
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 19617–19630
November 4-9, 2025 ©2025 Association for Computational Linguistics

CBP-Tuning: Efficient Local Customization for Black-box Large Language
Models

Jiaxuan Zhao1,2*, Naibin Gu1,2*, Yuchen Feng1,2, Xiyu Liu1,2,
Peng Fu1,2†, Zheng Lin1,2, Weiping Wang1

1Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
2School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China

{zhaojiaxuan,gunaibin,fupeng}@iie.ac.cn

Abstract

The high costs of customizing large language
models (LLMs) fundamentally limit their adapt-
ability to user-specific needs. Consequently,
LLMs are increasingly offered as cloud-based
services, a paradigm that introduces critical
limitations: providers struggle to support per-
sonalized customization at scale, while users
face privacy risks when exposing sensitive data.
To address this dual challenge, we propose
Customized Black-box Prompt Tuning (CBP-
Tuning), a novel framework that facilitates ef-
ficient local customization while preserving
bidirectional privacy. Specifically, we design a
two-stage framework: (1) a prompt generator
trained on the server-side to capture domain-
specific and task-agnostic capabilities, and (2)
user-side gradient-free optimization that tai-
lors soft prompts for individual tasks. This
approach eliminates the need for users to ac-
cess model weights or upload private data, re-
quiring only a single customized vector per
task while achieving effective adaptation. Fur-
thermore, the evaluation of CBP-Tuning in the
commonsense reasoning, medical and financial
domain settings demonstrates superior perfor-
mance compared to baselines, showcasing its
advantages in task-agnostic processing and pri-
vacy preservation.

1 Introduction

Large language models (LLMs) have demonstrated
extremely powerful performance in a wide range of
tasks (Brown et al., 2020; Touvron et al., 2023;
Yang et al., 2024). However, as these models
become larger, the resources required for train-
ing and deployment become increasingly expen-
sive (Gu et al., 2024; Feng et al., 2025), making
it no longer feasible to fine-tune and deploy a sep-
arate model for each downstream task. This lim-

* Equal Contribution.
† Corresponding Author.

LLM API

1. Provide Model

Weights

2. Finetune &

Inference Locally

2. Finetune & Inference

on Server-side

1. Provide Dataset

1. Server-side

Domain Training

2. User-side Local

Customization

Dataset Query
A Vector for

Customization

A Customized

Vector & Query

(a) Standard Finetune (b) Server-side Finetune (c) CBP-Tuning

LLM

Figure 1: Schematic illustration of the comparison
among three fine-tuning paradigms. (a) Left: Standard
finetune transmits the model weights to the users. (b)
Middle: Server-side finetune requires the users to pro-
vide the dataset for fine-tuning the model on the server
side. (c) Right: Our proposed method, CBP-Tuning,
conducts domain training on the server side and allows
users to customize a vector locally without transferring
data or accessing the model weights.

its the ability of users to customize the model ac-
cording to their specific needs. Parameter-efficient
fine-tuning (PEFT) provides a promising solution
by fine-tuning very few parameters while keep-
ing most of the model parameters unchanged (Han
et al., 2024; Si et al., 2024; Gu et al., 2025a;
Yang et al., 2025). The PEFT technique includes
adaption-based methods (Houlsby et al., 2019; He
et al., 2021), re-parameterization-based methods
(Hu et al., 2021; Gu et al., 2025b), and prompt-
based methods (Lester et al., 2021; Li and Liang,
2021), which enables a base model to serve multi-
ple users simultaneously.

Despite the efficiency and effectiveness of meth-
ods such as Adapter (Houlsby et al., 2019) and
LoRA (Hu et al., 2021), these approaches necessi-
tate the server to uphold multiple PEFT modules for
downstream tasks. For each batch inference task,
a subset of these modules must be selected and

19617

assembled (Wen and Chaudhuri, 2024), which is
inconvenient in the multi-user scenario. In contrast,
Prompt Tuning (Lester et al., 2021) is a simpler
approach that only requires a certain length of soft
prompts to be prepended at the input layer. Before
batch processing, users can provide the learned soft
prompts and inputs for a specific task to the server.

On the other hand, besides the cost of computa-
tion, LLMs also face the issue of privacy protection.
Specifically, the server does not want users to ac-
cess the full model weights, and users do not want
to expose their data to the server. Most LLMs
are released as services, and users can only access
them through a black-box API. Black-Box Tun-
ing (Sun et al., 2022b) describes this scenario as
LMasS (Language Model as a Service), allowing
users to optimize prompts using local black-box op-
timization methods. Despite their success, Black-
box Tuning methods demonstrate limited versatility
across tasks and LLMs (Zheng et al., 2024). In Off-
site Tuning (Xiao et al., 2023), users can fine-tune
the adapter for downstream data using an emulator
sent from the server. In this setting, however, users
still need to train and save the adapter parameters
for each downstream task and upload them to the
server for inference. This presents a challenge:

How to enable users to adapt the model without
further retraining at the user side, while avoiding
the need for server-side processing of task-specific
parameters?

We aim to delegate the computationally intensive
challenge of domain learning to server-side train-
ing, allowing users to focus only on optimizing cus-
tomized tasks, thereby achieving efficient local cus-
tomization. Therefore, we introduce a lightweight
and flexible framework, CBP-Tuning (Customized
Black-box Prompt Tuning). As illustrated in Fig-
ure 1, the server-side conducts domain training and
sends a vector for customization to users, where the
user can then use a black-box optimization method
to adapt this vector to a specific task. Specifically,
the server-side trains a prompt generator which is
a feed-forward layer with a bottleneck architecture,
receiving both instance-specific and task-specific
input. With a domain-specific prompt generator
in place, users can then fine-tune it in a black-box
manner. Following the setting of Black-box Tuning
(Sun et al., 2022b), we project high-dimensional
task-specific vectors into a smaller subspace. The
user-side employs a black-box method to optimize
the low-dimensional vector locally, thereby obtain-
ing soft prompts tailored specifically for a given

task. The user only needs to locally store a low-
dimensional vector corresponding to each down-
stream task, without returning any additional pa-
rameters to the server-side.

Our contributions are summarized as follows:

• We propose a customized and lightweight fine-
tuning framework called CBP-Tuning. It is
a black-box optimization method based on
prompt generators that achieves a balance be-
tween server-side and user-side, enabling effi-
cient local customization.

• We design a prompt generator that takes the
sum of task-specific vectors and instance-
specific vectors as the input to the generator,
combining both information.

• We conduct experiments using LLaMA-2-7B,
Qwen-2.5-3B and LLaMA-2-13B to evaluate
our method on general commonsense reason-
ing and domain-specific medical and financial
tasks. The experimental results demonstrate
that our approach outperforms baselines while
offering lower costs and ensuring privacy.

2 Preliminary: Black-box Tuning

Black-Box Tuning (BBT) (Sun et al., 2022b) can
optimize the continuous prompt prepended to the
input via derivative-free optimization. Considering
a black-box LLM that predicts a batch of inputs
X and outputs Y, prompt tuning involves training
continuous prompts p ∈ Rl∗d to achieve better
performance when the model is fed the optimal
prompt vector p∗ together with the input, where l
is the length of the continuous prompt and d is the
model dimension. The objective of prompt tuning
can be formulated as:

p∗ = argmin
p∈P

L(f(p;X),Y), (1)

where f(·) is the black-box LLM inference API,
L(·) is the loss function and P is a search space of
prompts. In standard cases where a model can be
accessed, the prompt p is optimized by gradient-
based back-propagation.

BBT leverages the low intrinsic dimensionality
of LLMs by optimizing in a reduced subspace z ∈
Rr (r ≪ d) via random projection A ∈ Rd×r:

z∗ = argmin
z

L(f(Az;X),Y) (2)

19618

BoolQ ARC-E ARC-C OBQA Average
0

10

20

30

40

50

60

70
Ac

cu
ra

cy
 (%

)

0.40

10.19
7.85

16.20

8.669.41

0.30 0.91 0.13
2.68

46.36

11.57
8.11

13.00

19.76

59.42

20.50
18.00

10.20

27.03

59.03

34.23

26.65
24.87

36.20

Performance on Commonsense Reasoning (LLaMA-2-7B)
Method

Zero Shot
BBT
Prompt Tuning
CBP-Tuning w/o ULC
CBP-Tuning

Figure 2: Results for LLaMA-2-7B model in the com-
monsense reasoning domain. The decrease in accuracy
of BBT compared to the Zero Shot is highlighted in red.

The Covariance Matrix Adaptation Evolu-
tion Strategy (CMA-ES) (Hansen et al., 2003)
maintains a multivariate normal distribution
N (m(t), σ(t)C(t)) to sample candidate solutions
z
(t+1)
i . Through iterative population evaluation,

the distribution parameters (m, σ,C) evolve to-
ward high-performance regions.

While BBT initially appears suitable for our pro-
posed scenario, enabling local private data training
without requiring model weight access, our empiri-
cal analysis reveals critical limitations. As shown
in Figure 2, direct application of BBT to inject task-
specific soft prompts paradoxically degrades per-
formance in commonsense reasoning tasks, achiev-
ing only gains on BoolQ (+9.01%) while caus-
ing significant average performance drops of 5.98
points across four datasets. This empirical evidence
demonstrates that naively applying BBT for transi-
tioning from foundation LLMs to user-customized
models proves fundamentally inadequate in practi-
cal deployments. The absence of domain-specific
and task-agnostic adaptation capabilities in pure
BBT settings leads to unstable optimization trajec-
tories and suboptimal task-specific performance.
To bridge this gap, CBP-Tuning introduces a two-
stage framework, specifically designed to over-
come these architectural constraints, we introduce
it in detail in the following.

3 Method

3.1 Overview of CBP-Tuning

As shown in Figure 3, the workflow of CBP-Tuning
includes Server-side Domain Training and User-
side Local Customization. As shown in Figure 3,
on the server side, we train a prompt generator on
the domain dataset. Users can use the CMA-ES

Algorithm 1 The CBP-Tuning Procedure

Input: Black-box LLM f(·), Prompt Generator G,
Domain dataset {XD;YD}, Training epoches
E, Customization dataset {XC ;YC}, Budget
of API calls B, Population size λ.

1: for i = 1 to E do
2: for (X,Y) ∈ XD × YD do
3: Get p using Eq. (4)
4: Concatenate input X

′
using Eq. (5)

5: Optimize G∗, z0 using Eq. (6)
6: end for
7: end for
8: Set max_iteration = B/λ for CMA-ES
9: for j = 1 to max_iteration do

10: for (X,Y) ∈ XC × YC do
11: Get p∗ using Eq. (7)
12: Concatenate input X∗ using Eq. (8)
13: Optimize z∗ using Eq. (9)
14: end for
15: end for

algorithm to optimize the vector without accessing
the model weights, thus achieving efficient local
customization. Next, we introduce the core compo-
nent and processes of CBP-Tuning, namely prompt
generator, server-side domain training, and user-
side local customization.

3.2 Prompt Generator

LLMs are typically trained on large-scale corpora
and lack the ability to handle specific user tasks. To
better achieve task customization on the user side,
we propose a prompt generator G to learn prompts
that activate the corresponding domain knowledge
within the LLM.

The input I(X, z) of the prompt generator is the
sum of two vectors, one is the input instruction and
another is a vector for customization:

I(X, z) = Pooler(Emb(X)) +Az. (3)

On the one hand, the inputs of the model pass
through the embedding layer and obtain a hidden
state h ∈ Rl×d, where l is the length of the input
tokens and d is the model dimension. Subsequently,
the hidden state h is reduced to a d-dimensional
vector by mean pooling, which is a part of the input
to the prompt generator. On the other hand, an-
other part of the prompt generator’s input is a vec-
tor of the same size, following BBT, we optimize
the vector z ∈ Rr in a smaller subspace(r ≪ d),

19619

𝑳𝑫

𝑳𝑼

𝑮𝒆𝑳𝑼 𝒛

𝑨

𝑨𝒛𝑷𝒐𝒐𝒍𝒆𝒅 𝑿

𝒑

Update

𝑳𝑪𝑬

CMA-ES

LLM

Prompt Generator

Dataset

User-sideServer-side

Input X

Concat

Figure 3: Illustration of Customized Black-box Prompt Tuning (CBP-Tuning). Users can perform efficient
customization for each downstream task locally by using a gradient-free optimization algorithm (CMA-ES) to
optimize each a low-dimensional vector z, while the server trains a domain-specific prompt generator.

and project z back to the model dimension space
through a projection matrix A ∈ Rd×r.

The prompt generator is a lightweight mod-
ule that includes a down-projection layer LD ∈
Rm×d, an activation function GeLU(·), and an up-
projection layer LU ∈ R(t∗d)×m, which ultimately
outputs a soft prompt that is concatenated with
the embedding of the model input, where t is the
length of soft prompts. After receiving the input,
the prompt generator produces the prompt:

p = LU(GeLU(LD(I))). (4)

Then, the prompt p will be prepended before the
input layer, and the final input X

′
is:

X
′
= Concat(p;X). (5)

It is important to note that our approach manip-
ulates prompts at the input stage and concatenates
them into the input layer. As a result, the prompt
generator is called only once during the genera-
tion stage, unlike methods such as LoRA, which
require loading modules at each layer. For users
sharing the same domain, the prompt generator can
be shared, supporting efficient batch processing.

3.3 Server-side Domain Training
To better activate the model’s domain knowledge
without accessing user data, we use domain data
on the server side to train the prompt generator by

gradient descent, allowing multiple users sharing
the same domain to leverage the same prompt gen-
erator. We keep the model f(·) frozen and train
the prompt generator G on the dataset from the
collected domain. During the server-side domain
training, our objective is to optimize:

G∗, z0 = argminG∈Gθ,z∈ZLCE(Y, f(X
′
)), (6)

where the input and output X ∈ XD,Y ∈ YD

in Customization dataset {XD;YD}, Gθ is the pa-
rameter of the prompt generator, Z is the search
space for z, LCE is the cross-entropy loss func-
tion. By conducting server-side domain training,
we obtain a parameter generator G∗ for a specific
domain, along with an initialized low-dimensional
vector z in this domain for subsequent user-side
customization.

3.4 User-side Local Customization

At the user side, we aim to customize for the user’s
tasks, but considering that most users lack the com-
putational resources required for gradient descent
typically needed for training, we intend to achieve
this in a low-cost manner by black-box tuning. We
employ CMA-ES (Hansen et al., 2003) to optimize
z0 and obtain z∗ in order to generate task-specific
enhanced prompts for improved performance. For-

19620

mally,

p∗ = G∗(X, z0), (7)

X∗ = Concat(p∗;X), (8)

z∗ = argminz∈ZLCE(Y, f(X∗)), (9)

where the input and output are X ∈ XC and
Y ∈ YC respectively, and {XC ;YC} is the cus-
tomization dataset.

Similarly, the derivative-free optimization algo-
rithm is also guided by the cross-entropy loss LCE

to optimize the direction. During the local cus-
tomization stage, users cannot access the model
weight, and the model and parameter generator are
kept fixed.

So far, users simply require the server to transmit
a domain-specific prompt generator to implement
local customization for each downstream task. On
the server side, we train LU,LD,A, z, where the
total number of parameters is m × d + m × l ×
d+ r× d+ r required to be stored and sent, while
the user side only needs to save s× r parameters,
where s is the number of downstream tasks and r
is a low dimension of the vector z.

4 Experiments

4.1 Setup

Models and Datasets. We implement experi-
ments on LLaMA-2-7B, LLaMA-2-13B (Touvron
et al., 2023) and Qwen-2.5-3B (Yang et al., 2024)
models.

To simulate the user’s private data, we perform
a complete separation between the domain dataset
used for the Server-side Domain Training (SDT)
stage and the customization dataset used for the
User-side Local Customization (ULC) stage within
the same domain. Comprehensive evaluations are
conducted on both a relatively general common-
sense reasoning domain and a more specialized
medical domain.

For the commonsense reasoning domain, the
domain dataset in the SDT stage is composed of
training sets from PIQA (Bisk et al., 2020), SIQA
(Sap et al., 2019), HellaSwag (Zellers et al., 2019),
and WinoGrande (Sakaguchi et al., 2021). The
customization dataset in the ULC stage includes
BoolQ (Clark et al., 2019), the challenge set ARC-
Challenge and easy set ARC-Easy of ARC (Clark
et al., 2018), and OpenBookQA (Mihaylov et al.,
2018). For each task in the customization dataset,
we randomly select 16 shots from its training set.

For the medical domain, we construct a domain
dataset by combining a subset of approximately
6,000 samples from a biomedical instruction-
following dataset Medical Meadow (Han et al.,
2023), and the first 100,000 samples from Med-
ical Multiple-Choice Question Answering (MedM-
CQA) (Pal et al., 2022). This domain dataset is
used for the SDT stage to enable LLMs to learn
how to handle complex medical instructions while
also answering medical-related questions. For the
customization dataset, we use 6 subsets of MMLU
(Hendrycks et al., 2020) that are most relevant to
medical knowledge, specifically anatomy, clinical
knowledge, college medicine, medical genetics,
college biology, and professional medicine. In the
ULC phase, we utilize the development sets of
these subsets and report their average performance.

For the financial domain, we selected a mixture
of the first 10k samples from the sentiment training
set in FinGPT’s (Yang et al., 2023) instruction-
tuning dataset and the first 1k samples from the
FiQA_QA (Cheng et al., 2024) dataset as the train-
ing set for the SDT stage. For testing, we employed
three financial sentiment analysis datasets: Twitter
Financial News Sentiment, FiQA_SA (Cheng et al.,
2024), and a subset of the Financial Phrase Bank
(Malo et al., 2014) containing only samples with
100% annotator confidence. In the ULC stage, we
randomly selected 16 samples for optimization.

We conduct experiments under three different
random seeds in the three domains. Our evaluation
metrics follow the setup of LLM-Adapters (Hu
et al., 2023). The detailed setup is provided in
Appendix A.

Baselines. We compare our proposed method
with the following four baselines. (1) Zero Shot:
We directly use the alpaca-style (Taori et al., 2023)
prompt template to test the model on the given
tasks. (2) Prompt Tuning: Following (Lester
et al., 2021), we freeze the model and only train
the prompts prepended to the input embedding. (3)
CBP-Tuning w/o ULC: We train on a mixed do-
main dataset, i.e., server-side domain training for
CBP-Tuning without further user local customiza-
tion, then we can implement the complete CBP-
Tuning process based on this. (4) CBP-Tuning:
We use the CMA-ES algorithm to optimize without
accessing the model. In the CMA-ES optimization
process, we input a batch of training data together
and optimize using the average cross-entropy loss
for the answer output part. To ensure a fair com-

19621

Model Setting
Medical Domain Financial Domain

CK MG Anatomy PM CB CM Med Avg FIQA_SA TFNS FPB Fin Avg

LLaMA-2-7B

Zero Shot 2.26 5.00 0.74 0.00 0.00 1.16 1.53 23.93 13.23 3.75 13.64
Prompt Tuning 19.62 20.00 11.85 19.12 20.14 16.76 17.92 22.65 11.81 10.51 14.99

CBP-Tuning w/o ULC 28.30 26.00 25.19 11.76 29.17 26.59 24.50 59.83 25.42 43.02 42.76
CBP-Tuning 34.21 37.00 29.63 21.20 29.40 21.97 28.90 63.25 34.17 45.32 47.58

Qwen-2.5-3B

Zero Shot 39.25 49.00 49.63 20.59 36.81 39.31 39.10 66.67 38.65 77.96 61.09
Prompt Tuning 65.66 71.00 54.81 37.87 67.36 60.12 59.47 58.12 69.26 83.97 70.45

CBP-Tuning w/o ULC 67.92 74.00 59.26 66.54 74.31 61.85 67.31 62.39 69.85 72.44 68.53
CBP-Tuning 68.55 74.00 59.26 69.49 74.31 63.39 68.17 72.22 70.45 77.80 73.49

LLaMA-2-13B

Zero Shot 17.36 13.00 13.33 0.74 15.28 12.14 11.97 68.38 22.82 27.69 39.63
Prompt Tuning 18.87 12.00 9.63 23.16 14.58 23.12 16.89 44.44 65.49 65.81 58.58

CBP-Tuning w/o ULC 61.13 46.00 34.07 47.06 55.56 48.55 48.73 65.38 53.69 63.83 60.96
CBP-Tuning 61.51 46.00 42.96 48.28 56.25 47.40 50.40 75.64 58.04 71.73 68.47

Table 1: Performance (%) of LLaMA-2-7B, Qwen-2.5-3B, and LLaMA-2-13B models across medical and financial
domains. ‘Med Avg‘ and ‘Fin Avg‘ indicate average scores over each domain’s subtasks.

parison, Prompt Tuning, CBP-Tuning, and its w/o
ULC baseline are fine-tuned using the same do-
main dataset within the same domain. The prompt
template is presented in Appendix A.1. (5) LoRA:
A widely-used PEFT method (Hu et al., 2021) that
freezes pre-trained model weights and injects train-
able, low-rank matrices into the Transformer layers
for efficient adaptation. (6) P-Tuning: A prompt-
based method (Liu et al., 2021b) that keeps the
language model frozen and optimizes continuous
prompt embeddings via a small prompt encoder.
The detailed experimental comparison with these
additional baselines is provided in Appendix B.3.

Implementation. For Prompt Tuning, we eval-
uate each task on the customization dataset after
training on the domain dataset. For the SDT stage
of CBP-Tuning and its variants, the intermediate
dimension m of the prompt generator is set to 256,
and the subspace dimension r of vector z is set to
500. All the above methods keep the model weights
frozen during training, and the length of the soft
prompt concatenated before the user input embed-
ding is 10. For the ULC stage of CBP-Tuning,
the customization dataset size, budget of black-box
LLM calls B, population size λ, and σ are set to
{16, 300, 30, 0.01} in the commonsense reasoning
domain, respectively. The hyperparameters dur-
ing training and the optimization parameters for
other domains in the ULC phase are detailed in the
Appendix A.2.

4.2 Main Results

We demonstrate the results of baselines on four
commonsense reasoning datasets based on the
LLaMA-2-7B model and six medical datasets
based on all models in Figure 2 and Table 1 re-
spectively.

Comparison on Zero Shot. Across all domains,
the untrained zero-shot approach demonstrates the
weakest performance among all baselines. Notably,
its performance is significantly poorer in the med-
ical and financial domains which require domain-
specific knowledge compared to the more general
commonsense reasoning domain. While trained
methods including Prompt Tuning, CBP-Tuning,
and its w/o ULC variant all achieve substantial
performance improvements, we observe slight per-
formance degradation for both Prompt Tuning and
CBP-Tuning w/o ULC on the OpenBookQA task.
This discrepancy may be attributed to potential
conflicts between the training data used in the SDT
phase and the OpenBookQA task. Importantly, the
CBP-Tuning framework achieves comprehensive
performance gains across all evaluated datasets.

Comparison on Prompt Tuning. Our exper-
iments reveal that CBP-Tuning and its w/o ULC
variant substantially outperform Prompt Tuning,
with CBP-Tuning achieving average performance
advantages of 16.44 points over Prompt Tuning
in commonsense reasoning, and 32.59 points in
the financial domain using LLaMA-2-7B. For
LLaMA-2-13B, CBP-Tuning boosts the Med Avg
from 16.89 (Prompt Tuning) to 50.40 and the Fin
Avg from 58.58 to 68.47, showcasing significant
gains. Importantly, the full CBP-Tuning framework
demonstrates comprehensive performance gains
over the Prompt Tuning baseline across all bench-
marks. This evidences that through its two-stage
optimization, CBP-Tuning not only addresses pri-
vacy preservation requirements in client-server de-
ployments but also delivers superior performance
compared to directly serving server-side fine-tuned
Prompt Tuning models to end-users.

19622

CK MG Anatomy PM CB CM
Datasets

0

5

10

15

20

25

30

35

A
c
c
u
r
a
c
y

(
%
)

CBP-Tuning

w/o Instance-specific

CBP-Tuning w/o ULC

w/o Instance-specific w/o ULC

Figure 4: Results for ablation study of instance-specific
information in the medical domain using LLaMA-2-7B.

Comparison on w/o User-side Local Customiza-
tion. Our comparative analysis of CBP-Tuning
and its w/o ULC variant illustrates that the ULC
phase generally delivers substantial performance
improvements, yielding average gains of 9.17
points in the commonsense reasoning domain, 4.40,
0.86 and 1.67 points in the medical domain using
LLaMA-2-7B, Qwen-2.5-3B and LLaMA-2-13B
respectively. In the financial domain, the ULC
phase provides average gains of 4.82 points for
LLaMA-2-7B, 4.96 points for Qwen-2.5-3B, and
7.51 points for LLaMA-2-13B. However, we ob-
serve localized performance degradation on BoolQ
and MMLU Clinical Medicine (CM) tasks with
LLaMA-2-7B model. The BoolQ decline may
stem from its unique yes/no answer format diverg-
ing from other tasks’ option format, while MMLU
CM’s challenges originate from its benchmark char-
acteristics: abbreviated development sets (used for
the ULC) coupled with test set questions exceeding
480 words in 8.1% cases. Furthermore, as shown
in the Appendix B.1, we examine the final loss
of the LLaMA-2-7B model during the ULC phase
in the medical domain and found that the loss for
the poorly performing CM task was 1–3 orders of
magnitude larger than that of other tasks. Crucially,
the ULC stage demonstrates task-agnostic effec-
tiveness in boosting model performance, achieving
these gains through gradient-free local optimiza-
tion that preserves privacy constraints.

4.3 Ablation Study of Instance-specific
Information

To verify the effectiveness of introducing instance-
specific information into the prompt generator,
we set up an ablation version without instance-
specific information. We compare the setting with-
out mean pooled instance embedding in the medical
domain, and all other settings are the same as CBP-

CK MG Anatomy PM CB CM

Datasets

10

15

20

25

30

35

A
c
c
u
r
a
c
y

(
%
)

CBP-Tuning w/o ULC

CBP-Tuning

ULC -> Finetune

Figure 5: Results for optimization methods analysis in
the medical domain using LLaMA-2-7B.

Tuning. We can see that the performance of the w/o
Instance-specific setting and its w/o ULC variant
(represented by the blue solid and dashed lines in
Figure 4, respectively) is significantly weaker than
the standard CBP-Tuning and its w/o ULC variant
(represented by the red solid and dashed lines in
Figure 4, respectively). Specifically, the average
performance across the six datasets in the medical
domain shows that the w/o Instance-specific ver-
sion drops by 25.29 points, and its w/o ULC variant
drops by 21.28 points.

4.4 Different Optimization Methods Analysis

As previously mentioned, implementing privacy
protection for both the server and user sides in our
framework requires the execution of ULC in the
second stage. To investigate the impact of replacing
the user local customization phase with fine-tuning,
we performed a few-shot fine-tuning version and
explored the effects of further fine-tuning using the
customization dataset (which, in the medical do-
main, corresponds to the development set of each
task). As shown in the Figure 5, the blue line, red
line, and gray dashed line represent the few-shot
fine-tuning setting, the standard CBP-Tuning, and
its w/o ULC variant, respectively. It is evident that
using ULC in the second stage, i.e., gradient-free
optimization, consistently outperforms gradient-
based fine-tuning. CBP-Tuning performs slightly
worse than its few-shot fine-tuning variant only on
the CM dataset, with an average improvement of
5.72 points across six medical datasets. In contrast,
the few-shot fine-tuning setting shows performance
improvements over CBP-Tuning w/o ULC only on
the MG and Anatomy datasets, while it leads to
a performance decline on the other datasets. We
suspect two potential reasons: (1) While gradient-
based optimization tends to overfit the training
data, CMA-ES is inclined to discover superior solu-

19623

Method OBQA BoolQ ARC-E ARC-C

CBP-Tuning 85s 54s 101s 109s

Prompt Tuning > 10 mins on each dataset

Table 2: Comparison of user-side customization time
for CBP-Tuning versus full fine-tuning time for Prompt
Tuning in the commonsense reasoning domain. All
timings were measured on a single NVIDIA A100 40GB
GPU using LLaMA-2-7B.

Method OBQA BoolQ ARC-E ARC-C

CBP-Tuning 16854MB 15668MB 17460MB 17864MB
Prompt Tuning 28572MB 21482MB 31712MB 33544MB

Table 3: GPU memory usage in the commonsense rea-
soning domain on LLaMA-2-7B.

tions owing to its exploration mechanism. (2) The
server-side training instills a structured instruction-
following format in the model. However, certain
downstream tasks may have unique characteristics
that create a mismatch with this pre-trained format.
This discrepancy makes the optimization landscape
for the vector z particularly challenging. For tasks
where this gap is significant (e.g., MMLU Clini-
cal Medicine), the CMA-ES algorithm may fail to
converge to an effective solution, a difficulty em-
pirically evidenced by the high final loss values for
such tasks, as detailed in Appendix 8.

4.5 Efficiency Analysis

In Table 2, we show the training time of user-side
local customization on four commonsense reason-
ing datasets using LLaMA-2-7B model. On a sin-
gle NVIDIA A100 40GB GPU, the optimization
can be completed in just 93.5 seconds across these
datasets, with the shortest time recorded at 54 sec-
onds on the BoolQ dataset. In contrast, on average,
fine-tuning through Prompt Tuning typically de-
mands more than ten minutes. In commonsense
reasoning domain’s experimental setup, the user-
side optimization only requires calling the API 300
times and performing 10 iterations of the CMA-
ES algorithm. As shown in Table 3, when using
a batch size of 16, our method demonstrates sig-
nificantly lower GPU memory consumption com-
pared to Prompt tuning. Notably, since CMA-ES
optimization does not rely on gradients, the entire
optimization process can be performed on the CPU.
Overall, our proposed approach enables users to
efficiently and locally customize the model in an
exceedingly short duration.

5 Related Work

5.1 Prompt-based Learning

Prompt-based learning is a type of method that in-
serts soft prompts into the input or hidden states of
the model. These soft prompts are highly flexible
and adaptable during fine-tuning, as they can be
optimized in continuous spaces to fit specific tasks.
Methods like Prompt Tuning (Lester et al., 2021)
and P-tuning (Liu et al., 2021b) incorporate soft
prompts into the input layer of the model. Other
approaches, such as DePT (Shi and Lipani, 2023),
Prefix Tuning (Li and Liang, 2021), and P-tuning
v2 (Liu et al., 2021a), add trainable prompts to the
keys and values matrices across all layers. These
methods focus primarily on task-specific prompt
tuning. Additionally, there are methods that inte-
grate instance-specific information. For example,
IDPG (Wu et al., 2022) uses a parameterized hy-
percomplex multiplication prompt generator to pro-
duce soft prompts tailored for each instance. LPT
(Liu et al., 2022) inserts instance-aware prompts
into an intermediate layer of the pre-trained model,
rather than the input layer or all layers. We ob-
serve that these two types of methods for improving
prompt tuning performance decouple task-specific
information from instance-specific information and
reserve a task vector suitable for local customiza-
tion at the input of the prompt generator for two-
stage optimization.

5.2 Black-box Optimization for LLMs

Black-Box Tuning (Sun et al., 2022b) innovatively
uses a derivative-free optimization method to learn
prompts in the new scenario called Language-
Model-as-a-Service (LMaaS). BBTv2 (Sun et al.,
2022a), as an improved version, prepends contin-
uous prompts to every layer of the model and op-
timizes the prompts at different layers alternately.
InstructZero (Chen et al., 2023) employs Bayesian
optimization to learn the continuous prompts in-
serted into open-source LLMs to generate discrete
instructions for the black-box LLMs. In addition to
using gradient-free optimization algorithms to opti-
mize soft prompts, there are also some recent stud-
ies showing that it is possible to optimize black-box
large models using white-box models with varying
degrees of transparency. Offsite Tuning (Xiao et al.,
2023) allows users to adapt to downstream tasks
with the help of a lightweight adapter and a com-
pressed emulator without accessing the full model.
BBox-Adapter (Sun et al., 2024) adapts black-box

19624

LLMs to specific tasks without accessing internal
parameters or output probabilities by training a
small adapter model with ranking-based NCE loss
and online adaptation. Proxy-tuning (Liu et al.,
2024) tunes a smaller LM, applying the difference
between the predictions of the small tuned and un-
tuned LMs to shift the direction of tuning for the
larger untuned model at the cost of exposing log-
its. Based on the observation that directly applying
black-box optimization to LLMs for certain tasks
often results in insufficient performance (Zheng
et al., 2024), we only need access and modifica-
tion after the embedding layer to locally customize
black-box LLMs driven by user needs.

6 Conclusion

We present CBP-Tuning, a lightweight and cus-
tomized fine-tuning framework for black-box large
language models. Our approach enables efficient
local customization through a black-box optimiza-
tion method that balances the burden between the
server and the user. CBP-Tuning allows users to
achieve cost-effective customization for various
downstream tasks without compromising privacy.
We anticipate that future research can extend CBP-
Tuning to a broader range of domains and models.

Limitations

While CBP-Tuning demonstrates promising
privacy-preserving capabilities and competitive
performance across both target domains, future
efforts could focus on two aspects. First, our
evaluation was limited to models up to the 13B
parameter scale; its efficacy on significantly larger
models (e.g., 70B+) remains unexplored due to
computational constraints. Second, the user-side
customization stage led to performance degra-
dation on specific tasks like BoolQ and MMLU
Clinical Medicine. Future efforts could explore
adaptive optimization strategies or methods to
enhance the robustness of ULC across a more
diverse range of task structures.

Ethics Statement

Our work introduces CBP-Tuning, a framework
designed for efficient and privacy-preserving lo-
cal customization of large language models. All
datasets used in our study for training and evalu-
ation are publicly available and sourced from es-
tablished academic benchmarks. No proprietary

or sensitive user data was involved in our experi-
ments. Our method is purely algorithmic and is not
designed to inherently create or amplify harmful
social biases.

Acknowledgement

We thank the anonymous reviewers for their in-
sightful feedback, which greatly improves our pa-
per. This work is supported by the National Natu-
ral Science Foundation of China (No. 62472419,
62472420).

References
Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi,

et al. 2020. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the
AAAI conference on artificial intelligence, volume 34,
pages 7432–7439.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Lichang Chen, Jiuhai Chen, Tom Goldstein, Heng
Huang, and Tianyi Zhou. 2023. Instructzero: Ef-
ficient instruction optimization for black-box large
language models. arXiv preprint arXiv:2306.03082.

Daixuan Cheng, Shaohan Huang, and Furu Wei. 2024.
Adapting large language models via reading compre-
hension. In ICLR.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. Boolq: Exploring the surprising
difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. arXiv
preprint arXiv:1803.05457.

Yuchen Feng, Bowen Shen, Naibin Gu, Jiaxuan Zhao,
Peng Fu, Zheng Lin, and Weiping Wang. 2025. Dive
into moe: Diversity-enhanced reconstruction of large
language models from dense into mixture-of-experts.
Preprint, arXiv:2506.09351.

Naibin Gu, Peng Fu, Xiyu Liu, Ke Ma, Zheng Lin, and
Weiping Wang. 2025a. Adapt once, thrive with up-
dates: Transferable parameter-efficient fine-tuning on
evolving base models. Preprint, arXiv:2506.06844.

Naibin Gu, Peng Fu, Xiyu Liu, Bowen Shen, Zheng
Lin, and Weiping Wang. 2024. Light-PEFT: Lighten-
ing parameter-efficient fine-tuning via early pruning.

19625

https://arxiv.org/abs/2506.09351
https://arxiv.org/abs/2506.09351
https://arxiv.org/abs/2506.09351
https://arxiv.org/abs/2506.06844
https://arxiv.org/abs/2506.06844
https://arxiv.org/abs/2506.06844
https://aclanthology.org/2024.findings-acl.447
https://aclanthology.org/2024.findings-acl.447

In Findings of the Association for Computational
Linguistics ACL 2024, pages 7528–7541, Bangkok,
Thailand and virtual meeting. Association for Com-
putational Linguistics.

Naibin Gu, Zhenyu Zhang, Xiyu Liu, Peng Fu, Zheng
Lin, Shuohuan Wang, Yu Sun, Hua Wu, Weiping
Wang, and Haifeng Wang. 2025b. Beamlora: Beam-
constraint low-rank adaptation. In Proceedings of the
63rd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), ACL
2025, Vienna, Austria, July 27 - August 1, 2025, pages
11871–11883. Association for Computational Lin-
guistics.

Ashwin Kumar Gururajan, Enrique Lopez-Cuena, Jordi
Bayarri-Planas, Adrian Tormos, Daniel Hinjos, Pablo
Bernabeu-Perez, Anna Arias-Duart, Pablo Agustin
Martin-Torres, Lucia Urcelay-Ganzabal, Marta
Gonzalez-Mallo, et al. 2024. Aloe: A family of
fine-tuned open healthcare llms. arXiv preprint
arXiv:2405.01886.

Tianyu Han, Lisa C Adams, Jens-Michalis Papaioan-
nou, Paul Grundmann, Tom Oberhauser, Alexander
Löser, Daniel Truhn, and Keno K Bressem. 2023.
Medalpaca–an open-source collection of medical
conversational ai models and training data. arXiv
preprint arXiv:2304.08247.

Zeyu Han, Chao Gao, Jinyang Liu, Sai Qian Zhang,
et al. 2024. Parameter-efficient fine-tuning for large
models: A comprehensive survey. arXiv preprint
arXiv:2403.14608.

Nikolaus Hansen, Sibylle D Müller, and Petros
Koumoutsakos. 2003. Reducing the time complex-
ity of the derandomized evolution strategy with co-
variance matrix adaptation (cma-es). Evolutionary
computation, 11(1):1–18.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-
Kirkpatrick, and Graham Neubig. 2021. Towards a
unified view of parameter-efficient transfer learning.
CoRR, abs/2110.04366.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2020. Measuring massive multitask language under-
standing. arXiv preprint arXiv:2009.03300.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp. In In-
ternational conference on machine learning, pages
2790–2799. PMLR.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-
Peng Lim, Lidong Bing, Xing Xu, Soujanya Poria,

and Roy Lee. 2023. Llm-adapters: An adapter family
for parameter-efficient fine-tuning of large language
models. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
pages 5254–5276.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing.
Association for Computational Linguistics.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 4582–
4597.

Alisa Liu, Xiaochuang Han, Yizhong Wang, Yulia
Tsvetkov, Yejin Choi, and Noah A Smith. 2024.
Tuning language models by proxy. arXiv preprint
arXiv:2401.08565.

Xiangyang Liu, Tianxiang Sun, Xuan-Jing Huang, and
Xipeng Qiu. 2022. Late prompt tuning: A late
prompt could be better than many prompts. In Find-
ings of the Association for Computational Linguistics:
EMNLP 2022, pages 1325–1338.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Lam Tam,
Zhengxiao Du, Zhilin Yang, and Jie Tang. 2021a.
P-tuning v2: Prompt tuning can be comparable to
fine-tuning universally across scales and tasks. arXiv
preprint arXiv:2110.07602.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding,
Yujie Qian, Zhilin Yang, and Jie Tang. 2021b. Gpt
understands, too. arXiv preprint arXiv:2103.10385.

P. Malo, A. Sinha, P. Korhonen, J. Wallenius, and
P. Takala. 2014. Good debt or bad debt: Detecting se-
mantic orientations in economic texts. Journal of the
Association for Information Science and Technology,
65.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a suit of armor conduct elec-
tricity? a new dataset for open book question an-
swering. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 2381–2391.

Ankit Pal, Logesh Kumar Umapathi, and Malaikan-
nan Sankarasubbu. 2022. Medmcqa: A large-scale
multi-subject multi-choice dataset for medical do-
main question answering. In Conference on health,
inference, and learning, pages 248–260. PMLR.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2021. Winogrande: An adver-
sarial winograd schema challenge at scale. Commu-
nications of the ACM, 64(9):99–106.

19626

https://aclanthology.org/2025.acl-long.582/
https://aclanthology.org/2025.acl-long.582/
https://arxiv.org/abs/2110.04366
https://arxiv.org/abs/2110.04366

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan
Le Bras, and Yejin Choi. 2019. Social iqa: Com-
monsense reasoning about social interactions. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 4463–4473.

Zhengxiang Shi and Aldo Lipani. 2023. Dept: De-
composed prompt tuning for parameter-efficient fine-
tuning. arXiv preprint arXiv:2309.05173.

Chongjie Si, Xiaokang Yang, and Wei Shen. 2024.
See further for parameter efficient fine-tuning by
standing on the shoulders of decomposition. CoRR,
abs/2407.05417.

Haotian Sun, Yuchen Zhuang, Wei Wei, Chao Zhang,
and Bo Dai. 2024. Bbox-adapter: Lightweight adapt-
ing for black-box large language models. In Inter-
national Conference on Machine Learning, pages
47280–47304. PMLR.

Tianxiang Sun, Zhengfu He, Hong Qian, Yunhua Zhou,
Xuan-Jing Huang, and Xipeng Qiu. 2022a. Bbtv2:
Towards a gradient-free future with large language
models. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing,
pages 3916–3930.

Tianxiang Sun, Yunfan Shao, Hong Qian, Xuanjing
Huang, and Xipeng Qiu. 2022b. Black-box tuning for
language-model-as-a-service. In International Con-
ference on Machine Learning, pages 20841–20855.
PMLR.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https://
github.com/tatsu-lab/stanford_alpaca.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Yeming Wen and Swarat Chaudhuri. 2024. Batched
low-rank adaptation of foundation models. ICLR
2024.

Zhuofeng Wu, Sinong Wang, Jiatao Gu, Rui Hou, Yux-
iao Dong, VG Vinod Vydiswaran, and Hao Ma.
2022. Idpg: An instance-dependent prompt genera-
tion method. In Proceedings of the 2022 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 5507–5521.

Guangxuan Xiao, Ji Lin, and Song Han. 2023. Offsite-
tuning: Transfer learning without full model. arXiv
preprint arXiv:2302.04870.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, et al. 2024. Qwen2. 5 tech-
nical report. arXiv preprint arXiv:2412.15115.

Chenxu Yang, Ruipeng Jia, Naibin Gu, Zheng Lin,
Siyuan Chen, Chao Pang, Weichong Yin, Yu Sun,
Hua Wu, and Weiping Wang. 2025. Orthogonal fine-
tuning for direct preference optimization. Preprint,
arXiv:2409.14836.

Hongyang Yang, Xiao-Yang Liu, and Christina
Dan Wang. 2023. Fingpt: Open-source financial
large language models. FinLLM at IJCAI.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 4791–4800.

Yuanhang Zheng, Zhixing Tan, Peng Li, and Yang Liu.
2024. Black-box prompt tuning with subspace learn-
ing. IEEE/ACM Transactions on Audio, Speech, and
Language Processing.

19627

https://doi.org/10.48550/ARXIV.2407.05417
https://doi.org/10.48550/ARXIV.2407.05417
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://arxiv.org/abs/2409.14836
https://arxiv.org/abs/2409.14836

A Training Details

A.1 Prompt Template
Our prompt template design strictly adheres to Al-
paca (Taori et al., 2023), uniformly applied across
all datasets through the following structured tem-
plate:

Below is an instruction that describes a task.
Write a response that appropriately completes
the request.
Instruction: {instruction}
Input: {input}
Response:

For the setup of the instruction, in the common-
sense reasoning domain, we utilize datasets pro-
cessed by LLM-Adapters (Hu et al., 2023); in the
medical domain, we follow the template from Aloe
(Gururajan et al., 2024); in the financial domain, we
follow the settings of FinGPT (Yang et al., 2023).
The Alpaca-style prompt templates to be filled for
the three domains are shown in Table 4, where the
{subject_name} is the task name of the MMLU
subset. For the commonsense reasoning and medi-
cal domains, the output format for evaluation and
training is ’the correct answer is [ANSWER]’ for
the LLaMA-2-7B and LLaMA-2-13B, and ’[AN-
SWER]’ for the Qwen-2.5-3B. For the financial
domain, the output format for evaluation and train-
ing is ’[ANSWER]’ for all models. It is important
to note that only in the financial domain do we need
to fill both the instruction and the input; in the other
two domains, only the instruction is required.

A.2 Hyperparameters
The hyperparameters for Prompt Tuning and CBP-
Tuning SDT stage in the three domains are shown
in the Table 6.

The hyperparameters for CBP-Tuning ULC
stage in the three domains are shown in the Table
5.

A.3 Hardware
We use 2 NVIDIA A100 40G GPUs to conduct
our experiments, and the version of transformers
library is 4.41.2, while the version of PEFT is 0.3.0.
For SDT in the commonsense reasoning domain
with LLaMA-2-7B, approximately 12 GPU hours
are required.

A.4 Environment of Experiments
The implementation of CBP-Tuning is based
on Transformers library, peft library and LLM-

Adapters. The data processing and evaluation for
two domains also follow LLM-Adapters.

B Additional Results

B.1 Decreased Performance Analysis

The table 8 shows the final loss values to which
each dataset converged during the user-side local
customization (ULC) stage using the CMA-ES al-
gorithm (lower values indicate more complete op-
timization). Notably, the final loss for MMLU
Clinical Medicine (CM) is 1.361 × 10−2, three
orders of magnitude higher than that for Medical
Genetics (MG), which is 2.972× 10−5. This indi-
cates that the optimization process for the CM task
was much harder to converge, consistent with the
performance drop we observed for this task in the
main text.

B.2 Bottleneck Dimension Ablation Study

In Table 7 we compare three bottleneck dimen-
sions (r = 100, 500, 1000) both without and with
the ULC phase using LLaMA-2-7B in the medical
domain. The results peak at r = 500, where CBP-
Tuning achieves an average accuracy of 68.55%,
significantly higher than the 58.97% at r = 100
and only 15.59% at r = 1000. This confirms that
500 provides the best trade-off between representa-
tional capacity and optimization stability.

B.3 Performance Comparison with LoRA and
P-Tuning

We conducted additional experiments compar-
ing CBP-Tuning with other prominent parameter-
efficient fine-tuning (PEFT) methods: LoRA (Hu
et al., 2021) and P-Tuning (Liu et al., 2021b). The
comparison was performed on the Qwen-2.5-3B
model across the medical and financial domains.

As shown in the table 9, CBP-Tuning demon-
strates superior average performance compared to
both LoRA and P-Tuning. In the medical domain,
CBP-Tuning achieves performance improvements
of 5.69 points and 2.81 points over LoRA and P-
Tuning in average scores, respectively. In the fi-
nancial domain, the improvements are 1.15 points
and 16.82 points, respectively, further validating
the effectiveness of our approach.

Furthermore, it is important to note the architec-
tural differences. CBP-Tuning is designed based
on Prompt Tuning, as both methods modify only
the token embeddings at the input layer. In con-
trast, LoRA requires adapting and merging low-

19628

Domain Dataset Instruction Input
CR BoolQ Please answer the following question with true or

false, question: [QUESTION]
Answer format: true/false

None

CR
Others Please choose the correct answer to the question:

[QUESTION]
Answer1: [ANSWER_1]
Answer2: [ANSWER_2]
Answer3: [ANSWER_3]
Answer4: [ANSWER_4]
Answer format: answer1/answer2/answer3/answer4

None

Medical All Datasets The following are multiple choice questions about
{subject_name}. Output a single option from the op-
tions as the final answer. QUESTION: [QUESTION]
Answer1: [ANSWER_1]
Answer2: [ANSWER_2]
Answer3: [ANSWER_3]
Answer4: [ANSWER_4]
Answer format: answer1/answer2/answer3/answer4

None

Financial All Datasets What is the sentiment of this news? Please choose an
answer from {negative/neutral/positive}.

Question Text

Table 4: Prompt Template Configuration for Different Domains. Note that in the Commonsense Reasoning (CR)
domain, BoolQ has a distinct instruction template, while Arc-e, Arc-c, and OBQA share a common instruction
template.

Domain Model Data Size Budget B Population λ Step Size σ

Commonsense LLaMA-2-7B 16 300 30 0.01

Medical
LLaMA-2-7B 5 1500 30 0.05
Qwen-2.5-3B 5 300 30 0.01
LLaMA-2-13B 5 1500 30 0.01

Financial
LLaMA-2-7B 16 300 30 0.05
Qwen-2.5-3B 16 300 30 0.01
LLaMA-2-13B 16 300 30 0.05

Table 5: Hyperparameter settings for the ULC stage
across domains and models.

Domain Setting Learning Rate Batch Size Epochs Cutoff Length

Commonsense
Prompt Tuning 3e-2 16 5 512
CBP-Tuning 3e-4 16 5 512

Medical
Prompt Tuning 3e-2 16 5 256
CBP-Tuning 3e-4 16 5 256

Financial
Prompt Tuning 1e-2 16 2 512
CBP-Tuning 1e-4 16 2 512

Table 6: Hyperparameter settings for Prompt Tuning
and CBP-Tuning across different domains.

rank matrices within each layer of the model. This
makes the comparison between CBP-Tuning and
Prompt Tuning particularly direct, while highlight-
ing CBP-Tuning’s potential for higher efficiency
in deployment scenarios where modifying internal
model weights is more complex or costly.

19629

Method CK MG Anatomy PM CB CM Avg.

CBP-Tuning (dim=100) w/o ULC 53.21 52.00 54.07 58.82 67.36 49.13 55.77
CBP-Tuning (dim=100, σ=0.01, B=300) 57.86 56.50 58.52 60.05 69.44 51.45 58.97

CBP-Tuning (dim=1000) w/o ULC 4.15 17.00 4.44 9.19 1.39 6.36 7.09
CBP-Tuning (dim=1000, σ=0.05, B=300) 4.03 15.33 3.46 26.72 21.30 22.74 15.59

CBP-Tuning (dim=500) w/o ULC (ours) 74.00 59.26 66.54 74.31 61.85 67.31 67.92
CBP-Tuning (dim=500, σ=0.01, B=300) (ours) 74.00 59.26 69.49 74.31 63.39 68.17 68.55

Table 7: Ablation on bottleneck dimension r for Qwen-2.5-3B in the medical domain.

CK MG Anatomy PM CB CM

Loss 2.078× 10−4 2.972× 10−5 3.496× 10−4 5.906× 10−3 2.873× 10−3 1.361× 10−2

Table 8: Final CMA-ES loss values at the end of the ULC stage for each medical dataset using LLaMA-2-7B.

Model Setting
Medical Domain Financial Domain

CK MG Anatomy PM CB CM Med Avg FIQA_SA TFNS FPB Fin Avg

Qwen-2.5-3B

Zero Shot 39.25 49.00 49.63 20.59 36.81 39.31 39.10 66.67 38.65 77.96 61.09
Prompt Tuning 65.66 71.00 54.81 37.87 67.36 60.12 59.47 58.12 69.26 83.97 70.45

CBP-Tuning w/o ULC 67.92 74.00 59.26 66.54 74.31 61.85 67.31 62.39 69.85 72.44 68.53
CBP-Tuning 68.55 74.00 59.26 69.49 74.31 63.39 68.17 72.22 70.45 77.80 73.49

LoRA 64.15 73.00 58.52 59.93 66.67 52.60 62.48 79.49 72.91 64.62 72.34
P-Tuning 69.06 71.00 60.00 57.35 72.92 61.85 65.36 24.36 69.72 75.93 56.67

Table 9: Performance (%) of Qwen-2.5-3B compared with additional baselines (LoRA and P-Tuning) across medical
and financial domains. Bold indicates the best performance in each column among all methods.

19630

