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Abstract
Poetry is an expressive form of art that in-
vites multiple interpretations, as readers often
bring their own emotions, experiences, and cul-
tural backgrounds into their understanding of
a poem. Recognizing this, we aim to generate
images for poems and improve these images
in a zero-shot setting, enabling audiences to
modify images as per their requirements. To
achieve this, we introduce a novel Weighted
Prompt Manipulation (WPM) technique, which
systematically modifies attention weights and
text embeddings within diffusion models. By
dynamically adjusting the importance of spe-
cific words, WPM enhances or suppresses their
influence in the final generated image, leading
to semantically richer and more contextually
accurate visualizations. Our approach exploits
diffusion models and large language models
(LLMs) such as GPT in conjunction with exist-
ing poetry datasets, ensuring a comprehensive
and structured methodology for improved im-
age generation in the literary domain. To the
best of our knowledge, this is the first attempt
at integrating weighted prompt manipulation
for enhancing imagery in poetic language. Re-
sources related to data and codes are available
here: DIY

1 Introduction

Recent advancements in diffusion models have
transformed the landscape of generative AI. These
text to image generation models are pretrained on
vast datasets of image-text pairs (Schuhmann et al.,
2021, 2022), and leverage state-of-the-art tech-
niques, including large-scale pre-trained language
models (Devlin et al., 2019; Xia et al., 2021; Brown
et al., 2020), variational autoencoders (Kingma
et al., 2019), and diffusion-based architectures
(Ramesh et al., 2021; Rombach et al., 2022). As a
result, they excel in generating highly realistic and
visually compelling images. However, current dif-
fusion models often struggle to interpret metaphor-
ical language, symbolism, and nuanced themes.

Therefore, creative fields like poetry fail to directly
generate relevant visuals and often lead to incon-
sistent or inaccurate visual outputs. To address
this limitation, we propose Weighted Prompt Ma-
nipulation, a novel approach illustrated in Figure
1, designed to refine generated images in a real-
time setting and adjust their alignment, especially
for poetic content. Existing text-to-image editing
techniques (Abdal et al., 2021; Bau et al., 2020;
Lang et al., 2021) have demonstrated remarkable
success in tasks such as image translation, style
transfer, and appearance modification, all while
preserving structural integrity and scene composi-
tion. Among these methods, attention layers play a
pivotal role in regulating image layout and ensur-
ing a coherent relationship between the generated
image and its textual prompt. However, these tech-
niques have not yet been applied in the domain of
poems. Therefore, motivated by this, we specifi-
cally investigate the attribution of image generation
in diffusion models, posing a fundamental ques-
tion: How do diffusion models generate images
for poems? To explore this, we employ prompt
tuning and a systematic analysis of attention map
generation, providing deeper insights into the un-
derlying mechanisms of poem to image synthesis
using diffusion-based models. Building on our find-
ings, we introduce Weighted Prompt Manipulation,
a technique designed to enhance image generation
for poetic inputs by improving relevance and fi-
delity. Our key contributions include:
1. We introduce a new task of poem visualization,
focusing on generating images that accurately cap-
ture the rich and intricate details conveyed in poetic
text.
2. We propose a training-free Weighted Prompt
Manipulation approach, which manipulates im-
ages by dynamically adjusting word importance in
a real-time setting.
3. We provide a detailed analysis of text-to-image
generation within diffusion models, leveraging heat
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Figure 1: Architectural diagram of the poem-to-image
generation process using our proposed Weighted Prompt
Manipulation technique.

maps and attention maps to better understand how
different parts of a poem influence image genera-
tion.
4. We conduct extensive quantitative and human
evaluations to demonstrate that the diffusion model
can be manipulated to enhance image generation
by selectively reinforcing specific textual elements
without significantly altering the existing visual
composition.

2 Background and Related Works

Recent advancements in text-driven image manipu-
lation have been significantly influenced by GANs
(Brock et al., 2018; Karras et al., 2021, 2019) com-
bined with image-text representations like CLIP
(Radford et al., 2021). These approaches enable
realistic image modifications using textual input
(Gal et al., 2022b; Andonian et al., 2021; Patash-
nik et al., 2021; Goswami et al., 2024; Agarwal
et al., 2023) However, while they perform well
in structured domains (e.g., human face editing),
they often struggle with diverse datasets where sub-
jects vary significantly. To address this, fine-tuning
methods (Houlsby et al., 2019; Ahn et al., 2024;
Frenkel et al., 2024) allow models to learn novel
styles from just a few images. However, these
methods are prone to overfitting, leading to im-
age degradation or content leakage. Alternative
approaches, such as Textual Inversion (Gal et al.,
2022a) and Hard Prompt Made Easy (PEZ) (Wen
et al., 2023), aim to find optimal text representa-
tions (e.g., embeddings or tokens) that capture an
object’s characteristics without modifying the un-
derlying text-to-image model parameters. Another
line of research focuses on encoder-based methods
(Chen et al., 2023; Gao et al., 2024; Wang et al.,
2024; Wang et al.), which use visual encoders to ex-
tract image features and map them to text prompts.
While these methods have set the standard in state-
of-the-art performance, they remain limited by the

capabilities of visual encoders, which often strug-
gle with capturing fine-grained textures beyond
abstract style information.

Figure 2: Heat maps for the generated image highlight-
ing captured and missed words from the prompt. Read-
ers are encouraged to zoom in for improved visibility.

3 Tasks Setups

Challenges in the Poem to Image generation:
Building on the efficacy of the Playground (Liu
et al., 2024) diffusion model in image generation,
we conduct an in-depth analysis of how diffusion
models process different words in poetry (Jamil
et al., 2025a,c). As illustrated in Figure 2, diffu-
sion models exhibit a strong bias toward visual
elements, with the highest attention given to con-
crete objects (‘books’, ‘page’). Diffusion models
leverage CLIP embeddings, which are inherently
designed to align textual descriptions with corre-
sponding visual features. As a result, CLIP embed-
dings emphasize words containing visual objects,
as they provide explicit semantic grounding for
image synthesis. Additionally, the cross-attention
mechanism in diffusion models determines how
strongly each word contributes to the generated im-
age. Certain words tend to have higher attention
scores, guiding the model’s output more effectively,
whereas others, being more contextual than struc-
tural, receive lower attention weights and have less
impact on the final image.
Proposed Solution:
To address the inherent bias of diffusion models
toward certain words and their limited attention to
others, we propose Weighted Prompt Manipula-
tion (WPM) approach. As demonstrated in Figure
1, it is a systematic approach to dynamically ad-
just word influence during image generation. By
assigning custom weight values to specific words
in the prompt, we can enhance the model’s focus
on critical poetic elements, ensuring a more faith-
ful and semantically rich visual representation. In
our approach, words that naturally receive high at-
tention are explicitly reinforced, while those that
receive lower attention are strategically amplified
to balance their contribution. Diffusion models
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use cross-attention mechanisms to determine the
importance of each word in a text prompt. WPM
modifies the default attention scores by explicitly
assigning weights to different words, guiding the
model to generate images that more accurately cap-
ture the semantic depth and poetic meaning. Each
word in the prompt is assigned a scaling factor in
parentheses. Words with higher weights are given
greater prominence in the generated image, while
those with lower weights are de-emphasized. As
illustrated in Figure 4, the subsequent images are
produced using WPM. To understand the weight-
ing of certain words that are visually significant
in poetry, we employed GPT-4o-mini for image
instruction generation. Our method begins by pro-
viding GPT with an initial prompt as demonstrated
in Figure 3:

Figure 3: Initial Prompt for WPM

<Input Poem>
“Little girl, little girl, Where have you been?”
“Gathering roses, To give to the Queen.”
“Little girl, little girl, What she gave you?
“She gave me diamond, As big as my shoe.”
<GPT’s Response (Weighted Prompt)>
Little girl, little girl, (girl:1.6) Where have you
been?”

“Gathering (roses:1.7), To give to the (Queen:1.6).”
“Little girl, little girl, (girl:1.6) What she gave you?
“She gave me (diamond:1.8), As big as my
(shoe:1.5).”

Figure 4: Examples of images generated using vari-
ous weighted prompts, with corresponding weights dis-
played below each image.

The weighted output generated by GPT is then
passed to the diffusion model. WPM processes in-

put text by identifying attention markers, such as
(word:1.5) to increase emphasis. The correspond-
ing weights are applied to the text embeddings
of their respective words and integrated into the
model’s dual text encoders. The final weighted
embeddings are then used to condition image gen-
eration. (Readers are encouraged to explore the
implementation of WPM).

4 Experiments

4.1 Implementation Details

We implemented our WPM approach using three
text-to-image models, Playground V3 (Liu et al.,
2024), Stable Diffusion XL (Podell et al., 2024),
and Sana (Xie et al., 2024), selected for their
training-free, pluggable design, enabling cross-
architecture comparisons. To evaluate the align-
ment between the generated images and poems we
employed BLIP (Li et al., 2022) to generate cap-
tions for the images and measure their similarity
to the original poem. Similarly, we applied Long-
CLIP (Zhang et al., 2024) to compute the cosine
similarity between the poem and the generated im-
age. Experiments were conducted on two bench-
mark datasets: PoemSum (Mahbub et al., 2023),
containing 3,011 poems with curated English sum-
maries from Poem Analysis, and MiniPo (Jamil
et al., 2025b), comprising 1,001 nursery rhymes,
both sourced from online platforms.

4.2 Results and Discussions

4.2.1 Quantitative Evaluation
To evaluate the effectiveness of our proposed
methodology, we present the results in Table 1. Our
Weighted Prompt Manipulation approach consis-
tently outperforms direct poem as prompts. Given
that the Long-CLIP score measures semantic con-
sistency between text and image, the results demon-
strate that incorporating weighted poems into diffu-
sion models yields higher scores, particularly when
using the optimal prompt refined through human
feedback. Notably, our WPM technique is broadly

Direct Poem Prompt 1 Prompt 2 Prompt 3 Prompt 4

BLIP
Stable Diffusion 0.2243 0.2325 0.2340 0.2412 0.2352
Playground V3 0.3296 0.3270 0.3408 0.3317 0.3272
Sana 0.3148 0.3365 0.3380 0.3356 0.3354

LongClip
Stable Diffusion 0.2391 0.2245 0.2112 0.2309 0.2273
Playground V3 0.2480 0.2449 0.2489 0.2507 0.2494
Sana 0.2286 0.2388 0.2387 0.2384 0.2418

Table 1: Quantitative evaluation of generated images
using different diffusion models on different prompts.

applicable to all Stable Diffusion style models. Ex-
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Figure 5: A comparison of generated images using different weights for various words in the same poem. All poems,
along with their corresponding weighted prompts specified in the poem, are provided in the Appendix Table 3.

perimental results on SD 3.5 Medium and Play-
ground v3 further validate the adaptability of our
approach across various diffusion-based models.

Metrics WPM Without WPM(Only Poem)
Meaning 4.3 3.8
Visual Objects (Nouns) 4.2 4.35
Image Aesthetics 3.1 3
Action Depicted (Verbs) 3.9 3.2

Table 2: The results of Human Evaluation Scores in
terms of expert ratings (1-5).

4.2.2 Human Evaluation
Given that existing automated metrics may not fully
capture the quality of generated images and with
no standardized metric available, we incorporated
human evaluations. We selected 5% of the samples
from the PoemSum dataset and had domain experts
review images generated both with and without our
WPM approach. Each image was evaluated based
on four key criteria: interpretability of meaning, vi-
sual objects, image aesthetics, and action depicted.
Participants rated each sample on a scale of 1 to
5, with higher scores indicating better quality. The
final rating for each image was determined by av-
eraging the scores provided by three experts. To
ensure unbiased assessments, the evaluators were
not informed of the model used to generate each im-
age. As shown in Table 2, the results demonstrate
that WPM significantly improves image genera-
tion in terms of semantic meaning and alignment.
Moreover, we conducted qualitative evaluations
to compare the results of Weighted Prompt Ma-

nipulation with those generated without it. Our
observations indicate that images produced using
weighted prompts are able to incorporate certain
key elements that were otherwise missing when
plain poems were used as prompts. As illustrated in
Figure 5, when the diffusion model processes only
the raw poem, the generated images tend to empha-
size specific words (pie, landscape, maze) while
completely ignoring others (plum, smoke, light).
However, by assigning greater importance to the
previously ignored words, the updated images suc-
cessfully incorporate those elements alongside the
already emphasized ones.

5 Conclusion

In this work, we propose the task of poem-to-image
manipulation based on the reader’s interpretation
in a zero-shot setting. Our novel Weighted Prompt
Manipulation technique systematically modifies
attention weights and text embeddings within dif-
fusion models to add or remove certain elements in
the poem-to-image generation. To evaluate the
effectiveness of our method, we conduct exten-
sive experiments on benchmark poetry visualiza-
tion datasets. Our evaluation framework includes
human assessments, qualitative analyses, and quan-
titative metrics, ensuring a comprehensive assess-
ment of our approach. In future work, we aim
to apply consistent weighted attention to phrases
instead of individual words, making it a scalable
poetry visualization tool that enables real-world ap-
plications in education, cultural preservation, and
literary content creation.
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6 Limitation

A key limitation of our Weighted Prompt Manipu-
lation (WPM) approach is its effectiveness in han-
dling poems that lack explicit visual elements or
rely heavily on abstract concepts. Since our method
primarily enhances image generation by adjusting
prompt weights based on the presence of tangible
objects and discernible themes, it struggles with
highly conceptual or non-visual poetry. In such
cases, where the essence of the poem cannot be
easily translated into concrete imagery, WPM fails
to introduce significant variations in the generated
outputs. As a result, the images produced remain
largely similar across different prompts, limiting
the impact of our approach in capturing the deeper,
non-representational meanings of such poems.

7 Ethical Consideration

A key ethical consideration involves the inherent bi-
ases present in diffusion models, which may reflect
societal, cultural, or data-driven biases from the
pre-trained models. These biases can potentially
influence the generation of images related to poems
on specific topics or forms, resulting in unfair or
inappropriate outputs. To ensure compliance and
ethical integrity, we also obtained formal approval
from our institute’s ethical review board (ERB) be-
fore utilizing the dataset and models for research
purposes.
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Poem Weighted Prompt 1 Weighted Prompt 2 Weighted Prompt 3 Weighted Prompt 4
Little Jack Horner
Sat in a corner,
Eating his Christmas pie; Ce
He put in his thumb,
And he pulled out a plum,
And said, “What a good boy am I!"

Little Jack Horner (boy:1.5)
Sat in a (corner:1.5),
Eating his (Christmas pie:1.6);
He put in his (thumb:1.5),
And he pulled out a (plum:1.6),
And said, “What a good (boy:1.5) am I!”

Little Jack Horner
Sat in a (corner:1.2),
Eating his (Christmas pie:1.5);
He put in his (thumb:1.2),
And he pulled out a (plum:1.3),
And said, “What a good boy am I!”

(Little:0.9) (Jack:1.5) (Horner:1.5)
Sat in a (corner:1.7),
(Eating:0.9) his (Christmas:1.6) (pie:1.6);
He put in his (thumb:1.5),
And he pulled out a (plum:1.7),
And said, “What a good boy am I!”

Little Jack (Horner:1.5)
Sat in a (corner:1.4),
Eating his (Christmas:1.3) (pie:1.2);
He put in his (thumb:1.1),
And he pulled out a (plum:1.6),
And said, “What a (good:0.8) (boy:0.9) am I!”

What sound was that?
I turn away, into the shaking room.
What was that sound that came in on the dark?
What is this maze of light it leaves us in?
What is this stance we take,
To turn away and then turn back?
What did we hear?
It was the breath
we took when we first met.
Listen. It is here.

What (sound:1.6) was that?
I turn away, into the (shaking:1.7) room.
What was that (sound:1.6) that
came in on the (dark:1.5)?
What is this (maze:1.5) of
(light:1.6) it leaves us in?
What is this (stance:0.8) we take,
To turn away and then turn back?
What did we (hear:1.5)?
It was the (breath:1.6)
we took when we first met.
Listen. It is (here:1.5).

What (sound:1.2) was that?
I turn away, into the (shaking:1.1) (room:1.3).
What was that (sound:1.2) that
came in on the (dark:1.1)?
What is this (maze:1.2) of
(light:1.3) it leaves us in?
What is this (stance:1.1) we take,
To turn away and then turn back?
What did we hear?
It was the (breath:1.3)
we took when we first met.
Listen. It is (here:1.2).

What (sound:1.7) was that?
I turn away, into the (shaking:1.5) room.
What was that (sound:1.7) that
came in on the (dark:1.5)?
What is this (maze:1.6) of
(light:1.6) it leaves us in?
What is this (stance:0.9) we take,
To turn away and then turn back?
What did we hear?
It was the (breath:1.5)
we took when we first met.
Listen. It is here.

What (sound:1.8) was that?
I turn away, into the (shaking:1.5) (room:1.3).
What was that (sound:1.8)
that came in on the (dark:1.4)?
What is this (maze:1.6) of
(light:1.5) it leaves us in?
What is this (stance:1.2) we take,
To turn away and then turn back?
What did we hear?
It was the (breath:1.9)
we took when we first (met:1.4).
(Listen:1.1). It is here.

Table 3: These are the original poems that are passed as an input to the diffusion model for the results demonstrated
in Figure 5.

Figure 6: A comparison of generated images using different weights for various words in the same poem. All poems,
along with their corresponding weighted prompts are provided in the Grey Box below.
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Prompt 1:

Refine the following poem into a weighted text prompt for text-to-image models.
Only apply weights to the most important visual words. Follow these strict rules:

Identify and emphasize only the most critical visual elements. Avoid modifying too many words.
Use weight (1.5-1.8) for words that should be prominent in the generated image.
Use weight (0.7-0.9) for words that should appear less prominently.
Do not modify auxiliary, abstract, or transition words.
Maintain the structure and wording of the original poem.
Your response should only contain the weighted poem.
Example Input:
’Underneath my outside face
There’s a face that none can see.
A little less smiley,
A little less sure,
But a whole lot more like me.’

Example Output:
’Underneath my (outside:1.7) (face:1.7)
There’s a (face:1.7) that none can see.
A little less (smiley:0.9),
A little less sure,
But a whole lot more like me.’

Now apply these rules to the following poem:

Prompt 2:

Prompt: Transform the following poem into a weighted text prompt for text-to-image generation.
Apply weights only to the most critical visual elements while preserving the poetic essence.
Follow these strict rules:

Weighting Guidelines:
Incremental Weights (1.5 - 1.8) → Words that define the poem’s core visual or emotional identity

Apply to words that strongly shape the imagery, mood, or metaphor.
Example: If the poem speaks of a storm, shadow, or teardrop, these evoke vivid visual elements and deserve higher weight.
Prioritize nouns (objects, scenery, emotions with physical manifestations).
Decremental Weights (0.7 - 0.9) → Words that modify or soften key visuals, but should not dominate

Apply to words that exist only to describe or refine an image, rather than being the main focus.
Example: If a poem describes a smiley face but the mood suggests hidden sorrow, "smiley" should be weighted lower to reduce its dominance.
Use for adjectives or modifiers that subtly influence meaning but do not need strong emphasis.
DO NOT modify auxiliary words, transition words, or abstract concepts that lack direct visual impact (e.g., "that," "none," "sure," "because").

Output Format:
Maintain the original poem’s structure.
Return only the transformed poem, with weights applied selectively and meaningfully.
Do not add explanations, notes, or comments.
Example Input:
’Underneath my outside face
There’s a face that none can see.
A little less smiley,
A little less sure,
But a whole lot more like me.’

Example Output:
’Underneath my (outside:1.7) (face:1.7)
There’s a (face:1.7) that none can see.
A little less (smiley:0.9),
A little less sure,
But a whole lot more like me.’

Now apply these rules to the following poem:

Prompt 3:
Prompt: Refine the following poem into a weighted text prompt for text-to-image models.
Only apply weights to the most important visual words.
Your response should only contain the weighted poem.

Prompt 4:

Prompt: Refine the following poem into a weighted text prompt for text-to-image models.
Only apply weights to the most important visual words. Follow these strict rules:

Identify and emphasize only the most critical visual elements. Avoid modifying too many words.
Use weight (1.5-1.8) for words that should be prominent in the generated image.
Use weight (0.7-0.9) for words that should appear less prominently.
Do not modify auxiliary, abstract, or transition words.
Maintain the structure and wording of the original poem.
Your response should only contain the weighted poem.

Table 4: List of prompts used in our study.
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