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Abstract
Large language models (LLMs) have shown to
be increasingly capable of performing reason-
ing tasks, but their ability to make sequential
decisions under uncertainty only using natural
language remains underexplored. We introduce
a novel benchmark in which LLMs interact
with multi-armed bandit environments using
purely textual feedback, “you earned a token”,
without access to numerical cues or explicit
probabilities, resulting in the model to infer
latent reward structures purely off linguistic
cues and to adapt accordingly. We evaluated
the performance of four open-source LLMs
and compare their performance to standard
decision-making algorithms such as Thompson
Sampling, Epsilon Greedy, Upper Confidence
Bound (UCB), and random choice. While most
of the LLMs underperformed compared to the
baselines, Qwen3-4B, achieved the best-arm
selection rate of 89.2% , which significantly
outperformed both the larger LLMs and tra-
ditional methods. Our findings suggest that
probabilistic reasoning is able to emerge from
language alone, and we present this benchmark
as a step towards evaluating decision-making
capabilities in naturalistic, non-numeric con-
texts.

1 Introduction

Large Language Models (LLMs) have shown some
Bayesian-like reasoning in simple tasks, it is still
unknown if they are able to handle complex un-
certainty with just natural language description.
This ability could allow for more flexible and ac-
cessible approaches to decision making under un-
certainty. Decision-making under uncertainty is
used throughout many areas, but traditional meth-
ods such as Bayesian inferences and reinforcement
learning often require complex math and data that
may not be readily available. Recent studies show
that LLMs exhibit Bayesian-like behavior in con-
strained tasks (Gupta et al., 2025); (Felicioni et al.,

2024), but it remains unclear on if they are able to
generalize this ability to multi-step decision con-
texts which involve adapting through results and
reasoning under uncertainty. Despite recent ad-
vances in LLMs such as GPT-4 and Llama-3.1-8B
which have demonstrated strong language-based
reasoning and zero-shot tasks, their ability to han-
dle complex uncertainty relying on only natural
language remains unclear. To address this, we in-
troduce our method TextBandit, which is a novel
benchmark that is designed to evaluate whether
large language models are able to make sequen-
tial decision under uncertainty using only natural
language feedback. To our knowledge, there is no
prior benchmark that evaluates LLMs in this man-
ner. Our setup, runs a suite of natural language ban-
dit simulation tasks that measure the model’s ability
to learn and make decisions based solely on text-
based feedback, giving responds like ”you earned a
token”. Four transformer-based open-source mod-
els are evaluated across 500 trials of bandit games
with reward structures that vary, which measures
their adaption and decision-making over time. We
then compare the results from the LLMs against
standard probabilistic baselines such as Epsilon-
greedy, UCB, and Thompson sampling. After the
LLM behavior is compared against the baselines,
it shows that Qwen3-4B achieved the best-arm se-
lection rate of 89.2% which significantly outper-
formed all classical methods. We find that current
LLMs are decent at making decisions under uncer-
tainty when facing natural language descriptions
as they can achieve similar scores as human meth-
ods. Larger models tend to take longer than other
models and their results still fall short of smaller
ones due to overthinking. In natural language ban-
dit simulations, the results suggest that when a
model thinks longer, it leads to mediocre or worse
decision-making.
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2 Related Work

Probabilistic Reasoning in LLMs This research
is constructed of multiple key points in the study
of LLMs, connecting their abilities to reason to
theories of decision-making and evaluation frame-
works. The research into whether LLMs can per-
form probabilistic reasoning is a central theme. Re-
cent works have shown and explored the extent to
which LLMs can mimic formal probabilistic mod-
els, most commonly Bayesian Inference. (Xie et al.,
2022) frames in-context learning as a form of im-
plicit Bayesian inference, characterizes how LLMs
can carry out posterior prediction by inferring and
averaging latent concepts, although there are differ-
ences in the prompts, and pretraining data.(Gupta
et al., 2025) demonstrate that while LLMs may
have inherent priors, they can update their beliefs
to be consistent with Bayesian posterior updates
when provided with enough in-context evidence
- suggesting how LLM’s abilities for probabilis-
tic reasoning surpasses simple pattern matching.
(Sun et al., 2025) proposed that with integrated of
classic bandit strategies and LLM-based reward
prediction, it resulted in improved performance
over direct LLM arm-selection in setting that had
minimal semantic cues, which supports the design
rationale behind our TextBandit approach.

Uncertainty-Aware Decision-Making (Feli-
cioni et al., 2024) explores the benefits of the
explicit consideration of epistemic uncertainty in
the performance of LLMs in sequential decision-
making. Demonstrating that LLMs can explore and
adapt better in uncertainty-aware environments, the
study infuses uncertainty-aware strategies, like pos-
terior sampling, into the model. This makes the
point that uncertainty is not merely a constraint, but
can be exploited as a valuable signal to direct more
effective and flexible model behavior - especially
in probabilistic environments such as those consid-
ered in our benchmark (bandit environments).

Exploration-Exploitation in Bandit Envi-
ronments Previous studies have examined the
exploration-exploitation (E&E) strategies of LLMs
that are used in simulations under uncertainty.
(Zhang et al., 2025) compares the strategies used
by LLMs to human methods such as the Upper
Confidence Bound (UCB) algorithm to uncover
the LLM’s ability to simulate human behavior us-
ing the context of multi armed bandit simulations.
Their findings reveal the impact of reasoning on
exploration, the differences in E&E behaviors be-

tween human methods and LLMs, as well as in-
terpretations on how LLMs can be utilized for
dynamic decision-making tasks. Specifically, the
LLMs tested have been exploring more options in
the beginning than at the end of the evaluation. Hu-
man methods explored more with diverse tactics
such as random or direct methods and managed
to achieve low regret. When Chain-Of-Thought is
applied to these models, the reasoning capability
increases dramatically, where they behave similarly
to human methods.

3 Benchmark Design

We propose a novel benchmark that evaluates
LLMs in decision-making tasks under uncertainty
using a multi-armed bandit (MAB) framework.
The bandit environment consists up of multiple
arms, each with a reward distribution that is un-
known, and the goal is for the LLM to identify
the arm that maximizes cumulative reward over
time. Unlike traditional setups that utilize numeric
feedback, our benchmark requires the LLMs to in-
fer latent reward structures purely off textual feed-
back. More specifically, the LLMs are provided
with feedback after each decision “you earned a to-
ken” for choosing the correct option and “you did
not earn a token” for the unsuccessful one. The
feedback is always going to be at most 25 lines
which will never exceed the LLMs context limits
as the smallest context limit for one of the LLMs
we tested is 1,024 tokens. The challenge is that
the models are not provided with explicit proba-
bilities or numerical cues, hence requiring them to
adapt based on linguistic cues alone. In order to
document the LLM’s raw probabilistic reasoning,
we did not use any extensions. This experiment
uses two arms, three arms, four arms, and five arms.
The rates are fixed but have unknown success rates.
For two arms, the success rates are 30% and 65%.
For three arms, the success rates are 40%, 30%,
and 70%. For four arms, the success rates are 80%,
60%, 35%, and 25%. For five arms, the success
rates are 20%, 75%, 35%, 25%, and 55%. Over a
series of multiple iterations, the models must select
one arm per round and adjust based on the feed-
back they receive. The performance of each model
is evaluated based on the cumulative reward, re-
gret, and best-arm selection rate. In addition to the
LLMs, we will evaluate several decision-making al-
gorithms typically seen in multi-armed bandit prob-
lems, including Epsilon greedy, Upper Confidence
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Bound (UCB), Thompson Sampling, and Random
Choice. These algorithms will serve as baselines
that allow us to compare the performance of the
LLMs against well established decision-making
strategies. Each of these algorithms will help in
comparing the LLMs’ ability to adapt to feedback
and in maximizing the cumulative reward and min-
imizing cumulative regret over time.

4 Methodology

4.1 Task Overview and Reward Structure

In our benchmark, we simulate a multi-armed
bandit environment where large language models
(LLMs) must make repeated decisions under uncer-
tainty using only natural language feedback. Each
bandit environment consists of multiple arms (rang-
ing from 2 to 5), with each arm associated with a
fixed but unknown success probability. For exam-
ple, in the 2-arm configuration, one arm yields a
reward with a 65% probability and the other with
30%. These probabilities are never revealed to the
model.

At each round, the LLM is prompted to select
an arm. Based on the sampled outcome, the model
receives textual feedback:

• ”You earned a token” if the action results in
success (reward = 1)

• ”You did not earn a token” if it results in fail-
ure (reward = 0)

No explicit numerical cues or probabilistic infor-
mation are provided. Importantly, there are no
penalties for incorrect choices: The only signal the
model receives is whether it succeeded or failed, in
linguistic form. The objective of the model is to
maximize cumulative reward across multiple itera-
tions by learning which arm is better solely from
this binary language feedback.

4.2 Prompting Protocol

Each LLM is evaluated using a consistent prompt-
ing structure designed to simulate a text-only
decision-making loop. The core prompt consists
of:

• A natural language instruction that puts the
task into the context of decision-making situ-
ation (e.g. Such as, “Select the slot machine
that you think will yield you a token.”)

• A history of previous choices and their out-
comes in plain language (e.g., “Slot machine
1 won,” “Slot machine 2 lost”), spanning all
prior iterations in the current episode

• A request for the model to select the next ac-
tion by outputting a number corresponding to
the arm (e.g., “1”, “2”, “3”, etc.)

The model receives this prompt anew at each step,
with the historical context updated to reflect the
outcomes of previous choices. No internal mem-
ory of past interactions is preserved between runs.
Each decision is made in a single-shot comple-
tion with no intermediate reasoning or Chain-of-
Thought scaffolding. To ensure consistency, we ap-
ply the same format and structure across all models
and arm configurations. The only variation lies in
the number of arms available and the accumulated
outcome history. This protocol isolates the model’s
ability to infer and adapt to reward patterns based
solely on linguistic reinforcement, rather than nu-
meric data or structured training signals.

4.3 Baselines and Comparison Models
In order to test the LLM’s ability with this dataset,
we compared it with many models that are com-
monly used in bandit decision-making research.
Random Choice chooses actions at random, with-
out learning. Epsilon Greedy selects the best possi-
ble action using the probability 1− ϵ, otherwise it
will choose at random (Do et al., 2024). Thompson
Sampling uses Bayesian inference to collect infor-
mation about the probability distribution within the
bandit simulation, sampling from those distribu-
tions to make decisions (Russo et al., 2020). UCB
(Upper Confidence Bound) analyzes the options
provided and will utilize the more successful op-
tions while continuing to try new ones (Hao et al.,
2019).

4.4 LLMs Evaluated
To test our hypothesis, we selected a diverse set of
open-source large language models. The models
we chose represent different architecture, param-
eter sizes, and different training methodologies,
allowing for an extensive analysis of how these
factors can influence LLM’s decision making abili-
ties. The models evaluated in our benchmarks in-
cludes Qwen/Qwen3-4B, Qwen/Qwen3-8B, meta-
llama/Llama-3.1-8B, and microsoft/phi-2.

Our experimental design uses the multi-armed
bandit problem within a purely text-based interac-
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tion loop. For each trial, the LLM receives a prompt
containing the history of its previous choices and
outcomes (e.g., “Slot machine 1 won,” “Slot ma-
chine 2 lost”). The prompt explicitly instructs the
model to act as a decision making agent and to only
output the number (ID) of its chosen machine, “1”
or “2” for example. This setup does not give the
LLM information on the underlying reward struc-
ture - a 30% win rate for slot machine 1 and a
65% win rate for slot machine 2. Evaluation is con-
ducted over 500 independent runs, with each run
consisting of 25 decision making iterations. This
repetitive process allows us to access the model’s
ability to learn and adapt its strategy over time. Per-
formance is measured via best-arm selection rate,
which will track its frequency of being chosen over
the objectively inferior machine (Slot machine 1).

Table 1: Large language models evaluated on the bandit
task, along with key characteristics.

Model Parameters Notable Characteristics

Qwen3-4B 4B supports multilingual input, strong performance in
reasoning tasks

Qwen3-8B 8B larger version of Qwen3-4B, enhanced tool-use abili-
ties, better for long-context understanding

Llama-3.1-8B 8B optimized for following instructions and multilingual
capabilities

phi-2 2.7B strong performance for its size, compact and efficient

5 Results

Our evaluation of the LLMs on natural language-
based multi-armed bandit tasks revealed significant
differences in performance and results across the
different tested architectures. We have found that
models such as Qwen3-4B demonstrated their abil-
ity to learn and adapt over strategies to maximize
rewards, while other models struggled to find the
optimal arm.

5.1 Quantitative Performance

We assessed models based on three key metrics:
Cumulative Reward, Best-Arm Selection Rate, and
Cumulative Regret. These metrics provide insights
on each model’s decision-making and learning ca-
pability over 500 independent runs of 25 iterations
each. To calculate cumulative reward , we add a
token for receiving a successful outcome and not
adding anything when receiving the failed outcome.

5.2 Cumulative Reward

The cumulative reward illustrates the total num-
ber of tokens the model accumulated over the
25 decision-making iterations. Surprisingly, the
Qwen3-4B model shows more accuracy when

choosing the optimal arm, therefore accumulat-
ing the most amount of tokens with the highest
rewards rate. In contrast, Llama-3.1-8B, Phi-2, and
Qwen3-8B’s amount of total reward accumulated
is substantially lesser, suggesting it’s performance
closer to random chance and a failure to consis-
tently choose the better arm.

5.3 Cumulative Regret
Cumulative regret, shown in Figure 1, measures the
opportunity cost of not choosing the optimal arm.
The opportunity cost is calculated by subtracting
the reward obtained at time rt from the optimal
reward r∗t . A lower cumulative regret signifies a
more efficient decision making process. The regret
trends is very similar to what’s shown in Cumu-
lative Reward. An unexpected turnout is that the
prompt with four arms, had the lowest amounts
of cumulative regret across all models while the
prompt with five arms, had the highest amounts
of cumulative regret. Llama-3.1-8B and Phi-2’s
regret scores are varied across the same prompts,
indicating that it has a low capacity for probabilis-
tic reasoning when under uncertainty. Qwen3-4b
has similar patterns to the rest for the prompts with
three and five arms, but excel when there are two
arms. This suggests that due to it’s smaller size,
it thinks faster and manages to exploit the optimal
arm.

Cumulative Regret =
T∑
t=1

(r∗t − rt) (1)

5.4 Best-Arm Selection Rate
The best arm selection rate, shown in table, quan-
tifies the percentage of times each model chose
the arm with the 65% success rate (the optimal
arm). Qwen3-8B, Llama-3.1-8B, and Phi-2 models
achieved best-arm selection rates of 37.5%, 31.6%,
and 25.4%, respectively. These rates are consid-
erably the lower and indicate a struggle to distin-
guish the better-performing arm from the inferior
ones. Despite Qwen3-8B’s tendency to overthink,
it still manages to achieve better results than the
other models meaning that some of its decisions are
still valid. Phi-2 is also a smaller model similar to
Qwen3-4B, but it achieved the worst results out of
all the models. This suggests that although having
a small size may be advantageous for some models,
others do not possess strong internal probabilistic
reasoning to make up for it.
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Figure 1: Comparison of cumulative regret trends for
four LLMs, segmented by the number of arms. The
left column for each model shows performance with 2
and 3 arms, while the right column shows performance
with 4 and 5 arms. The LLMs had a similar regret trend
between 3 arms and 4 arms, although it is important to
note that Qwen3-4B had higher regret trends on 3 arms
than 4 arms.

(a) Llama-3.1-8B (2 & 3
arms)

(b) Llama-3.1-8B (4 & 5
arms)

(c) phi-2 (2 & 3 arms) (d) phi-2 (4 & 5 arms)

(e) Qwen3-4B (2 & 3 arms) (f) Qwen3-4B (4 & 5 arms)

(g) Qwen3-8B (2 & 3 arms) (h) Qwen3-8B (4 & 5 arms)

Figure 2: Comparison of cumulative reward trends for
four LLMs, segmented by the number of arms. The left
column for each model shows performance with 2 and 3
arms, while the right column shows performance with 4
and 5 arms. Surprisingly, Qwen3-4B had a high reward
trend for 3 arms doing more poorly than the other LLMs
for 5 arms.

(a) Llama-3.1-8B (2 & 3
arms)

(b) Llama-3.1-8B (4 & 5
arms)

(c) phi-2 (2 & 3 arms) (d) phi-2 (4 & 5 arms)

(e) Qwen3-4B (2 & 3 arms) (f) Qwen3-4B (4 & 5 arms)

(g) Qwen3-8B (2 & 3 arms) (h) Qwen3-8B (4 & 5 arms)
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5.5 Comparison to Baselines
We compared the performance of LLMs with four
standard multi-armed bandit baselines, Thomp-
son Sampling, Upper Confidence Bound (UCB),
Epsilon-Greedy and Random Choice in order to
have all these performances in the same context.
The performance of these baselines is summarized
in Table 2. These baselines can utilize structured
decision-making heuristics restricted to probabilis-
tic decision-making, but are not able to make use
of language comprehension. On the other hand,
the LLMs work entirely on natural language feed-
back, and the comparison was a result of emergent
probabilistic reasoning on language itself.

The most appropriate metrics to evaluate learn-
ing rates was the performance in best-arm selection
rate, which measures the percentage of the time
an agent picked the best arm. Among the base-
lines, Thompson Sampling had the best best-arm
selection rate of 51.1%, UCB the second-best of
47.6%, Epsilon-Greedy the third-best of 38.1% and
Random Choice in last with 31.8%.

However, a single LLM, Qwen3-4B, performed
much better than all baselines in terms of a best-arm
selection rate that equaled 89.2%, which signifies
that the LLM was advanced in the capabilities of
learning linguistic feedback and developing a con-
sistent policy of maximizing rewards. The other
LLMs Qwen3-8B (37.5%), Llama-3.1-8B (31.6%)
and Phi-2 (25.4%) did worse than both Thompson
Sampling and UCB, indicating their inability to
appropriately adapt to the task, or to make sense
out of the feedback.

Table 2: Performance of various Baselines on natural
language multi-armed bandit tasks.

MODEL FINAL CUMULATIVE REWARD BEST-ARM SELECTION RATE

Thompson-Sampling 8297 51.1%
UCB 4696 47.6%
Epsilon-Greedy 6029 38.1%
Random-Choice 5783 31.8%

5.6 Qualitative Analysis
The LLMs that are tested usually use Chain-Of-
Thought, but in these datasets it is removed to re-
ceive a clear output. As a result, they follow similar
patterns like when a random option is chosen at
first, they will try to exploit that option despite it
not having the best win rate. Their method is simi-
lar to the Thompson Sampling method, where they
balance exploration with exploitation. The LLMs
will sample the options first and choose the ones
they believe are the most successful. This leads

them to choosing some optimal options but not the
most optimal one because they believe that their
chosen one is the best after receiving a moderate
amount of outputs. Notably, Qwen3-8b took an
exceptionally large amount of time when testing
because it kept trying to reason instead of giving a
concise input.

Table 3: Performance of various LLMs on natural lan-
guage multi-armed bandit tasks.

MODEL FINAL CUMULATIVE REWARD BEST-ARM SELECTION RATE

Qwen3-4B 11150 89.2%
Qwen3-8B 4686 37.5%
Llama-3.1-8B 3946 31.6%
phi-2 3181 25.4%

6 Discussion

In comparison to the baselines, the LLMs reasoning
capabilities are inferior with the exception Qwen3-
4B. This suggests they may have developed dif-
ferent biases on which choices they believed had
the best probabilities while the baselines, methods
that don’t involve reason, were able to reach deci-
sions on this dataset because they were optimized
for better probabilistic calculation and problem-
solving. Our findings show that some LLMs, most
notably Qwen3-4B, have the flexibility to adapt
to uncertainty using natural language alone, with
significant differences between models. This sug-
gests that purely off-language-based interactions,
basic probabilistic reasoning form without the use
of numerical cues. Models such as Qwen3-8B and
Llama-3.1-8B, which were larger, struggled to con-
sistently identify the optimal arm. This suggests
that there is no correlation between model size and
making better decisions in this context. In fact, the
base Qwen3-4B and Qwen3-8B models received
identical pretraining and has similar qualities be-
sides the amount of parameters so the training is
not a cause for this difference either. It may be that
the architecture of Qwen-4B, as an efficient and
lightweight model, contributed to its impressive
probabilistic reasoning in this fast-feedback envi-
ronment, where they receive limited information.
Larger models may have been trained for complex
reasoning which is why when they encounter sim-
pler tasks, they tend to overthink things which leads
to a drop in performance. Although models such as
Qwen3-8B and Llama-3.1-8B have a greater capac-
ity for abstract reasoning, their under performance
may be resulted from overfitting to irrelevant fea-
tures as shown in the feedback prompt of excessive
internal deliberation. Similar patterns have been
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seen in (Zhang et al., 2025) where the LLMs halted
their exploration as they received more information,
which leads them to solidify an optimal arm from
noise. Their training done on complex reasoning
may introduce biases in simple reinforcement en-
vironments like ours. Compared to medium sized
models like Qwen3-4B which appear to utilize a
more direct exploitation strategy, resulting in better
performance. The idea that smaller models hav-
ing higher performance in terms of internal proba-
bilistic reasoning is unlikely as the smallest model
tested, Phi-2, produced the worst outcome. An-
other possibility is that the LLMs have an internal
bias where they make an answer based on the input
given without any deep reasoning such as choosing
a specific option based on the example prompts
they received. This answer may be different from
their internal reasoning, so they over-complicate
their thoughts and deviate their decisions from their
calculations. With the amount of resources the
larger LLMs have, they suffer more heavily from
this behavior and generate repetitive content, pre-
venting them from providing a final answer. Unlike
in (Zhang et al., 2025), the LLMs were restricted
from using Chain-Of-Thought which suggests why
their performance unremarkable. Without Chain-
Of-Thought, their pure probabilistic reasoning abil-
ity is low. This behavior is more pronounced in
larger models, Qwen3-8B is an example of this as
despite the vast amount of time it spent thinking,
it’s performance was only mediocre. While some
models could learn effectively from text-based feed-
back, the others behaved in a much more random
manner and lacked a robust internal strategy. Some
examples of further work include the implementa-
tion of more complex tasks, such as dynamic tasks
or multi-step reasoning to further evaluate and de-
velop the probabilistic capabilities of LLMs.

7 Conclusion

We introduced TextBandit, a benchmark in eval-
uating the abilities of large language models in
making decisions in uncertain environment with
only the guidance of natural language alone. By
framing the multi-armed bandit problem with a nat-
ural language task, we have found that LLMs have
a decent capacity for successful judgment when un-
der uncertainty and influenced by natural language.
Our evaluations show that the LLM’s size does
not translate to better performance. In fact, it may
return results that are less effective. TextBandit

offers a minimal yet challenging benchmark that
shows another perspective in the evaluation of and
adaptation of language modes. With this bench-
mark, we can contribute to deeper understandings
of probabilistic reasoning for LLMs under uncer-
tainty as well as information that can be used to
create opportunities for the further development of
this ability.

8 Ethics Statement

Our study did not involve human subjects, private
data, or any interventions in living individuals; all
experiments conducted were performed on syn-
thetic bandit tasks with publicly available open
source LLMs.

9 Software Used

The models in this work were trained and the asso-
ciated data was gathered using cloud GPU services
provided by (RunPod, 2025). All code and datasets
used/developed as apart of this research have been
included with the submission. We ensure all data
collected and handled adhered to ethical and insti-
tutional guidelines.

10 Reproducibility Statement

We release all the code, evaluation scripts, and
open-source models that were used in our exper-
iments at https://github.com/ChainedTears/

TextBandit. The repository contains detailed doc-
umentation on the models that were used, the en-
vironment setup instructions, and how to repro-
duce the results. All experiments rely on open-
source LLMs available with the Hugging Face
Transformers library, and were conducted using
GPU instances hosted on RunPod, which allowed
for reproducibility without access to local high-end
hardware.
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Nicolò Felicioni, Lucas Maystre, Sina Ghiassian, and
Kamil Ciosek. 2024. On the importance of uncer-
tainty in decision-making with large language model.
https://arxiv.org/html/2404.02649. Po-
litecnico di Milano and Spotify. Licensed under CC
BY 4.0.

https://github.com/ChainedTears/TextBandit
https://github.com/ChainedTears/TextBandit
http://arxiv.org/abs/2403.00540
http://arxiv.org/abs/2403.00540
https://arxiv.org/pdf/2403.00540
https://arxiv.org/pdf/2403.00540
http://arxiv.org/abs/2404.02649
http://arxiv.org/abs/2404.02649
https://arxiv.org/html/2404.02649


8

Ritwik Gupta, Rodolfo Corona, Jiaxin Ge, Eric Wang,
Dan Klein, Trevor Darrell, and David M. Chan.
2025. Enough coin flips can make llms act bayesian.
https://arxiv.org/pdf/2503.04722. Uni-
versity of California, Berkeley.

Botao Hao, Yasin Abbasi-Yadkori, Zheng Wen, and
Guang Cheng. 2019. Bootstrapping upper confi-
dence bound. https://arxiv.org/pdf/1906.
05247. Purdue University, VinAI, DeepMind.

RunPod. 2025. Runpod: Scalable cloud gpu platform.
https://www.runpod.io/. Accessed: 2025-07-
03.

Daniel J. Russo, Benjamin Van Roy, Abbas Kazerouni,
Ian Osband, and Zheng Wen. 2020. A tutorial on
thompson sampling. https://arxiv.org/pdf/
1707.02038. Columbia University, Stanford Uni-
versity, Google DeepMind, Adobe Research.

Jiahang Sun, Zhiyong Wang, Runhan Yang, Chenjun
Xiao, John C. S. Lui, and Zhongxiang Dai. 2025.
Large language model–enhanced multi-armed ban-
dits.

Sang Michael Xie, Aditi Raghunathan, Percy Liang,
and Tengyu Ma. 2022. An explanation of in-context
learning as implicit bayesian inference. https:
//arxiv.org/pdf/2111.02080. Stanford Uni-
versity.

Ziyuan Zhang, Darcy Wang, Ningyuan Chen, Rodrigo
Mansur, and Vahid Sarhangian. 2025. Comparing
exploration–exploitation strategies of llms and hu-
mans: Insights from standard multi-armed bandit
tasks. https://arxiv.org/pdf/2505.09901.
University of Toronto.

http://arxiv.org/abs/2503.04722
https://arxiv.org/pdf/2503.04722
http://arxiv.org/abs/1906.05247
http://arxiv.org/abs/1906.05247
https://arxiv.org/pdf/1906.05247
https://arxiv.org/pdf/1906.05247
https://www.runpod.io/
http://arxiv.org/abs/1707.02038
http://arxiv.org/abs/1707.02038
https://arxiv.org/pdf/1707.02038
https://arxiv.org/pdf/1707.02038
http://arxiv.org/abs/2502.01118
http://arxiv.org/abs/2502.01118
http://arxiv.org/abs/2111.02080
http://arxiv.org/abs/2111.02080
https://arxiv.org/pdf/2111.02080
https://arxiv.org/pdf/2111.02080
http://arxiv.org/abs/2505.09901
http://arxiv.org/abs/2505.09901
http://arxiv.org/abs/2505.09901
http://arxiv.org/abs/2505.09901
https://arxiv.org/pdf/2505.09901

