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Abstract

During reading, readers perform rapid forward
and backward eye movements through text, called
saccades. How these saccades are targeted in the
text is not yet fully known, particularly regarding
the role of higher-order linguistic processes in guid-
ing eye-movement behaviour in naturalistic read-
ing. Current models of eye movement simulation
in reading either limit the role of high-order linguis-
tic information or lack explainability and cognitive
plausibility. In this study, we investigate the influ-
ence of linguistic information on saccade targeting,
i.e. determining where to move our eyes next, by
predicting which word is fixated next based on
a limited processing window that resembles the
amount of information humans readers can pre-
sumably process in parallel within the visual field
at each fixation. Our preliminary results suggest
that, while word length and frequency are impor-
tant factors for determining the target of forward
saccades, the contextualized meaning of the previ-
ous sequence, as well as whether the context word
had been fixated before and the distance of the pre-
vious saccade, are important factors for predicting
backward saccades.

1 Introduction

The eye movements of readers can reveal aspects
of the cognitive mechanism that underlies language
processing during reading. Decades of research
have explored the explanatory power of eye move-
ments to better understand which factors play a
role in text comprehension (Rayner, 1998; Rayner
et al., 2006). One well-established phenomenon in
reading is the idea that lexical information, such
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as word length, frequency, and surprisal, influ-
ences the durations and locations of fixations in
text (Kliegl et al., 2004). However, the influence of
higher-level language processing on saccade tar-
geting is less well known (Warren et al., 2011;
Vasishth et al., 2013). Cognitive models of eye
movements in reading vary in how saccade pro-
gramming is simulated, and most models leave
postlexical information implicit (e.g. Reichle et al.,
2009). Furthermore, current machine learning ap-
proaches for predicting fixation location in reading
are limited in shedding light on human language
processing. They do little to explicate what drives
saccade decisions and have few parallels to psy-
cholinguistic theories and to behavioural evidence
about the human cognitive systems engaged in read-
ing.

Here we investigate to what extent we can suc-
cessfully leverage deep learning methods to investi-
gate a fundamental question about human language
processing: what determines saccade programming
during reading? We approach the prediction of the
next fixation location as a classification problem at
the word level, spanning a window of words that ap-
proximates the parallel processing of words in the
human visual field (n-3 to n+3) (Snell and Grainger,
2019). In addition, we tailor the input of the model
according to what information is likely to be avail-
able to the reader at each fixation. To represent the
low-level linguistic information available for all
words in the processing window, word length, fre-
quency, and surprisal (i.e. negative log-probability)
are employed. To represent higher-level linguistic
information available on each previous word and
the currently fixated word in the input sequence,
we employ contextualized word embeddings from
GPT-2, a unidirectional large language model (Rad-
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ford et al., 2019). Finally, previous fixation infor-
mation is included to capture some of the dynam-
ics of the sequential nature of eye movements. In
sum, we attempt to combine the mapping power
of neural networks with a more cognitively plausi-
ble set-up to understand what determines the next
fixation target in human reading.

2 Related Work

The task of predicting fixation locations in read-
ing has been mainly addressed with one of the two
modeling strategies: theory-driven or data-driven.
Theory-driven models are cognitive models that
simulate eye movements in reading by computa-
tionally implementing psycholinguistic theories of
reading with the goal of revealing the cognitive
mechanisms involved in reading. The next fixation
location is explicitly determined, i.e., it is clear
how the model arrives at each saccadic decision.
However, they are hardly ever evaluated on unseen
texts and readers, and are limited in explaining the
role of high-order linguistic information in saccade
targeting. In E-Z reader (Reichle et al., 2009), for
example, saccade targeting is limited to the range
of word n-1 to word n+2, and is mainly determined
by word length, frequency and predictability. Re-
gressions occur randomly with a certain probabil-
ity set by the modeler. Perhaps a more elegant
mechanism is proposed by SWIFT (Engbert et al.,
2005), in which the probability of each word in the
model’s four-word processing window to be the
next saccade target is proportional to its relative
word activation in an attention gradient. However,
SWIFT is limited in that higher-level language pro-
cessing is not accounted for. SEAM (Rabe et al.,
2024) partially addresses this limitation by hav-
ing sentence-level dependencies indirectly affect
word activations, but this effect only occurs be-
tween verbs and subjects.

In contrast, data-driven models of eye movement
simulations solely focus on accurately predicting
eye movements by harnessing advanced machine
learning methods while using previous (and future)
fixations and/or linguistic information as input.
These models rely on the predictive power of ma-
chine learning methods to achieve accurate predic-
tion of fixations on a variety of texts, with different
reading goals and reader profiles. They do this with-
out guidance of theories of reading and little to no
parallel with human cognition with respect to the
model input and/or architecture. The first success-

ful data-driven model (Nilsson and Nivre, 2009)
employed logistic regression with manually engi-
neered features extracted from the text stimuli and
the previous eye movements of readers to predict
the next saccade target location within a five-word
window around the currently fixated word; feature
importance was not reported. Wang et al. (Wang
et al., 2019) combined CNN, LSTM and CRFs to
predict next fixation location, based on word length,
part-of-speech, and bag-of-words representations,
but no regressions nor refixations were produced
by the model. Dweng et al. (Deng et al., 2023) pro-
posed Eyettention, which combines the fixation se-
quence (represented by non-contextualized BERT
embeddings, fixation duration and landing position)
and the word sequence (represented by contextu-
alized BERT embeddings and word length) using
two (bi-)LSTMs and a cross-attention layer. This
model was surpassed in performance by ScanDL
(Bolliger et al., 2023), a sequence-to-sequence dif-
fusion model that generates synthetic scanpaths by
also combining the fixation sequence and the word
sequence (both represented by BERT embeddings).
While data-driven models have been so far more
successful than theory-driven ones in accurately
predicting fixation locations, they still lack explana-
tory power and cognitive plausibility to be useful
models to investigate human cognition in reading:
Much of the information driving prediction is left
implicit (e.g. predicting upcoming fixations based
on previous fixations does not explain what under-
lies saccade targeting), and most information used
in the input is not plausibly available to a human
reader at each fixation step (e.g. future fixations,
and many/all upcoming words).

3 Method

We formulated saccade targeting in reading as a
classification problem, where the model has to de-
cide which word to fixate next given a set of can-
didate words in the input sequence. The classifier
was a shallow fully connected neural network, with
one hidden layer of 128 nodes, ReLu activation and
a drop-out layer !. The input sequence consisted of
a window of seven words, i.e. the fixated word plus
three words before and three words after, to approx-
imate the limited amount of information a human
reader can likely take in the visual field at each

'Pilot studies were performed with CNNs and LSTMs to
preserve the word structure in the input, but, surprisingly, the
fully-connected neural network yielded the best results.



fixation. To represent lexical information on each
word in the input sequence, we used word length,
frequency, and surprisal, which are assumed to be
available to the reader to some degree through ei-
ther past word recognition or current parafoveal
processing. To represent higher-order language
information, we used the contextualized word em-
bedding of the fixated word from GTP-2, which is
assumed to encode the meaning constructed from
the text up to the fixated word. Finally, to capture
some of the dynamics inherent to the sequential
nature of eye movements, we added information on
whether each word in the input sequence has been
fixated before, the previous fixation duration and
the previous saccade length. All features were z-
normalized, except for the word embedding and the
binary feature encoding whether or not the word
had been fixated before.

We trained the classifier on the L1-English part
of the MECO corpus (Siegelman et al., 2022), using
5-fold cross-validation with a 80/20 split based on
text ids. The material consists of the first 10 texts of
the corpus, structured similarly to Wikipedia-style
encyclopaedic entries, covering a diverse range of
topics. Each text had approximately 200 words
and 10 sentences. All participants (n = 46) were
native speakers of English and university students.
They were instructed to read the texts silently and
answer (four) comprehension questions after each
text. We used the fixation dataset available in the
“fixation report” folder, in the path “release 1.0/ver-
sion 1.2/primary data/eye tracking data/fixation re-
port”, in the OSF directory of the MECO corpus.
We only included the fixations on words that had
three words to the left and three words to the right,
resulting in 66,383 fixations in total. Around 34%
of these fixations were to word n+1, followed by
25% to word n+2, 18% to word n, 10% to word
n-1, 7% to word n+3, 3% to word n-2, and 1% to
word n-3.

Model evaluation consisted of measuring the
F1 scores (2 x (precision x recall) /precision +
recall) for each word position in the input se-
quence (seven words, including currently fixated
word) and the macro-averaged F1 score across
word positions. We compare the model perfor-
mance with three baselines: OB1-reader (Snell
et al., 2018), a cognitive model of eye movement
control in reading, in which saccade targeting is de-
termined by word recognition and visual attention;
the same model trained on random input vectors;

and a majority baseline, which always predicts the
majority class (word n+1). To evaluate OB1-reader,
we ran 10 simulations on the corpus texts and, for
each simulation, we selected the fixations that over-
lapped between the model simulation and the cor-
pus, and checked whether the next fixation target
was the same. We then reported the resulting F1
score averaged over simulations.

4 Results

As can be seen in Table 1, our model outperforms
the baselines, including the OB1-reader model, al-
though the difference in macro-averages is small.
The easiest saccade to predict is to word n+1, which
is also the most frequent. Backward saccades are
the most difficult to predict, and the farther away
from the current fixation, the lower the perfor-
mance in predicting saccade targeting. OB1-reader
performs remarkably well compared to our model,
especially at one-word regressions and refixations.
Overall, our model improves saccade targeting pre-
diction compared to the baselines, but still performs
below chance for word skips and refixations, and
poorly for backward saccade targeting.

To determine feature importance, we replaced
one feature at a time by its average over the dataset
and retrained the model with the ablated feature.
Table 2 shows the model performance when remov-
ing each feature. When word length is ablated, the
model performance especially drops in predicting
word skips (word positions 2 and 3). Word fre-
quency also seemed to affect two word-skipping
(word position 3). Whether or not the context word
has been fixated before is predictive of backward
saccades (word positions -1, -2, and -3), as well
as refixations and two-word skipping (word po-
sitions 0 and 3). Embeddings seems to be infor-
mative for backward saccades, but not for word
skipping (word positions 2 and 3). Finally, while
the previous fixation duration does not seem to
be an informative feature in general, the previous
saccade distance supports to some extent the predic-
tion of backward saccades (word positions -3 and
-2) as well as two-word skipping (word position
3). In sum, word length and frequency were impor-
tant features for the prediction of forward saccades,
while the fixated word’s contextualized embedding,
whether the word has been fixated before and the
previous saccade length were mainly informative
of backward sacacades.



-3 -2 -1 0 1 macro-avg
Classifier .002 £.005 .001 £.002 .05 £.017 .24+£.018 .56+.024 .46+£.018 .12+.038 .20 +.006
OBl-reader 0 0 d1£.002 30+£.01 31+£.01 .32+.004 .15+.006 .17 £.002*
Random 0 0 .01 £.008 .11 +£.006 .44 £.016 .35+.011 .004 £.006 .11 £.004 *
Majority 0 0 0 0 S1£.017 0 .07 £.002 *

Table 1: F1 scores averaged over cross-validation splits for each true word position target, as well as averaged over
positions. * means that the score was significantly different from the classifier model.

-3 -2 -1 0 1 2 3 macro-avg
Classifier .002 £.005 .001 £.002 .05 +.017 .24 £.018 .56 £.024 .46 £+.018 .12 +£.038 .20 £.006
w/o word length .002 £.005 .001 £.002 .04 +.01 23+.03 54+£.02 42£.02 .07+.02 .19 +.008 *
w/o word frequency 0 .003 £.008 .05+.02 .25+.008 .55+£.02 45+£.01 .074.02 .19 £.003 %
w/o word surprisal 0 002 £.003 .04+.01 24£.01 .56+.02 46£.01 .10+£.03 .20=£.003
w/o has-been-fixated 0 0 01+.01 214+£.02 55+£.02 45£.01 .06+.06 .18+.01%
w/o embedding 0 0 02+.01 244+£.02 59+£.02 50£.01 .17+.06 .22+.01
w/o previous fixation duration .004 £.006 .001 £.002 .06+£.02 254+.02 56+£.03 46+.01 .10£.03 .20+.005
w/o previous saccade distance 0 0 04+.01 26£.02 56x.02 46+.01 .09+.04 .20=£.004

Table 2: Feature ablation. This table displays the F1 scores averaged over cross-validation splits for each true word
position target, as well as averaged over positions, for each model version in which one feature is ablated. * means

that the score was significantly different from the full classifier model.

5 Discussion

In this study, we attempted to investigate the cog-
nitive processes underlying saccade targeting in
reading using deep learning. We sought to leverage
machine learning while using input whose infor-
mation content may resemble more closely what
is plausibly available to human readers during sac-
cade planning. Importantly, we attempted to fill
a gap in understanding the role of high-order lan-
guage information by investigating to what extent
the text meaning, as represented by contextualized
embeddings, supports where readers tend to fixate
next, beyond lower-level lexical information. Our
preliminary results indicated that forward saccades
tend to be more driven by automatic, oculomotor
cues, as well as low-level linguistic cues, such as
word length and frequency, whereas backward sac-
cades are more heterogeneous, with the semantics
of the previous context playing a role, but also fac-
tors possibly related to oculomotor error, such as
skipping a word due to overshooting, as suggested
by the features “has-been-fixated” and “previous
saccade amplitude”. Our results are in line with
well-established findings in the literature that sup-
port the major role of lower-order linguistic fea-
tures in forward saccades (Rayner, 1998; Kliegl
et al., 2004; Engbert et al., 2005) and the heteroge-

neous nature of backward saccades (Von Der Mals-
burg and Vasishth, 2011; Inhoff et al., 2019; Wilcox
et al., 2024). Furthermore, refixations seemed to be
driven by word length and whether the word had
been fixated before, but, surprisingly, not by factors
pertaining word meaning, such as frequency, sur-
prisal and its contextualized embedding, suggesting
that, at least in this dataset, most refixations were a
result of oculomotor and low-level linguistic cues.
Ultimately, our goal is to model the complex inter-
play between the oculomotor system and language
processing that drives saccade targeting in read-
ing. Combining the predictive power of machine
learning methods with more cognitively plausible
and interpretable modeling may shed light on the
mechanisms behind this process.

6 Limitations and Future Work

The model proposed here fails to predict back-
ward saccades with an acceptable level of accu-
racy. Previous correlational research has suggested
PMI scores to be predictors of regression target-
ing in reading (Wilcox et al., 2024). A follow-up
study may explore the potential of such measure
in informing the prediction of backward saccade
targeting in reading. In addition, the dynamics of
eye movements is not fully explored in our model,



as only information on the previous fixation is used.
It is possible that information on more previous
fixations is needed to capture the complex relation
between the sequence of eye movements and the
sequence of language input.

Finally, we assumed that word length, frequency
and surprisal of the words in the upcoming con-
text are fully available to the reader, which is a
simplification. As a follow-up, this information
will be modulated by OB 1-reader’s visual attention
gradient, based on eccentricity and visual acuity.
That is, the closer the words are to the fixation the
more accurate the linguistic information available.
Future work may investigate whether our neural
network model can be merged with a cognitive
model, such as OB1-reader, to use word activations
generated by the cognitive model as a proxy of low-
order visual and linguistic information, together
with high-order linguistic information represented
by contextualized embeddings, to predict saccade
targeting. More of the dynamics of the relation be-
tween eye movements and language input might be
indirectly captured by the cognitive model’s word
activations.
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