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Abstract

Large Language Models (LLMs) excel in gen-
eral language tasks, motivating their adapta-
tion to specialized domains such as health-
care. Effective domain adaptation typically
involves supervised fine-tuning (SFT) on care-
fully selected instruction-tuning data. Current
data selection methods adopt a data-centric
approach, relying on external annotations and
heuristics to identify externally defined high-
quality or challenging data. Our exploratory
experiments highlight this approach fails to im-
prove the model’s domain performance, due
to misalignment between selected data and the
model’s knowledge distribution. To tackle this,
we propose Decomposed Difficulty-based Data
Selection (3DS), a two-stage model-centric
data selection framework that aligns data selec-
tion with the model’s distribution. 3DS em-
ploys Prompt-Driven Data Selection to fil-
ter out noise based on the model’s knowl-
edge via explicit alignment in Stage#1, then
adopts Decomposed Difficulty-based Data Se-
lection to guide selection via three novel data
difficulty metrics, including Instruction Un-
derstanding, Response Confidence, and Re-
sponse Correctness in Stage#2, enhanced by
an attention-based importance weighting mech-
anism for accurate calibration. Extensive
experiments in the healthcare domain show
3DS outperforms existing methods by up to
2.97% accuracy, with additional validation
in law and general domains, confirming its
generalization ability. Our dataset and code
are open-sourced at https://github.com/
PuppyKnightUniversity/3DS.

1 Introduction

Large Language Models (LLMs) such as proprietary
GPT-4 (OpenAl, 2023), open-sourced LLaMA (Tou-
vron et al., 2023) and Qwen (Bai et al., 2023), have

“These authors contribute equally.
Corresponding authors.

demonstrated remarkable capabilities in language un-
derstanding and generation. Encouraged by their suc-
cesses, there is growing interest in leveraging LLMs
in specialized domains like healthcare, where domain-
specific abilities are required (Sanaei et al., 2023; Harris,
2023; Waisberg et al., 2023) for essential tasks like di-
agnosis (Panagoulias et al., 2024; Ullah et al., 2024;
Ding et al., 2025; Fang et al., 2025), treatment recom-
mendations (Wilhelm et al., 2023; Nwachukwu et al.,
2024; Yao et al., 2024). To address this, many existing
works (Wang et al., 2023a; Zhang et al., 2023; Yang
et al., 2023b; Zhu et al., 2023a; Liao et al., 2025¢) have
tried to adapt LLMs to the medical domain by training
on large-scale healthcare-specific datasets.

An essential step in adapting general LLMs to special-
ized domains is Supervised Fine-Tuning (SFT) on do-
main instruction-tuning datasets. However, large-scale,
unfiltered domain datasets aggregated from multiple
sources often include noise. Directly utilizing such data
can disrupt learning (Wang et al., 2023d, 2024a), hin-
der the identification of knowledge gaps (Havrilla and
Iyer, 2024), and increase the risk of overfitting (Budach
et al., 2022; Wang et al., 2024b), yielding poor perfor-
mance. Recent findings (Zhou et al., 2024) suggest that
a small but carefully selected high-quality dataset can
effectively enhance model’s alignment with instructions
and elicit its abilities in the desired direction, highlight-
ing the necessity of rigorous data selection for domain
adaptation fine-tuning. This presents a critical challenge
in fine-tuning general LLMs to specialized domains:

How to identify and select domain instruction-tuning
data that is most suitable for the target LLM to optimally
elicit its domain-specific abilities?

Previous data selection methods predominantly adopt
a data-centric perspective, typically focusing on two
dimensions: quality and difficulty. For quality, existing
methods rely on powerful external models or manual
rules to identify “high-quality” samples (Liu et al., 2023;
Jietal.,, 2023; Song et al., 2024). They treat quality as
a model-agnostic, intrinsic data property, assuming the
assessments are universally applicable. However, LLMs
differ substantially in architectures and training corpora,
which shape their distinct internal knowledge distribu-
tions. External “high-quality” data may still introduce
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redundancy or conflicting information that impede learn-
ing. For difficulty, methods typically prioritize the most
challenging samples based on heuristic metrics (Li et al.,
2024b,a). However, recent studies (Gekhman et al.,
2024; Ren et al., 2024) have revealed that fine-tuning
LLMs on data beyond their pre-trained knowledge dis-
tribution, particularly unfamiliar content, can lead to
severe hallucinations, which underscores the potential
risk of selecting hardest samples. A common limitation
of these methods is their lack of consideration for model-
specific compatibility, both external “high-quality” data
or most challenging data could be misaligned with the
model’s distribution and lead to suboptimal results.

Motivated by this gap, we propose a new hypothesis:
data selection should be model-centric, tailored to align
with the model’s knowledge distribution.

To validate this hypothesis, we conduct a pilot study
guided by two research questions: RQ#1. Is model-
centric quality selection more effective than external
quality scoring? RQ#2. Is model-centric difficulty
selection more effective than prioritizing the hardest
samples? The results demonstrate that model-centric
data selection, which relies on the target model’s own
assessment of data quality and selection of appropriately
difficult data, consistently outperforms selection guided
by external criteria.

While these findings highlight the importance of

model-centric data selection, its practical application
still faces substantial challenges:
@ Challenge#1. How to identify high-quality data
based on the model’s knowledge distribution? Re-
dundant knowledge that the model already possesses
and conflicting information against the model’s knowl-
edge hinders learning (Ren et al., 2024; Gekhman et al.,
2024). Selecting high-quality data based on the model’s
knowledge distribution is thus necessary, but inherently
challenging due to the complexity and opacity of LLMs
® Challenge#2. How to properly balance the selected
data difficulty with the model’s learning capacity?
Overly simplistic data wastes training resources and
may cause overfitting, while excessively complex data
can overwhelm the model, impeding effective learn-
ing (Kang et al., 2024; Lin et al.; Liao et al., 2025a).
Accurately assessing difficulty based on the model’s
distribution to guide selection is thus crucial. How-
ever, there isn’t an effective metric to comprehensively
measure the model’s knowledge state and its ability to
handle complex data.

To tackle these challenges, we propose Decomposed
Difficulty-based Data Selection (3DS), a two-stage
model-centric data selection framework which aligns
data selection with the model’s distribution to opti-
mize domain fine-tuning. For Challenge#1, we pro-
pose Prompt-Driven Data Selection via Explicit Align-
ment, leveraging the target model’s own evaluations
to explicitly select high-quality data, ensuring that the
remaining data lies within the model’s knowledge dis-
tribution. For Challenge#2, inspired by the general hu-
man problem-solving process (Polya and Pélya, 2014;

OECD, 2014)—understanding the problem, building
confidence, and producing a solution, we propose novel
Decomposed Difficulty-based Data Selection via Im-
plicit Alignment, extending traditional perplexity (PPL)
measures with three difficulty metrics: Instruction Un-
derstanding Difficulty, Response Confidence Difficulty,
and Response Correctness Difficulty. Furthermore, an
attention-based importance weighting mechanism cap-
tures token-level importance and calibrates difficulty
calculations. In summary, our contributions are:

* We introduce 3DS, a two-stage model-centric data
selection framework, aligning training data with the
model’s knowledge distribution, optimizing domain
adaptation fine-tuning.

* We propose a novel difficulty decomposition strategy,
employing fine-grained metrics: Instruction Under-
standing, Response Confidence, and Response Cor-
rectness, for accurate data difficulty quantification
tailored to domain-specific fine-tuning.

* Comprehensive experiments on Chinese medical
datasets demonstrate that 3DS outperforms existing
methods, significantly boosting LLMs’ performance.
Additional experiments on law domain also showcase
3DS’s generalization ability.

* We have open-sourced a carefully curated Chinese
medical dataset, including medical dialogues and
domain-specific instructions, to support further re-
search in healthcare-oriented LLM.

2 Importance of Model-Centric Selection

In this section, we empirically investigate the impor-
tance of model-centric data selection by studying the
following two research questions:

e RQ#1. Is model-centric quality selection more effec-
tive than external quality scoring?

o RQ#2. Is model-centric difficulty selection more effec-
tive than prioritizing the objectively hardest samples?

2.1 Experimental Setup

In both investigations, we utilized two models:
DeepSeek-R1 (Guo et al., 2025), an external model
regarded as strong and capable, which is expected
to provide reliable data evaluation, and LLaMA3-8B-
Instruct (Grattafiori et al., 2024), the target model in-
tended for domain fine-tuning. We utilized a large-scale
Chinese medical instruction-tuning dataset and designed
tailored prompts to assess data quality and difficulty (see
Appendix J.1 and J.2).

2.2 Model-Centric vs. External Quality Selection

To answer RQ#1, we prompted both the external model
and the target model to assess data quality based on
their knowledge. From data scored above a predefined
threshold by each model, we randomly selected SK
samples and fine-tuned LLaMA3-8B-Instruct on each
subset. Performance evaluated on two Chinese medi-
cal multiple-choice question benchmarks (Zeng, 2023;
Wang et al., 2023c) is shown in Table 1.
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Surprisingly, fine-tuning on high-quality data selected
by the strong DeepSeek-R1 led to performance degra-
dation of LLaMA3-8B-Instruct, while data selected by
LLaMAS3-8B-Instruct itself significantly improved its
performance. This discrepancy likely stems from a
misalignment between the external quality assessment
and the target model’s inherent knowledge distribution.
Based on this, we derive our first key observation:

Observation I: Model-centric quality selection yields
better performance than external quality scoring.

2.3 Model-Centric vs. External Difficulty Selection

To answer RQ#2, we evaluated the commonly held
assumption that training on the most challenging data
improves model abilities. Similar to the previous inves-
tigation, we prompted DeepSeek-R1 and LLaMA3-8B-
Instruct to score data difficulty based on their knowl-
edge. The dataset was partitioned into Easy, Medium,
and Hard subsets, according to difficulty scores from
each model. We then fine-tuned LLaM A3-8B-Instruct
on randomly selected 5K samples from each subset,
and compared their performance across medical bench-
marks, with results shown in Table 2.

Fine-tuning on Easy and Medium subsets consistently
outperformed training on Hard subset, with Medium
subset yielding more stable improvements. This indi-
cates that overly difficult data likely exceeding model’s
knowledge, adversely impacts learning, while overly
simple data fails to sufficiently benefit fine-tuning. Addi-
tionally, difficulty assessments from LLaMA3-8B itself
consistently led to better results compared to external
evaluations by DeepSeek-R1, which validates the neces-
sity of model-centric difficulty evaluation and selection.
This motivates our second and third key observations:
Observation I1: Difficulty scoring based on the target
model yields more reliable performance than scores
provided by an external model.

Observation III: Moderately difficult data leads to
more stable and effective performance improvements.

Data Annotator CMB-Exam MMCU-Med

No SFT N/A 41.72 46.47

Hich lit DeepSeek-R1 39.70 42.46
1gh-quality 11 aMA3-8B 43.71 47.57

Table 1: High-quality Data Selection Results (%). Im-
provements over the original model are in bold.

2.4 Conclusion and Motivation

Both investigations lead to a key conclusion: effective
data selection for domain adaptation fine-tuning requires
alignment with the target model’s knowledge distribu-
tion. External assessed high-quality data may not suit
the target model, and excessively difficult data may in-
troduce unfamiliar, out-of-distribution content, causing
suboptimal outcomes.

Motivated by these observations, we propose to shift
from conventional data-centric selection strategies to-
ward a model-centric approach. Specifically, data se-
lection should be guided by the target model, ensuring

Data Annotator CMB-Exam MMCU-Med
No SFT N/A 41.72 46.47
E DeepSeek-R1 41.03 45.76
asy LLaMA3-8B 41.53 48.00
Medi DeepSeek-R1 41.76 45.26
edium 7 1 aMA3-8B 41.75 46.72
Hard DeepSeek-R1 40.50 44.06
a LLaMA3-8B 40.62 45.23

Table 2: Difficult Data Selection Results (%). Improve-
ments over the original model are in bold.

that the selected data are considered as high-quality (ad-
dressing Observation I) and appropriately challenging
by the target model (addressing Observation II and
III), thus achieving close alignment with its knowledge
distribution and learning capacity. Building on this in-
sight, we propose our novel model-centric framework
3DS in the following sections.

3 Methodology

Task Formulation We formally define the Data Se-
lection for Domain Adaptation Fine-tuning task. Let:

* My denotes the target model to be fine-tuned, which
is a pre-trained and generally fine-tuned LLM (e.g.,
LLaMA-chat) parameterized by 6.

o X = {zW}N, denotes the full domain-specific
dataset where each sample z() =< Q) A®) > con-
sists of instruction Q) = {qgi), qéi), . ,qy(,i;)}, and
response A" = {agi), agi), o ag)}. Here ¢%), o
denote individual tokens within the instruction and
response sets, respectively.

* k € N7 denotes a fixed data budget, where k < |X].

The task is to identify an optimal subset S* C X that
maximizes the target domain performance of the fine-
tuned model M}, formally:

§* = argmax E¢ ), [P(Mo (2;S),y)], (1
SCX,|S|=k

where Dy, is the target domain test distribution con-
taining diverse tasks; P : Y x Y — [0, 1] is the perfor-
mance metric (e.g., accuracy, BLEU), and My is My
fine-tunedon S, ie., 0 = 0—nVy ) o L(Mo(x),x),
with learning rate n and loss function L.

3.1 Stage#1: Prompt-Driven Data Selection via
Explicit Alignment

The first stage of 3DS is to identify high-quality data
based on the model’s knowledge. As illustrated in Fig-
ure 1, a quality-rating prompt, detailed in Appendix J.1,
is used to instruct My to score data quality based on its
inner knowledge to explicitly align data, filtering out
noise from the original large-scale dataset to avoid con-
flicting information. After obtaining model-generated
scores, samples with scores exceeding a predefined
threshold § are retained for the next selection.
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Figure 1: 3DS framework. Stage#1: Prompt-Driven Data Selection selects high-quality data via explicit alignment.
Stage#2: Decomposed Difficulty-based Data Selection decomposes data difficulty via modeling LLM’s implicit
distribution and filters data. Attention-based importance weighting calibrates difficulty calculation.

3.2 Stage#2: Decomposed Difficulty-based Data
Selection via Implicit Alignment

The second stage of 3DS is to analyze data difficulty via
implicit distribution modeling of Mpy, thereby balancing
the selected data difficulty with the model’s learning
capacity. To achieve this, we employ a fine-grained
evaluation for data difficulty.

Inspired by the general problem-solving pro-
cess (Polya and Pdlya, 2014; OECD, 2014)—under-
standing the problem, building confidence, and pro-
ducing a solution—we decompose data difficulty into
three key components to reflect the model’s understand-
ing: (1) Instruction Understanding Difficulty measures
whether the model comprehends the instruction. (2)
Response Confidence Difficulty measures the model’s
confidence in its response. (3) Response Correctness
Difficulty measures whether the model can generate a
response that accurately matches the reference answer.
To enhance the precision of difficulty calculations, we
incorporate an attention-based importance weighting
mechanism that calibrates difficulty by accounting for
the varying semantic significance of output tokens. We
now detail the quantification of these decomposed diffi-
culties and the corresponding selection strategy.

(1) Instruction Understanding Difficulty. Challeng-
ing data often comes with complex instructions. In
specialized domains like healthcare, instructions may
contain intricate terminologies, making instruction com-
prehension a key factor of data difficulty. To capture
this, we introduce Instruction Understanding Difficulty.
Previous research (Gonen et al., 2023) shows that lower
model perplexity over a prompt correlates with better
understanding and performance. Building on this in-

sight, we further recognize that perplexity inherently
captures the predictive uncertainty from model’s distri-
bution. Consequently, we employ model perplexity as a
measure to quantify data difficulty from the model’s per-
spective. Formally, for a model My, given a data sample
x =< @, A > with instruction Q = {q1,92,..-Gm},
its Instruction Understanding Difficulty is defined as:

( )
= exp :

where Py(qilq1, gz, - - ., ¢i—1) represents the probability
My generates the i-th token in instruction () given the
preceding tokens. Higher perplexity indicates greater
difficulty for the model to comprehend the instruction.

Dlg(z) = PPLy(Q)

1 m
- ZlogPQ(qi|q17QQ7 .. 'aqi—l)
m

i=1

(2) Response Confidence Difficulty. When encoun-
tering challenging data, models often struggle to provide
a confident response. This uncertainty arises from its
inability to handle the task and determine the most ap-
propriate response, similar to human learners (Preheim
et al., 2023), which indicates high data difficulty. To
quantify this difficulty, we introduce Response Confi-
dence Difficulty, measured by the model’s conditional
perplexity when generating a response given the instruc-
tion. Formally, for a model Mpy, given a data sam-
ple x =< @, A > with instruction ) is and model-
generated response A’ = {a}, a5 ...,al, } based on Q,
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its Response Confidence Difficulty is defined as:
D2y (x) = PPLy(A'|Q)

1 n
=exp | —— ZlogPe(aHa’17 ay, ..., a5_1,Q)
j=1
3
Higher conditional perplexity indicates greater uncer-
tainty in the model’s distribution and greater difficulty
for the model to provide a confident answer.

(3) Response Correctness Difficulty. For instruction-
tuning data with reference answers, it is essential to
assess the model’s ability to generate correct responses
to assess data difficulty. We introduce Response Cor-
rectness Difficulty, measured by the model’s condi-
tional perplexity when generating the reference answer
A ={ay,as...,a,} given instruction Q.

D3y(z) = PPLy(A|Q)

1 n
= —— log Py(a, cey Qi
€xXp n; og e(a]|a17a27 7a] 17Q)
“
Higher conditional perplexity indicates greater difficulty
in producing the correct response, suggesting the sample
poses more challenge for the model.

Attention-based importance weighting mechanism.
Response Confidence and Response Correctness Dif-
ficulties rely on evaluating the uncertainty inherent in
the model’s generation process. While conditional per-
plexity serves as an effective proxy, it treats all tokens
equally, disregarding their varying semantic importance.
While key tokens significantly influence the meaning
and correctness of a response, trivial tokens like con-
junctions may exhibit high uncertainty without substan-
tially influencing semantics. This can lead to inaccurate
data difficulty assessments. To address this, inspired
by Su et al. (2024), we introduce an attention-based
importance weighting mechanism that adjusts token’s
uncertainty contributions by weighting based on their
semantic importance. We argue that critical tokens are
those playing a pivotal role in guiding subsequent gen-
erations. Therefore, we derive importance scores from
the model’s internal attention mechanism. Specifically,
for a token sequence s = {¢1,t2,...,t;,...,t,}, when
a transformer-based LLM generates token t;(¢ < j), it
computes the attention weight A;; by applying a soft-
max function to the dot product of the query vector g;
and the key vector k;:

Aji = (a5 - ki) //dr, §))

where dj, is the dimension of k;. Aj; represents the
attention the model pays to token ¢; when generating
token t;, reflecting the importance of ¢;. We define the
importance score of token ¢; as the aggregated attention
weight it receives from all subsequent tokens:

I(t;) = Aggr_e>g_ate (Ajs). (6)
j>i

We use mean aggregation to compute token importance
scores. Using these scores, Response Confidence and
Response Correctness Difficulties are refined as:

Atten-D2y(z) = weightedPPLy(A’|Q)
— exp (_ Zj:ill(tj) . ¢j> ’ 7)
Zj:l I(tj)
aa_/j—h Q)a

) = log Py(aj|a} . dj. ..

Atten-D3g(z) = weightedPPLy(A|Q)
Z?—1 I(tj) X
=exp| —*H—F7", (8)
. ajflv Q)
By integrating attention-based importance weights,
this mechanism prioritizes tokens crucial for semantic

correctness and clarity, offering a more accurate estima-
tion of model uncertainty and data difficulty.

¢; =log Py(ajlai, as, ..

Selection Strategy based on Decomposed Difficulty.
Based on the decomposed data difficulties, 3DS identi-
fies samples whose difficulty metrics fall within a pre-
defined middle range, discarding either trivially easy or
overly complex data, focusing on moderately challeng-
ing samples that match the model’s learning capacity.
K-Center sampling (introduced in Appendix C) based
on instruction embeddings is then applied on this subset
to enhance data diversity, reducing the risk of overfitting
on highly similar samples.

3.3 Model-Centric Data Selection Framework

The overall architecture of our model-centric data selec-
tion framework is illustrated in Figure 1. Pseudo codes
of the process are shown in Appendix A.

4 Main Experiments

4.1 Experimental Setup

Training dataset. For medical domain adaptation
fine-tuning, we construct a comprehensive medical
instruction-tuning dataset of diversity and abundance.
The dataset comprises over 1.9M samples, with its statis-
tics provided in Table 10 and data construction details
introduced in Appendix B. We have released this com-
plete training dataset to support further research.

Evaluation datasets. We assess models on diverse
medical test datasets: two multi-task, multiple-choice
datasets, MMCU-Med (Zeng, 2023) and CMB-Exam
(Wang et al., 2023c), and an open Q&A dataset, CMB-
Clin (Wang et al., 2023c). Data statistics are provided
in Table 11. MMCU-Med and CMB-Exam, consisting
of medical exam questions, assess the model’s reason-
ing and medical knowledge application abilities with
accuracy as the metric. CMB-Clin, comprising patient
record analysis tasks, assesses the model’s complex
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Method LLM Turbo| Baichuan2-13B-Chat Qwen1.5-7B-Instruct Qwen2.5-7B-Instruct LLaMA3-8B-Instruct Ave.
Dataset |CMB-Exam MMCU-Med | CMB-Exam MMCU-Med | CMB-Exam MMCU-Med | CMB-Exam MMCU-Med

Base 46.67 47.11 59.80 64.24 78.28 83.43 41.72 46.47 58.47

Full-SFT 40.38 37.90 48.05 47.53 71.04 75.49 40.85 46.72 51.00

Random 44.07 47.61 61.81 65.10 75.92 82.41 41.54 45.23 57.96

Baselines Alpagasus 42.24 43.56 55.67 58.74 69.90 78.08 41.60 45.26 54.38

DEITA 46.78 49.88 45.33 44.09 74.07 81.59 41.31 45.80 53.60

MoDS 47.25 50.37 61.09 64.67 76.31 82.23 39.25 42.53 57.96

IFD 46.44 50.08 62.06 65.37 78.17 84.57 38.25 40.48 58.18

LESS 45.79 51.01 60.74 64.85 78.83 83.20 41.80 44.63 58.86

Ours 3DS 47.37 51.08 61.96 66.09 79.06 85.70 43.95 49.70 60.61

*Performance Gain 1 0.70 3.97 2.16 1.85 0.78 2.27 2.23 3.23 2.14

Table 3: Performance comparison (%) on CMB-Exam and MMCU-Med of EM score.

highlighted in bold. Performance gains are measured against the base model.

The best performance is

Method LLM Turbo Baichuan2-13B-Chat Qwenl.5-7B-Instruct Qwen2.5-7B-Instruct LLaMAS3-8B-Instruct Ave.
Metric |BLEU-1 BLEU-4 ROUGE |BLEU-1 BLEU-4 ROUGE |BLEU-1 BLEU-4 ROUGE |BLEU-1 BLEU-4 ROUGE

Base 11.15 21.02 14.08 16.17 32.03 16.31 21.87 64.11 36.74 5.06 35.09 10.40 |23.67

Full-SFT 7.19 16.33 11.70 6.68 16.61 9.62 16.72 36.52 19.84 2.80 6.87 6.58 |13.12

Random 12.14 2595 14.75 16.09 34.45 16.19 16.49 33.68 17.89 9.01 25.49 12.14 |19.52

Baselines Alpagasus 10.16 20.42 12.58 14.48 31.63 14.77 16.85 35.74 18.77 8.66 22.51 12.36 |18.24

DEITA 19.42 42.07 19.32 1892 4293 20.32 21.71 49.33 23.40 9.91 23.33 13.86 [25.38

MoDS 2243 51.02 22.85 17.61 39.19 19.93 18.83 41.31 21.45 12.38 29.74 15.33 |26.01

IFD 2144 5173 24.94 19.24  43.10  21.08 18.07 39.16  20.28 10.59 29.32 14.83 |26.15

LESS 13.27 29.20 16.40 17.48 38.88 17.58 19.08 4520 2242 11.82 31.98 15.55 |23.24

Ours 3DS 24.15 63.51 31.50 | 24.40 60.32  28.07 22.05 6495 37.11 12.52 36.88 17.09 |35.21

*Performance Gain 1 | 13.00  42.49 17.42 9.45 29.49 11.92 0.18 0.84 0.37 7.46 1.79 6.69 |11.54

Table 4: Performance comparison (%) on CMB-Clin. The best performance is highlighted in bold. Performance

gains are measured against the base model.

medical analysis ability, with BLEU-1, BLEU-4 and
ROUGE as the metric (detailed in Appendix F). To-
gether, these datasets provide a comprehensive evalua-
tion of the model’s proficiency in the medical domain.

Models. Experiments are conducted on instruct mod-
els of varying architectures and parameter sizes:
Baichuan2-13B-Chat (Yang et al., 2023a), Qwenl.5-
7B-Instruct, Qwen2.5-7B-Instruct (Bai et al., 2023) and
LLaMAS3-8B-Instruct (Touvron et al., 2023).

Baselines. We compare 3DS with a series of LLM
fine-tuning data selection strategies. (1) Base directly
tests models without further fine-tuning. (2) Full-SFT
fine-tunes models on the full training set. (3) Random
Selection randomly selects data. (4) Alpagasus (Chen
etal.,2023a) utilizes GPT-4 to identify high-quality data.
(5) DEITA (Liu et al., 2023) trains quality and com-
plexity scorers and selects data according to their judg-
ments (6) MoDS (Du et al., 2023) filters high-quality
data via a reward model, and selects data necessary for
model learning through training and inference processes.
(7) IFD (Li et al., 2024a,b) designs instruction follow-
ing difficulty metric based on the ground truth output
loss with or without inputs. (8) LESS (Xia et al., 2024)
searches for training data similar to target task examples
through low-rank gradient similarity. The implementa-
tion details are introduced in Appendix D.

Implementations. The data budget is 5K samples. In
3DS, Prompt-Driven Data Selection retains samples
with a quality score > 90. In subsequent Decomposed

Difficulty-based Data Selection, difficulty thresholds
are determined via experiments on CMB hold-out val-
idation set. Specifically, for Baichuan2-13B-Chat, the
thresholds are set to 15% and 65%; for Qwen1.5-7B-
Instruct and Qwen2.5-7B-Instruct, 25% and 75%; and
40% and 90% for LLaMA3-8B-Instruct. More imple-
mentation details are introduced in Appendix E.

4.2 Main Results

Experiment results are shown in Table 3 and Table 4.
We summarize our findings below.

Data selection is necessary for LLM domain adapta-
tion fine-tuning. We observe that fine-tuning LLMs
on the full 1.9 million dataset (Full-SFT) leads to drastic
performance drops across three benchmarks. This sug-
gests that domain datasets directly collected from public
resources contain significant noise that hinders model
learning, highlighting the necessity of data selection.

3DS effectively enhances LLM’s diverse domain
abilities, significantly outperforming baselines. As
shown in Table 3 and Table 4, across various bench-
marks and LLM backbones, 3DS generally achieves
the highest accuracy, outperforming the backbones and
strong data selection baselines. On medical exam
datasets, it improves base model performance by up to
8.43% (on MMCU-Med for Baichuan2-13B-Chat), and
exceeds the best baseline an average of 2.97%, greatly
enhancing the model’s medical knowledge application
abilities. On the open Q&A CMB-Clin, models fine-
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tuned with 3DS significantly outperforms all baselines
by a large margin, exhibiting superior medical analy-
sis ability. To more comprehensively analyze model’s
domain performance, for CMB-Clin, we also conduct
a pair-wise comparison using GPT-4o as the judge, de-
tailed in Appendix G.1. Both the quantitative and quali-
tative evidence demonstrate that 3DS boosts the model’s
multi-faceted domain abilities.

In contrast, methods relying on external, model-
agnostic data evaluations, such as Alpagasus and
DEITA, often lead to performance declines, especially
on Qwen models. This further validates our previous
conclusion that misalignment between selected data and
the model hinders learning. Baselines MoDS and IFD
show relatively strong results due to their considera-
tions of model distribution and data difficulty. However,
their selection on the most challenging data also proves
inefficient, as they only bring marginal improvements
across tasks and even underperform the backbone and
random selection on LLaMA3-8B-Instruct. Baseline
LESS, which aims to enhance performance on one spe-
cific downstream task, fails to generalize to domain
adaptation fine-tuning where diverse abilities need to
be improved, leading to performance degradation on
MMCU-Med for Baichuan2-13B-Chat.

3DS exhibits strong generalization ability. 3DS’s
consistent performance gains across backbones and
benchmarks highlight its generalization ability to adapt
to different models and domain tasks. To further validate
the practicality of 3DS, we compare models fine-tuned
using 3DS-with existing medical LLMs, with results
shown in Appendix G.2.

4.3 Ablation Studies

3DS is composed of two stages, and in Stage#2, three
difficulty metrics are proposed. To validate the effec-
tiveness of each component, we conduct comprehen-
sive ablation studies. Without loss of generality, experi-
ments are done on Baichuan2-13B-Chat and Qwen1.5-
7B-Instruct. Main results are shown in Table 5, and
additional metrics are in Appendix G.3.

Ablation on stages. To evaluate the contributions of
each stage in 3DS, we compare: (1) removing Stage#1,
where 70K samples are randomly sampled from the com-
plete training dataset for subsequent difficulty-based
selection, and (2) removing Stage#2, where K-Center
sampling is directly applied to the high-quality samples
identified in stage#1. Additionally, to validate the ne-
cessity of decomposed difficulty calculation based on
model perplexity, we investigate (3) collapsing Stage#2
into Stage#1, where the model is prompted to verbalize
its assessments of the three data difficulties (correspond-
ing prompts are shown in Appendix J.3), bypassing the
original difficulty calculation.

The results show a consistent pattern: each modifica-
tion leads to a decrease in performance compared to
the original method, emphasizing the necessity of qual-
ity controls and selecting appropriately difficult data.

When Stage#2 is collapsed into Stage#1 via difficulty
evaluation prompts, performance also degrades. During
experiments, we observe that LLMs struggle to provide
fine-grained assessments of data difficulty, often gen-
erating coarse-grained scores such as 0.5, 0.8, and 1.
This lack of granularity makes it challenging to identify
nuanced differences in data difficulty and select targeted
data with desired moderate difficulties.

While results on multiple-choice benchmarks do not
indicate which stage is more important, the analysis
performance on CMB-Clin reveals a clearer trend: re-
moving Stage#1 leads to the poorest performance, fol-
lowed by removing Stage#2 and collapsing Stage#2
into Stage#1. This pattern highlights the crucial role of
quality control for the model to provide coherent and
high-quality answers. Difficulty-based selection is also
essential, as even coarser-grained difficulty measure-
ments by model verbalization yield better results than
ignoring difficulty at all. This progressive improvement
further reinforces the two-stage design of 3DS.

Ablation on difficulty metrics. We remove each
of the three metrics, Instruction Understanding, Re-
sponse Confidence, and Response Correctness and run
3DS without any other modifications. The results in
Table 5 demonstrate that, in general, removing any sin-
gle component results in noticeable performance drops,
indicating a decline in certain aspects of the model’s
medical abilities. These observations validate the neces-
sity of each difficulty metric in identifying beneficial
data samples for enhancing LLM’s domain abilities.
Additionally, removing the attention-based importance
weighting mechanism also brings performance declines,
which validates its effectiveness.

Additional ablation studies on data budgets are intro-
duced in Appendix G.4.

4.4 TImpact of Difficulty Thresholds

[ R EEE SRR EEE SR ]

Ae——h—— ke ——k——A———A
046

Baichuan2-13b-3ds  -l- Baichuan2-13b
30 35 40 45 50 55 30
Sample Center (%)

(a) Baichuan2-13B-Chat

- Qwen-1.5-7b-3ds A~ Qwen-L5-Tb
35 40 45 30 55
Sample Center (%)

(b) Qwen1.5-7B-Instruct

Figure 2: Impact of difficulty thresholds on model per-
formance. Varying difficulty thresholds affect the accu-
racy of the models across different center percentile of
selected difficulty range (%).

We conduct sliding-window experiments, varying the
selection difficulty ranges (o & 25%), to investigate how
training data difficulty affects the model’s medical do-
main fine-tuning. As shown in Figure 2, the model’s
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LLM Turbo Baichuan2-13B-Chat Qwenl1.5-7B-Instruct Ave.
Benchmark CMB-Exam MMCU-Med CMB-Clin | CMB-Exam MMCU-Med CMB-Clin

w/o Stage#1 44.64 48.06 16.19 60.37 64.03 15.88 |41.53

w/o Stage#2 47.09 50.83 21.83 61.59 65.91 21.55 [44.80

Stage#2 Collapsed into Stage#1 47.28 51.01 22.69 60.56 63.99 2341 |44.82

w/o D1 47.35 50.59 23.99 61.47 65.80 24.68 |45.65

w/o D2 47.34 47.18 23.54 62.00 66.05 23.84 4499

w/o D3 47.07 50.59 23.08 61.64 65.73 23.83 4532

w/o Atten 47.10 50.19 29.58 61.79 65.84 27.69 |47.03

3DS 47.37 51.08 31.50 61.96 66.09 28.07 |47.68

Table 5: Performance comparisons (%) on CMB-Exam, MMCU-Med and CMB-Clin of ablation studies on stages
and difficulty metrics of 3DS. For CMB-Clin, the ROUGE score is reported.

performance improves as difficulties increase, reach-
ing a peak before declining. This pattern further high-
lights the importance of selecting data that best suits the
model’s learning capacity. Training on overly simple
data limits improvements, while training on excessively
difficult data impedes effective learning.

Model Metric Pair  Pearsonr Spearman p
Instr. vs Conf. 0.0272 0.1458

Qwen2.5-7B  Instr. vs Corr. -0.0446 -0.0946
Conf. vs Corr. 0.0359 0.0270
Instr. vs Conf. -0.0367 0.1188

LLaMA3-8B Instr. vs Corr. 0.0400 0.2736
Conf. vs Corr. 0.0589 0.0959

Table 6: Correlation analysis of difficulty metrics.

Model Per Metric 3-Way Intersection Ratio
Qwen2.5-7B 34,715 9,744 28.1%
LLaMA3-8B 19,963 5,701 28.6%

Table 7: Sample overlap across difficulty metrics.

4.5 Independence of Difficulty Metrics

The three difficulty metrics, Instruction Understanding,
Response Confidence, and Response Correctness, are all
derived from model perplexity. To validate these metrics
provide sufficiently independent signals and contribute
complementary information to selection, we examine
the independence of the metrics. We computed Pearson
and Spearman correlations between each pair of metrics
on the medical dataset using Qwen2.5-7B and LLaMA3-
8B. As shown in Table 6, correlations are consistently
low, indicating that the metrics capture complementary
aspects of difficulty. We further examined the overlap
of samples within the intermediate range of each metric.
As shown in Table 7, the small intersection of sam-
ples confirms that the metrics are not redundant and the
combined selection meaningfully filters the data space.
Overall, both correlation and overlap analyses validate
the complementarity of our decomposed metrics, ex-
plaining why their joint use leads to stronger domain

adaptation performance.

5 Generalization to Other Domains

Method Accuracy Std. Dev.
No SFT 57.77 0.25
+Random 73.40 0.80
+IFD 60.30 2.62
+3DS 76.13 0.80

Table 8: Accuracy (%) comparison on law domain.

Method Overall Bio Physics Philosophy
No SFT 61.94 77.08  56.60 67.52
+Random  63.25 75.69 5745 69.45
+IFD 6291  79.17 57.02 66.88
+3DS 65.08 81.25 59.57 74.79

Table 9: Accuracy (%) comparison on MMLU.

While our pilot study and main experiments focus on
adapting LL.Ms to the medical domain using Chinese-
language data, we note that our 3DS is intrinsically
domain-agnostic. To validate its cross-domain general-
ization ability, we conduct additional experiments on
LLaMA3-8B-Instruct on the law and general domains.

5.1 Law Domain

On the law domain, experiments are done on an English-
language dataset CaseHOLD (Zheng et al., 2021), with
details of experiment setups introduced in Appendix I.
We compare 3DS with random selection and a strong
baseline IFD. The results in Table 8 demonstrate that
3DS consistently outperforms baselines in terms of ac-
curacy, achieving an average accuracy of 76.13% with
low variance. These results suggest that our model-
centric data selection 3DS is effective for specialized
domains beyond healthcare.
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5.2 General Domain

To further assess cross-domain generalization, we
benchmark 3DS on the English MMLU (Hendrycks
et al.) dataset, which contains tasks from a wide range
of domains including natural sciences, humanities, and
social sciences. Details of experiment setups are intro-
duced in Appendix I. Table 9 reports both overall accu-
racy and representative subject results. 3DS achieves
the highest overall accuracy (65.08%), outperforming
both Random and IFD. Moreover, it yields consistent
gains across heterogeneous subjects such as College
Biology, Conceptual Physics, and Philosophy. These
improvements highlight that 3DS not only generalizes
to another specialized domain but also scales to a broad,
high-resource, multi-domain benchmark, reinforcing its
robustness and wide applicability.

6 Related Work

Data Selection for LLM Training Data selection
for LLM training has been widely explored. Some
works (Das and Khetan, 2023) focus on diversity via
statistical clustering or core-set selection, but often over-
look data quality and risk introducing noise that hinders
training. To address quality concerns, some works em-
ploy external evaluators like proprietary LLMs (Chen
et al., 2023a; Liu et al., 2023; Wettig et al., 2024) or
reward models (Du et al., 2023; Liao et al., 2025b) to
select high-quality data. However, due to distributional
gaps between external evaluators and the target model,
data labeled as high-quality may still contain redundant
or conflicting information, limiting its effectiveness. An-
other line of work leverages internal signals from the
model itself, such as perplexity (Marion et al., 2023),
gradients (Xia et al., 2024), or derived metrics like data
learnability (Zhou et al., 2023), instruction following dif-
ficulty (Li et al., 2024b,a) and V-usable information (Lu
et al., 2023; Ethayarajh et al., 2022). While these sig-
nals provide more direct insights into the model’s un-
derstanding of data, they typically offer only coarse
difficulty estimates, failing to capture different aspects
of data complexity or account for the model’s generation
behavior. Their focus on the hardest data also risks over-
whelming the model. Though related to active learn-
ing (Yoo and Kweon, 2019; Karamcheti et al., 2021;
Mindermann et al., 2022) in challenges and insights,
LLM data selection differs in scale and objectives. In
this work, we focus exclusively on data selection tai-
lored for LLMs. We note that existing data selection
methods for LLMs mainly focus on pre-training, gen-
eral instruction-tuning (transforming a base model into
a chat model), or task-specific fine-tuning. In contrast,
data selection for domain adaptation fine-tuning remains
underexplored, where unique challenges lie in selecting
data that best elicit the model’s diverse domain abilities.
To bridge this gap and overcome the limitations of cur-
rent methods, we introduce a novel model-centric data
selection framework and provide fine-grained analysis
of data difficulty, enabling better aligned data selection

for LLM domain adaptation fine-tuning.

Data Learnability in LLM SFT LLMs encounter
significant challenges when learning unfamiliar or com-
plex knowledge during supervised fine-tuning, particu-
larly when the data was not encountered during pre-
training, which can impede domain adaptation fine-
tuning. Gekhman et al. (2024) found that models ac-
quire new factual knowledge slowly during SFT, espe-
cially when the information diverges from their pre-
existing understanding, leading to a higher risk of
hallucinations. Ren et al. (2024) further shows that
when the knowledge introduced during Instruction Fine-
tuning significantly differs from what was learned in
pre-training, the model struggles to integrate it, causing
performance degradation. This highlights the difficulty
models face in using pre-training knowledge to under-
stand new concepts. Kang et al. (2024) also emphasizes
that unfamiliar examples during fine-tuning increase
the likelihood of hallucinations, suggesting that high-
difficulty data can destabilize the model and negatively
impact its ability to adapt to new domains. Together,
these findings underscore the risks associated with fine-
tuning on excessively difficult data, which can under-
mine model performance in domain-specific tasks.

7 Conclusion

In this paper, we highlight the importance of selecting
data aligned with the model’s distribution for LLM do-
main adaptation fine-tuning through a pilot study. To
this end, we propose a two-stage model-centric data se-
lection framework 3DS. Stage#1 explicitly aligns data
with the LLM’s knowledge through prompt-driven se-
lection. The Stage#2 implicitly aligns data via difficulty
decomposition. Leveraging Instruction Understanding,
Response Confidence, and Response Correctness diffi-
culties calibrated by attention-based importance weight-
ing, 3DS effectively models the LLM’s implicit distri-
bution and selects data well-matched to its learning ca-
pacity. Extensive experiments on multiple medical and
legal tasks show significant performance gains, demon-
strating 3DS’s effectiveness and generalization ability.
Overall, we offer a path toward more efficient LLM do-
main adaptation fine-tuning. Future work will explore
extending the framework to more domains and refin-
ing training strategies based on difficulty metrics for
broader applications.

Limitations

Due to time and resource constraints, we have only
validated our method in the medical, law and general
domains. The results show that 3DS is domain-agnostic
and adaptable to other fields. However, further exper-
iments may still be needed to fully verify its general-
ization. 3DS requires the model to rate the entire train-
ing set and perform inference on the selected subset.
Although in experiments, we utilize VLLM to acceler-
ate the process, it still involves certain computational
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costs. 3DS performs data selection prior to fine-tuning.
Considering that the model’s evaluation of data diffi-
culty may evolve during training, future research should
explore dynamic selection that adapts to the model’s
changing state. Additionally, data filtered out is cur-
rently discarded. Future work should consider integrat-
ing mechanisms such as human-in-the-loop validation
or strategies to recover potentially relevant and valuable
data from the discarded pool. Finally, considerations
for social bias and fairness issues are discussed in Ap-
pendix K.
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A Pseudo Codes of 3DS
We provide the pseudo codes of 3DS in Algorithm 1.

Algorithm 1: Model-Centric Data Selection
Framework
Input: Full dataset X', model M, scoring
threshold 6, difficulty calculation
functions D1, D2, D3, percentage
thresholds p1, p2, p3, sampling budget k
Output: Selected data subset S
Stage#1: Prompt-Driven Data Selection
Initialize X; + 0
foreach z € X do
Get score s, < M (prompt, )
if s, > 6 then
| Addzxto X
end
end
Stage#2: Decomposed Difficulty-based Data
Selection
Initialize S < 0
Compute D1(x), D2(z),D3(z) forall z € A3
Set 71, T2, T3 based on percentiles p1, p2, p3 of
D1,D2,D3
foreach z € X} do
if 7l < DI(z) < 7" and
Tiov < p2(x) < 72" and
lov < D3(x) < 72" then
| Add z to intermediate set Spiq
end
end
Apply K-Center sampling on Spiq to select k
diverse data points
Return final selected subset S

B Datasheet for Medical Domain
Adaptation Fine-Tuning Dataset

Data statistics

The statistics of the training dataset and the test
dataset are shown below. The use of the test datasets
complies with their respective licenses.

What is the primary purpose of creating this
dataset?

This dataset was created to construct a large-
scale medical domain instruction-following fine-tuning
dataset. The primary purpose is to support the adapta-
tion of large language models (LLMs) to the medical do-
main by providing diverse and comprehensive training
instances. By integrating heterogeneous data sources,
including doctor-patient dialogues, medical knowledge
bases, and various medical tasks formulated into the
instruction-output format, the dataset aims to enhance
the ability of LLMs to perform effectively across a wide
range of real-world medical scenarios. It is designed to
address the unique challenges of the medical domain,
such as specialized terminology, complex reasoning,

Dataset Size (K)
medtalk_singleround 177
medknowledge_KG 796
medknowledge_webqga 360
medtask_promptcblue 82
ga_website 490
Total 1905

Table 10: Training Dataset Statistics

Dataset Type Size
CMB-Exam  multiple-choice 11200
MMCU-Med multiple-choice 2819
CMB-Clin open Q&A 208

Table 11: Test Dataset Statistics

and context-sensitive responses, thereby enabling LL.Ms
to better meet the demands of healthcare applications.

What are the specific components of the dataset,
and how were they constructed or sourced?

Our dataset integrates multiple open-sourced medical
instruction fine-tuning datasets from diverse sources,
along with doctor-patient dialogue data extracted from
medical consultation websites and a variety of medical
tasks reformulated into the instruction-output format, as
detailed in Table 10. Medtalk_singleround originates
from open-sourced doctor-patient question-and-answer
datasets, including CMedQA2 (Zhang et al., 2018)
and Health-Care-Magic'. Medknowledge_KG is built
from the Online Medical Knowledge-Based Data in Hu-
atuo26M (Li et al., 2023), which is derived from the ex-
tensive medical literature data provided by the Chinese
Medical Association. Medknowledge_webqa includes
knowledge-driven, open-ended question-and-answer
pairs in the medical domain, sourced from (Wang
et al., 2023b). Medtask_promptcblue combines the
promptCBLUE dataset (Zhu et al., 2023b) with addi-
tional data converted into the instruction-output for-
mat from the CBLUE benchmark (Zhang et al., 2022).
QA_website contains authentic doctor-patient dialogue
data collected from the online platform of a collaborat-
ing hospital. Examples from these datasets are shown
in Table 12.

Are the data sources legal? How are privacy and
ethical considerations addressed?

The dataset is derived from carefully selected sources,
including publicly available datasets and data crawled
from the website of a collaborating hospital. Explicit
permission was obtained from the collaborating hospital
for the use of the crawled data, and all data have been
anonymized to ensure that no personal information is
exposed. Additionally, the hospital’s website provides
open-access data, complying with relevant legal and eth-
ical standards. This ensures the legality and security of

1https://www.kaggle.com/datasets/gunman@Z/
health-care-magic
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the data while addressing privacy and ethical concerns.

What are the potential risks and limitations of this
dataset?

The dataset has certain inherent risks and limitations
that should be acknowledged. First, as the data is col-
lected from diverse sources, it may contain noise or
inconsistencies, which could affect the quality and relia-
bility of downstream applications. Additionally, since
the dataset is derived from Chinese text corpora, includ-
ing medical advice and Q&A exchanges, its content
may be culturally and regionally specific, making it
more suitable for East Asian populations. As a result,
the medical recommendations and insights in the dataset
may not generalize well to other demographic or cul-
tural contexts.

To address these issues, users should carefully eval-
uate the dataset’s suitability for their intended applica-
tions and, if necessary, consider adapting the data to
align with broader use cases. Moreover, noise reduction
and validation techniques can be employed to improve
data quality and reliability in specific tasks.

What is the usage case for this dataset?

This dataset is primarily intended for instruction fine-
tuning of large language models (LLMs), as already
utilized in this study. Practitioners can use it to fine-
tune LLMs to adapt to the medical domain, as well as
to enhance its medical abilities in general fine-tuning.
Additionally, the dataset may be useful for more specific
tasks, such as fine-tuning for sub-tasks in the dataset.

What is the distribution method and maintenance
plan for this dataset?

The dataset is distributed as an open-source resource
at https://drive.google.com/drive/folders/
1SfrwQkDrQJ8i_EIqfc2Di@Xa5Y5pzY9H, allowing
researchers and developers to access and utilize it freely
under the specified license. We are committed to the
ongoing maintenance of the dataset. If any errors or
inaccuracies are identified, particularly those related
to medical knowledge, we will promptly update the
dataset to correct such issues, removing erroneous
data as necessary. Additionally, we will continue to
provide updated documentation to ensure the dataset’s
effective use. While the dataset is stable at present,
users are encouraged to provide feedback or suggest
improvements, and we will consider updates based on
user input or evolving needs in the field. This ensures
that the dataset remains reliable and beneficial for the
community.

C K-Center Sampling Algorithm

In our data selection framework, K-Center sampling is
employed to ensure diversity within the selected instruc-
tion fine-tuning data. After filtering based on difficulty
levels, we obtain an intermediate set Sy;q, composed
of data points within a moderate difficulty range. The
K-Center sampling is then applied on Spq. Specifically,
the process works as follows:

1. Embedding Generation: For each data sample,

the instruction part is encoded into an embedding us-
ing the LLM. We extract the last hidden states of the
LLM and compute the average across all tokens in the
sequence to form a fixed-size embedding vector. These
embeddings represent the semantic content of the in-
struction.

2. K-Center Sampling: Using these embeddings,
the K-Center sampling algorithm selects k data points
in a greedy manner. The goal is to maximize the mini-
mum distance between any pair of selected data points,
ensuring that the sampled data points are as distinct as
possible. This promotes diversity in the selected dataset
and minimizes the risk of overfitting to similar data
points.

The pseudo codes of this greedy K-Center sampling
process are shown in Algorithm 2:

Algorithm 2: Greedy K-Center Sampling

Input: Intermediate set
Smid = {317 52, ..
budget k

Output: Final selected set S

Step 1: Encode data in S,,,;; using model )/ ;

foreach s; € S,,,;4 do
Encode s using M to obtain the embedding

€s 3

., Sn}, model M, data

end

Step 2: Run K-Center greedy algorithm;

Initialize S « 0 ;

Initialize min_distances < oo ;

fori =1to k do

if S = () then

Select s; € Spiq randomly and add it to
S

else

min_distances; = ming,cs |es; —
es;ll2, Vs; € Smia \ Ss

Select s* =
arg max; eg

Add s* to S;

end

ia\S in_distances;;

end
return S

D Baseline Implementations

Due to differences in task settings and datasets, we re-
implement baselines using their publicly available codes.
We adapt the selection strategies to our medical domain
adaptation fine-tuning task. The re-implementation de-
tails are as follows. Our use of the code repositories
complies with their respective licenses:

(1) Alpagasus: (Chen et al., 2023a) We adopt the
open-sourced implementation?, officially verified by the
original authors. Given the scale of the full training

*https://github.com/gpt4life/alpagasus
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set, applying GPT-4 annotation to the entire set would
incur substantial financial cost due to API usage. Con-
strained by our budget, we randomly sample 70K train-
ing samples and assess their quality using the provided
prompt with GPT-40. From data scoring above the de-
fault threshold of 4.5, we randomly select 5K samples.

(2) DEITA: (Liu et al., 2023) We utilize the official
implementation from the public GitHub repository® and
directly download their trained data quality and com-
plexity scorers from HuggingFace*> without modifica-
tion. The scorers are applied to randomly sampled 70K
training data. We then select the top 5K samples with
the highest scores in both quality and complexity.

(3) IFD: (Lietal., 2024a,b) The Instruction Follow-
ing Difficulty (IFD) method begins by calculating the
instruction-following difficulty scores for each data
point through model forward propagation. Given that
our full domain dataset consists of over 1.9 million sam-
ples, performing this step on the entire dataset would be
computationally prohibitive. Therefore, we randomly
sample 60K samples from the training set, an amount
comparable to the dataset size used in our 3DS after
Stage#1. We compute IFD scores for this subset, and,
following the recommendations in the original paper,
select the samples with highest scores. The data budget
is constrained to 5K samples, ensuring consistent with
our main experimental setup.

4) MoDS: (Du et al., 2023) For the MoDS
baseline, We follow the original paper’s
implementations, using the reward model

reward-model-deberta-v3-large-v2® to score
the full dataset. We then obtain samples with scores
above 0.5, yielding a subset of 120k high-quality data
samples. From this subset, we apply K-Center sampling
to select 2k seed samples for model warm-up training.
Subsequently, the trained model perform inference on
the 120k high-quality subset, and these predictions are
rescored using the same reward model. Data samples
where model’s generated answers score below 0 are
deemed necessary and are combined with the seed
samples. From this merged set, we randomly select 5K
samples as the final training data, and train models from
scratch on this final data.

(5) LESS: (Xia et al., 2024) The LESS method in-
volves constructing a gradient library based on the orig-
inal data, which incurs significant computational costs,
particularly for the large dataset like ours. Similarly,
we sample 60k data points to compute the gradients.
Unlike the original LESS method that targets specific
downstream tasks and uses samples from the target-
ing dataset to construct a validation set, our domain

3https://github.com/hkust-nlp/deita

“https://huggingface.co/hkust-nlp/deita-quality-scorer

Shttps://huggingface.co/hkust-nlp/deita-complexity-
scorer

Shttps://huggingface.co/OpenAssistant/reward-model-
deberta-v3-large-v2

adaptation fine-tuning scenario does not involve fixed
downstream tasks. Therefore, we randomly selected an
additional 100 samples from the training set as the vali-
dation set. Then we run the provided codes and select
5K training samples.

E Implementation Details

The difficulty thresholds in our experiments are deter-
mined based on model performance on a hold-out CMB-
validation set composed of 280 samples provided in the
CMB benchmark (Wang et al., 2023c). All experiments
are conducted using the PyTorch 2.4.0 in Python 3.9, on
8 NVIDIA H100 GPUs and an Intel(R) Xeon(R) CPU,
with both training and inference performed using half-
precision FP16 for efficiency. We employ the LoRA
fine-tuning method, targeting all linear modules within
the model, with a learning rate of 5 x 1075, a batch
size of 64, and a single epoch of training. The learn-
ing rate is scheduled using a cosine decay scheduler
with a warmup ratio of 0.1. The LoRA rank is set to §,
and the input sequence length is cut off at 1024 tokens.
DeepSpeed Zero-3 is used to optimize distributed train-
ing. For instruction scoring, response generation, and
training, we use templates corresponding to each model,
implemented through the llamafactory project (Zheng
et al., 2024).

Due to the high computational cost of training and
testing LLMs, most existing instruction data selection
studies conduct experiments with a single run for ef-
ficiency (Li et al., 2024b; Du et al., 2023). We adopt
this approach as well. However, to assess the reliability
of our results, we perform the random selection exper-
iment three times. The results show consistent perfor-
mance with low variance (MMCU: 0.07; CMB 0.01 for
Qwen1.5-7B-Instruct) and narrow error bars (£0.26
and £0.08 for Qwen1.5-7B-Instruct), demonstrating
that our findings are statistically stable and reliable.

F Evaluation Metrics

To evaluate the performance of LLMs on multi-task
medical choice questions, we instruct the models to
provide only the correct answer and adopt the widely-
used metric, Exact Match (EM), as recommended by
prior work (Zhu et al., 2021; Karpukhin et al., 2020).
An answer is deemed correct under the EM metric if its
form exactly matches all the correct answers listed in
the ground truth. The EM score is computed as follows:

M — Number of Correct Answers

1 .
Total Number of Answers x 100%

For open-domain medical Q&A tasks, we employ
ROUGE-R (Xu, 2023; Jiang et al., 2024) and Bilingual
Evaluation Understudy (BLEU) to assess the quality
of the LLMs’ responses.

BLEU-N Specifically, BLEU-1 is used to measure
answer precision, and BLEU-4 evaluates answer fluency
by considering higher-order n-gram consistency. BLEU
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evaluates the similarity of generated responses to the
ground truth using the following formula:

N
1
BLEU-N = BP - exp (N nz::l logpn> ,

where p,, is the precision of n-grams, B P is the Brevity
Penalty, calculated as:

BP — 1, %fc>r.
exp(l—%), ife<r

Here c is the length of the generated response, and r is
the length of the reference response.

ROUGE-R quantifies the recall of retrieved knowl-
edge in the LLMSs’ responses, emphasizing their ability
to comprehensively cover the information relevant to
the query. For a generated response R and a reference
G, ROUGE-R is computed as:

|[RNG]
Gl

ROUGE-R =

where |R N G| denotes the number of overlapping n-
grams between the generated response and the reference,
and |G| is the total number of n-grams in the reference.

During implementation, We use the 'rouge’ package
to calculate ROUGE scores and the ’nltk’ module to
compute BLEU scores (from BLEU-1 to BLEU-4), uti-
lizing the smoothing function for BLEU and the default
settings for ROUGE.

G Supplementary Experiments

G.1 Win Rates Evaluation

When evaluating model performance on the open Q&A
dataset CMB-Clin, in addition to traditional metrics
such as BLEU1, BLEU4 and Rouge scores, we conduct
a pair-wise comparison to more thoroughly compare the
fine-tuned models’ medical analysis ability. In this ex-
periment, we randomly sample 100 answers from each
model and employ GPT-40, a highly capable LLM, as
the judge to determine which model generates a better
answer. Below, we present the prompt used to instruct
GPT-40 to compare answers from two models in this
qualitative evaluation. To ensure a fair comparison and
eliminate any possible positional bias in GPT-04, we
randomly assign the answers from each model as "Stu-
dent 1" or "Student 2" throughout the experiment.

Results shown in Figure 3 demonstrate that 3DS ex-
hibits substantially higher win rates compared to all
other baselines. Notably, the larger and stronger mod-
els Baichuan2-13B-Chat, Qwen1.5-7B-Instruct and
Qwen2.5-7B-Instruct generally show higher win
rates compared to LLaMA3-8B-Instruct, which indi-
cates that 3DS also exhibits scalability. This evaluation
provides qualitative evidence that 3DS effectively en-
hances the model to deliver more clinically accurate
outputs.

CMB-Clin Evaluation Prompt

You are now a medical expert guiding students
in analyzing medical cases. You have two
students, Student 1 and Student 2. You assess
them through real medical case questions and
choose the one with the best answer to become
your assistant.

[High-Quality Answer Criteria]
1. The answer should address the question
directly and solve the problem posed.

2. The description of symptoms should
be comprehensive and accurate, and the diag-
nosis should be the most reasonable inference
based on all relevant factors and possibilities.

3. The treatment recommendation should be
effective and reliable, considering the severity
or stage of the condition.

4. The prescription should consider indi-
cations, contraindications, and dosages, being
both effective and reliable.

[Judgment Instructions]

Please compare the answers of Student 1
and Student 2. You need to tell me whether
Student 1 is [better], [worse], or [equal] to
Student 2. Compare their answers, refer to the
question and the correct answer, and determine
which one meets the given requirements more
closely. Please only output one of the following:
[Student 1 is better than Student 2], [Student
1 is worse than Student 2], or [Student 1 and
Student 2 are equal]. Do not output any other
words.

[Case Example]
Here is the [Question]:
<Insert medical question here>

Here is the [Standard Answer]:
<Insert standard answer here>

Here is [Student 1]’s answer:
<Insert Student 1’s answer here>

Here is [Student 2]’s answer:

<Insert Student 2’s answer here>

Please compare the two answers and give your
judgment.
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G.2 Comparison with Existing Medical LLMs

Model CMB-Exam MMCU-Med
Baichuan2-13B-3DS 47.37 51.08
Qwenl.5-7B-3DS 61.96 66.09
Qwen2.5-7B-3DS 79.06 85.70
Meditron-7B 11.20 12.16
Huatuo-II-7B 27.69 47.18
Huatuo-I11-34B 59.54 66.10

Table 13: Performance comparisons with existing medi-
cal LLMs.

To further validate the practical utility of 3DS, we con-
duct comparisons with existing medical LLMs. We
compare 3DS fine-tuned models to established medical
LLMs, including open-source models MediTron (Chen
et al., 2023b) (7B version due to its similar size to Qwen
models), and state-of-the-art Chinese medical LLMs
HuatuoGPT-1I-7B, and HuatuoGPT-1I-34B (Chen et al.,
2024), to see whether our framework can benefit the
construction of medical LLMs. The results presented
in Table 13 show that, MediTron-7B, as an English-
based LLM, demonstrates limited performance on Chi-
nese medical benchmarks. Huatuo-II-7B also falls short
compared to similar-sized Qwen models. Huatuo-II-
34B, with nearly five times the size of Qwen1.5-7B and
Qwen2.5-7B, achieves only comparable performance.

It is worth noting that the performance of fine-tuned
models is closely tied to the capability of the base model,
so relative improvements achieved through domain-
specific fine-tuning are more important than absolute
performance. Still, the strong performance of models
fine-tuned with 3DS validates its practical utility and ef-
ficiency for developing medical domain LLMs, paving
the way for more building more powerful and advanced
models in the future.

G.3 More Results for Ablation on 3DS

In the ablation studies in 4.3, for CMB-Clin benchmark,
we only report the ROUGE score. We provide BLEU-
1, BLEU-4 scores and win-rates of the experiments
in Table 14 and Table 15. Results are consistent with
previous observations that the original 3DS significantly
outperforms ablation variants, supporting the validity
of our designed two-stage framework and three data
difficulty metrics.

LLM Turbo Baichuan2-13B-Chat | Qwen1.5-7B-Instruct
Metric BLEU-1 BLEU-4 |BLEU-1 BLEU+4
w/o Stage#1 14.13 29.60 15.50 31.94
w/o Stage#2 20.56 46.86 21.55 47.39
Stage#2 into Stage#1 | 21.48 50.16 21.73 52.27
w/o D1 22.55 51.75 24.14 55.12
w/o D2 2222 52.06 20.48 49.59
w/o D3 20.86 49.40 22.27 50.18
3DS 24.15 63.51 24.40 60.32

Table 14: Performance (BLEU-1, BLEU-4) on CMB-
Clin for ablation experiments. The best performance is
highlighted in bold.

LLM Turbo Baichuan2-13B-Chat | Qwen1.5-7B-Instruct
Metric Win Tie Lose Win Tie Lose
vs w/o Stage#1 66.5 9.0 24.5 70.5 3.0 26.5
vs w/o Stage#2 66.0 15.5 28.5 66.0 5.5 28.5
vs Stage#2 into Stage#1 | 63.5 18.0 18.5 545 2.5 43.0

Table 15: Win-rates (%) of GPT-40 judgment on CMB-
Clin, comparing 3DS with stage ablation variants.

Metric CMB-Exam MMCU-Med
LLM Turbo K-Center (SK) Full Pool | K-Center (5K) Full Pool
Qwen2.5-7B 79.06 79.14 85.70 86.24
Qwenl.5-7B 61.96 62.17 66.09 66.02
LLaMA3-8B 43.95 44.34 49.70 50.20
Baichuan2-13B 47.37 47.13 51.08 51.22

Table 16: Accuracy (%) on CMB and MMCU-Med with
and without K-Center sampling.

G.4 Ablation on Data Budgets

We conduct ablation experiments varying the selection
data budgets. Results in Table 17 show that increasing
the training data size initially boosts performance as the
model learns to align with domain-specific knowledge.
However, beyond a certain point (5K), performance
degradations arise due to potential data redundancy and
reduced diversity.

G.5 Ablation on K-Center Sampling

To further assess the role of K-Center sampling, we
compare fine-tuning with and without this step. After
filtering data to the moderate-difficulty range, samples
may still be redundant, which can reduce efficiency.
K-Center addresses this by selecting a diverse and repre-
sentative subset, ensuring both data efficiency and stable
sample sizes across datasets. We conduct an ablation
study on two settings: (1) fine-tuning on 5K K-Center
selected samples from the moderate-difficulty pool, and
(2) fine-tuning on the entire pool without clustering.
Results in Table 16 show that K-Center achieves com-
parable performance with significantly fewer samples,
confirming its effectiveness in improving data efficiency.

H Threshold Selection Guidelines

In 3DS’s Stage#2 Decomposed Difficulty-based Data
Selection, data within a moderate difficulty range are
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selected. How to determine the optimal difficulty range
is thus essential. We provide selection guidelines based
on our experiments. We identify that the 25%-75%
difficulty range is a robust choice. For model-specific
optimization, we recommend this implementation pro-
cedure:

* Model Capability Profiling: Conduct pre-fine-
tuning validation to benchmark the model’s base-
line performance. Strong domain task performance
suggests higher difficulty thresholds, while weaker
models benefit from more conservative ranges.

* Hyperparameter Search: Implement search over
potential ranges and select the values that yield the
best performance on the validation set. This allows
for adapting the difficulty range to the model’s
specific strengths and weaknesses.

While the exact thresholds are empirically tuned for
performance optimization, the broader principle of se-
lecting data of moderate difficulty is supported by both
theoretical intuition and recent findings (Gekhman et al.,
2024; Marion et al., 2023; Ren et al., 2024).

I Cross Domain Experiment Details

To assess the generalization ability of our model-centric
data selection framework beyond the medical domain,
we conduct experiments on law and general domains.

On the law domain, CaseHOLD dataset (Zheng et al.,
2021) is utilized. This dataset consists of over 53,000
multiple-choice questions derived from U.S. court de-
cisions. Each instance presents a case citation context
along with five candidate legal holdings, of which only
one is correct. The task simulates legal reasoning by
requiring models to identify the option that best matches
the cited precedent.

We follow a standard instruction-tuning setup by con-
verting CaseHOLD into an Alpaca-style format. The
instruction is fixed to a law domain-specific prompt:

CaseHOLD Instruction

As a law expert, please select the option that

best matches the legal holding cited in the case.
Answer with the option letter only (A/B/C/D/E).

The input contains the case citation context and five
formatted candidate holdings:

CaseHOLD Input

Case Citation Context: [citing_context]
Options: A. [holding_0] B. [holding_1] ...E.
[holding_4]

We fine-tune LLaMA3-8B-Instruct on 5K training
samples selected from the CaseHOLD training set us-
ing three different strategies: (1) Random Selection,
(2) IFD (Li et al., 2024b), a strong instruction filtering

baseline, and (3) our proposed model-centric selection
framework 3DS. All models are trained under the same
hyperparameters, and each experiment is repeated three
times with different random seeds. We report the mean
accuracy and standard deviation on a selected 1K sam-
ples from the CaseHOLD test set.

On the general domain, MMLU (Hendrycks et al.)
is utilized. MMLU spans 57 subjects across diverse
domains, including natural sciences, humanities, and
social sciences. We fine-tune LLaMA3-8B-Instruct on
subsets selected by different strategies (Random, IFD,
and 3DS) from the 99k training set, and evaluate on the
official MMLU test set.

J Data Evaluation Prompts

J.1 Data Quality Evaluation Prompt

In the pilot study and the first stage of 3DS, we utilize a
prompt to instruct models to evaluate data quality on its
internal knowledge. Inspired by existing works (Chen
et al., 2024; Wang et al., 2023c; Liu et al., 2023), the
model is asked to assess data quality across five dimen-
sions: Instruction Complexity, Response Relevance, Re-
sponse Thoroughness, Response Logic and Knowledge
Richness. We provide the model with detailed scoring
guidelines. The specific prompt used in this process is
shown below.

Quality Evaluation Prompt

You are an Al assistant with medical expertise.
Your task is to objectively assess the quality
of the medical dialogue between the user and
assistant based on your knowledge, and provide
a score. The data may consist of single or
multi-turn dialogues. You should evaluate based
on the complexity of the question, relevance of
the response, thoroughness, logical coherence,
and knowledge richness, and provide an overall
score. Focus on medical-specific characteristics
to ensure accuracy.

[Evaluation Criteria]

1. Question Complexity: Evaluate the
complexity of the user’s question. If the ques-
tion requires deep understanding, reasoning, or
medical knowledge, score above 80.

2. Response Relevance: Assess if the as-
sistant’s response is directly aligned with the
question. Score above 80 for responses tightly
related to the question.

3.  Response Thoroughness: Check if the
response thoroughly addresses the question
with sufficient detail. A score above 80 reflects
comprehensive answers.

\
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4. Response Logic: Ensure the response
follows clear reasoning and logic. A score
above 80 reflects well-structured reasoning.

5. Knowledge Richness: Determine whether the
response demonstrates rich, specialized medical
knowledge. A score above 80 indicates depth
and accuracy.

[Scoring Guidelines]

[80-100]:  Excellent. High complexity,
thoroughness, relevance, logic, and knowledge
richness, meeting medical standards.

[60-79]: Good. Strong performance but
with minor deficiencies in logic or knowledge.

[40-59]: Fair. Noticeable issues such as
unclear logic or insufficient depth.

[20-39]: Poor. Fails to properly address
the medical issue or lacks substance.

[0-19]: Very Poor. Lacks relevance, logic, or
medical knowledge.

[Start Conversation]

Refer to the guidelines and score the following
dialogue data based on the criteria. Follow the
output format strictly:

{score:}

Dialogue:

<ga_pairs>

Output:

. J

J.2 Data Difficulty Evaluation Prompt

In the second empirical study, we prompt models to rate
overall data difficulty according to its knowledge. The
specific prompt used in this process is shown below.

Overall Difficulty Evaluation Prompt

You are a medical expert. I will provide you
with an instruction related to the medical field.
Based on your knowledge, please evaluate the
difficulty of this instruction.

1. Medical Knowledge Complexity: Does
this instruction involve complex medical
knowledge?

2. Reasoning Complexity: Does answer-
ing this instruction require multi-step reasoning,
integration of multiple sources of information,

or handling clinical uncertainty?

3. Overall Challenge: Considering the
above factors, what is the overall difficulty of
this instruction?

Based on these considerations, please provide a
comprehensive difficulty rating from 1 (very
easy) to 5 (very difficult). Only output the
score; do not provide any explanation.
Instruction to evaluate:

{instruction}

Please return an integer between 1 and 5,
representing the overall difficulty of the
instruction for you. Only output the score and
nothing else.

\

J.3 Decomposed Difficulty Prompts

In the ablation study where we collapse Stage#2 in
3DS into Stage#l, using prompts to instruct model
to score the three decomposed data difficulties. The
prompts utilized are listed below.

Instruction Following Difficulty Prompt

Based on your existing knowledge, evaluate
the difficulty of understanding the following
instruction. The higher the complexity and
ambiguity of the instruction, the more difficult
it is for the model to understand. Please provide
a score between 0 and 1, where a higher score
indicates that the instruction is more difficult
for you to understand.

Instruction to be evaluated: {instruction?}

Please return a real number between 0
and 1, representing the difficulty of understand-
ing the instruction. Only output the score, and
do not output anything else.

Response Confidence Difficulty Prompt

Based on your existing knowledge, evaluate
the difficulty of confidently and definitively
providing the following evaluated response
to the instruction. The more difficult it is to
confidently provide this response, the higher
the difficulty. Please provide a score between 0
and 1, where a higher score indicates greater
difficulty in answering confidently.

Instruction: {instruction}
Response to be evaluated:
output}

{generated
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Please return a real number between 0
and 1, representing the difficulty of confidently
providing the response to the instruction. Only
output the score, and do not output anything
else.

Response Correctness Difficulty Prompt

Based on the following instruction and the
standard answer, evaluate the difficulty of
providing the correct standard answer. If the
instruction is complex or the answer requires
high expertise, making it difficult to provide
the correct answer, the difficulty will be higher.
Please provide a score between 0 and 1, where
a higher score indicates greater difficulty in
providing the correct answer.

Instruction: {instruction?}
Standard Answer: {output}

Please return a real number between 0
and 1, representing the difficulty of providing
the correct answer. Only output the score, and
do not output anything else.

K Bias and Fairness Considerations

Fairness and bias are critical considerations, particu-
larly in sensitive domains like healthcare. While our
approach demonstrates promising results, its limita-
tions and potential fairness implications must be ac-
knowledged. Our method employs the LLM to evaluate
data quality and difficulty. Although the prompts and
difficulty metrics are designed to be neutral, inherent
model biases may still influence selection or be ampli-
fied through self-assessment, and the fairness impact
of LoRA fine-tuning also requires further study (Bui
and Von Der Wense, 2024). In downstream applica-
tions, biases introduced during SFT can be mitigated
through prompt engineering, context augmentation and
other techniques. Our design of self-assessment reflects
a trade-off that prioritizes alignment and performance.
Potential bias also arises from training data composi-
tion, which predominantly consists of Chinese medical
texts. While this dataset effectively reflects health condi-
tions and medical practices of east Asian populations, it
may limit generalizability to other populations. Current
LLM data selection methods generally prioritize diffi-
culty, quality, or diversity, or diversity but rarely address
fairness, safety, or truthfulness. Their effects on bench-
marks such as SafetyBench (Zhang et al., 2024) and
Truthful QA (Lin et al., 2022), remains underexplored.
We therefore highlight fairness-aware and safety-aware
data selection and fine-tuning as important directions for
future work toward more equitable and reliable LLMs.
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Medtalk_singleround

English translation

Question

Answer

e AR IR AR 8RS T L2
ENET 40 2RI RIS
NEXZ T EREEAZHEIEEE
EAEHRE?

FITHSREHE —EMRA, BEAZR
xR, ANEHEL . VPR
aHZHNE, FEGREREA
i A A B AR A R - A e
ROk - EARE, BB -

Q: Doctor, can hyperthyroidism during preg-
nancy be inherited by the baby? Mine recurred
during pregnancy, but I didn’t take medication.
Will my baby be affected?

A: Hyperthyroidism has some genetic links but
is not always inherited. Don’t worry. Maintain
a balanced diet rich in calories, protein, and
vitamins, but low in iodine. Stay relaxed, rest
adequately, and avoid strenuous activities.

Medknowledge_KG

English translation

Question

Answer

BRI ERMIBE O F AR r LT 40

ERES =Yg % W =R 2
1, BEIED THmBE: BEIE
JT ORI RS AE -

Q: What surgical treatments are available for
facial depression?

A: Autologous micro-fat grafting, autolo-
gous fat transplantation, autologous stem cell-
enriched fat grafting, and autologous fat parti-
cle transplantation.

Medknowledge_webqa

English translation

Question

Answer

TETA S A R IETT T -

IH K& LR T, RIS BAeR H
RASIR R AR E T
FEREBN, W4T IFITIA,
BN LAER R K B AT SR
.

Q: Please describe the treatment methods for
parasitic diseases.

A: The primary goal is to eliminate the para-
sites by using the most effective antiparasitic
drugs based on the specific type of parasite.
In cases of severe infection where the host
is weakened, supportive therapy may be pro-
vided. Surgical intervention should be per-
formed promptly if complications arise.

Medtask_promptcblue

English translation

Question

Answer

A2 % B S AR PR
BET, WELHERER, A=
X ER? E. BRIP4
ﬁ,Eﬁﬁﬁ,Eimﬁﬁﬁ,E
IR o

bR a) 7 AR SR AR R S EIR SR
& E, %K.

Q: Entity extraction in diagnostic dialogues:
"Caught a cold two weeks ago, still have a bit
of a cough now—could it be related?" Options:
specific medication names, medical procedures,
medical tests and examinations, symptoms.

A: The entities in the above sentence include:
Symptom entities: cold, cough.

QA _website

English translation

Question

Answer

BRNRE=T7/tC, A
e, EEER, BT, Z A8, 8
BE SIS R RE?

PROX AR ELSE I IR LR, A
BRE, —BokUE, 37E_LIE
AR, FrLLRIRIX D IRE S
MR AANERF AR, AREZ AT LL
B THEERERENTRE, &
—A, BB R A

Q: Low-grade fever of 36-37°C every after-
noon, occasional chest tightness, no cough,
night sweats, or fatigue—could this indicate
a possibility of tuberculosis?

A: From a clinical perspective, this temperature
doesn’t qualify as a low-grade fever—typically,
temperatures above 37.2°C are considered low-
grade. Therefore, its connection to tuberculosis
is unlikely. However, you might want to check
for the possibility of a viral infection or con-
sider whether it could be related to COVID-19.

Table 12: Examples For various type dataset
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Figure 3: GPT-40 judgment of CMB-Clin.

Model

Dataset 3K 4K 5K 6K 7K

Baichuan2-13B-Chat

CMB-Exam |46.87 47.30 47.37 46.95 46.98
MMCU-Med | 48.67 49.91 51.08 50.16 50.27

Qwenl.5-7B-Instruct

CMB-Exam | 60.47 60.45 61.96 60.78 60.53
MMCU-Med | 63.64 63.92 66.09 64.49 64.10

Table 17: Performance comparison of models trained on different data budgets.
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