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Abstract

In recent years, large language models (LLMs)
have demonstrated impressive capabilities in
generating human-like textual content. How-
ever, their proficiency in accurately verifying
quotes and citations remains uncertain. This
study benchmarks the effectiveness of contem-
porary LLMs in assessing the relationship be-
tween claims and their cited evidence. To ad-
dress existing limitations, we propose a novel
hybrid approach that integrates multiple veri-
fication techniques to robustly evaluate claim-
citation alignment.

By systematically combining linguistic pars-
ing, confidence-based semantic verification,
and graph neural network modeling, this pa-
per aims to show the enhanced accuracy and
interpretability of automated quote and cita-
tion verification processing using our method,
setting a strong baseline against current LLM
capabilities.

1 Introduction

large language models (LLMs) now draft contracts,
summarize court opinions, and tutor students with
prose that rivals expert human writing. Yet this
fluency masks a structural weakness: current sys-
tems freely invent citations, mangle quotations,
and misattribute facts. Existing “factuality” bench-
marks inspect whether a single sentence is plau-
sible, they rarely ask the harder, document-level
question, Does the cited source actually say what
the model claims it does? Consequently, a model
can ace popular truthfulness tests while still propa-
gating fabricated evidence.

Stop gap fixes remain inadequate. Retrieval-
augmented generation merely fetches documents, it
does not verify that the retrieved span truly supports
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the claim. Entailment models judge sentence pairs
in isolation, ignoring metadata such as author, edi-
tion, or publication date. Chain-of-thought prompt-
ing adds reasoning steps, but those steps them-
selves can hallucinate, compounding error instead
of correcting it. The field therefore, lacks a uni-
fied benchmark and methodology that (i) supplies
ground-truth claim—evidence pairs, (ii) measures ci-
tation alignment end-to-end, and (iii) stresses mod-
els with real-world edge cases such as paraphrased
quotes, partial attributions, and outdated editions.

We address this gap by pairing a meticulously
curated dataset with a hybrid verification pipeline.
The dataset contains 500 claim—quote pairs drawn
from news, legal opinions, scientific papers, and
classic literature, each manually labeled for citation
correctness. The pipeline chains retrieval, textual
entailment, and bibliographic cross-checks into a
single decision graph, rejecting any claim unless
all stages confirm support. Benchmarking GPT-4,
Claude 3, Gemini 1.5, Llama 3, and Mistral 7B
under this stricter regime reveals that even top mod-
els overlook up to 37% of misattributions—failure
modes invisible to traditional factuality scores.

Our main contributions in this work are as fol-
lows:

e Citation-Alignment Dataset: a domain-
diverse, expert-annotated benchmark focused
on whether a quoted span is genuinely present
and contextually faithful to its cited source.

* Hybrid Verification Pipeline: a modular
graph that integrates retrieval, entailment, and
metadata checks, yielding strict pass-fail judg-
ments rather than scalar plausibility scores.

¢ Comprehensive LLM Evaluation: the first

Proceedings of the First Workshop on Ethical Concerns in Training, Evaluating and Deploying LLM associated with RANLP 2025,

pages 9-16, Varna, Bulgaria, Sep 13, 2025.
https://doi.org/10.26615/978-954-452-103-5-002



head-to-head comparison of five leading LLM
families on citation alignment, uncovering sys-
tematic errors that prior metrics miss.

2 Related Work

2.1 Factuality and Hallucination Surveys

Recent work has mapped the “hallucination” prob-
lem—LLMs confidently yielding plausible yet un-
supported statements—in fine detail. Wang et al.
[5] present a comprehensive survey of factuality
challenges, grouping failure modes and proposing
concrete mitigations. Huang et al. [9] build on
this by showing how model scale, decoding strate-
gies, and noisy training data each fuel factual drift.
Wang et al. [5] synthesize these findings into a
unified framework spanning knowledge extraction,
retrieval methods, and domain-specific evaluations.
Chen et al. [11] introduce FELM, a long-form
factuality benchmark that demonstrates even state-
of-the-art evaluators miss subtle inconsistencies.
By inspecting each token as it’s generated, Barbero
et al. [8] catch hallucinations in real time, snar-
ing unsupported fragments before they can snow-
ball. Building on this, Bazarova et al. [14] intro-
duce a topological divergence method for attention
graphs, which converts attention weights into topo-
logical signatures and rings an alarm whenever
the divergence exceeds learned norms, delivering
best-in-class detection accuracy and seamless trans-
fer across domains

2.2 Grounded Citation Methods

Retrieval-augmented generation (RAG) has be-
come the backbone of citation grounding. Thorne
et al. [9] established the Fact Extraction and Veri-
fication (FEVER) benchmark, pairing claims with
supporting Wikipedia passages and setting early
standards. Menick et al. [1] then trained Go-
pherCite, a 280 B-parameter model, to emit ex-
act inline quotes alongside its answers, reaching
80-90% accuracy on open-domain QA. Huang
et al. [6] fine-tuned LLaMA-2-7B to generate
line-level citations instead of coarse document IDs,
boosting precision by over 14% on the ALCE
benchmark. Zhang et al. [7] survey the evolv-
ing RAG landscape, while Zhang et al. [12] ex-
pand to Poly-FEVER, a multilingual, multi-hop
testbed.Peng et al. [15] round out this picture by
introducing unanswerability checks, ensuring sys-
tems gracefully abstain when evidence is lacking.
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2.3 Self-Verification

Self-verification routines have emerged to tighten
factual accuracy beyond retrieval. Dhuliawala et
al. [2] proposed the Chain-of-Verification (CoVe)
pipeline: the model drafts an answer, generates
check-questions, answers them, and then composes
a final response, dramatically reducing unsupported
claims. Min et al. [3] introduced FActScore, an au-
tomated metric that breaks text into atomic facts
and measures support against trusted sources, align-
ing within 2 % of human judgment on biography
summaries.

2.4 Quotation Attribution and Multi-Modal
Verification

Grounded methods extend beyond factoids to dia-
logues and multi-modal content. Michel et al. [4]
show that LLaMa3 can accurately attribute lines
of dialogue to characters across a 28-novel cor-
pus, illustrating how citation techniques translate
to narrative text. Recent work by Pang et al. [21]
introduces HGTMFC, a hypergraph transformer
model that uses fine-grained semantic interactions
between text and images for claim verification.
This system outperforms prior multi-modal models
by using higher-order relationships between textual
claims and visual evidence nodes through a hyper-
graph and line graph propagation. The TREC 2024
RAG Track introduces a citation accuracy bench-
mark, revealing that LLMs like GPT-40 achieve
over 70% alignment with human judgment when
verifying grounded citations, even in complex re-
sponses. Thakur et al. [22]. However, despite many
advancements in factual accuracy, LLMs continue
to exhibit significant challenges in generating reli-
able and accurate citations. Benchmarks compiled
by Patel and Anand reveal that even state-of-the-art
models often achieve a near-zero accuracy when
generating citations, highlighting a critical region
for potential research in robust verification.

2.5 Graph-Based and Kernel-Baseline
Approaches

Johnson et al. [23] introduce a single, fully
shared encoder-decoder neural machine transla-
tor model that uses a simple target-language to-
ken and a joint subword vocabulary to translate
among dozens of languages, achieving state-of-
the-art BLEU on major benchmarks, improving
low-resource pair performance, and enabling sur-
prisingly effective zero-shot translation by implic-



itly learning an interlingual representation. Banko
et al. [24] build upon the technique of informa-
tion extraction by employing kernel-based meth-
ods and graphical models in order to analyze
smaller, domain-specific text to identify and ex-
tract pre-defined sets of relationships, laying the
groundwork for data-driven linguistic process-
ing. Kriege et al. [25] provide a comprehen-
sive fifteen-year survey of graph-kernel methods,
covering neighborhood-aggregation (Weisfeiler-
Lehman), assignment-based, substructure, walk-
and-path, and attributed-graph approaches. They
categorize each technique by feature-extraction
paradigm, computational strategy (explicit versus
implicit mapping), and support for discrete labels
or continuous attributes. Through an extensive em-
pirical study across a variety of datasets, they de-
rive practical guidelines for selecting and tuning
graph kernels. More recently, developments in
deep learning have extended the usage of graph-
based paradigms into advanced graph neural net-
works (GNNs), using them as powerful tools to
analyze non-Euclidean data through interdependen-
cies. Helping advance tasks in data mining to natu-
ral language understanding by adapting principles
in the graph structures of deep learning. Wu et al.
[26] Within the development of NMT specifically,
recent advancements have been shown with the
integration of GNNS, in particular the multi-level
community awareness graph neural network (MC-
GNN) proposed by Nguyen et al. [27], which can
explicitly model composite semantics like morphol-
ogy, syntax, and complex linguistic information by
leveraging graph structures, sometimes substituting
components to enhance the quality of translation.

2.6 Gaps and Our Contribution

Despite its strengths, our CoVeGAT introduces a
novel citation verification pipeline that combines
dependency-based SVO extraction with graph at-
tention mechanisms, outperforming traditional clas-
sifiers on benchmark datasets. However, several
key limitations remain. First, the pipeline depends
heavily on the accuracy of SVO extraction; parsing
errors, especially in idiomatic or complex construc-
tions, cascade through the entire system. Second,
our CoVeGAT assumes claims can be fully decom-
posed into discrete triplets, which overlooks tempo-
ral reasoning, multi-sentence context, and implicit
premises that our sliding-window backup cannot
capture. Third, the dense semantic graphs required
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for each citation pair can be computationally expen-
sive to construct at scale. Finally, CoVeGAT’s per-
formance hinges on access to high-quality, domain-
specific labeled data for fine-tuning the graph atten-
tion model, limiting its generalizability across dis-
ciplines. Future work may explore integrating neu-
ral semantic parsers, lightweight graph construc-
tion methods, or few-shot adaptation strategies to
address these constraints and extend CoVeGAT’s
applicability to real-world, low-resource domains.

3 Methodology

Our overall goal is to take unstructured text,
namely, free-form claims paired with their support-
ing citations, and convert it into a graph-structured
dataset that explicitly records which triplets are
supported or contradicted by the citation. This al-
lows downstream models to reason about which
pieces of a claim hold up against evidence and
which do not. To achieve this, we have developed a
fully automated dataset construction pipeline (See
Figure 1), comprising four sequential stages.

By the end of this pipeline, every claim-citation
pair is represented as a small graph whose nodes
and edges are richly tagged with support scores,
forming a large, trainable dataset for any model
that needs to reason over evidence.

3.1 Triplet Extraction

We utilize the spaCy NLP library to perform seman-
tic parsing on both claims and their corresponding
citation texts. Each complex sentence is simplified
into structured Subject-Verb-Object (SVO) triplets,
capturing fundamental semantic relationships. This
process explicitly captures negation within verbs
by prefixing negated verbs with "NOT_". The de-
composition of these sentences helps reduce textual
complexity and enables focused comparisons be-
tween claim and citation content.

If no clear SVO triples are extracted using this
dependency parsing, our method will default to a
sliding window trigram approach. This ensures
robust extraction even from short or less well-
structured texts. Our multi-tiered approach to pars-
ing effectively distills complex sentences into fun-
damental semantic relationships, facilitating pre-
cise comparisons between claim and citation.

3.2 Chain-Of-Verification (CoVe)

To be able to assess the evidential support provided
by the citations accurately, CoVe utilizes an exter-
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Figure 1: Overview of the CoVeGAT architecture. First, claim—citation pairs are passed through an SVO-based
triplet extractor (with a trigram fallback) to produce semantic subject—verb—object nodes, whose embeddings
are obtained via BERT. Edges between claim and citation triplets are weighted by verification scores produced
by GPT-3.5-turbo. The resulting weighted graph is then fed into a graph attention classifier (GAT), with ELU
activations, global mean pooling, and a final linear layer to produce a normalized output score in [0, 1].

nal model, simulated via OpenAl’s GPT-3.5-turbo.
Each extracted triplet from a claim is evaluated
against the citation text, which results in confidence
scores ranging from O to 1. Scores closer to 1 in-
dicate higher confidence and stronger evidential
support, while scores closer to 0 indicate low confi-
dence and weak or no evidential support. This re-
flects the likelihood of semantic entailment. These
scores serve as quantifiable measures of evidential
strength between individual triplets.

3.3 Graph Construction

We construct a weighted semantic graph by repre-
senting claim and citation triplets as nodes. Edges
between these nodes are established based on CoVe-
derived confidence scores, which effectively en-
code the strength of evidential relationships as edge
weights. This graph captures the nuanced seman-
tic dependencies and interactions between claim
statements and their potential evidential references.

3.4 Graph Attention Network (GAT) Analysis

The final stage of this process involves analyzing
the constructed graph using a graph attention net-
work (GAT). This neural network architecture lever-
ages node features, derived from BERT embed-
dings of triplet components, and weighted edges
in order to aggregate semantic information. The
GAT model specifically pools information from
claim-side nodes to make graph-level classifica-
tions, ultimately determining whether a claim is
supported by its citation
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By integrating semantic parsing, confidence-
based verification, and advanced graph neural net-
works, CoVeGAT provides an interpretable ap-
proach to automated quote and citation verification.

4 Experimental Methodology

4.1 Dataset

Source. Our experiments use AVeriTeC—a 4 568-
claim benchmark for real-world fact verification
that aggregates checks from 50 independent organ-
isations. From the official release, we draw exactly
500 claims from the dev.json split, retaining only
the raw claim texts and their ground-truth verdicts.
The dev partition is preferred because it is entirely
disjoint from the training data supplied with the
dataset, ensuring our evaluation corpus is unseen
by any baseline that might have been pre-trained
on the original training split.

To create a balanced testbed, we generate a one-
to-one set of 500 fabricated counterparts. Each
fabricated claim is derived from its real twin by
applying a single, controlled perturbation chosen
uniformly at random:

* Named-entity substitution (e.g., swapping
“Angela Merkel”)

* Numerical alteration (changing dates, counts,
or magnitude)

* Temporal shift (advancing or back-dating
events)



Model Label accuracy Macro-F1  Abstain rate
Perplexity 70 B 28.2 % 43.4 % 71.7 %
GPT-40 72.2 % 76.2 % 17.7 %
Gemini 1.5 Pro 82.5 % 86.3 % 10.8 %
DeepSeek-MoE 67 B 69.7 % 80.1 % 30.3 %
Copilot-Turbo 76.4 % 824 % 19.1 %
Claude 3 Opus 44.3 % 57.2 % 55.7 %
Mistral-7B-Instr. 81.4 % 87.0 % 15.4 %

Table 1: Model performance on classification task

* Causal inversion (reversing cause and effect
clauses)

All edits are automated by the Python script pro-
vided in our code repository and manually spot-
checked to eliminate obvious lexical cues that
would trivialise classification.

The procedure yields a 1,000-item dataset with a
perfectly balanced label distribution: 500 accurate
and 500 inaccurate statements.

4.2 Evaluation

Evaluation Metrics. We report three standard mea-
sures:

* Label Accuracy (LA) — the fraction of quotes
whose predicted label exactly matches the
gold 3-way label set (Accurate / Inaccurate
/ Cannot Determine).

* Macro-F1 — the unweighted F1 average over
the two decisive classes (Accurate and Inaccu-
rate); any Cannot Determine output is treated
as an error. This balances precision and recall
and is insensitive to the 50 / 50 class split.

» Abstain Rate — the percentage of quotes that
a model marks Cannot Determine, included
because several LLMs prefer to hedge rather
than commit.

For the non-parametric CoVe-Kernel baseline,
we also log the raw kernel-score distribution and
the hit rate at the empirical decision cutoff 7 =
0.025 (see Implementation section).

Baselines. We benchmark seven large-language
models plus one embedding-based system:

* Perplexity 70B (PPL-70B) — Commercial
MOoE model accessed via the Perplexity Al
chat APL.
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* GPT-40 — OpenAI’s flagship model (June
2025 weights).

* Gemini 1.5 Pro — Google Gemini; abstains
least often (108 “cannot-determine” decisions
in our run).

* DeepSeek-MoE 67B - Chinese-English
mixture-of-experts model.

* GitHub Copilot Turbo — GPT-4-Turbo deriva-
tive served in Copilot Chat.

* Claude 3 Opus — Anthropic’s top-tier model;
most cautious, highest abstain rate.

* Mistral 7B-Instruct — Open-weights model
queried through the HuggingFace Inference
API, included to gauge how a freely available
7 B model fares.

* CoVe-Kernel — Our reproduction of Chain-
of-Verification: MiniLM embeddings, RBF
kernel, 7 0.025 — “Accurate” if the
claim—evidence distance is below the thresh-
old, “Inaccurate” if above, and “Cannot Deter-
mine” in a £0.002 band around 7.

All LLMs are evaluated zero-shot. Each receives
batches of 25 quotes with the fixed prompt:

“For each numbered statement, reply on
its own line with one of:

Accurate and true | Inaccurate and false
| Cannot determine.

Be specific in your evaluation and rely
on trustworthy sources when possible.”

Decoding temperature is 0.0, and responses are
capped at four tokens per quote to prevent extra
commentary.

Refer to Table 1 for the complete results.



5 Results

5.1 Overall Performance

On the mixed dataset of 1,000 shuffled quotes (500
authentic, 500 fabricated), Google Gemini 1.5 Pro
achieves the highest raw accuracy (82.5 %) while
the open-weights Mistral-7B-Instruct posts the best
balanced score (87.0 % macro-F1). GPT-4o fol-
lows at 72.2 %, its accuracy held back by a habit of
replying, cannot determine about one claim in six.

Models that abstain heavily lose ground: Claude
3 Opus and Perplexity 70 B hedge on more than
half of the inputs and finish below the 50 % line
despite respectable precision on the items they do
judge.

The results exhibit a clear trend. With identical
prompts and deterministic decoding, models that
frequently answer Cannot Determine (i.e., adopt
a cautious strategy) suffer lower overall accuracy,
whereas more decisive systems—such as Gemini
1.5 Pro and LLaMA-2-7B-Instruct—achieve higher
scores, albeit at the cost of occasional confident er-
rors on fine-grained numeric edits. Model size
alone is not the primary determinant of perfor-
mance; with well-designed instruction tuning, a
7-billion-parameter model can match, and in cer-
tain metrics surpass, commercial systems in the
70-100 billion-parameter range.

5.2 Methodology performance

We also ran a non-parametric CoVe-Kernel check
on the 500-item set supplied. Each row contains an
RBF similarity score between a quote and its evi-
dence; by convention, a score below 0.025 is taken
to mean “the quote is false” (i.e. CoVe thinks it
has spotted a factual mismatch). Under that single
rule the system flags 482 of 500 quotes correctly,
an accuracy of 96.4 %, leaving only 18 errors.

All 18 mistakes lie inside a very narrow band
just above the threshold (0.025 — 0.035). Inspection
shows three recurring causes:

1. Tiny numeric edits. Changing “42 million”
to “41 million” shifts only one token and
barely moves the embedding, nudging the
score above 7 even though the meaning flips.

. Entity swaps with extra framing. Sentences
like “It is widely believed that Theresa May
... add hedging phrases the original lacked;
the additional words expand vector distance
enough to miss the cutoff.
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3. Causal inversions hidden in long sentences.
When “X led to Y becomes “Y led to X” in-
side a 30-word clause, most tokens stay iden-
tical, and cosine distance again changes only
marginally.

Because every error sits within 0.010 of the
boundary, simply lowering 7 to a score such as
0.022 would raise recall on false claims without cre-
ating many false positives; but it would also erase
any chance of labelling a quote true. The underly-
ing limitation is that MiniLM embeddings are too
coarse-grained for subtle factual reversals; swap-
ping the encoder for a task-tuned cross-encoder or
introducing a small margin band (Cannot Deter-
mine for 0.023-0.027) are straightforward ways to
harden the system.

In short, with a hand-picked threshold CoVe-
Kernel can spot blatant fabrications with high pre-
cision, but it remains brittle around fine-grained nu-
meric or causal tweaks—exactly the corner cases
that modern LLMs also find most challenging.

6 Discussion

Our evaluation of eight citation-verifying systems,
including several advanced LLMs and one hybrid
non-parametric method, reveals key trends about
the strengths and limitations of current approaches
to automated claim citation verification. The results
demonstrate that while LLMs have made progress
in factual reasoning, their ability to judge claim-
evidence alignment consistently remains uneven,
especially in adversarial or subtly perturbed con-
texts.

6.1 Performance vs. Prudence Tradeoff

A clear pattern emerges in the relationship between
decisiveness and performance. Models like Gem-
ini 1.5 Pro and Mistral-7B-Instruct, which issue
definitive judgments with relatively low abstention
rates (10.8% and 15.4%, respectively), achieve the
highest overall accuracy and macro-F1 scores. In
contrast, Claude 3 Opus and Perplexity 70B adopt
a cautious stance, abstaining from over half the in-
puts, underperforming on both precision weighted
and overall correctness. This emphasizes a cen-
tral challenge in ethical LLM deployment: overly
conservative models risk failing to flag misinfor-
mation, while confident ones may propagate false-
hoods when it does not reflect factual correctness.

Furthermore, model size was not the primary
determinant of performance. Despite having fewer



parameters, Mistral-7B-Instruct outperformed sev-
eral larger commercial systems, highlighting the
value of instruction tuning and alignment strategies
over raw scale. This suggests that accessible, open
weight models, when carefully tuned, can achieve
advanced performance in citation-sensitive tasks
without requiring proprietary infrastructure.

6.2 Fine-Grained Factuality Remains Elusive

Both LLMs and the CoVe-Kernel method strug-
gled with subtle perturbations, especially numeric
alterations and causal inversions. In contrast, the
CoVe-Kernel system achieved 96.4% accuracy on
its benchmark, with every error clustered near the
decision threshold, revealing a sensitivity to edge
cases. Such failure modes emphasize that vector
distance, while capturing semantic similarity, is in-
sufficient for ensuring factual equivalence. In prac-
tical terms, changing “42 million” to “41 million”
or flipping cause-effect relationships produced only
minor shifts in embedding space, small enough to
evade detection by both LL.Ms and shallow sim-
ilarity functions, highlighting a need for deeper
analysis beyond word overlap in critical domains
like journalism and legal review.

6.3 Ethical Implications and Design
Considerations

Our findings carry several implications for the de-
sign and deployment of LLMs in citation-sensitive
environments. First, models that over-rely on con-
fidence or refuse to abstain when uncertain about
data may contribute to hallucinated factuality, the
illusion of truth created by authoritative tone and
plausible structure. Second, the tendency of some
models to abstain excessively raises the risk of eth-
ical ambiguity, failing to identify misinformation
when a judgment is expected.

The high performance of a relatively simple
CoVe-Kernel baseline further raises questions
about the interpretability and transparency of LLM
outputs. Unlike most LL.Ms, which offer little in-
sight into why a given citation was judged as ac-
curate, the kernel-based method provides direct
access to distance thresholds and can be calibrated
to balance precision and recall. This suggests that
hybrid systems, like our CoVE-Kernel system, may
offer a more robust path forward for citation verifi-
cation.

7 Conclusion

This study evaluated whether state-of-the-art LLMs
can reliably distinguish true statements from min-
imally perturbed fabrications. We constructed
a 1,000-item test set by pairing 500 verified
AVeriTeC claims with single-edit counterparts,
each manually validated to remove superficial cues.
Seven zero-shot LLMs and a CoVe-Kernel baseline
were assessed using label accuracy, macro-F1, and
abstention rate.

Decisive models—Google Gemini 1.5 Pro (82.5
% accuracy) and Mistral-7B Instruct (87.0 %
macro-F1)—consistently outperformed cautious
systems such as Claude 3 Opus and Perplexity 70 B,
which abstained on over half of the inputs and fell
below 50 % overall accuracy. The CoVe-Kernel
approach, relying on MiniLM embeddings with
a single RBF cutoff, achieved 96.4 % accuracy,
underscoring the competitiveness of simple, inter-
pretable methods.

These results reveal a pronounced trade-off be-
tween decisiveness and restraint: lower absten-
tion rates drive higher accuracy, whereas excessive
hedging imposes substantial performance costs.
Crucially, model scale alone does not determine
success; instruction tuning and calibrated absten-
tion thresholds are equally decisive.

Future work should (1) enhance small encoders
or cross-encoders to detect subtle numeric and
causal perturbations and (2) develop fully inte-
grated pipelines that unify fine-grained citation
(“sanitation’), systematic self-verification (‘“veri-
fication™), and atomic evaluation metrics such as
FActScore. Such end-to-end frameworks promise
to advance the reliability and transparency of LLM-
based fact-verification systems.
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