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Preface

We are delighted to present the proceedings of the First Workshop on Ethical Concerns in Training,
Evaluating and Deploying Large Language Models (EthicalLLMs 2025), held in conjunction with
RANLP 2025 in Varna, Bulgaria.

Large language models (LLMs) have made tremendous strides in recent years, enabling new applications
in summarization, question answering, generation, reasoning, and more. Yet alongside their technical
capabilities, there are growing ethical challenges that demand careful scrutiny. Issues such as bias,
transparency, accountability, cultural sensitivity, and fairness are all deeply enmeshed in the development
and deployment of LLMs. The EthicalLLMs workshop was conceived to create a space for researchers,
practitioners, and ethicists to explore these issues, exchange methodologies, and forge directions toward
more responsible LLM design.

We are pleased to include in these proceedings a variety of contributions that reflect the rich and urgent
research in this space. The papers address theoretical, empirical, and applied work, and together they
reflect diverse perspectives on ensuring that LLMs are built and deployed with due regard for ethical,
social, and human-centred concerns.

This workshop would not have been possible without the dedication and support of many people. We
are deeply grateful to all the authors who submitted their work, helping to shape the conversation around
responsible LLMs. We extend warm thanks to the programme committee members for their thoughtful
reviews, constructive feedback, and commitment to maintaining high standards of scholarship. We
especially thank Prof Paul Rayson for accepting our invitation to deliver the keynote address, enriching
our discussions with his insights into ethics and language technologies. Finally, we thank the RANLP
organizing team and supporting institutions for enabling this workshop to take place.

We are hopeful that the ideas presented here will stimulate further research, dialogue, and action toward
more ethical, equitable, and trustworthy language models.
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Abstract
Large language models (LLMs) have shown to
be increasingly capable of performing reason-
ing tasks, but their ability to make sequential
decisions under uncertainty only using natural
language remains underexplored. We introduce
a novel benchmark in which LLMs interact
with multi-armed bandit environments using
purely textual feedback, “you earned a token”,
without access to numerical cues or explicit
probabilities, resulting in the model to infer
latent reward structures purely off linguistic
cues and to adapt accordingly. We evaluated
the performance of four open-source LLMs
and compare their performance to standard
decision-making algorithms such as Thompson
Sampling, Epsilon Greedy, Upper Confidence
Bound (UCB), and random choice. While most
of the LLMs underperformed compared to the
baselines, Qwen3-4B, achieved the best-arm
selection rate of 89.2% , which significantly
outperformed both the larger LLMs and tra-
ditional methods. Our findings suggest that
probabilistic reasoning is able to emerge from
language alone, and we present this benchmark
as a step towards evaluating decision-making
capabilities in naturalistic, non-numeric con-
texts.

1 Introduction

Large Language Models (LLMs) have shown some
Bayesian-like reasoning in simple tasks, it is still
unknown if they are able to handle complex un-
certainty with just natural language description.
This ability could allow for more flexible and ac-
cessible approaches to decision making under un-
certainty. Decision-making under uncertainty is
used throughout many areas, but traditional meth-
ods such as Bayesian inferences and reinforcement
learning often require complex math and data that
may not be readily available. Recent studies show
that LLMs exhibit Bayesian-like behavior in con-
strained tasks (Gupta et al., 2025); (Felicioni et al.,

2024), but it remains unclear on if they are able to
generalize this ability to multi-step decision con-
texts which involve adapting through results and
reasoning under uncertainty. Despite recent ad-
vances in LLMs such as GPT-4 and Llama-3.1-8B
which have demonstrated strong language-based
reasoning and zero-shot tasks, their ability to han-
dle complex uncertainty relying on only natural
language remains unclear. To address this, we in-
troduce our method TextBandit, which is a novel
benchmark that is designed to evaluate whether
large language models are able to make sequen-
tial decision under uncertainty using only natural
language feedback. To our knowledge, there is no
prior benchmark that evaluates LLMs in this man-
ner. Our setup, runs a suite of natural language ban-
dit simulation tasks that measure the model’s ability
to learn and make decisions based solely on text-
based feedback, giving responds like ”you earned a
token”. Four transformer-based open-source mod-
els are evaluated across 500 trials of bandit games
with reward structures that vary, which measures
their adaption and decision-making over time. We
then compare the results from the LLMs against
standard probabilistic baselines such as Epsilon-
greedy, UCB, and Thompson sampling. After the
LLM behavior is compared against the baselines,
it shows that Qwen3-4B achieved the best-arm se-
lection rate of 89.2% which significantly outper-
formed all classical methods. We find that current
LLMs are decent at making decisions under uncer-
tainty when facing natural language descriptions
as they can achieve similar scores as human meth-
ods. Larger models tend to take longer than other
models and their results still fall short of smaller
ones due to overthinking. In natural language ban-
dit simulations, the results suggest that when a
model thinks longer, it leads to mediocre or worse
decision-making.
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2 Related Work

Probabilistic Reasoning in LLMs This research
is constructed of multiple key points in the study
of LLMs, connecting their abilities to reason to
theories of decision-making and evaluation frame-
works. The research into whether LLMs can per-
form probabilistic reasoning is a central theme. Re-
cent works have shown and explored the extent to
which LLMs can mimic formal probabilistic mod-
els, most commonly Bayesian Inference. (Xie et al.,
2022) frames in-context learning as a form of im-
plicit Bayesian inference, characterizes how LLMs
can carry out posterior prediction by inferring and
averaging latent concepts, although there are differ-
ences in the prompts, and pretraining data.(Gupta
et al., 2025) demonstrate that while LLMs may
have inherent priors, they can update their beliefs
to be consistent with Bayesian posterior updates
when provided with enough in-context evidence
- suggesting how LLM’s abilities for probabilis-
tic reasoning surpasses simple pattern matching.
(Sun et al., 2025) proposed that with integrated of
classic bandit strategies and LLM-based reward
prediction, it resulted in improved performance
over direct LLM arm-selection in setting that had
minimal semantic cues, which supports the design
rationale behind our TextBandit approach.

Uncertainty-Aware Decision-Making (Feli-
cioni et al., 2024) explores the benefits of the
explicit consideration of epistemic uncertainty in
the performance of LLMs in sequential decision-
making. Demonstrating that LLMs can explore and
adapt better in uncertainty-aware environments, the
study infuses uncertainty-aware strategies, like pos-
terior sampling, into the model. This makes the
point that uncertainty is not merely a constraint, but
can be exploited as a valuable signal to direct more
effective and flexible model behavior - especially
in probabilistic environments such as those consid-
ered in our benchmark (bandit environments).

Exploration-Exploitation in Bandit Envi-
ronments Previous studies have examined the
exploration-exploitation (E&E) strategies of LLMs
that are used in simulations under uncertainty.
(Zhang et al., 2025) compares the strategies used
by LLMs to human methods such as the Upper
Confidence Bound (UCB) algorithm to uncover
the LLM’s ability to simulate human behavior us-
ing the context of multi armed bandit simulations.
Their findings reveal the impact of reasoning on
exploration, the differences in E&E behaviors be-

tween human methods and LLMs, as well as in-
terpretations on how LLMs can be utilized for
dynamic decision-making tasks. Specifically, the
LLMs tested have been exploring more options in
the beginning than at the end of the evaluation. Hu-
man methods explored more with diverse tactics
such as random or direct methods and managed
to achieve low regret. When Chain-Of-Thought is
applied to these models, the reasoning capability
increases dramatically, where they behave similarly
to human methods.

3 Benchmark Design

We propose a novel benchmark that evaluates
LLMs in decision-making tasks under uncertainty
using a multi-armed bandit (MAB) framework.
The bandit environment consists up of multiple
arms, each with a reward distribution that is un-
known, and the goal is for the LLM to identify
the arm that maximizes cumulative reward over
time. Unlike traditional setups that utilize numeric
feedback, our benchmark requires the LLMs to in-
fer latent reward structures purely off textual feed-
back. More specifically, the LLMs are provided
with feedback after each decision “you earned a to-
ken” for choosing the correct option and “you did
not earn a token” for the unsuccessful one. The
feedback is always going to be at most 25 lines
which will never exceed the LLMs context limits
as the smallest context limit for one of the LLMs
we tested is 1,024 tokens. The challenge is that
the models are not provided with explicit proba-
bilities or numerical cues, hence requiring them to
adapt based on linguistic cues alone. In order to
document the LLM’s raw probabilistic reasoning,
we did not use any extensions. This experiment
uses two arms, three arms, four arms, and five arms.
The rates are fixed but have unknown success rates.
For two arms, the success rates are 30% and 65%.
For three arms, the success rates are 40%, 30%,
and 70%. For four arms, the success rates are 80%,
60%, 35%, and 25%. For five arms, the success
rates are 20%, 75%, 35%, 25%, and 55%. Over a
series of multiple iterations, the models must select
one arm per round and adjust based on the feed-
back they receive. The performance of each model
is evaluated based on the cumulative reward, re-
gret, and best-arm selection rate. In addition to the
LLMs, we will evaluate several decision-making al-
gorithms typically seen in multi-armed bandit prob-
lems, including Epsilon greedy, Upper Confidence
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Bound (UCB), Thompson Sampling, and Random
Choice. These algorithms will serve as baselines
that allow us to compare the performance of the
LLMs against well established decision-making
strategies. Each of these algorithms will help in
comparing the LLMs’ ability to adapt to feedback
and in maximizing the cumulative reward and min-
imizing cumulative regret over time.

4 Methodology

4.1 Task Overview and Reward Structure

In our benchmark, we simulate a multi-armed
bandit environment where large language models
(LLMs) must make repeated decisions under uncer-
tainty using only natural language feedback. Each
bandit environment consists of multiple arms (rang-
ing from 2 to 5), with each arm associated with a
fixed but unknown success probability. For exam-
ple, in the 2-arm configuration, one arm yields a
reward with a 65% probability and the other with
30%. These probabilities are never revealed to the
model.

At each round, the LLM is prompted to select
an arm. Based on the sampled outcome, the model
receives textual feedback:

• ”You earned a token” if the action results in
success (reward = 1)

• ”You did not earn a token” if it results in fail-
ure (reward = 0)

No explicit numerical cues or probabilistic infor-
mation are provided. Importantly, there are no
penalties for incorrect choices: The only signal the
model receives is whether it succeeded or failed, in
linguistic form. The objective of the model is to
maximize cumulative reward across multiple itera-
tions by learning which arm is better solely from
this binary language feedback.

4.2 Prompting Protocol

Each LLM is evaluated using a consistent prompt-
ing structure designed to simulate a text-only
decision-making loop. The core prompt consists
of:

• A natural language instruction that puts the
task into the context of decision-making situ-
ation (e.g. Such as, “Select the slot machine
that you think will yield you a token.”)

• A history of previous choices and their out-
comes in plain language (e.g., “Slot machine
1 won,” “Slot machine 2 lost”), spanning all
prior iterations in the current episode

• A request for the model to select the next ac-
tion by outputting a number corresponding to
the arm (e.g., “1”, “2”, “3”, etc.)

The model receives this prompt anew at each step,
with the historical context updated to reflect the
outcomes of previous choices. No internal mem-
ory of past interactions is preserved between runs.
Each decision is made in a single-shot comple-
tion with no intermediate reasoning or Chain-of-
Thought scaffolding. To ensure consistency, we ap-
ply the same format and structure across all models
and arm configurations. The only variation lies in
the number of arms available and the accumulated
outcome history. This protocol isolates the model’s
ability to infer and adapt to reward patterns based
solely on linguistic reinforcement, rather than nu-
meric data or structured training signals.

4.3 Baselines and Comparison Models
In order to test the LLM’s ability with this dataset,
we compared it with many models that are com-
monly used in bandit decision-making research.
Random Choice chooses actions at random, with-
out learning. Epsilon Greedy selects the best possi-
ble action using the probability 1− ϵ, otherwise it
will choose at random (Do et al., 2024). Thompson
Sampling uses Bayesian inference to collect infor-
mation about the probability distribution within the
bandit simulation, sampling from those distribu-
tions to make decisions (Russo et al., 2020). UCB
(Upper Confidence Bound) analyzes the options
provided and will utilize the more successful op-
tions while continuing to try new ones (Hao et al.,
2019).

4.4 LLMs Evaluated
To test our hypothesis, we selected a diverse set of
open-source large language models. The models
we chose represent different architecture, param-
eter sizes, and different training methodologies,
allowing for an extensive analysis of how these
factors can influence LLM’s decision making abili-
ties. The models evaluated in our benchmarks in-
cludes Qwen/Qwen3-4B, Qwen/Qwen3-8B, meta-
llama/Llama-3.1-8B, and microsoft/phi-2.

Our experimental design uses the multi-armed
bandit problem within a purely text-based interac-
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tion loop. For each trial, the LLM receives a prompt
containing the history of its previous choices and
outcomes (e.g., “Slot machine 1 won,” “Slot ma-
chine 2 lost”). The prompt explicitly instructs the
model to act as a decision making agent and to only
output the number (ID) of its chosen machine, “1”
or “2” for example. This setup does not give the
LLM information on the underlying reward struc-
ture - a 30% win rate for slot machine 1 and a
65% win rate for slot machine 2. Evaluation is con-
ducted over 500 independent runs, with each run
consisting of 25 decision making iterations. This
repetitive process allows us to access the model’s
ability to learn and adapt its strategy over time. Per-
formance is measured via best-arm selection rate,
which will track its frequency of being chosen over
the objectively inferior machine (Slot machine 1).

Table 1: Large language models evaluated on the bandit
task, along with key characteristics.

Model Parameters Notable Characteristics

Qwen3-4B 4B supports multilingual input, strong performance in
reasoning tasks

Qwen3-8B 8B larger version of Qwen3-4B, enhanced tool-use abili-
ties, better for long-context understanding

Llama-3.1-8B 8B optimized for following instructions and multilingual
capabilities

phi-2 2.7B strong performance for its size, compact and efficient

5 Results

Our evaluation of the LLMs on natural language-
based multi-armed bandit tasks revealed significant
differences in performance and results across the
different tested architectures. We have found that
models such as Qwen3-4B demonstrated their abil-
ity to learn and adapt over strategies to maximize
rewards, while other models struggled to find the
optimal arm.

5.1 Quantitative Performance

We assessed models based on three key metrics:
Cumulative Reward, Best-Arm Selection Rate, and
Cumulative Regret. These metrics provide insights
on each model’s decision-making and learning ca-
pability over 500 independent runs of 25 iterations
each. To calculate cumulative reward , we add a
token for receiving a successful outcome and not
adding anything when receiving the failed outcome.

5.2 Cumulative Reward

The cumulative reward illustrates the total num-
ber of tokens the model accumulated over the
25 decision-making iterations. Surprisingly, the
Qwen3-4B model shows more accuracy when

choosing the optimal arm, therefore accumulat-
ing the most amount of tokens with the highest
rewards rate. In contrast, Llama-3.1-8B, Phi-2, and
Qwen3-8B’s amount of total reward accumulated
is substantially lesser, suggesting it’s performance
closer to random chance and a failure to consis-
tently choose the better arm.

5.3 Cumulative Regret
Cumulative regret, shown in Figure 1, measures the
opportunity cost of not choosing the optimal arm.
The opportunity cost is calculated by subtracting
the reward obtained at time rt from the optimal
reward r∗t . A lower cumulative regret signifies a
more efficient decision making process. The regret
trends is very similar to what’s shown in Cumu-
lative Reward. An unexpected turnout is that the
prompt with four arms, had the lowest amounts
of cumulative regret across all models while the
prompt with five arms, had the highest amounts
of cumulative regret. Llama-3.1-8B and Phi-2’s
regret scores are varied across the same prompts,
indicating that it has a low capacity for probabilis-
tic reasoning when under uncertainty. Qwen3-4b
has similar patterns to the rest for the prompts with
three and five arms, but excel when there are two
arms. This suggests that due to it’s smaller size,
it thinks faster and manages to exploit the optimal
arm.

Cumulative Regret =
T∑

t=1

(r∗t − rt) (1)

5.4 Best-Arm Selection Rate
The best arm selection rate, shown in table, quan-
tifies the percentage of times each model chose
the arm with the 65% success rate (the optimal
arm). Qwen3-8B, Llama-3.1-8B, and Phi-2 models
achieved best-arm selection rates of 37.5%, 31.6%,
and 25.4%, respectively. These rates are consid-
erably the lower and indicate a struggle to distin-
guish the better-performing arm from the inferior
ones. Despite Qwen3-8B’s tendency to overthink,
it still manages to achieve better results than the
other models meaning that some of its decisions are
still valid. Phi-2 is also a smaller model similar to
Qwen3-4B, but it achieved the worst results out of
all the models. This suggests that although having
a small size may be advantageous for some models,
others do not possess strong internal probabilistic
reasoning to make up for it.
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Figure 1: Comparison of cumulative regret trends for
four LLMs, segmented by the number of arms. The
left column for each model shows performance with 2
and 3 arms, while the right column shows performance
with 4 and 5 arms. The LLMs had a similar regret trend
between 3 arms and 4 arms, although it is important to
note that Qwen3-4B had higher regret trends on 3 arms
than 4 arms.

(a) Llama-3.1-8B (2 & 3
arms)

(b) Llama-3.1-8B (4 & 5
arms)

(c) phi-2 (2 & 3 arms) (d) phi-2 (4 & 5 arms)

(e) Qwen3-4B (2 & 3 arms) (f) Qwen3-4B (4 & 5 arms)

(g) Qwen3-8B (2 & 3 arms) (h) Qwen3-8B (4 & 5 arms)

Figure 2: Comparison of cumulative reward trends for
four LLMs, segmented by the number of arms. The left
column for each model shows performance with 2 and 3
arms, while the right column shows performance with 4
and 5 arms. Surprisingly, Qwen3-4B had a high reward
trend for 3 arms doing more poorly than the other LLMs
for 5 arms.

(a) Llama-3.1-8B (2 & 3
arms)

(b) Llama-3.1-8B (4 & 5
arms)

(c) phi-2 (2 & 3 arms) (d) phi-2 (4 & 5 arms)

(e) Qwen3-4B (2 & 3 arms) (f) Qwen3-4B (4 & 5 arms)

(g) Qwen3-8B (2 & 3 arms) (h) Qwen3-8B (4 & 5 arms)
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5.5 Comparison to Baselines
We compared the performance of LLMs with four
standard multi-armed bandit baselines, Thomp-
son Sampling, Upper Confidence Bound (UCB),
Epsilon-Greedy and Random Choice in order to
have all these performances in the same context.
The performance of these baselines is summarized
in Table 2. These baselines can utilize structured
decision-making heuristics restricted to probabilis-
tic decision-making, but are not able to make use
of language comprehension. On the other hand,
the LLMs work entirely on natural language feed-
back, and the comparison was a result of emergent
probabilistic reasoning on language itself.

The most appropriate metrics to evaluate learn-
ing rates was the performance in best-arm selection
rate, which measures the percentage of the time
an agent picked the best arm. Among the base-
lines, Thompson Sampling had the best best-arm
selection rate of 51.1%, UCB the second-best of
47.6%, Epsilon-Greedy the third-best of 38.1% and
Random Choice in last with 31.8%.

However, a single LLM, Qwen3-4B, performed
much better than all baselines in terms of a best-arm
selection rate that equaled 89.2%, which signifies
that the LLM was advanced in the capabilities of
learning linguistic feedback and developing a con-
sistent policy of maximizing rewards. The other
LLMs Qwen3-8B (37.5%), Llama-3.1-8B (31.6%)
and Phi-2 (25.4%) did worse than both Thompson
Sampling and UCB, indicating their inability to
appropriately adapt to the task, or to make sense
out of the feedback.

Table 2: Performance of various Baselines on natural
language multi-armed bandit tasks.

MODEL FINAL CUMULATIVE REWARD BEST-ARM SELECTION RATE

Thompson-Sampling 8297 51.1%
UCB 4696 47.6%
Epsilon-Greedy 6029 38.1%
Random-Choice 5783 31.8%

5.6 Qualitative Analysis
The LLMs that are tested usually use Chain-Of-
Thought, but in these datasets it is removed to re-
ceive a clear output. As a result, they follow similar
patterns like when a random option is chosen at
first, they will try to exploit that option despite it
not having the best win rate. Their method is simi-
lar to the Thompson Sampling method, where they
balance exploration with exploitation. The LLMs
will sample the options first and choose the ones
they believe are the most successful. This leads

them to choosing some optimal options but not the
most optimal one because they believe that their
chosen one is the best after receiving a moderate
amount of outputs. Notably, Qwen3-8b took an
exceptionally large amount of time when testing
because it kept trying to reason instead of giving a
concise input.

Table 3: Performance of various LLMs on natural lan-
guage multi-armed bandit tasks.

MODEL FINAL CUMULATIVE REWARD BEST-ARM SELECTION RATE

Qwen3-4B 11150 89.2%
Qwen3-8B 4686 37.5%
Llama-3.1-8B 3946 31.6%
phi-2 3181 25.4%

6 Discussion

In comparison to the baselines, the LLMs reasoning
capabilities are inferior with the exception Qwen3-
4B. This suggests they may have developed dif-
ferent biases on which choices they believed had
the best probabilities while the baselines, methods
that don’t involve reason, were able to reach deci-
sions on this dataset because they were optimized
for better probabilistic calculation and problem-
solving. Our findings show that some LLMs, most
notably Qwen3-4B, have the flexibility to adapt
to uncertainty using natural language alone, with
significant differences between models. This sug-
gests that purely off-language-based interactions,
basic probabilistic reasoning form without the use
of numerical cues. Models such as Qwen3-8B and
Llama-3.1-8B, which were larger, struggled to con-
sistently identify the optimal arm. This suggests
that there is no correlation between model size and
making better decisions in this context. In fact, the
base Qwen3-4B and Qwen3-8B models received
identical pretraining and has similar qualities be-
sides the amount of parameters so the training is
not a cause for this difference either. It may be that
the architecture of Qwen-4B, as an efficient and
lightweight model, contributed to its impressive
probabilistic reasoning in this fast-feedback envi-
ronment, where they receive limited information.
Larger models may have been trained for complex
reasoning which is why when they encounter sim-
pler tasks, they tend to overthink things which leads
to a drop in performance. Although models such as
Qwen3-8B and Llama-3.1-8B have a greater capac-
ity for abstract reasoning, their under performance
may be resulted from overfitting to irrelevant fea-
tures as shown in the feedback prompt of excessive
internal deliberation. Similar patterns have been
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seen in (Zhang et al., 2025) where the LLMs halted
their exploration as they received more information,
which leads them to solidify an optimal arm from
noise. Their training done on complex reasoning
may introduce biases in simple reinforcement en-
vironments like ours. Compared to medium sized
models like Qwen3-4B which appear to utilize a
more direct exploitation strategy, resulting in better
performance. The idea that smaller models hav-
ing higher performance in terms of internal proba-
bilistic reasoning is unlikely as the smallest model
tested, Phi-2, produced the worst outcome. An-
other possibility is that the LLMs have an internal
bias where they make an answer based on the input
given without any deep reasoning such as choosing
a specific option based on the example prompts
they received. This answer may be different from
their internal reasoning, so they over-complicate
their thoughts and deviate their decisions from their
calculations. With the amount of resources the
larger LLMs have, they suffer more heavily from
this behavior and generate repetitive content, pre-
venting them from providing a final answer. Unlike
in (Zhang et al., 2025), the LLMs were restricted
from using Chain-Of-Thought which suggests why
their performance unremarkable. Without Chain-
Of-Thought, their pure probabilistic reasoning abil-
ity is low. This behavior is more pronounced in
larger models, Qwen3-8B is an example of this as
despite the vast amount of time it spent thinking,
it’s performance was only mediocre. While some
models could learn effectively from text-based feed-
back, the others behaved in a much more random
manner and lacked a robust internal strategy. Some
examples of further work include the implementa-
tion of more complex tasks, such as dynamic tasks
or multi-step reasoning to further evaluate and de-
velop the probabilistic capabilities of LLMs.

7 Conclusion

We introduced TextBandit, a benchmark in eval-
uating the abilities of large language models in
making decisions in uncertain environment with
only the guidance of natural language alone. By
framing the multi-armed bandit problem with a nat-
ural language task, we have found that LLMs have
a decent capacity for successful judgment when un-
der uncertainty and influenced by natural language.
Our evaluations show that the LLM’s size does
not translate to better performance. In fact, it may
return results that are less effective. TextBandit

offers a minimal yet challenging benchmark that
shows another perspective in the evaluation of and
adaptation of language modes. With this bench-
mark, we can contribute to deeper understandings
of probabilistic reasoning for LLMs under uncer-
tainty as well as information that can be used to
create opportunities for the further development of
this ability.

8 Ethics Statement

Our study did not involve human subjects, private
data, or any interventions in living individuals; all
experiments conducted were performed on syn-
thetic bandit tasks with publicly available open
source LLMs.

9 Software Used

The models in this work were trained and the asso-
ciated data was gathered using cloud GPU services
provided by (RunPod, 2025). All code and datasets
used/developed as apart of this research have been
included with the submission. We ensure all data
collected and handled adhered to ethical and insti-
tutional guidelines.

10 Reproducibility Statement

We release all the code, evaluation scripts, and
open-source models that were used in our exper-
iments at https://github.com/ChainedTears/

TextBandit. The repository contains detailed doc-
umentation on the models that were used, the en-
vironment setup instructions, and how to repro-
duce the results. All experiments rely on open-
source LLMs available with the Hugging Face
Transformers library, and were conducted using
GPU instances hosted on RunPod, which allowed
for reproducibility without access to local high-end
hardware.
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Abstract

In recent years, large language models (LLMs)
have demonstrated impressive capabilities in
generating human-like textual content. How-
ever, their proficiency in accurately verifying
quotes and citations remains uncertain. This
study benchmarks the effectiveness of contem-
porary LLMs in assessing the relationship be-
tween claims and their cited evidence. To ad-
dress existing limitations, we propose a novel
hybrid approach that integrates multiple veri-
fication techniques to robustly evaluate claim-
citation alignment.

By systematically combining linguistic pars-
ing, confidence-based semantic verification,
and graph neural network modeling, this pa-
per aims to show the enhanced accuracy and
interpretability of automated quote and cita-
tion verification processing using our method,
setting a strong baseline against current LLM
capabilities.

1 Introduction

large language models (LLMs) now draft contracts,
summarize court opinions, and tutor students with
prose that rivals expert human writing. Yet this
fluency masks a structural weakness: current sys-
tems freely invent citations, mangle quotations,
and misattribute facts. Existing “factuality” bench-
marks inspect whether a single sentence is plau-
sible, they rarely ask the harder, document-level
question, Does the cited source actually say what
the model claims it does? Consequently, a model
can ace popular truthfulness tests while still propa-
gating fabricated evidence.

Stop gap fixes remain inadequate. Retrieval-
augmented generation merely fetches documents, it
does not verify that the retrieved span truly supports

the claim. Entailment models judge sentence pairs
in isolation, ignoring metadata such as author, edi-
tion, or publication date. Chain-of-thought prompt-
ing adds reasoning steps, but those steps them-
selves can hallucinate, compounding error instead
of correcting it. The field therefore, lacks a uni-
fied benchmark and methodology that (i) supplies
ground-truth claim–evidence pairs, (ii) measures ci-
tation alignment end-to-end, and (iii) stresses mod-
els with real-world edge cases such as paraphrased
quotes, partial attributions, and outdated editions.

We address this gap by pairing a meticulously
curated dataset with a hybrid verification pipeline.
The dataset contains 500 claim–quote pairs drawn
from news, legal opinions, scientific papers, and
classic literature, each manually labeled for citation
correctness. The pipeline chains retrieval, textual
entailment, and bibliographic cross-checks into a
single decision graph, rejecting any claim unless
all stages confirm support. Benchmarking GPT-4,
Claude 3, Gemini 1.5, Llama 3, and Mistral 7B
under this stricter regime reveals that even top mod-
els overlook up to 37% of misattributions—failure
modes invisible to traditional factuality scores.

Our main contributions in this work are as fol-
lows:

• Citation-Alignment Dataset: a domain-
diverse, expert-annotated benchmark focused
on whether a quoted span is genuinely present
and contextually faithful to its cited source.

• Hybrid Verification Pipeline: a modular
graph that integrates retrieval, entailment, and
metadata checks, yielding strict pass-fail judg-
ments rather than scalar plausibility scores.

• Comprehensive LLM Evaluation: the first
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head-to-head comparison of five leading LLM
families on citation alignment, uncovering sys-
tematic errors that prior metrics miss.

2 Related Work

2.1 Factuality and Hallucination Surveys

Recent work has mapped the “hallucination” prob-
lem—LLMs confidently yielding plausible yet un-
supported statements—in fine detail. Wang et al.
[5] present a comprehensive survey of factuality
challenges, grouping failure modes and proposing
concrete mitigations. Huang et al. [9] build on
this by showing how model scale, decoding strate-
gies, and noisy training data each fuel factual drift.
Wang et al. [5] synthesize these findings into a
unified framework spanning knowledge extraction,
retrieval methods, and domain-specific evaluations.
Chen et al. [11] introduce FELM, a long-form
factuality benchmark that demonstrates even state-
of-the-art evaluators miss subtle inconsistencies.
By inspecting each token as it’s generated, Barbero
et al. [8] catch hallucinations in real time, snar-
ing unsupported fragments before they can snow-
ball. Building on this, Bazarova et al. [14] intro-
duce a topological divergence method for attention
graphs, which converts attention weights into topo-
logical signatures and rings an alarm whenever
the divergence exceeds learned norms, delivering
best-in-class detection accuracy and seamless trans-
fer across domains

2.2 Grounded Citation Methods

Retrieval-augmented generation (RAG) has be-
come the backbone of citation grounding. Thorne
et al. [9] established the Fact Extraction and Veri-
fication (FEVER) benchmark, pairing claims with
supporting Wikipedia passages and setting early
standards. Menick et al. [1] then trained Go-
pherCite, a 280 B-parameter model, to emit ex-
act inline quotes alongside its answers, reaching
80–90% accuracy on open-domain QA. Huang
et al. [6] fine-tuned LLaMA-2-7B to generate
line-level citations instead of coarse document IDs,
boosting precision by over 14% on the ALCE
benchmark. Zhang et al. [7] survey the evolv-
ing RAG landscape, while Zhang et al. [12] ex-
pand to Poly-FEVER, a multilingual, multi-hop
testbed.Peng et al. [15] round out this picture by
introducing unanswerability checks, ensuring sys-
tems gracefully abstain when evidence is lacking.

2.3 Self-Verification

Self-verification routines have emerged to tighten
factual accuracy beyond retrieval. Dhuliawala et
al. [2] proposed the Chain-of-Verification (CoVe)
pipeline: the model drafts an answer, generates
check-questions, answers them, and then composes
a final response, dramatically reducing unsupported
claims. Min et al. [3] introduced FActScore, an au-
tomated metric that breaks text into atomic facts
and measures support against trusted sources, align-
ing within 2 % of human judgment on biography
summaries.

2.4 Quotation Attribution and Multi-Modal
Verification

Grounded methods extend beyond factoids to dia-
logues and multi-modal content. Michel et al. [4]
show that LLaMa3 can accurately attribute lines
of dialogue to characters across a 28-novel cor-
pus, illustrating how citation techniques translate
to narrative text. Recent work by Pang et al. [21]
introduces HGTMFC, a hypergraph transformer
model that uses fine-grained semantic interactions
between text and images for claim verification.
This system outperforms prior multi-modal models
by using higher-order relationships between textual
claims and visual evidence nodes through a hyper-
graph and line graph propagation. The TREC 2024
RAG Track introduces a citation accuracy bench-
mark, revealing that LLMs like GPT-4o achieve
over 70% alignment with human judgment when
verifying grounded citations, even in complex re-
sponses. Thakur et al. [22]. However, despite many
advancements in factual accuracy, LLMs continue
to exhibit significant challenges in generating reli-
able and accurate citations. Benchmarks compiled
by Patel and Anand reveal that even state-of-the-art
models often achieve a near-zero accuracy when
generating citations, highlighting a critical region
for potential research in robust verification.

2.5 Graph-Based and Kernel-Baseline
Approaches

Johnson et al. [23] introduce a single, fully
shared encoder-decoder neural machine transla-
tor model that uses a simple target-language to-
ken and a joint subword vocabulary to translate
among dozens of languages, achieving state-of-
the-art BLEU on major benchmarks, improving
low-resource pair performance, and enabling sur-
prisingly effective zero-shot translation by implic-
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itly learning an interlingual representation. Banko
et al. [24] build upon the technique of informa-
tion extraction by employing kernel-based meth-
ods and graphical models in order to analyze
smaller, domain-specific text to identify and ex-
tract pre-defined sets of relationships, laying the
groundwork for data-driven linguistic process-
ing. Kriege et al. [25] provide a comprehen-
sive fifteen-year survey of graph-kernel methods,
covering neighborhood-aggregation (Weisfeiler-
Lehman), assignment-based, substructure, walk-
and-path, and attributed-graph approaches. They
categorize each technique by feature-extraction
paradigm, computational strategy (explicit versus
implicit mapping), and support for discrete labels
or continuous attributes. Through an extensive em-
pirical study across a variety of datasets, they de-
rive practical guidelines for selecting and tuning
graph kernels. More recently, developments in
deep learning have extended the usage of graph-
based paradigms into advanced graph neural net-
works (GNNs), using them as powerful tools to
analyze non-Euclidean data through interdependen-
cies. Helping advance tasks in data mining to natu-
ral language understanding by adapting principles
in the graph structures of deep learning. Wu et al.
[26] Within the development of NMT specifically,
recent advancements have been shown with the
integration of GNNs, in particular the multi-level
community awareness graph neural network (MC-
GNN) proposed by Nguyen et al. [27], which can
explicitly model composite semantics like morphol-
ogy, syntax, and complex linguistic information by
leveraging graph structures, sometimes substituting
components to enhance the quality of translation.

2.6 Gaps and Our Contribution

Despite its strengths, our CoVeGAT introduces a
novel citation verification pipeline that combines
dependency-based SVO extraction with graph at-
tention mechanisms, outperforming traditional clas-
sifiers on benchmark datasets. However, several
key limitations remain. First, the pipeline depends
heavily on the accuracy of SVO extraction; parsing
errors, especially in idiomatic or complex construc-
tions, cascade through the entire system. Second,
our CoVeGAT assumes claims can be fully decom-
posed into discrete triplets, which overlooks tempo-
ral reasoning, multi-sentence context, and implicit
premises that our sliding-window backup cannot
capture. Third, the dense semantic graphs required

for each citation pair can be computationally expen-
sive to construct at scale. Finally, CoVeGAT’s per-
formance hinges on access to high-quality, domain-
specific labeled data for fine-tuning the graph atten-
tion model, limiting its generalizability across dis-
ciplines. Future work may explore integrating neu-
ral semantic parsers, lightweight graph construc-
tion methods, or few-shot adaptation strategies to
address these constraints and extend CoVeGAT’s
applicability to real-world, low-resource domains.

3 Methodology

Our overall goal is to take unstructured text,
namely, free-form claims paired with their support-
ing citations, and convert it into a graph-structured
dataset that explicitly records which triplets are
supported or contradicted by the citation. This al-
lows downstream models to reason about which
pieces of a claim hold up against evidence and
which do not. To achieve this, we have developed a
fully automated dataset construction pipeline (See
Figure 1), comprising four sequential stages.

By the end of this pipeline, every claim-citation
pair is represented as a small graph whose nodes
and edges are richly tagged with support scores,
forming a large, trainable dataset for any model
that needs to reason over evidence.

3.1 Triplet Extraction

We utilize the spaCy NLP library to perform seman-
tic parsing on both claims and their corresponding
citation texts. Each complex sentence is simplified
into structured Subject-Verb-Object (SVO) triplets,
capturing fundamental semantic relationships. This
process explicitly captures negation within verbs
by prefixing negated verbs with ”NOT ”. The de-
composition of these sentences helps reduce textual
complexity and enables focused comparisons be-
tween claim and citation content.

If no clear SVO triples are extracted using this
dependency parsing, our method will default to a
sliding window trigram approach. This ensures
robust extraction even from short or less well-
structured texts. Our multi-tiered approach to pars-
ing effectively distills complex sentences into fun-
damental semantic relationships, facilitating pre-
cise comparisons between claim and citation.

3.2 Chain-Of-Verification (CoVe)

To be able to assess the evidential support provided
by the citations accurately, CoVe utilizes an exter-
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Figure 1: Overview of the CoVeGAT architecture. First, claim–citation pairs are passed through an SVO-based
triplet extractor (with a trigram fallback) to produce semantic subject–verb–object nodes, whose embeddings
are obtained via BERT. Edges between claim and citation triplets are weighted by verification scores produced
by GPT-3.5-turbo. The resulting weighted graph is then fed into a graph attention classifier (GAT), with ELU
activations, global mean pooling, and a final linear layer to produce a normalized output score in [0, 1].

nal model, simulated via OpenAI’s GPT-3.5-turbo.
Each extracted triplet from a claim is evaluated
against the citation text, which results in confidence
scores ranging from 0 to 1. Scores closer to 1 in-
dicate higher confidence and stronger evidential
support, while scores closer to 0 indicate low confi-
dence and weak or no evidential support. This re-
flects the likelihood of semantic entailment. These
scores serve as quantifiable measures of evidential
strength between individual triplets.

3.3 Graph Construction

We construct a weighted semantic graph by repre-
senting claim and citation triplets as nodes. Edges
between these nodes are established based on CoVe-
derived confidence scores, which effectively en-
code the strength of evidential relationships as edge
weights. This graph captures the nuanced seman-
tic dependencies and interactions between claim
statements and their potential evidential references.

3.4 Graph Attention Network (GAT) Analysis

The final stage of this process involves analyzing
the constructed graph using a graph attention net-
work (GAT). This neural network architecture lever-
ages node features, derived from BERT embed-
dings of triplet components, and weighted edges
in order to aggregate semantic information. The
GAT model specifically pools information from
claim-side nodes to make graph-level classifica-
tions, ultimately determining whether a claim is
supported by its citation

By integrating semantic parsing, confidence-
based verification, and advanced graph neural net-
works, CoVeGAT provides an interpretable ap-
proach to automated quote and citation verification.

4 Experimental Methodology

4.1 Dataset

Source. Our experiments use AVeriTeC—a 4 568-
claim benchmark for real-world fact verification
that aggregates checks from 50 independent organ-
isations. From the official release, we draw exactly
500 claims from the dev.json split, retaining only
the raw claim texts and their ground-truth verdicts.
The dev partition is preferred because it is entirely
disjoint from the training data supplied with the
dataset, ensuring our evaluation corpus is unseen
by any baseline that might have been pre-trained
on the original training split.

To create a balanced testbed, we generate a one-
to-one set of 500 fabricated counterparts. Each
fabricated claim is derived from its real twin by
applying a single, controlled perturbation chosen
uniformly at random:

• Named-entity substitution (e.g., swapping
“Angela Merkel”)

• Numerical alteration (changing dates, counts,
or magnitude)

• Temporal shift (advancing or back-dating
events)
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Model Label accuracy Macro-F1 Abstain rate

Perplexity 70 B 28.2 % 43.4 % 71.7 %
GPT-4o 72.2 % 76.2 % 17.7 %
Gemini 1.5 Pro 82.5 % 86.3 % 10.8 %
DeepSeek-MoE 67 B 69.7 % 80.1 % 30.3 %
Copilot-Turbo 76.4 % 82.4 % 19.1 %
Claude 3 Opus 44.3 % 57.2 % 55.7 %
Mistral-7B-Instr. 81.4 % 87.0 % 15.4 %

Table 1: Model performance on classification task

• Causal inversion (reversing cause and effect
clauses)

All edits are automated by the Python script pro-
vided in our code repository and manually spot-
checked to eliminate obvious lexical cues that
would trivialise classification.

The procedure yields a 1,000-item dataset with a
perfectly balanced label distribution: 500 accurate
and 500 inaccurate statements.

4.2 Evaluation

Evaluation Metrics. We report three standard mea-
sures:

• Label Accuracy (LA) – the fraction of quotes
whose predicted label exactly matches the
gold 3-way label set (Accurate / Inaccurate
/ Cannot Determine).

• Macro-F1 – the unweighted F1 average over
the two decisive classes (Accurate and Inaccu-
rate); any Cannot Determine output is treated
as an error. This balances precision and recall
and is insensitive to the 50 / 50 class split.

• Abstain Rate – the percentage of quotes that
a model marks Cannot Determine, included
because several LLMs prefer to hedge rather
than commit.

For the non-parametric CoVe-Kernel baseline,
we also log the raw kernel-score distribution and
the hit rate at the empirical decision cutoff τ =
0.025 (see Implementation section).

Baselines. We benchmark seven large-language
models plus one embedding-based system:

• Perplexity 70B (PPL-70B) – Commercial
MoE model accessed via the Perplexity AI
chat API.

• GPT-4o – OpenAI’s flagship model (June
2025 weights).

• Gemini 1.5 Pro – Google Gemini; abstains
least often (108 “cannot-determine” decisions
in our run).

• DeepSeek-MoE 67B – Chinese–English
mixture-of-experts model.

• GitHub Copilot Turbo – GPT-4-Turbo deriva-
tive served in Copilot Chat.

• Claude 3 Opus – Anthropic’s top-tier model;
most cautious, highest abstain rate.

• Mistral 7B-Instruct – Open-weights model
queried through the HuggingFace Inference
API, included to gauge how a freely available
7 B model fares.

• CoVe-Kernel – Our reproduction of Chain-
of-Verification: MiniLM embeddings, RBF
kernel, τ = 0.025 → “Accurate” if the
claim–evidence distance is below the thresh-
old, “Inaccurate” if above, and “Cannot Deter-
mine” in a ±0.002 band around τ .

All LLMs are evaluated zero-shot. Each receives
batches of 25 quotes with the fixed prompt:

“For each numbered statement, reply on
its own line with one of:
Accurate and true | Inaccurate and false
| Cannot determine.
Be specific in your evaluation and rely
on trustworthy sources when possible.”

Decoding temperature is 0.0, and responses are
capped at four tokens per quote to prevent extra
commentary.

Refer to Table 1 for the complete results.
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5 Results

5.1 Overall Performance

On the mixed dataset of 1,000 shuffled quotes (500
authentic, 500 fabricated), Google Gemini 1.5 Pro
achieves the highest raw accuracy (82.5 %) while
the open-weights Mistral-7B-Instruct posts the best
balanced score (87.0 % macro-F1). GPT-4o fol-
lows at 72.2 %, its accuracy held back by a habit of
replying, cannot determine about one claim in six.

Models that abstain heavily lose ground: Claude
3 Opus and Perplexity 70 B hedge on more than
half of the inputs and finish below the 50 % line
despite respectable precision on the items they do
judge.

The results exhibit a clear trend. With identical
prompts and deterministic decoding, models that
frequently answer Cannot Determine (i.e., adopt
a cautious strategy) suffer lower overall accuracy,
whereas more decisive systems—such as Gemini
1.5 Pro and LLaMA-2-7B-Instruct—achieve higher
scores, albeit at the cost of occasional confident er-
rors on fine-grained numeric edits. Model size
alone is not the primary determinant of perfor-
mance; with well-designed instruction tuning, a
7-billion-parameter model can match, and in cer-
tain metrics surpass, commercial systems in the
70–100 billion-parameter range.

5.2 Methodology performance

We also ran a non-parametric CoVe-Kernel check
on the 500-item set supplied. Each row contains an
RBF similarity score between a quote and its evi-
dence; by convention, a score below 0.025 is taken
to mean “the quote is false” (i.e. CoVe thinks it
has spotted a factual mismatch). Under that single
rule the system flags 482 of 500 quotes correctly,
an accuracy of 96.4 %, leaving only 18 errors.

All 18 mistakes lie inside a very narrow band
just above the threshold (0.025 – 0.035). Inspection
shows three recurring causes:

1. Tiny numeric edits. Changing “42 million”
to “41 million” shifts only one token and
barely moves the embedding, nudging the
score above τ even though the meaning flips.

2. Entity swaps with extra framing. Sentences
like “It is widely believed that Theresa May
. . . ” add hedging phrases the original lacked;
the additional words expand vector distance
enough to miss the cutoff.

3. Causal inversions hidden in long sentences.
When “X led to Y” becomes “Y led to X” in-
side a 30-word clause, most tokens stay iden-
tical, and cosine distance again changes only
marginally.

Because every error sits within 0.010 of the
boundary, simply lowering τ to a score such as
0.022 would raise recall on false claims without cre-
ating many false positives; but it would also erase
any chance of labelling a quote true. The underly-
ing limitation is that MiniLM embeddings are too
coarse-grained for subtle factual reversals; swap-
ping the encoder for a task-tuned cross-encoder or
introducing a small margin band (Cannot Deter-
mine for 0.023–0.027) are straightforward ways to
harden the system.

In short, with a hand-picked threshold CoVe-
Kernel can spot blatant fabrications with high pre-
cision, but it remains brittle around fine-grained nu-
meric or causal tweaks—exactly the corner cases
that modern LLMs also find most challenging.

6 Discussion

Our evaluation of eight citation-verifying systems,
including several advanced LLMs and one hybrid
non-parametric method, reveals key trends about
the strengths and limitations of current approaches
to automated claim citation verification. The results
demonstrate that while LLMs have made progress
in factual reasoning, their ability to judge claim-
evidence alignment consistently remains uneven,
especially in adversarial or subtly perturbed con-
texts.

6.1 Performance vs. Prudence Tradeoff
A clear pattern emerges in the relationship between
decisiveness and performance. Models like Gem-
ini 1.5 Pro and Mistral-7B-Instruct, which issue
definitive judgments with relatively low abstention
rates (10.8% and 15.4%, respectively), achieve the
highest overall accuracy and macro-F1 scores. In
contrast, Claude 3 Opus and Perplexity 70B adopt
a cautious stance, abstaining from over half the in-
puts, underperforming on both precision weighted
and overall correctness. This emphasizes a cen-
tral challenge in ethical LLM deployment: overly
conservative models risk failing to flag misinfor-
mation, while confident ones may propagate false-
hoods when it does not reflect factual correctness.

Furthermore, model size was not the primary
determinant of performance. Despite having fewer
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parameters, Mistral-7B-Instruct outperformed sev-
eral larger commercial systems, highlighting the
value of instruction tuning and alignment strategies
over raw scale. This suggests that accessible, open
weight models, when carefully tuned, can achieve
advanced performance in citation-sensitive tasks
without requiring proprietary infrastructure.

6.2 Fine-Grained Factuality Remains Elusive

Both LLMs and the CoVe-Kernel method strug-
gled with subtle perturbations, especially numeric
alterations and causal inversions. In contrast, the
CoVe-Kernel system achieved 96.4% accuracy on
its benchmark, with every error clustered near the
decision threshold, revealing a sensitivity to edge
cases. Such failure modes emphasize that vector
distance, while capturing semantic similarity, is in-
sufficient for ensuring factual equivalence. In prac-
tical terms, changing “42 million” to “41 million”
or flipping cause-effect relationships produced only
minor shifts in embedding space, small enough to
evade detection by both LLMs and shallow sim-
ilarity functions, highlighting a need for deeper
analysis beyond word overlap in critical domains
like journalism and legal review.

6.3 Ethical Implications and Design
Considerations

Our findings carry several implications for the de-
sign and deployment of LLMs in citation-sensitive
environments. First, models that over-rely on con-
fidence or refuse to abstain when uncertain about
data may contribute to hallucinated factuality, the
illusion of truth created by authoritative tone and
plausible structure. Second, the tendency of some
models to abstain excessively raises the risk of eth-
ical ambiguity, failing to identify misinformation
when a judgment is expected.

The high performance of a relatively simple
CoVe-Kernel baseline further raises questions
about the interpretability and transparency of LLM
outputs. Unlike most LLMs, which offer little in-
sight into why a given citation was judged as ac-
curate, the kernel-based method provides direct
access to distance thresholds and can be calibrated
to balance precision and recall. This suggests that
hybrid systems, like our CoVE-Kernel system, may
offer a more robust path forward for citation verifi-
cation.

7 Conclusion

This study evaluated whether state-of-the-art LLMs
can reliably distinguish true statements from min-
imally perturbed fabrications. We constructed
a 1,000-item test set by pairing 500 verified
AVeriTeC claims with single-edit counterparts,
each manually validated to remove superficial cues.
Seven zero-shot LLMs and a CoVe-Kernel baseline
were assessed using label accuracy, macro-F1, and
abstention rate.

Decisive models—Google Gemini 1.5 Pro (82.5
% accuracy) and Mistral-7B Instruct (87.0 %
macro-F1)—consistently outperformed cautious
systems such as Claude 3 Opus and Perplexity 70 B,
which abstained on over half of the inputs and fell
below 50 % overall accuracy. The CoVe-Kernel
approach, relying on MiniLM embeddings with
a single RBF cutoff, achieved 96.4 % accuracy,
underscoring the competitiveness of simple, inter-
pretable methods.

These results reveal a pronounced trade-off be-
tween decisiveness and restraint: lower absten-
tion rates drive higher accuracy, whereas excessive
hedging imposes substantial performance costs.
Crucially, model scale alone does not determine
success; instruction tuning and calibrated absten-
tion thresholds are equally decisive.

Future work should (1) enhance small encoders
or cross-encoders to detect subtle numeric and
causal perturbations and (2) develop fully inte-
grated pipelines that unify fine-grained citation
(“sanitation”), systematic self-verification (“veri-
fication”), and atomic evaluation metrics such as
FActScore. Such end-to-end frameworks promise
to advance the reliability and transparency of LLM-
based fact-verification systems.
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Abstract

Many enterprises are increasingly adopting Ar-
tificial Intelligence (AI) to make internal pro-
cesses more competitive and efficient. In re-
sponse to public concern and new regulations
for the ethical and responsible use of AI, im-
plementing AI governance frameworks could
help to integrate AI within organisations and
mitigate associated risks. However, the rapid
technological advances and lack of shared eth-
ical AI infrastructures creates barriers to their
practical adoption in businesses. This paper
presents a real-world AI application at TVS
Supply Chain Solutions, reporting on the expe-
rience developing an AI assistant underpinned
by large language models and the ethical, regu-
latory, and sociotechnical challenges in deploy-
ment for enterprise use.

1 Introduction

Recent developments are driving industry interest
in the field of Large Language Models (LLMs).
Key developments of note are the abundant avail-
ability of commercial language modelling solutions
(Devlin et al., 2019; Brown et al., 2020; Thoppilan
et al., 2022) and the increased public awareness of
the capabilities of LLMs (Mialon et al., 2023; Qu
et al., 2025). However, to successfully utilise these
models, organisations must navigate important so-
cietal challenges related to ethics, sustainability,
and compliance (Hagendorff, 2024; Laux et al.,
2024).

TVS SCS UK is a top-tier third-party logistics
(3PL) provider in Europe and the UK, offering com-
prehensive supply chain solutions. 3PL customers
increasingly adopt intelligent technology-led so-
lutions to optimise their supply chain operations
and reduce costs (Pournader et al., 2021; Li et al.,
2023). To stay ahead of the competition, TVS SCS
UK are leveraging LLMs to create a competitive
advantage and enhance their internal operational

Figure 1: Overview of TVS Sidekick, an AI assistant
that leverages LLMs to answer queries with relevant
enterprise data using retrieval augmented generation
(RAG) via a Microsoft Teams extension.

efficiency. TVS SCS UK has decided not to use
third-party software integrators or product vendors
for its solutions, which would negatively impact
their agility and innovation. Instead, they have
started their journey towards an AI transformation
through an in-house AI team.

TVS Sidekick is the flagship product of this in-
house team. TVS Sidekick is built upon the prin-
ciples of Retrieval Augmented Generation (RAG)
(Lewis et al., 2020). All relevant company docu-
ments, as available via their internal cloud-based
systems, are vectorised and compared to the input
query, with the LLM then performing information
extraction for the purposes of question answering
with custom prompting (Qu et al., 2025). Users
interact with TVS Sidekick via a Microsoft Teams
extension (Figure 1).

As TVS SCS UK advances its AI transformation
through the development of Sidekick, it must also
navigate a complex legal and regulatory landscape.
At the centre of this landscape are the European
Union Artificial Intelligence Act (EU AIA) (Eu-
ropean Commission, 2014) and related standards,
such as ISO/IEC 42001 for AI Management Sys-
tems (International Organization for Standardiza-
tion., 2023). Furthermore, TVS SCS UK must
overcome a range of sociotechnical challenges that
accompany the deployment of LLMs, such as is-
sues of fairness, transparency, and accountability
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(Crockett et al., 2023; Ojewale et al., 2025), which
limit their practical adoption in enterprise environ-
ments.

In this paper, we report on TVS SCS UK’s expe-
rience developing Sidekick, navigating the relevant
legislation and regulations, and overcoming the
challenges they have encountered along the way.

1.1 Significance of this Study
This study presents practical insights from applied
AI research in a real-world business context. To be
specific, we contribute to the field in three ways:

• Technical Contributions. We describe the de-
sign and implementation of Sidekick, an AI
assistant underpinned by LLMs that is tailored
for enterprise use, including novel approaches
to prompt engineering and RAG.

• Regulatory Contributions. We present a case
study of how a business is aligning its devel-
opment with emerging legislation and regula-
tions, most notably the EU AIA, by working
towards harmonised technical standards (e.g.,
ISO/IEC 42001).

• Sociotechnical Contributions. We explore the
sociotechnical challenges that accompany the
deployment of LLMs in enterprise environ-
ments. We report quantitative statistics relat-
ing to the adoption of Sidekick alongside a
qualitative analysis of end-user feedback.

1.2 Structure of this Study
The remainder of this paper is organized as follows.
Section 2 reviews the relevant literature. Section
3 details the technical implementation of Sidekick.
Section 4 presents a case study of how TVS SCS
UK is aligning its development with emerging leg-
islation and regulations. Section 5 includes a quan-
titative and qualitative evaluation of the progress
to date. Finally, section 6 concludes this paper and
describes directions for future work.

2 Related Work

2.1 LLMs in the Enterprise
Prominent applications, reviewing strategies to
augment LLM capabilities. The transformer archi-
tecture enhanced language modelling capabilities
and has since sparked great attention in industry
(Vaswani et al., 2017). This led to many readily
available pre-trained models, which proved their

superiority in fine-tuning applications (Devlin et al.,
2019). With increased data size and model com-
plexity, decoder-only models like the generative
pre-trained transformer (GPT) model series have
become more attractive for industry due to their
few/zero-shot performance (Brown et al., 2020).
This paradigm shift led to methods for aligning
to user intent (Ouyang et al., 2022) (like reinforce-
ment learning with human feedback) powering pop-
ular conversation-focused products like ChatGPT.
While these scaled-up models offer business value
(e.g. analysing vast data in real-time), issues such
as the closed-source nature of existing solutions
creates barriers to organisations lacking computa-
tional power (Yang et al., 2024).

Focus on approaches including RAG (and
pipeline parts showing improvement). Recently,
the focus has turned into giving more agency to
LLMs to become independent problem solvers. For
instance, by consulting with external knowledge
sources for factual grounding (Lewis et al., 2020;
Thoppilan et al., 2022). More broadly, a significant
step forward is the combination of “tools”, namely
tool-augmented LLMs (Mialon et al., 2023), in-
cluding retrieval-augmented language models for
efficiently handling new data. Such approaches
generally consist of four stages: task planning (i.e.
break down user query into tasks), tool selection,
tool calling, and response generation (Qu et al.,
2025). Similarly, critical advances require frame-
works for enabling LLMs to recall previous interac-
tions (Zhang et al., 2024), allowing for multimodal
data processing (Sun et al., 2025; Song et al., 2025),
or to improve responses based on past interactions
(Wang et al., 2024).

This paper presents a case study of recent LLM
developments in practice, specifically through the
technical implementation of an AI assistant that
processes heterogeneous enterprise data sources us-
ing knowledge augmentation strategies, including
novel approaches to prompt engineering and RAG.

2.2 Responsible and Ethical AI

Challenges in training, evaluating, and deploy-
ing LLMs and emerging AI regulation. While
AI shows great potential and business opportuni-
ties, many concerns arise from embedding biases,
contributing to climate degradation, threatening hu-
man rights and more (UNESCO, 2021). An active
research area has emerged for responding hard nor-
mative questions related to AI, such as bias and
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Principles Requirements
Human oversight & accountability AI to support/augment humans, with humans clearly accountable.
Technical robustness and safety AI tools work as expected, minimising potential harms.
Transparency Clear notification of AI involvement, clear and traceable outputs.
Privacy & data governance Follow existing privacy rules with quality, robust data.
Diversity & fairness Output free of bias and does not discriminate or treat unfairly.
Social & environmental wellbeing AI is sustainable and beneficial to all.

Table 1: Key emerging principles and requirements from global AI regulations (British Standards Institution, 2025).

fairness, transparency, and accountability (Jobin
et al., 2019). Institutions at global, international,
and national levels have responded with recommen-
dations for responsible and ethical AI, consisting
of principles and practices such as a human rights-
centred approach to AI (UNESCO, 2021), or AI
assurance methodologies (i.e. to “measure, eval-
uate, and communicate the trustworthiness of AI
systems” (Department for Science, Innovation &
Technology, 2024)). The advent of LLMs only
adds a layer of complexity to the ethical debate
(Hagendorff, 2024), raising additional concerns (re-
garding transparency, copyright, and safety) (Eu-
ropean Commission, 2025) that require specific
regulation for generative AI technologies.

Global legislation and EU AIA as most far
reaching and punitive of regulations. The EU AIA
is a notable example leading the field of AI regu-
lation, with significant non-compliance penalties
to business providing or deploying AI. While leg-
islation approaches and requirements vary across
jurisdiction areas (Table 1), AI regulations are de-
veloping globally to provide assurances in critical
aspects such as human oversight and accountability,
technical robustness and safety, or privacy and data
governance (British Standards Institution, 2025).

Governments and legislative bodies are working
towards practical strategies to implement the prin-
ciples underlying AI regulations. Harmonised stan-
dards are one of the primary mechanisms for help-
ing organisations translate regulatory requirements
into technical implementations (AI Standards Hub,
2024). Standardisation should specify minimum
technical testing, documentation, and public report-
ing to limit AI developers and/or users discretion
in complying with regulatory requirements (Laux
et al., 2024). However, local empirical studies
and specific examples of how organisations imple-
ment processes that ensure AI regulation principles
(Wolf-Brenner et al., 2024) is crucial for a demo-
cratic approach to ethical and responsible AI.

From theory to practice. While approaches to
ethical AI exist (including bias tests, checklists and
risk impact assessments), organisations face bar-
riers that limit their practical adoption (Crockett
et al., 2023). Technical approaches alone are not
sufficient to establish an ethical AI infrastructure
(Ojewale et al., 2025). Instead, participatory ap-
proaches involving civil society stakeholders are
needed for effective standard setting, implementa-
tion, and enforcement (Crockett et al., 2024; Mod-
hvadia et al., 2025). This paper contributes to bridg-
ing the gap between theory and practice through the
experience of implementing an AI governance strat-
egy in a real-world business context, reporting on
the technical, legal and human challenges involved
with the adoption of generative AI technologies.

2.3 Positioning this Study
In the logistics sector, real-time data analysis can
transform business operations, from internal ware-
housing and inventory processes to stakeholder
management (Pournader et al., 2021). However,
empirical research in related areas (Qian et al.,
2024; Kapania et al., 2025) shows that benefits and
trade-offs in the use of AI technologies manifest
differently depending on their application domain.

Despite growing understanding of public at-
titudes towards AI (Modhvadia et al., 2025;
Mhasakar et al., 2025), research on its industrial
application remains limited. This study presents
insights from the development and use of LLMs at
TVS SCS UK, to address the following gaps:

• Examining the implementation and practical
application of recent LLM advances within
the enterprise context.

• Embedding high-level ethical principles in
AI regulatory frameworks into organisational
practices.

• Empirical analysis of challenges that emerge
with adopting LLMs in a logistics company.
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Figure 2: Architecture diagram showing the main components of Sidekick, namely the ingestion and RAG pipelines,
with novel approaches to prompt engineering (to handle code queries) and augmentation retrieval (for tool use).

3 Technical Implementation

This section presents the design and implemen-
tation of Sidekick (Figure 2), describing: (i) the
integration of relevant company data into a vector
database (Ingestion pipeline), and (ii) how this vec-
torised data is used to process user queries with
enhanced LLM capabilities (RAG pipeline).

3.1 Ingestion Pipeline

Vector databases are increasingly used to enhance
LLM-generated outputs by providing relevant text
fragments (“chunks”) that have a similar mean-
ing to the user query (i.e. “context”). To do so,
company data needs to be transformed and embed-
ded into a common database that handles semantic
similarity searches. The vector database acts as a
bridge between the two system components, accel-
erating the retrieval of content that is relevant to
the user query.

The first system component integrates informa-
tion from different company data sources into the
vector database, in two main steps:

• Data preparation. First, TVS data is fetched
from different data sources, i.e. SharePoint,
Azure DevOps (ADO), code repositories, and
TVS website, with a scheduled hour refresh.
Data is then processed to extract chunks using
a document loader: i.e. parsing (extract or
transform to text - for code) and chunking
(splitting by semantic or logical boundaries).

• Indexing. Extracting semantic vectors from
each chunk with an embedding model, and
creating an index in the vector database for
each data source (to define specific fields).

Sidekick is developed to handle both text and
code-related queries. Crucially, using prompt engi-
neering for code integration. First, files are split to
objects by logical meaning (i.e. functions, methods,
or procedures). An LLM is prompted to generate
descriptions to each code file, using its object list
to report on the overall purpose, structure, key pro-
cedures, functions, and external interactions. Both
code and transformed text fragments are stored in
the vector database, to expose relevant source code
lines as sources when responding to the user query.

3.2 RAG Pipeline

The second system component processes user
queries by leveraging company data and conver-
sation history to enhance LLM outputs.

The user query and conversation history (i.e.
queries and responses of the last 60-minute ses-
sion) are sent to a router. The router splits the user
query into sub-sentences (i.e. specific tasks) and
calls an LLM to decide which route to take for the
augmentation retrieval. Each route uses a type of
“chatterbot”, a tool-based LLM optimised to answer
questions related to different data sources.

Each task identified from the user query triggers
an instance of RAG:
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Requests Standard(s)
Accuracy 23282*
Robustness 24027, 12791
Transparency 12792*
Human oversight 8200, 42105*
Data and Data Management 25012, 5259
Cybersecurity 27001
Record keeping and logging 24970*
Quality management systems 9001, 25059*
Risk management systems 31000, 23894
Conformity assessment 42006

Table 2: Horizontal standardisation request for the EU
AIA (AI Standards Hub, 2024), mapped to available
ISO/IEC standards. Highlighted standards (*) are yet to
be published (20th August 2025).

• Retrieval: information retrieval from vector
database using the same embedding model to
extract context (top-10 similar chunks) and re-
format chunks (its text and metadata as XML
or JSON list for code route).

• Augmentation: calls an LLM to extract the
required parameters to generate the answer
(including prompt template).

• Generation: calls an LLM using the instruc-
tions and context from previous steps.

The output generated for each task are combined
into a single response using the LLM only with gen-
erated texts. The user query and response are saved
for logging and leveraging conversation history.

4 Navigating Regulatory Challenges of
TVS Sidekick: Case Study

This section presents the regulatory challenges that
emerge with the development of LLMs, and how
they may be overcome in a real-world business
context. Specifically, we present a case study on
navigating a complex and changing AI regulatory
landscape in the enterprise, leading to the imple-
mentation of the first harmonised technical stan-
dard for responsible AI development and use.

4.1 EU AIA & Harmonised Standards
TVS SCS UK is achieving compliance working
towards AI standardisation, which is key to the
development and adoption of AI. One key regula-
tion shaping the field of standardisation is the EU
AIA, which is leading the global landscape of AI
regulation.

42001 Requirement Focus
4.[1/2/3] Purpose & Requirements
6.[2/3] Objectives & Change
5.[1/2] Leadership & Policy
5.3 Roles & responsibilities
6.1.[1/2/3], AI Risks Y
8.[1/2/3/4]
9.1. 9.2.[1/2] Monitoring & Measuring Y
10.[1/2], 9.3 Continuous improvement Y
7.[1/2/3/4], Awareness & Training
7.5.[1/2/3]

Table 3: Mapping analysis between ISO/IEC 42001
and existing management systems at TVS SCS UK,
highlighting focus areas for implementation (“Y”).

Different harmonised standards are being devel-
oped to support the implementation of the EU AIA,
such as the ISO/IEC 12792 and 24970 standards for
addressing the transparency and logging of AI sys-
tems, respectively (see Table 2). Building upon rel-
evant standards, including AI Concepts and Termi-
nology (22989) and AI Risk Management (23894),
ISO/IEC 42001 is the first international standard
for AI Management Systems, aiming to guide or-
ganisations in the responsible development and use
of AI systems.

Recognising the value of standards to opera-
tionalise AI regulation principles for ethical and
responsible AI, TVS SCS UK has decided to adopt
an AI Management System (AIMS) framework to
develop trustworthy AI solutions.

4.2 ISO/IEC 42001 Implementation
TVS SCS UK have developed and deployed for-
mal management systems in important areas such
as information security, quality, health and safety,
business continuity, and environmental manage-
ment. To effectively implement an AI management
system, TVS SCS UK began with mapping the key
requirements of ISO/IEC 42001 to existing stan-
dards, focusing on management systems already
adopted by the organisation.

The results from this mapping analysis are
shown in Table 3. Notably, TVS SCS UK maintains
an Information Security management system fol-
lowing ISO/IEC 27001 (International Organization
for Standardization., 2022). Processes supporting
this standard, especially related to data manage-
ment and cybersecurity, were aligned with ISO/IEC
42001 requirements. This comparison helped to
identify focus areas for developing an AIMS:
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Category Topics
Performance alignment, reliability, robustness,

prompt engineering, usefulness,
helpfulness, truthfulness

Safety privacy, security, safety
interpretability, transparency,
explainability, fairness, trust-

worthiness, adversarial attacks
Regulation regulation, best practice*, gover-

nance, compliance, accountability

Table 4: Topics of AI/LLM performance, safety, and
regulation feeding into the Knowledge Base of papers.

AI Risks. TVS SCS UK maintains a risk man-
agement strategy as an integral part of their infor-
mation security. This ongoing process sets out
responsibilities and a methodology to periodically
assess risks based on likelihood and impact levels.
One of the main challenges introducing AI is the
need of staying relevant with current risks. To this
end, TVS SCS UK is working towards establishing
a Knowledge Base that informs AI development
and use within the company. The AI team started
maintaining an academic database of research re-
views including meta-analyses and relevant case
studies that is accessible throughout the company;
both in full-text and via their in-house AI assistant
for the purpose of question answering. Further-
more, a systematic search (Brereton et al., 2007)
of AI research papers in relevant topics (Table 4)
allows to explore topic distribution and relevant
metadata, such as indexed keywords or keywords
from the authors, and supports the maintenance and
updating of the academic database.

Monitoring & Measuring. Another component
of the AIMS framework is to capture monitors and
measures on the use of AI, including an internal au-
dit programme. TVS SCS UK is developing a mon-
itoring system supporting Sidekick, which includes
usage indicators (Table 5) and descriptive metrics
of interactions (volume breakdown by department,
job title, individual user, and question type). Ul-
timately, these metrics aim to pragmatically mea-
sure the effectiveness of the AI assistant, setting a
starting point for other AI performance and safety
measures. For instance, obtained through the provi-
sion of feedback channels (Torkamaan et al., 2024)
to report quality or safety incidents, or the inclu-
sion of LLM observability evaluations (Kenthapadi
et al., 2024).

Usage indicators
Interaction volume Number of messages (i.e.

prompts) and unique users.
Response time Average response time (s).
User engagement Average of messages per

session (on daily basis).

Table 5: Description of metrics in the monitoring system
supporting the AI assitant at TVS SCS UK.

Continuous improvement. The effective man-
agement of vulnerabilities to the AIMS is crucial
for demonstrating continual improvement in the
use of AI, with documented validation and verifi-
cation. TVS SCS UK is establishing processes for
maintaining and deploying AI, primarily focused
on the evaluation and technical documentation of
Sidekick. To this end, a primary evaluation objec-
tive has been set to understand the needs and ways
in which the AI assistant may best support differ-
ent company roles and responsibilities. Specifi-
cally, through the organisation of periodic feedback
interviews as part of a continuous evaluation of
Sidekick, with target populations whose adoption
of AI could bring most benefit to the company. A
participatory approach to AI development aims to
support a culture of ethical and responsible AI.

5 Monitoring & Evaluation

This section presents insights gathered from the de-
ployment of LLMs at TVS SCS UK, highlighting
sociotechnical challenges in their enterprise use.
Following the on-going implementation of an AI
governance model, we specifically report on empir-
ical findings from the monitoring system and initial
evaluation of the Sidekick product.

5.1 Adoption & Usage

The implementation of an AIMS framework follow-
ing ISO/IEC 42001, in particular related to Moni-
toring & Measuring requirements, provides prac-
tical insights on the levels of AI adoption and us-
age in the organisation. Consequently, we report
findings from the monitoring system described in
Section 4.2.

Figure 3 shows quantitative statistics related to
the initial adoption of Sidekick at TVS SCS UK.
The monitoring system shows usage indicators and
descriptive metrics of interaction volume within a
4-month period (March-June 2025).

Overall, continued use of the AI assistant is
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Figure 3: Monitoring system measuring real-time usage data of TVS Sidekick.

shown within the observed time period. This is
seen in continued measures both in terms of user
engagement and interaction volume (exceeding 500
prompts in the first two months and 250 in the fol-
lowing two months). Despite fluctuations, the con-
versations do not seem to be long, rarely exceeding
an average of five questions per conversation. The
response time has peaks on specific dates that in-
crement the time to 46 seconds on average.

The descriptive analysis of interaction volume
at organisational level reveals that the most active
users were primarily in technology (e.g. devel-
opers) and business roles (e.g. bid management,
business analysts). At the departmental level, these

roles correspond to IT (business technology, busi-
ness development), management, and operational
areas such as defence, technology, commercial, and
operations.

In terms of individual usage, the breakdown of
activity per individual makes a clear distinction
between lead and early adopters (i.e. 46 - 253
queries) and occasional users (less than 20 on av-
erage). Queries answered with SharePoint data
(i.e. question) were the most common, followed
by responses without retrieval augmentation (gen-
eral response), codebase file queries (rpg query)
and queries related the development environment,
i.e. Azure DevOps (ado query).
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Understanding current use of AI/Sidekick
Have you used Sidekick/other AI tools?
What have you used it for?
Where was AI/Sidekick most helpful/
unhelpful?

Outlook
In what aspects of your job would AI
be most useful?
Do you have any concerns about inte-
grating AI into your workflow?

Table 6: Topic guide of feedback interviews supporting
the continuous evaluation of TVS Sidekick.

5.2 Qualitative Feedback

The initial round of feedback interviews that feed
into the Continuous improvement requirement un-
der ISO/IEC 42001 highlights significant chal-
lenges when introducing AI in the business context.
Primarily, with respect to the perceived benefits
and risks of deploying LLMs in the enterprise, due
to Sidekick being the flagship product.

In total, 24 interviews with members of the IT
department at TVS SCS UK were conducted be-
tween March and April 2025. Participants were
invited to 30-minute online meetings for a semi-
structured interview. The topic guide (Table 6).
included questions i) to gather experiences so far
in using AI/Sidekick at work and ii) understand
how TVS staff want to use Sidekick in the future.
Finally, interview minutes were thematically anal-
ysed (Byrne, 2022) by two independent coders.

The analysis of qualitative feedback led to better
understanding of baseline attitudes towards AI. The
following themes were identified:

Enhanced retrieval (Mentioned by: 16). A key
advantage of Sidekick over other tools is its speci-
ficity to TVS data. Users valued its assistance with
SharePoint-related tasks, finding it faster than a
manual search and with a “readable and visible”
format, especially for the source list.

Good extracting business logic (Mentioned by:
10). Sidekick was particularly helpful in providing
business knowledge, with clear use cases for busi-
ness analysts. Specifically, for understanding the
context of TVS data and key definitions of compo-
nents within business processes.

Not enough technical detail (Mentioned by: 13).
Developers emphasized the need for more domain
knowledge to explain internal programmes. Partic-
ularly, those relying on a legacy programming lan-

guage with limited technical documentation. The
current version of the AI assistant offers a good
starting point for understanding key parameters
and functions, but remains limited in addressing
more specific queries from technical users.

Keen to engage with AI (Mentioned by: 11).
Overall, staff were enthusiastic about using Side-
kick to standardise code, reduce duplication, re-
fer new starters to source documentation, or avoid
ownership issues when using external AI tools. Fur-
thermore, new features were proposed, including
learning from user prompts or returning questions
to users to resolve ambiguous queries.

Privacy/commercially sensitive questions/Other
concerns (Mentioned by: 8). There were no major
concerns with the use of Sidekick, provided it was
fed with the right information and access levels.
Concerns were raised around job security and dis-
trust in AI tools, along with the emphasis on using
Sidekick internally due to potential disclosure of
information from the client side.

The first round of feedback has been worked into
a plan for continual improvement and addressing
concerns, informing further developments of TVS
Sidekick. TVS SCS UK will continue developing
processes to adhere to ethical principles in regula-
tory standards, sharing practical insights in critical
areas such as managing AI risks, providing relevant
monitors and measures on AI use, and increasing
AI adoption through training and consultation.

6 Conclusion

This paper presented the experience and challenges
encountered in a real-world business scenario with
the development and deployment of TVS Sidekick,
an AI assistant leveraging LLMs for enterprise use.
This empirical study provides practical knowledge,
including key lessons learned from the implemen-
tation and governance of the in-house AI assistant.

Limitations & Ethical Considerations

The findings and insights presented are drawn from
a specific organisational context and reflect expe-
riences within a particular time frame and initial
phase of evaluation. While the technical specifics
and detailed implementation of each component of
the governance framework are outside the scope of
this work, this paper aims to contribute to the wider
community by sharing reflections on navigating
technical, ethical, regulatory, and sociotechnical
challenges of deploying LLMs in practice.
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