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Abstract
This study evaluates the effectiveness of sur-
prisal estimates from six publicly available
large language models (LLMs) in predicting
reading times in Brazilian Portuguese (BP), us-
ing eye-tracking data from the RastrOS corpus.
We analyze three key reading time measures:
first fixation duration, gaze duration, and to-
tal fixation time. Our results demonstrate that
surprisal significantly predicts all three mea-
sures, with a consistently linear effect observed
across all models and the strongest effect for
total fixation duration. We also find that larger
model size does not necessarily provide bet-
ter surprisal estimates. Additionally, entropy
reduction derived from Cloze norms adds mini-
mal predictive value beyond surprisal, and only
for first fixation duration. These findings repli-
cate known surprisal effects in BP and provide
novel insights into how different models and
linguistic predictors influence reading time pre-
dictions.

1 Introduction

In recent years, the use of large language models
(LLMs) has emerged as a productive approach in
cognitive science and psycholinguistics to better un-
derstand human language processing (Hale (2001);
Armeni et al. (2017); Wilcox et al. (2020)). These
models provide estimates of word predictability,
which can be formalised through information-
theoretic measures as surprisal.

Surprisal quantifies the unexpectedness of a
word given its preceding context. It has been
shown that this measure correlates with reading
time metrics obtained through eye-tracking exper-
iments (Smith and Levy (2013); Hofmann et al.
(2022); Demberg and Keller (2008)). These find-
ings support theories claiming that human language
comprehension is governed, at least to some extent,
by the efficient processing of probabilistic informa-
tion.

Despite extensive research on surprisal linked
to cognitive processing, the focus has largely been
on English, leaving cross-linguistic applicability
underexplored. Wilcox et al. (2023a) showed how
well language model surprisal can predict reading
times in eleven languages, providing important in-
formation regarding cross-linguistic variability in
the cognitive processing of language. However,
Brazilian Portuguese (BP) was notably absent from
this analysis, leaving a gap in our understanding
of the role of surprisal in the processing of this
language.

To address this gap, the present study focuses
on BP, employing the RastrOS corpus, a large-
scale eye-tracking dataset collected from students
in higher education in Brazil, which also includes
carefully constructed norms of predictability of
words (Leal et al., 2022).

The aim of this study is to evaluate how surprisal
values derived from a variety of publicly available
LLMs predict three key eye-tracking reading time
measures: first fixation duration, gaze duration,
and total fixation time in Brazilian Portuguese. Fur-
thermore, we investigate the role of entropy reduc-
tion as a contributing factor in modelling reading
times. We also assess the linearity of the relation-
ship between surprisal and reading times, deter-
mining whether linear models sufficiently capture
this mapping or whether more complex patterns are
present.

Our work not only provides missing data for
Brazilian Portuguese but also identifies the most
effective publicly available LLMs for modelling hu-
man reading behaviour in this language. Moreover,
it offers a baseline for researchers aiming to use sur-
prisal to analyse linguistic phenomena in Brazilian
Portuguese following information-theoretic prin-
ciples such as the Uniform Information Density
(UID) hypothesis (Jaeger and Levy, 2006).

The remainder of the paper is organised as fol-
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lows. Section 2 reviews related work on using
LLMs to model reading times. Section 3 presents
the dataset, describes the large language models
tested, and explains our evaluation methods. Sec-
tion 4 then presents the results. We conclude with
a summary of our findings and directions for future
work in Section 5, followed by a discussion of the
study’s limitations in Section 6.

2 Related Work

Wilcox et al. (2023a) examined surprisal’s relation-
ship to reading times in eleven languages across
five language families. Using monolingual and
multilingual transformer-based language models
(trained on the Wiki40B dataset, Guo et al. (2020),
and mGPT, Shliazhko et al. (2024)), they showed
that both surprisal and contextual entropy predict
reading times, and that the relationship between
surprisal and reading time is linear.

This linear relationship was also supported by
Xu et al. (2023), who analysed seven languages
and found evidence of superlinear effects in some
cases, with results highly dependent on the lan-
guage model used to estimate surprisal.

Additionally, Wilcox et al. (2023b) tested the
quality–power (QP) hypothesis, which posits that
higher-quality language models (LMs) better pre-
dict human reading behaviour. By training LMs
on 13 languages with varying amounts of train-
ing data (from 1 million to 1 billion tokens), they
found that, in most cases, models trained on more
tokens showed stronger predictive power for eye-
tracking data, supporting the QP hypothesis within
the tested range.

Lin and Schuler (2025) proposed a neural study
to complement these observations regarding read-
ing time. By evaluating surprisal estimates from 17
Transformer models across three language families
using fMRI data, they showed that the positive re-
lationship between model perplexity and predictive
power also generalizes to neural measures.

However, regarding LLMs, Oh and Schuler
(2023) demonstrated that despite having better per-
plexity, larger models predict human reading times
less accurately. Specifically, they tend to underpre-
dict reading times for named entities and overpre-
dict for function words, suggesting that memoriza-
tion in these models reduces their alignment with
human processing.

This tendency is also observed by Liu et al.
(2023) who examined the effect of temperature

scaling on large language model surprisal estimates
and their fit to English reading time data, showing
that calibration improves with model size, and tem-
perature scaling significantly enhances prediction.

Moreover, Nair and Resnik (2023) demonstrated
that while surprisal theory explains how a word’s
predictability influences processing difficulty via
probabilistic updating, it does not fully capture all
aspects of incremental processing, such as effects
from low-frequency words and garden-path disam-
biguation. To address these limitations, Wang et al.
(2025) developed a model that integrates syntac-
tic information with statistical surprisal estimated
from LLMs, resulting in significantly higher cor-
relations with human reading times than surprisal
alone.

Therefore, although surprisal alone cannot fully
account for cognitive language processing, it has
a significant impact across many languages. Addi-
tionally, both the size of the language model and
the amount and quality of training data affect the
relationship between reading time and word pre-
dictability. Consequently, it is crucial to identify
the best language model for each language (and lan-
guage variety) before applying surprisal estimates
in various research fields.

3 Methodology

3.1 Eye-Tracking Data

The RastrOS corpus was developed to support
psycholinguistic research on Brazilian Portuguese
(BP), particularly focusing on lexical predictability
and sentence processing. It comprises two main
components: predictability norms collected via a
Cloze test and eye-tracking data gathered from
reading tasks.

A total of 393 native BP speakers from six Brazil-
ian universities participated in the Cloze test, pri-
marily undergraduate students. Each participant
completed Cloze tasks on five randomly selected
paragraphs, balanced across three genres: journal-
istic (40%), literary (20%), and popular science
(40%).

The Cloze corpus includes 50 paragraphs, com-
prising 120 sentences and 2,494 words (2,831 to-
kens). Source texts were drawn from the Lácio-
Web corpus (Aluı́sio et al., 2004), public domain
literature, and contemporary online texts.

Participant responses were compared to target
words based on orthographic match, morphosyntac-
tic class (PoS), and inflection, with semantic simi-
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larity assessed via word embeddings. The dataset
is annotated with PoS tags (using the Palavras
parser; Bick 2000), word frequency (from Cor-
pus Brasileiro (Sardinha, 2010) and BrWaC (Wag-
ner Filho et al., 2018)), and includes surprisal and
entropy reduction values derived from the Cloze
test results.

The eye-tracking data of the RastrOS were col-
lected from 37 undergraduate students and were
recorded using the EyeLink 1000 eye-tracker at a
sampling rate of 1000 Hz.

Participants read 120 sentences taken from the
same 50-paragraph Cloze corpus, a total of 2,494
words total (2,831 tokens including punctuation).
Each sentence is annotated with 36 eye-tracking
metrics (e.g., first fixation duration, gaze duration,
and total fixation time).

3.2 Large Language Models
For our analysis, we selected six publicly available
large language models that vary in the number of
parameters and the training data used:

1. Bloom-560m1 (Workshop, 2022) - Multilin-
gual model trained on 1.5 TB of pre-processed
text, of which 11.1% is Portuguese. 559 mil-
lion parameters distributed over 24 layers with
16 attention heads and 1024-dimensional hid-
den states.

2. Bloomz-7b12 (Muennighoff et al., 2022) -
Same training corpus as bloom-560m but with
7 billion parameters over 30 layers with 32
attention heads, and 4096-dimensional hid-
den states. bloomz is a fine-tuned version of
bloom, trained with multitask instructions to
improve zero-shot performance.

3. Llama-2-7B-hf3 – Pretrained on 2 trillion to-
kens from public sources, then fine-tuned with
public instruction datasets and over one mil-
lion human-annotated examples. It has 1024
hidden dimensions with 32 attention heads
over 32 layers (Wang et al., 2023). Evaluation
tests were performed only in English.

4. Llama-3-2-1B4 – 1 billion parameter model,
pretrained on up to 9 trillion tokens of data in

1https://huggingface.co/bigscience/
bloom-560m

2bigscience/bloomz-7b1
3https://huggingface.co/meta-llama/

Llama-2-7b-hf
4https://huggingface.co/meta-llama/

Llama-3.2-1B

8 different languages (including Portuguese)
from publicly available sources.

5. Llama-3-2-3B5 – Same training data as llama-
3-2-1B but with 3 billion parameters,

6. Mistral-7b6 – Trained on a mix of web data
and code, with 7 billion parameters. It has 32
layers, 32 attention heads, and a hidden size
of 4096 dimensions. The model evaluation
was conducted exclusively on English (Jiang
et al., 2023).

With this selection, our aim is to provide a mean-
ingful comparison between language models of
different sizes and training objectives, including
models fine-tuned for specific tasks (e.g., bloomz-
7b1), and models primarily focused on English
(e.g., llama-2-7B-hf and mistral-7B), despite being
trained on multilingual data. Unfortunately, only
the BLOOM models provide sufficient information
about the proportion of Portuguese in their training
data, although they do not specify which variety of
Portuguese was used.

3.3 Evaluation Methods
To evaluate the performance of the different lan-
guage models in predicting reading times, we
adopted the methodology proposed by Wilcox et al.
(2023a).

Thus, although the RastrOS corpus provides 36
different word-based measures of reading time, we
focus on three commonly used metrics (Rayner,
1998):

1. First fixation duration - the duration of the first
fixation on a word during its first pass. Anno-
tated as IA FIRST FIXATION DURATION
in RastrOS.

2. Gaze duration - the sum of all
first-pass fixations on a word.
IA FIRST RUN DWELL TIME in RastrOS.

3. Total fixation duration - the sum of all
fixations on a word during the trial.
IA DWELL TIME in RastrOS.

First fixation reflects the initial processing of a
word and is associated with early stages of lexical

5https://huggingface.co/meta-llama/
Llama-3.2-3B

6https://huggingface.co/mistralai/
Mistral-7B-v0.1

https://huggingface.co/bigscience/bloom-560m
https://huggingface.co/bigscience/bloom-560m
bigscience/bloomz-7b1
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-3.2-1B
https://huggingface.co/meta-llama/Llama-3.2-1B
https://huggingface.co/meta-llama/Llama-3.2-3B
https://huggingface.co/meta-llama/Llama-3.2-3B
https://huggingface.co/mistralai/Mistral-7B-v0.1
https://huggingface.co/mistralai/Mistral-7B-v0.1
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access. Gaze duration captures the time spent on
a word during first-pass reading and is sensitive
to lexical and syntactic processing. Total fixation
time includes any regressions back to the word and
reflects later stages of comprehension, such as re-
analysis or integration difficulties (Rayner, 1998).

3.3.1 Surprisal
To compute word-level surprisal values, we used
the surprisal Python library7. Sentences from Ras-
trOS were first recomposed and loaded in their
original order. Using the AutoHuggingFaceModel
interface provided by the library, we instantiated
each selected model and computed token-level sur-
prisal values for each recomposed sentence. As
a post-processing step, we merged the subword
tokens produced by the language models to recon-
struct the original words for analysis.

The regression models follow the structure pro-
posed by Wilcox et al. (2023a), aiming to predict
the reading time y(wt, w<t) of a word wt given
its preceding context w<t. The predictor vector xt
includes not only information about the target word
wt, but also features from the two preceding words
wt−1 and wt−2, in order to account for potential
spillover effects on reading time.

Each model includes baseline predictors such
as word length and log unigram frequency (corre-
sponding to Word Length and Freq brWaC log in
RastrOS) for the target word and the two preceding
words. These features form the baseline structure
of the predictor vector xt at position t.

We used linear mixed-effects regression models,
implemented via the lmer() function from the lme4
R package (Bates et al., 2015).

To measure how much surprisal improves model
performance, we compare the baseline model (Ap-
pendix A, equation 1) to models that include sur-
prisal values, specifically the surprisal of the target
word and its two preceding words as estimated by
the LLM (Appendix A, equation 2). The delta is
defined as the difference in per-word log-likelihood
between the surprisal-enhanced model and the base-
line: a positive delta indicates that surprisal helps
the model better explain that word’s reading time.
By aggregating these deltas across all words, we
assess whether incorporating surprisal significantly
improves prediction accuracy.

Additionally, all regression models are trained
and evaluated using 10-fold cross-validation. To

7https://pypi.org/project/surprisal/

assess the significance of the observed differences
(∆) between target and baseline models, we use
a paired permutation test. This non-parametric
test evaluates whether ∆ significantly differs from
zero and whether different models differ from each
other, without assuming any specific distribution of
the test statistic. p-values are computed based on
the empirical distribution of likelihood differences,
estimated by averaging over permutations of the
likelihood values.

For each reading time measure, we compared the
∆ values obtained using surprisal estimates from
the LLMs listed in Subsection 3.2.

3.3.2 Entropy Reduction
Wilcox et al. (2023a) tested the influence of con-
textual entropy as a predictor, comparing it to a
baseline model that included the features from the
baseline structure combined with surprisal values.

Rather than using contextual entropy, we em-
ployed entropy reduction values from the RastrOS
corpus (Entropy Reduction), derived from Cloze
test results. Lowder et al. (2018) demonstrated
that entropy reduction significantly predicts read-
ing time. This is limitation of this approach when
compared to entropy estimates generated by a lan-
guage model trained on a large corpus. Never-
theless, we decided to use the available entropy
reduction values provided by the corpus to have at
least an estimation of the effect.

Thus, using baselines that include surprisal val-
ues, we compared models for each reading measure
and LLM by adding entropy reduction as a predic-
tor, considering the target token and the two preced-
ing tokens for both surprisal and entropy reduction,
with ∆ and the statistical tests as described in 3.3.1.
The model including entropy reduction is described
in Appendix B.

3.3.3 Linearity
For the analysis of surprisal and entropy reduction
as predictors, we used regression models that as-
sume a linear relationship between surprisal and
reading time as supported by previous studies (e.g.,
Smith and Levy (2013); Wilcox et al. (2020); and
Shain et al. (2024)). However, as recent work has
challenged this assumption, proposing superlinear
(e.g., Meister et al. (2021) and Hoover et al. (2022))
or sublinear (Hoover et al., 2023) links, we decided,
following Wilcox et al. (2023a) to test this by com-
paring the performance ∆ of our linear models
with models capable of capturing non-linear rela-

https://pypi.org/project/surprisal/
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tionships.
To analyse linearity, we used generalized addi-

tive models (GAMs), which flexibly capture poten-
tial non-linear effects.

If the GAM fits a visually linear pattern, this
supports the hypothesis of a linear link. We mod-
elled reading times based on Freq brWaC log,
Word Length, and surprisal from sentence-level.
Our GAMs included smooth terms for current
and previous word surprisal and tensor product
terms to model non-linear interactions between log-
frequency and word length, following the method
applied by Wilcox et al. (2023a).

Thus, we compared generalized additive mod-
els (GAMs) that model surprisal effects on reading
time either as linear terms or as flexible non-linear
smooth functions, alongside a baseline model with-
out surprisal, as described in Appendix C. Using
10-fold cross-validation, we calculated the predic-
tion error (RMSE) for each model on held-out data
and computed the improvement ∆ over the baseline
(without surprisal) for both linear and non-linear
surprisal models. We then tested the significance of
these improvements and differences between linear
and non-linear models using paired permutation
tests.

4 Results

4.1 Suprisal Models Compared to Baseline

Figure 1 presents the mean ∆ log-likelihood per
word for each LLM across all three reading time
measures, shown as separate panels.

Regarding the different reading time measures,
surprisal shows the highest predictive power for
total fixation time duration, followed by gaze du-
ration, and finally the lowest ∆ values for first
fixation duration. These results align with those
reported by Wilcox et al. (2023a), showing similar
magnitudes of ∆ across reading measure condi-
tions.

The analysis of the models concerning first fixa-
tion duration shows that the ∆ values are approxi-
mately 0.0025. All ∆ values are significantly differ-
ent from 0 (p < 0.001). The pairwise comparison
of the different models shows that there are no sta-
tistically significant differences among them.

Regarding the gaze duration, there is a higher
variation in ∆ values, with larger standard error
bars. Statistical tests show that, for all models,
∆ differs significantly from 0, except for bloomz-
7b1 (p = 0.0014). When comparing the different

language models, the statistical tests indicate that
the models have significantly different ∆ values,
except for:

• llama-2-7b similar to bloom-560, llama-3-2-
1B, and llama-3-2-3B

• llama-3-2-3B similar to llama-3-2-1B

• mistral 7B similar to llama-3-2-3B and llama-
2-7b

Finally, when considering total fixation time, ex-
cept for bloomz-7b1, ∆ values are around 0.05
and are all significantly different from 0. Also, all
models differ in the pairwise comparison, except
for:

• mistral 7B which is similar to llama-2-7b,
llama-3-2-1B, and llama-3-2-3B

• llama-2-7b, similar to llama-3-2-1B

These results show that the best models are not
necessarily those with the highest number of param-
eters, as for gaze duration, statistically similar re-
sults were obtained for models with 560 million, 1,
3, and 7 billion parameters. This effect is even more
pronounced when considering total fixation time,
with some statistically similar results observed for
models with 1, 3, and 7 billion parameters.

The overall analysis of Figure 1 indicates that
the best model—considering both gaze and total
fixation durations—is llama-3-2-3B. Moreover, it
is notable that the fine-tuned model bloomz-7b1,
despite having 7 billion parameters, performs the
worst in predicting reading times. Additionally,
although not evaluated in languages other than En-
glish, mistral 7B shows statistically similar ∆ val-
ues when compared to llama-3-2-3B.

The estimated effects of surprisal, including co-
efficients and standard errors for each model, are
presented in Table 1.

We observe some consistency among the mod-
els with the best ∆ values. The most discrepant
model is bloom-7B1, reflecting its poor perfor-
mance. Other predictors also show significant ef-
fects, except for the log frequency of the second
word preceding the target, which was statistically
significant only for bloom-7B1.

4.2 Entropy Reduction Models Compared to
Surprisal Baseline

The ∆ results comparing baseline models (with
surprisal) to models that include both entropy re-
duction and surprisal are presented in Figure 2.
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Figure 1: Predictive power of surprisal across reading time measures and LLMs. Dots indicate mean ∆ log-
likelihood per word; error bars show ±1 standard error of the mean. Note that each panel uses a different y-axis
scale.

Figure 2: Predictive power of entropy reduction across reading time measures and LLMs. Dots indicate mean ∆
log-likelihood per word; error bars show ±1 standard error of the mean. Note that each panel uses a different y-axis
scale.

Model Effect Std. Error
bloom-560 9.52 0.15
bloom-7B1 5.01 0.13
llama-2-7B 8.16 0.14
llama-3-2-1B 8.57 0.15
llama-3-2-3B 8.61 0.15
mistral-7B 8.37 0.15

Table 1: Surprisal coefficient for the target word in a
linear model including surprisal, frequency, and word
length as predictors (considering target word and the
two previous ones).

The statistical analyses show that, for first fixa-
tion duration, all ∆ values are significantly differ-
ent from 0, although the models perform similarly.
In contrast, for both gaze duration and total fixation
duration, all ∆ values are close to 0, and no signifi-
cant differences between models were observed.

Wilcox et al. (2023a) observed an improvement
in the prediction of gaze duration when adding con-
textual entropy as a predictor, with a weak—albeit
consistent—effect across languages. In our study,
however, we do not observe the same effect. In-

cluding entropy reduction appears to have a posi-
tive impact (independent of the language model)
only for first fixation duration, and even then, the
∆ values are low (around 0.004).

4.3 Linearity analysis

Figure 3 presents the results of comparing the ∆
obtained from a linear GAM model with surprisal
to a baseline model without surprisal, as well as the
corresponding ∆ values from a non-linear model,
for the prediction of total fixation duration.

As expected from the results presented in Sec-
tion 3.3.1, the statistical tests showed that all ∆
are significantly different from 0. Moreover, when
comparing the linear ∆ with the non-linear one for
each language model, we observe that the results
are not significantly different.

Thus, these results corroborate the claim that the
effect of surprisal on reading time is linear, consis-
tent with the findings of Wilcox et al. (2020). This
linear effect is observed across all LLMs consid-
ered, regardless of parameter size, training data, or
supported languages.

Figure 4 shows the differences in surprisal ef-
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Figure 3: Comparison Between Linear and Non-linear Models for the prediction of total fixation duration. Dots
indicate mean ∆ log-likelihood per word; error bars represent the standard error of the mean delta RMSE across
cross-validation folds..

fects between linear and non-linear models for each
LLM. A linear fit can be observed, especially in
the denser regions of surprisal values. Notably, the
model bloom-7b-1, which showed the poorest ∆
values when the effect of surprisal was analysed,
also exhibits the greatest visual deviation from lin-
earity in the non-linear model.

Similar results are observed for both first fixation
and gaze durations, although the non-linear models
exhibit substantially larger error bars for the first
fixation measures.

4.4 Part-of-Speech Analysis
As a complementary analysis, we investigated the
linearity of the relationship between surprisal esti-
mates and eye-tracking measures across different
parts of speech (PoS) in the RastrOS corpus.

To do this, we conducted ordinary least squares
(OLS) linear regression analyses on data aggre-
gated by PoS. Entries with erroneous PoS tags (i.e.,
”ERR”, which appeared twice in the corpus) were
excluded. For each PoS category, we computed
the mean values of surprisal estimates from six lan-
guage models, as well as mean fixation durations.

For each surprisal model, we then performed
an OLS regression using SciPy’s linregress func-
tion, obtaining the slope, intercept, coefficient of
determination (R²), p-value, and standard error.

Table 2 presents the slope, R², and p-value from
the OLS regression for each language model across
parts of speech.

Model slope R² p-value
bloom-560 71.88 0.86 <0.001
bloom-7B1 45.86 0.62 <0.001
llama-2-7B 38.82 0.53 <0.001
llama-3-2-1B 35.95 0.51 <0.001
llama-3-2-3B 47.91 0.57 <0.001
mistral-7B 65.05 0.71 <0.001

Table 2: Slope, R², and p-values from OLS regressions
of surprisal estimates (per LLM) on total fixation dura-
tion aggregated by part of speech..

The LLM with the highest R² value is bloom-
560, followed by mistral-7B. Indicating that for
this aggregated analysis in terms of PoS, the small-
est model gave the best results. However, in this
case, we considered a simpler regression analysis,
considering only the fixed effect of surprisal.

Figure 5 presents the linear regression plot ob-
tained using bloom-560, showing the estimated
mean total fixation time (i.e., IA DWELL TIME)
as a function of the mean surprisal value for each
part of speech (PoS) in RastrOS.

As expected, parts of speech typically associated
with longer word forms and higher information
load (e.g., verbs, nouns, and adjectives) exhibit
higher values of both reading time and surprisal. In
contrast, conjunctions, determiners, and pronouns
show lower values, while auxiliary verbs are the
least surprising and associated with the shortest
reading times. The same tendency was observed
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Figure 4: Surprisal versus reading time relationship: Non-linear GAMs are in red and linear control GAMs are in
blue. Grey subplots indicate the distribution of surprisal values.

Figure 5: Linear regression plot of mean surprisal es-
timates against total fixation duration for each part-of-
speech (PoS) category for bloom-560. Each point repre-
sents a PoS tag, labeled accordingly. Red lines indicate
the best-fit regression line.

for all LLMs.

5 Conclusion

In this study, we examined the ability of surprisal
estimates from six publicly available large lan-
guage models (LLMs) to predict reading times in
Brazilian Portuguese (BP), using eye-tracking data
from the RastrOS corpus. Our findings confirm
that surprisal significantly correlates with three key
reading time measures (i.e., first fixation duration,
gaze duration, and total fixation time) supporting
the role of probabilistic predictability in BP pro-
cessing.

The best-performing model, Llama-3-2-3B, ap-

pears to outperform others, including larger or fine-
tuned models such as Bloomz-7b1, suggesting that
model architecture and training data quality may
be more important than sheer size. Moreover, the
relationship between surprisal and reading times
was consistently linear, aligning with previous find-
ings. However, entropy reduction, calculated from
Cloze norms, provided minimal additional predic-
tive power.

These results extend surprisal-based research to
BP and offer a baseline for model selection in fu-
ture studies.

6 Limitations

Several limitations should be noted, first, the Ras-
trOS corpus, though carefully constructed, is rela-
tively small and genre-biased (e.g., dominated by
journalistic texts), which may limit the generaliz-
ability of our findings.

Second, the language models tested were primar-
ily trained on multilingual data with unclear propor-
tions of Portuguese, and none were specifically op-
timized for BP. This raises questions about whether
models trained exclusively on BP data might pro-
vide better fits.

Third, our entropy reduction analysis relied on
Cloze norms rather than model-derived entropy,
potentially underestimating its predictive power.

Finally, while we focused on surprisal as a key
predictor, other linguistic factors, such as syntactic
complexity, were not considered and may have an
impact on reading time variance.
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A Appendix A

For the tests assessing the effect of surprisal, we
use the following models: (1) Baseline and (2) with
surprisal.

reading time ∼ Freq brWaC log

+Word Length

+ prev freq + prev len

+ prev2 freq + prev2 len

+ (1 | SESSION LABEL)

(1)

reading time ∼ prev surp

+ prev2 surp

+ Freq brWaC log

+Word Length

+ prev freq + prev len

+ prev2 freq + prev2 len

+ (1 | SESSION LABEL)
(2)

B Appendix B

For the tests assessing the effect of entropy reduc-
tion, we use the model 2 in Appendix A as baseline
and (3) with entropy.

reading time ∼ prev surp

+ prev2 surp

+ entropy Reduction

+ prev entropy

+ prev2 entropy

+ Freq brWaC log

+Word Length

+ prev freq + prev len

+ prev2 freq + prev2 len

+ (1 | SESSION LABEL)
(3)

C Appendix C

The GAM formula used for non-linear models we
use is:

reading time ∼ s(surp, bs = ”cr”, k = 6)

+ s(prev surp, bs = ”cr”,

k = 6)

+ te(Freq brWaC log,

Word Length, bs = ”cr”)

+ te(prev freq, prev len,

bs = ”cr”)
(4)

https://huggingface.co/bigscience/bloom
https://huggingface.co/bigscience/bloom
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And for linear models:

reading time ∼ surp + prev surp

+ te(Freq brWaC log,

Word Length, bs = ”cr”)

+ te(prev freq, prev len,

bs = ”cr”)
(5)


