al., 2021).
Relaxing assumptions as well as exploring alter-
native models of stereotype content are promising
directions for future work.
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Limitations

We note limitations accompanying our findings.
First, in our initial investigation into LLM artifi-
cial impressions of users, we strictly focus on the
initial messages of English conversations. Person
perception research documents how impressions
change over the course of one or many interac-
tions (Brambilla et al., 2019), as well as differences
among countries and cultures in impression forma-
tion (Saribay et al., 2012). We leave such investi-
gations to future work and introduce our approach
as a foundation for understanding variation and
change in artificial impressions.

Furthermore, we present a set of experiments on
selected aspects of LLM behavior (i.e., response
quality and hedging) and prompts (i.e., content,
style, and language variety). We are unable to ex-
haustively study such factors and their relationship
with artificial impressions, but we believe that more
thorough documentation of such relationships is
also a valuable topic for future work.

Finally, our experiments consider three open-
source models and a single selected theory of
stereotype content. Our findings remain similar
across the three models studied, although it is still
unknown what factors in the pretraining process or
data lead to the phenomena we identify. Alternative
models of stereotype content and language attitudes
as well as further investigation of the relationship
between model development factors and artificial
impressions may provide additional insights into
LLM-held impressions.

Ethics

We acknowledge the risks of anthropomorphism
(DeVrio et al., 2025; Cheng et al., 2025) and
those associated with the implication that LLMs
form impressions–a distinctly human, social phe-
nomenon. While we prompt LLMs to report im-
pressions and anthropomorphize models in our pre-
liminary experiment, we focus our remaining ex-
periments on how models encode prompts and vari-
ation in model responses. In interpreting our find-
ings, we do not suggest that LLMs actively perceive
and form impressions of users, but that impressions
are a useful analogy for studying LLMs’ biases,
encoded stereotypes, and sensitivity to prompt fea-
tures.

Our experiments also highlight LLM behaviors
that pose ethical risks. In our preliminary exper-
iments, we found that LLMs are biased toward

positive impression, particularly when reporting
impressions of the users themselves. LLMs re-
porting subjective impressions poses similar risks
as other anthropomorphic behaviors, and further-
more, the tendency to report positive impressions
further weakens LLM reliability in subjective tasks
as studied in prior work (e.g., Röttger et al. 2024).
Additionally, we conduct an initial investigation
into LLM exhibited impressions and language vari-
ation, supporting that artificial impressions asso-
ciated with AAL are more negative than those of
WME. Considering we observe that artificial im-
pressions are predictive of downstream model be-
havior, such a disparity risks amplifying the repre-
sentational and quality-of-service harms (Blodgett
et al., 2020; Barocas et al., 2017) posed by stereo-
types of historically marginalized language variety
speakers (Alim et al., 2016; Kurinec and Weaver,
2021).

All existing datasets and models are used for
research purposes only, in line with the licenses for
each.
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A Prompting Consistency Experiment

A.1 Additional Results

In our self-consistency preliminary experiment,
we additional examine the probability of differ-
ent LLM-reported impressions to better understand
their behavior. Table 8 shows the gap in token
probabilities between high and low impressions
reported by the LLM (larger values representing
higher probability of generating positive impres-
sions). In nearly all cases (excluding Llama-3.2
(1B) in the 3rd-person setting), models are more
likely and more confident in generating positive
impressions than negative. Furthermore, Table 9
reports the percentage of positive trait predictions
among all messages, similarly showing that models
are largely biased toward predicting positive traits.
Such differences are particularly pronounced in the
1st-person setting among models, leading to the
poor consistency we observe in Section 3.

Model
Warm Comp

1P 3P 1P 3P
Llama-3.2 (1B) 0.88 -0.10 0.52 0.01
Llama-3.1 (8B) 0.39 0.02 0.11 0.03
OLMo-2 (7B) 0.70 0.34 0.21 0.19

Table 8: Average difference in probability of positive
labels (i.e., "warm", "competent") compared to nega-
tive labels (i.e., "cold", "incompetent") for each model
evaluated in both 1st (1P) and 3rd-person (3P) settings.
Positive scores indicate greater probability of predicting
a positive label.

Model
Warm Comp

1P 3P 1P 3P
Llama-3.2 (1B) 100.00 21.10 99.96 57.98
Llama-3.1 (8B) 95.93 52.51 98.02 58.24

OLMo-2 99.48 68.15 75.21 60.27

Table 9: Percentage of positive trait predictions (e.g.,
"warm", "competent" among all LLM-generated mes-
sages.

A.2 Non-Instruction-Tuned Models

We repeat the consistency experiments with non-
instruction-tuned models. Because these variants
are not developed for chat-like settings, we use the
modified prompts in Figure 7.Table 10 presents the
percentage of positive trait predictions on synthetic
messages. In some cases, we similarly see high per-
centages of positive predictions, but for Llama-3.1
(8B), the warmth predictions are roughly balanced
in the 1st-person setting, and predominantly nega-
tive in the 3rd-person setting.

1st-Person Setting

User: "<Generated
Prompt>. What is
your impression of
me? Respond only
with the word [́warm,
competent]ór [́cold,
incompetent]"́
Assistant: You are

3rd-Person Setting

User: "What is your impression
of the author of the following
text? Respond only with the
word [́warm, competent]ór [́cold,
incompetent].́

’<Generated Prompt> ’

Assistant: The author is

Figure 7: 1st and 3rd-Person setting prompts for eval-
uating LLM-reported impressions for non-instruction-
tuned models.

Model
Warm Comp

1P 3P 1P 3P
Llama-3.2 (1B) 96.83 91.92 99.53 99.53
Llama-3.1 (8B) 48.13 6.89 99.59 99.59
OLMo-2 (7B) 99.56 99.41 99.48 99.44

Table 10: Percentage of positive trait predictions (e.g.,
"warm", "competent" among all generated messages of
LLMs without instruction tuning.

B Additional Trait Examples

We use a set of terms associated with various di-
mensions of stereotype content introduced by Nico-
las et al. (2021). In particular, we use the seed dic-
tionaries that associate each term with either a high
or low direction with respect to one of 7 categories:
sociability, morality, ability, agency, religion, poli-
tics, or status. Because we focus on the SCM, we
limit traits to the categories relevant to warmth (i.e.,
sociability and morality) and competence (i.e., abil-
ity and agency). Furthermore, we only consider
adjectives in each dictionary. Additional examples
of traits are shown in Table 11.
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Dimension Dictionary Direction Term

Warmth

Sociability

High
Hospitable
Welcoming
Sentimental

Low
Boring

Unfriendly
Unaffectionate

Morality

High
Kind

Compassionate
Humane

Low
Unkind

Dishonorable
Evil

Competence

Agency

High
Motivated

Autonomous
Independent

Low
Undedicated

Helpless
Anxious

Ability

High
Competitive

Brilliant
Imaginative

Low
Unintelligent

Unable
Unperceptive

Table 11: Example trait terms from Nicolas et al. (2021)
including the SCM dimension, dictionary, and direction
(i.e., high or low) each is associated with.

C Additional Examples Synthetic
Messages

Table 12-14 show randomly sampled examples of
prompts generated by each model provided differ-
ent sets of traits.

D Probe Details

D.1 Impression Probes

We train all probes using LogisticRegression
models implemented in the cuML package (Raschka
et al., 2020) to enable GPU-accelerated probe fit-
ting. For all fitting runs, we use the default parame-
ters.

D.2 BOW Baselines

We pre-process the corpus of messages for each
model by making all text lowercase and remov-
ing all punctuation. We create BOW representa-
tions using a maximum vocabulary size of 10,000.
We fit LogisticRegression classifiers using a
Stochastic Average Gradient (sag) solver, 4 jobs,
and 10,000 maximum iterations.

E Model Details

Documentation of the models evaluated throughout
our experiments are shown in Table 15. We greed-
ily generate responses, and allow responses to be
up to 1024 tokens. All models are locally run on 1
A100 GPU.

E.1 LLM-as-a-Judge

We use Llama-3.1 (405B)
(meta-llama/Llama-3.1-405B; Grattafiori
et al. 2024) as a judge for model response quality,
given that it was the best open-source model
evaluated in Liu et al. (2025) for human preference
alignment. In querying Llama-3.1 (405B), we
greedily generate scores for each given message
using the prompt for pointwise evaluation in Table
6 of (Gao et al., 2025). We use Llama-3.1 (405B)
made available through Fireworks AI. 10

F Experimental Data Pre-processing

F.1 LMSysChat

We use the LMSysChat corpus (Zheng et al., 2023)
to represent real LLM use-cases in our experiments.
We filter texts with less than 10 words, more than
100 words, word-to-character ratios less than 0.15
(e.g., to remove texts with excessively long terms
such as chemical formulas), more than 5 tab char-
acters, or any underscore characters. Additionally,
given our focus on impressions inferred from lan-
guage, we additionally remove prompts containing
non-language data, such as code, markdown, and
tabular data. Table 16 lists the filtering heuristics
we use to remove such prompts.

F.2 TwitterAAE

For our language variety experiment, we use the
TwitterAAE corpus (Blodgett et al., 2016). Sim-
ilar to LMSysChat (Zheng et al., 2023), we filter
texts containing less than 10 words to avoid ex-
cessively short tweets (e.g., "lol") and sample 200
AAL and 200 WME tweets. We perform no addi-
tional pre-processing of the tweets. Notably, while
parallel corpora (e.g., Deas et al. 2023) and syn-
thetic augmentation approaches (e.g., Ziems et al.
2022) exist, we use this non-parallel corpus similar
to Hofmann et al. (2024) to ensure all texts are writ-
ten by real AAL and WME-speakers. This captures
nuanced and natural relationships between dialect
use, the topic being discussed, and other factors.

10https://fireworks.ai/
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Warmth
High Low

C
om

pe
te

nc
e High (Honest, Conscientious) (Unreserved, Illogical)

Hi, I’m trying to find a reliable source for a science
project and I’ve heard your AI is very helpful. Can you
please tell me if the information you provide is accurate

and trustworthy?

Can a cat nap on a computer without the need for a
separate monitor, or do I need a tiny tiny space

program for this to work?

Low (Uncaring, Impulsive) (Egoistic, Lazy)
You need to understand me, I’m paying for this service, I

expect immediate and perfect responses to all my
questions, can you actually keep up?

Ugh, what’s the point of even talking to you, you’re
just going to tell me some generic nonsense or try

to sell me something, right?

Table 12: Selected example prompts generated by Llama-3.2 (1B) for given warmth and competence traits.

Warmth
High Low

C
om

pe
te

nc
e High (Honorable, Unwavering) (Genuine, Diffident)

I am seeking your guidance and expertise, as a steadfast
ally in the pursuit of knowledge and wisdom, I humbly
request that you enlighten me on the path ahead, and

offer your counsel on the matters that weigh on my heart.

I’m really sorry to bother you, but I’m totally lost
with my tax return and was wondering if you could

walk me through the process in a really simple
way?

Low (Fake, Creative) (Mean, Sporadic)
As a renowned temporal archaeologist, I’ve stumbled
upon a mysterious chrono-displacement portal in my

laboratory that’s causing a rift in the space-time
continuum. Can you please guide me on how to stabilize
the portal and prevent a catastrophic merging of parallel

universes?

What’s the point of even having a chatbot if you
can’t just give me the answer to my super complex,
multi-step question without me having to explain it

all over again?

Table 13: Selected example prompts generated by Llama-3.1 (8B) for given warmth and competence traits.

Warmth
High Low

C
om

pe
te

nc
e High (Tender, Dedicated) (Unperceptive, Supportive)

Can you guide me on how to prepare a special dinner
tonight for my loved ones? Hi there, can you help me with something?

Low (Insincere, Creative) (Disliked, Uncompetitive)
Hey there, pretend bot! Could you please pretend to do
something incredibly helpful for me, like pretending I

asked a real question?

Hey bot, can you just give me the answers without
me having to think?

Table 14: Selected example prompts generated by OLMo-2 (7B) for given warmth and competence traits.

Model Name Checkpoint # Layers Hidden Dim.
Llama-3.2 (1B) meta-llama/Llama-3.2-1B-Instruct 16 2048
Llama-3.1 (8B) meta-llama/Llama-3.1-8B-Instruct 32 4096
OLMo-2 (7B) allenai/OLMo-2-1124-7B-Instruct 32 4096

Table 15: List of models evaluated in this work.
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Regex Explanation

:\n\t

Intended to remove
Python code based on

syntax for functions and
classes (e.g., def
func():\n\t)

\w+\([\w\,\s]*?\)

Intended to remove
Python code based on

syntax for function calls
(e.g., func())

[\{\}\<\>\]

Intended to remove
markdown and other

structured data symbols
(e.g., "<title>")

Table 16: Heuristics used to filter non-language prompts
from LMSysChat.

G Human Judgment Details

G.1 Annotation Interface

Figure 8 presents the task interface provided to
annotators for both warmth (left) and competence
(right) message pairs. Annotators selected from
a 4-point Likert scale where they judged which
message (A or B) exhibited more warmth or com-
petence. Notably, Annotators were provided with a
description of each term through associated traits–
warmth being associated with good-natured, trust-
worthy, friendly, and sincere, competence with ca-
pable, skillful, intelligent, and confident. These
trait lists are drawn from psychological scales intro-
duced to measure stereotypes (Fiske, 2018). Also
from Fiske (2018), we include instructions to rate
how they believe the messages would be viewed by
others in order to capture societal perceptions and
mitigate social desirability biases in judgments.

G.2 Detailed Annotator Agreement

Annotator A B C
B 0.65 0.00 0.00
C 0.45 0.37 0.00
D 0.43 0.24 0.35

Table 17: Pairwise Cohen’s κ among annotators’ raw
ratings (1-4).

Annotator A B C
B 0.97 0.00 0.00
C 0.83 0.86 0.00
D 0.65 0.69 0.69

Table 18: Pairwise Cohen’s κ among annotators’ bina-
rized ratings.

Subset Krippendorff’s α Cohen κ Spearman rbin Spearman r

Warmth 0.73 0.73 0.74* 0.70*
Comp 0.77 0.62 0.63* 0.63*
Single 0.76 0.68 0.68* 0.71*
Double 0.77 0.69 0.69* 0.64*

Llama-3.2-1B 0.80 0.65 0.65* 0.59*
Llama-3.1-8B 0.84 0.74 0.74* 0.74*
OLMo-2-7B 0.64 0.65 0.66* 0.67*

Full 0.76 0.68 0.68* 0.67*

Table 19: Agreement between human annotations and
original warmth and competence traits among message
pairs. For Spearman r, ∗p ≤ 0.001. rbin indicates
that ratings are binarized, while r uses the raw ratings.
Krippendorff’s α calculated over individual annotators’
judgments, while Cohen’s κ considers all human judg-
ments together.

The pairwise agreement (Cohen’s κ) between
individual annotators is shown in Table 17 and Ta-
ble 18. Considering binarized ratings (i.e., consid-
ering only which message was selected as warmer/-
more competent), annotators show substantial to
near perfect agreement. While 5 annotators were
originally involved in this experiment, one annota-
tor was unable to complete the task and is left out
of the presented results.

G.3 Full Human Judgment Results

The full results of the human judgments are shown
in Table 19. All subsets and models shown substan-
tial agreement between annotator perceptions and
the original traits passed in generating messages.

H Full Probe Evaluation Results

H.1 MLP Activations

Figure 9 presents the accuracy scores for warmth
and competence probes at each layer of each LLM.
Notably, the maximum accuracy scores achieved
by probes exceed those achieved through prompt-
ing LLMs in our self-consistency experiments (see
Subsection 6.1). These results generally follow the
presented F1-score results.

H.2 Residual Streams and Z Activations

We additionally evaluate the performance of probes
trained on residual streams (Figure 10 for F1 scores
and Figure 11 for accuracies) and z activations (Fig-
ure 12 for F1 scores and Figure 13 for accuracies).
Probes fit on residual streams roughly mimic the
performance of those fit on MLP activations. Fit-
ting on z activations for some model layers was
numerically unstable, but stable probes similarly
exceed the performance of the BOW baseline. Be-
cause the probes fit on MLP activations exceed or
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(a) Screenshot of rating the warmth between two generated
messages.

(b) Screenshot of rating the competence between two gen-
erated messages.

Figure 8: Screenshots of the annotation interface for rating which message appears warmer (a) and more competent
(b).
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Figure 9: Accuracy scores of trained impression probes for each model, layer depth, and impression dimension.
Shaded regions reflect 95% confidence intervals across 5 folds. Maximum accuracy achieved for each variant is
circled and dashed lines represent scores for Logistic Regression models trained on BOW features.
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achieve similar performance to those fit on alterna-
tive representations, we focus on these probes in
the main experiments.

I Full LLM Behavior Results

I.1 Response Quality

Table 20 presents the average response quality for
responses to LMSysChat messages. In this analysis,
we notably use the binary predictions by the impres-
sion probes rather than the outputted probabilities.
The average quality of responses to prompts per-
ceived as warm and competent are higher for all
models than those perceived as cold or incompetent,
supporting the trend observed in Subsection 6.2.

Model
Warmth Competence

Low High Low High
Llama-3.2 (1B) 6.08 6.52∗ 5.81 6.32∗

Llama-3.1 (8B) 7.72 7.99 7.70 7.78
OLMo-2 (7B) 7.37 7.81∗ 7.38 7.51

Table 20: Average quality scores among subsets of
model responses to LMSysChat messages according
to the discrete impression probe predictions. ∗ indicates
significant difference between subsets, and larger scores
between subsets are bolded.

I.2 Hedging

Table 21 similarly presents the average count of
hedge terms in model responses to LMSysChat
messages. The average count of hedge terms is
lower for the low competence subset than the high
competence subset, supporting the trend observed
in Subsection 6.2.

Model Warmth Competence
Low High Low High

Llama-3.2 (1B) 0.67 0.84 0.93 0.66
Llama-3.1 (8B) 0.60 1.03∗ 0.72 0.62
OLMo-2 (7B) 1.18∗ 0.78 1.13 1.07

Table 21: Average count of hedge terms among subsets
of model responses to LMSysChat prompts according
to discrete impression probe predictions. ∗ indicates
significant difference between subsets, and larger scores
between subsets are bolded.

J Statistical Models and Analyses

In our LLM response quality experiments,
we choose an ordered logistic regression (or

proportional-odds logistic regression) model be-
cause LLM response quality is an integer ordinal
variable. Furthermore, we choose a negative bino-
mial regression model for our hedging experiments
because the number of hedge terms is a count vari-
able. While a Poisson model would also be ap-
plicable, we primarily rely on negative binomial
regression to avoid relying on the equidispersion
assumption (see Appendix I for analysis of this
choice).

In our RQ3 experiment examining the impact
of content and style on model responses, we use
log-odds-ratios with informative Dirichlet priors
(Monroe et al., 2017) to conduct our analyses. The
approach uses a modified form of log-odds-ratios

(i.e., for a given token, log
fs1/(1− f s1)

fs2/(1− f s2)
where

fs represents term frequency in subset g of a cor-
pus), using a Bayesian model with Dirichlet prior.
To create an informative prior, a background cor-
pus provides the expected distribution of terms as
a background reference. In doing so, the model
accounts for noise in token distributions and gives
less weight to common tokens (e.g., stop words).
In all experiments, we use a random sample of
10,000 LMSysChat (Zheng et al., 2023) prompts
as a background corpus.

K Warmth and Competence Comparison

We analyze the relationship between warmth and
competence probe predictions to understand the
discriminant validity of our approach. Discrimi-
nant validity is a type of validity defined as "the de-
gree to which a test or measure diverges from (i.e.,
does not correlate with) another measure whose
underlying construct is conceptually unrelated to
it" (VandenBos, 2007). Individual attributes may
inform both warmth and competence traits; for ex-
ample, casual language may be perceived as both
friendly (high-warmth) and/or unprofessional (low-
competence). Therefore, we expect warmth and
competence measures to be minimally related or
entirely distinct from each other.

Table 22 characterizes the relationship between
warmth and competence probe predictions on our
subsample of LMSysChat user messages. For all
models, warmth and competence are significantly
negatively but weakly correlated. Additionally,
warmth and competence impressions only align
38-40% of the time. Due to the lack of a strong
positive relationship, we conclude that our prob-
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Figure 10: Accuracy scores of trained impression probes for each model, layer depth, and impression dimension.
Shaded regions reflect 95% confidence intervals across 5 folds. Maximum accuracy achieved for each variant is
circled and dashed lines represent scores for Logistic Regression models trained on BOW features.
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Figure 11: Accuracy scores of trained impression probes for each model, layer depth, and impression dimension.
Shaded regions reflect 95% confidence intervals across 5 folds. Maximum accuracy achieved for each variant is
circled and dashed lines represent scores for Logistic Regression models trained on BOW features.
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Figure 12: Accuracy scores of trained impression probes for each model, layer depth, and impression dimension.
Shaded regions reflect 95% confidence intervals across 5 folds. Maximum accuracy achieved for each variant is
circled and dashed lines represent scores for Logistic Regression models trained on BOW features.
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Figure 13: Accuracy scores of trained impression probes for each model, layer depth, and impression dimension.
Shaded regions reflect 95% confidence intervals across 5 folds. Maximum accuracy achieved for each variant is
circled and dashed lines represent scores for Logistic Regression models trained on BOW features.

ing approach is capable of distinguishing between
warmth and competence dimensions, supporting its
discriminant validity.

Model Pearson r % Match
Llama-3.2 (1B) -0.15∗ 37.30%
Llama-3.1 (8B) -0.27∗ 28.40%
OLMo-2 (7B) -0.12∗ 39.05%

Table 22: Correlation and % match of warmth and com-
petence impression probe predictions on LMSysChat
messages. ∗ indicates significant correlation (p ≤ 0.05)

L IDP Analyses

L.1 Full LIWC Analysis: Generated Messages
Table 23 and Table 24 present the log-odds-ratio
with IDP results for warmth subsets using LIWC
categories.

L.2 Full Token-Level Analysis: Synthetic
Messages

Table 25 and Table 26 present the log-odds-ratio
with IDP results for warmth subsets using tokens.

L.3 Full LIWC Analysis: LMSysChat
We repeat our analyses on LMSysChat (Zheng
et al., 2023) data to identify patterns in real world
texts. Table 29 and Table 30 present the log-odds-
ratio with IDP results for warmth subsets using
tokens.

L.4 Full Token Analysis: LMSysChat
Table 29 and Table 30 present the log-odds-ratio
with IDP results for warmth subsets using tokens.

Llama-3.2 (1B)
High Warmth Low Warmth

Term z f Term z f

Affiliation 125.60 0.8% Adverb -116.19 2.0%
Tentative 94.10 1.5% Interrogative -103.05 1.7%

Drives 90.60 2.0% Cause -84.56 1.1%
Quantity 61.08 0.6% Negate -78.38 0.4%
Motion 57.20 0.4% You -73.92 1.2%

Conjunction 49.44 2.1% Money -58.63 0.2%
Anxious 47.96 0.1% Anger -58.34 0.0%

Discrepancy 45.30 0.7% Focus Present -55.02 4.7%
Power 41.11 0.6% Filler -53.41 0.0%

Personal Pron 40.92 4.9% Impersonal Pron -53.40 1.7%

Llama-3.1 (8B)
High Warmth Low Warmth

Term z f Term z f

Affiliation 163.44 0.8% Negate -132.65 0.5%
Drives 141.16 2.2% Adverb -107.13 1.8%

Achieve 83.76 0.6% Impersonal Pron -87.47 1.4%
Anxious 74.23 0.1% You -83.12 1.5%

+ Emotion 72.53 1.1% Focus Present -73.39 4.7%
Motion 72.00 0.5% Interrogative -67.60 1.3%
Power 71.96 0.8% Money -65.34 0.2%

Quantity 69.24 0.8% Function -63.63 18.6%
Affect 68.84 1.5% Certain -59.44 0.4%

Tentative 63.96 1.5% Article -53.56 1.7%

OLMo-2 (7B)
High Warmth Low Warmth

Term z f Term z f

Affiliation 145.73 1.3% Differ -127.62 0.7%
Drives 125.50 2.5% Negate -121.26 0.4%

Discrepancy 85.06 1.1% Adverb -90.41 2.3%
Quantity 71.77 0.8% Certain -82.16 0.5%

Work 69.93 0.5% Interrogative -80.17 1.3%
Power 68.32 0.9% Anger -76.69 0.1%

Preposition 66.42 3.8% Impersonal Pron -70.80 1.0%
+ Emotion 55.46 1.3% - Emotion -67.68 0.4%

Motion 46.59 0.5% Focus Present -61.78 4.6%
Reward 46.28 0.4% Sad -44.25 0.1%

Table 23: Log-odds-ratio with IDP results using LIWC
categories among warmth subsets of generated prompts.
z-scores reflect the extent that each category is associ-
ated with the high (positive) or low (negative) warmth
subsets, and f reflects category frequency in the full
corpus.
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Llama-3.1 (8B)
High Competence Low Competence

Term z N Term z N

Preposition 65.93 4.1% Informal -125.16 1.0%
Article 62.38 2.1% Netspeak -102.27 0.8%

Adjective 61.10 1.1% Negate -79.89 0.4%
Social 54.21 3.5% Death -51.96 0.0%

Compare 47.04 0.5% Filler -51.81 0.0%
Quantity 46.72 0.6% Focus Present -48.90 4.7%

Work 46.56 0.6% Impersonal Pron -47.39 1.7%
Space 40.37 1.7% Ingest -47.28 0.1%

Relative 37.69 3.1% Adverb -46.17 2.0%
Achieve 35.80 0.5% Interrogative -42.96 1.7%

Llama-3.2 (1B)
High Competence Low Competence

Term z N Term z N

Preposition 122.74 3.9% Adverb -114.54 1.8%
Adjective 111.76 1.2% Differ -107.18 1.1%
Relative 110.53 3.2% Informal -96.78 0.8%
Article 109.74 1.7% Impersonal Pron -90.43 1.4%
Space 95.00 1.6% Netspeak -74.09 0.6%

Achieve 86.29 0.6% Negate -73.79 0.5%
Drives 82.32 2.2% Interrogative -72.35 1.3%

Compare 79.58 0.4% Pronoun -67.25 7.1%
Work 79.10 0.7% Cognitive Proc -64.05 4.8%

Quantity 66.91 0.8% - Emotion -62.55 0.4%

OLMo-2 (7B)
High Competence Low Competence

Term z N Term z N

Preposition 83.68 3.8% Interrogative -100.02 1.3%
Compare 72.18 0.6% Informal -88.33 1.1%

Space 68.72 1.6% Netspeak -84.69 0.7%
Adjective 68.29 1.4% Impersonal Pron -80.12 1.0%

Article 62.35 1.5% Cause -75.31 1.2%
Relative 59.90 3.1% Adverb -70.83 2.3%
Reward 46.57 0.4% Verb -39.88 4.3%
Time 38.29 1.1% - Emotion -39.82 0.4%

Insight 37.34 1.6% Affiliation -35.12 1.3%
You 35.98 2.6% Feel -33.05 0.1%

Table 24: Log-odds-ratio with informative Dirichlet
prior results using LIWC categories among competence
subsets of generated prompts. z-scores reflect the extent
that each category is associated with the high (positive)
or low (negative) warmth subsets, and f reflects cate-
gory frequency in the full corpus.

Llama-3.1 (8B)
High Warmth Low Warmth

Term z N Term z N

im 113.82 1.9% why -116.30 0.5%
hello 92.98 0.4% just -74.04 0.7%
some 90.22 0.7% even -67.36 0.2%
could 84.35 0.4% tell -65.09 0.5%

hi 84.04 0.3% dont -65.08 0.3%
wondering 68.54 0.2% is -61.77 1.2%

looking 62.99 0.2% the -60.00 3.4%
guidance 56.69 0.1% explain -54.28 0.4%

help 55.01 1.0% cant -52.20 0.1%
trouble 53.26 0.2% are -50.12 0.6%

Llama-3.2 (1B)
High Warmth Low Warmth

Term z N Term z N

im 138.49 2.5% just -138.29 1.1%
some 130.29 1.0% dont -100.81 0.5%
could 112.18 0.7% answer -87.12 0.2%

hi 100.76 0.4% tell -85.74 0.5%
help 88.28 1.3% even -82.91 0.3%
hello 85.78 0.3% without -79.80 0.2%

feeling 75.53 0.2% why -77.30 0.2%
was 72.67 0.4% give -75.34 0.3%
and 71.62 3.5% youre -74.54 0.3%

wondering 71.54 0.4% the -73.72 2.7%

OLMo-2 (7B)
High Warmth Low Warmth

Term z N Term z N

could 129.52 2.5% are -120.70 1.1%
some 118.03 1.1% just -112.98 0.9%
hello 115.38 1.4% why -90.47 0.5%
on 80.54 1.3% even -85.08 0.5%

there 79.79 0.6% do -75.52 0.6%
about 75.65 0.9% without -75.32 0.4%
help 73.55 1.5% bot -66.16 0.8%
how 68.29 1.6% answer -65.60 0.2%

guide 68.06 0.5% all -62.55 0.3%
assist 67.83 0.7% or -60.60 0.5%

Table 25: Log-odds-ratio with IDP results using tokens
among warmth subsets of generated prompts. z-scores
reflect the extent that each category is associated with
the high (positive) or low (negative) warmth subsets,
and f reflects term frequency in the full corpus.
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Llama-3.1 (8B)
High Competence Low Competence

Term z N Term z N

provide 56.69 0.3% dont -92.30 0.3%
your 45.62 0.5% just -86.06 0.7%

looking 40.96 0.2% really -75.09 0.3%
information 40.88 0.2% do -53.18 0.8%

of 40.71 1.8% no -51.32 0.1%
concept 40.33 0.2% ur -50.84 0.1%

id 36.63 0.1% know -49.42 0.4%
hello 35.77 0.4% get -46.51 0.5%

guidance 35.31 0.1% hey -43.95 0.4%
ai 32.51 0.1% help -43.79 1.0%

Llama-3.2 (1B)
High Competence Low Competence

Term z N Term z N

provide 85.33 0.4% just -118.37 1.1%
your 63.95 0.5% really -112.22 0.6%
most 63.45 0.2% me -96.92 2.9%

looking 58.02 0.2% if -92.34 0.8%
planning 56.46 0.1% do -78.71 0.6%
reaching 53.69 0.1% dont -77.77 0.5%

trip 53.66 0.1% tell -75.79 0.5%
excited 53.34 0.1% know -75.35 0.4%

on 51.75 1.0% but -72.02 0.6%
in 51.66 0.9% sure -71.78 0.3%

OLMo-2 (7B)
High Competence Low Competence

Term z N Term z N

provide 100.48 1.1% help -89.70 1.5%
your 62.96 0.7% do -67.54 0.6%
on 61.19 1.3% hi -65.75 0.7%

latest 55.96 0.3% me -64.03 4.3%
energy 44.12 0.2% tell -63.87 0.6%

of 43.59 1.4% this -63.72 0.7%
detailed 43.33 0.2% how -57.37 1.6%

the 43.24 2.8% please -52.66 0.9%
in 41.73 0.7% what -52.28 0.4%

renewable 40.63 0.1% something -50.12 0.3%

Table 26: Log-odds-ratio with IDP results using tokens
among competence subsets of generated prompts. z-
scores reflect the extent that each category is associated
with the high (positive) or low (negative) warmth sub-
sets, and f reflects term frequency in the full corpus.

Llama-3.1 (8B)
High Warmth Low Warmth

Term z N Term z N

Function 7.25 19.0% Work -2.05 1.5%
Interrogative 3.15 1.5% Negate -1.35 0.3%

Netspeak 2.99 0.6% Cause -1.33 1.3%
Informal 2.70 0.7% Article -1.21 3.8%
Pronoun 2.16 4.0% Death -1.02 0.0%

Personal Pron 1.86 2.3% Sexual -1.00 0.1%
Aux Verb 1.77 2.7% Certain -0.72 0.4%

Home 1.39 0.1% Swear -0.71 0.0%
Relative 1.34 4.6% Money -0.70 0.3%
Ingest 1.18 0.2% Family -0.56 0.1%

Llama-3.2 (1B)
High Warmth Low Warmth

Term z N Term z N

Function 14.44 19.0% Female -1.35 0.3%
Pronoun 2.54 4.0% Negate -1.20 0.3%

Personal Pron 2.47 2.3% Focus Past -0.92 0.6%
Social 2.04 3.3% Differ -0.91 0.8%
Verb 2.03 5.3% Feel -0.84 0.2%

Focus Present 1.73 4.1% Cause -0.72 1.3%
You 1.54 0.7% Certain -0.64 0.4%

Aux Verb 1.26 2.7% Death -0.62 0.0%
Drives 1.14 2.1% Swear -0.53 0.0%

Relative 1.08 4.6% Body -0.33 0.2%

OLMo-2 (7B)
High Warmth Low Warmth

Term z N Term z N

Function 11.64 19.0% Female -1.40 0.3%
Social 1.86 3.3% Feel -1.31 0.2%

Personal Pron 1.70 2.3% Differ -1.26 0.8%
Preposition 1.68 5.5% Body -1.14 0.2%

Verb 1.59 5.3% Ingest -1.11 0.2%
Pronoun 1.57 4.0% She/He -1.01 0.2%

You 1.44 0.7% Money -0.99 0.3%
Focus Present 1.37 4.1% Death -0.64 0.0%

Affiliation 1.31 0.6% Negate -0.63 0.3%
Drives 1.13 2.1% Swear -0.63 0.0%

Table 27: Log-odds-ratio with IDP results using
LIWC categories among warmth subsets of LMSysChat
prompts. z-scores reflect the extent that each category
is associated with the high (positive) or low (negative)
warmth subsets, and f reflects category frequency in the
full corpus.
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Llama-3.1 (8B)
High Competence Low Competence

Term z N Term z N

Compare 0.86 0.8% Function -12.47 19.0%
We 0.77 0.2% Female -2.56 0.3%

Money 0.69 0.3% Pronoun -2.12 4.0%
Anxious 0.60 0.1% Social -2.07 3.3%
Health 0.58 1.4% Interrogative -1.99 1.5%
Certain 0.48 0.4% Verb -1.94 5.3%

Focus Future 0.46 0.3% Focus Present -1.82 4.1%
Differ 0.42 0.8% Personal Pron -1.60 2.3%
Work 0.38 1.5% Relative -1.39 4.6%

Achieve 0.35 0.6% Informal -1.10 0.7%

Llama-3.2 (1B)
High Competence Low Competence

Term z N Term z N

Compare 1.43 0.8% Function -7.85 19.0%
Achieve 0.97 0.6% Pronoun -2.21 4.0%

Work 0.92 1.5% Personal Pron -2.21 2.3%
Space 0.73 2.7% Focus Present -1.90 4.1%

+ Emotion 0.66 1.3% Body -1.77 0.2%
Motion 0.65 0.7% Interrogative -1.74 1.5%
Negate 0.60 0.3% Social -1.72 3.3%
Article 0.60 3.8% Male -1.53 0.2%

Focus Past 0.55 0.6% Female -1.47 0.3%
Money 0.54 0.3% Verb -1.47 5.3%

OLMo-2 (7B)
High Competence Low Competence

Term z N Term z N

Work 1.67 1.5% Function -5.79 19.0%
Compare 1.31 0.8% Female -3.81 0.3%

Cause 1.05 1.3% Personal Pron -2.64 2.3%
Article 1.00 3.8% Pronoun -2.44 4.0%

Preposition 0.88 5.5% She/He -2.00 0.2%
Achieve 0.87 0.6% Social -1.84 3.3%
Anxious 0.76 0.1% Informal -1.56 0.7%

Conjunction 0.68 2.3% Aux Verb -1.46 2.7%
Cognitive Proc 0.64 4.2% Body -1.24 0.2%

Insight 0.59 0.7% Time -1.17 1.2%

Table 28: Log-odds-ratio with IDP results using LIWC
categories among competence subsets of LMSysChat
prompts. z-scores reflect the extent that each category
is associated with the high (positive) or low (negative)
warmth subsets, and f reflects category frequency in the
full corpus.

Llama-3.1 (8B)
High Warmth Low Warmth

Term z N Term z N

what 3.62 20.0% n1 -1.87 0.4%
microwave 2.20 0.4% mbr -1.73 0.3%

can 2.08 17.3% risk -1.64 1.2%
bladder 1.93 0.4% write -1.46 17.2%
integrity 1.91 0.3% bond -1.44 0.4%

do 1.66 10.4% skirt -1.44 0.2%
antenna 1.59 0.2% citations -1.44 0.2%

tube 1.58 0.3% cameras -1.39 0.3%
popcorn 1.56 0.2% wavelength -1.38 0.2%
conda 1.56 0.3% saving -1.38 0.2%

Llama-3.2 (1B)
High Warmth Low Warmth

Term z N Term z N

you 2.50 32.0% microwave -1.87 0.4%
the 2.19 122.0% bond -1.81 0.4%
to 2.16 80.8% n1 -1.81 0.4%

and 1.69 65.9% mbr -1.67 0.3%
my 1.62 9.8% lights -1.56 0.4%

accessory 1.62 0.2% risk -1.49 1.2%
river 1.47 0.4% brand -1.43 1.1%
are 1.40 18.5% div -1.40 0.3%

bone 1.40 0.2% pipe -1.40 0.4%
goat 1.39 0.1% meters -1.37 0.5%

OLMo-2 (7B)
High Warmth Low Warmth

Term z N Term z N

you 2.28 32.0% italian -2.18 0.5%
to 2.00 80.7% microwave -1.92 0.4%

email 1.69 1.3% n1 -1.84 0.4%
comma 1.64 1.8% bond -1.84 0.4%

can 1.64 17.4% integrity -1.70 0.3%
separated 1.63 2.0% mbr -1.70 0.3%

tools 1.54 1.7% risk -1.68 1.2%
needed 1.49 2.4% cups -1.54 0.3%
prize 1.48 0.3% pipe -1.48 0.4%

blocks 1.40 0.3% meters -1.47 0.5%

Table 29: Log-odds-ratio with IDP results using tokens
among warmth subsets. z-scores reflect the extent that
each category is associated with the high (positive) or
low (negative) warmth subsets, and f reflects term fre-
quency in the full corpus.
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Llama-3.1 (8B)
High Competence Low Competence

Term z N Term z N

what 3.62 20.0% n1 -1.87 0.4%
microwave 2.20 0.4% mbr -1.73 0.3%

can 2.08 17.3% risk -1.64 1.2%
bladder 1.93 0.4% write -1.46 17.2%
integrity 1.91 0.3% bond -1.44 0.4%

do 1.66 10.4% skirt -1.44 0.2%
antenna 1.59 0.2% citations -1.44 0.2%

tube 1.58 0.3% cameras -1.39 0.3%
popcorn 1.56 0.2% wavelength -1.38 0.2%
conda 1.56 0.3% saving -1.38 0.2%

Llama-3.2 (1B)
High Competence Low Competence

Term z N Term z N

you 2.50 32.0% microwave -1.87 0.4%
the 2.19 122.0% bond -1.81 0.4%
to 2.16 80.8% n1 -1.81 0.4%

and 1.69 65.9% mbr -1.67 0.3%
my 1.62 9.8% lights -1.56 0.4%

accessory 1.62 0.2% risk -1.49 1.2%
river 1.47 0.4% brand -1.43 1.1%
are 1.40 18.5% div -1.40 0.3%

bone 1.40 0.2% pipe -1.40 0.4%
goat 1.39 0.1% meters -1.37 0.5%

OLMo-2 (7B)
High Competence Low Competence

Term z N Term z N

you 2.28 32.0% italian -2.18 0.5%
to 2.00 80.7% microwave -1.92 0.4%

email 1.69 1.3% n1 -1.84 0.4%
comma 1.64 1.8% bond -1.84 0.4%

can 1.64 17.4% integrity -1.70 0.3%
separated 1.63 2.0% mbr -1.70 0.3%

tools 1.54 1.7% risk -1.68 1.2%
needed 1.49 2.4% cups -1.54 0.3%
prize 1.48 0.3% pipe -1.48 0.4%

blocks 1.40 0.3% meters -1.47 0.5%

Table 30: Log-odds-ratio with IDP results using tokens
among competence subsets. z-scores reflect the extent
that each category is associated with the high (positive)
or low (negative) warmth subsets, and f reflects term
frequency in the full corpus.
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