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Abstract

As transformers become increasingly preva-
lent in NLP research, evaluating their cogni-
tive alignment with human language process-
ing has become essential for validating them as
models of human language. This study com-
pares eye-gaze patterns in human reading with
transformer attention using different attention
representations (raw attention, attention flow,
gradient-based saliency). We employ both sta-
tistical correlation analysis and predictive mod-
eling using PCA-reduced representations of
eye-tracking features across two reading tasks.
The findings reveal lower correlations and pre-
dictive capacity for the decoder model com-
pared to the encoder model, with implications
for the gap between behavioral performance
and cognitive plausibility of different trans-
former designs.

1 Introduction

The impressive capabilities of Transformer models
in linguistic tasks have revolutionized Language
Models in Natural Language Processing (NLP) re-
search. A key difference in their architecture from
previous models is the incorporation of an attention
mechanism, which assigns a degree of relevance
between words in the input. Previous work has
shown that transformer models show signs of pro-
cessing steps similar to humans (Clark et al., 2019;
Voita et al., 2019), and tend to mirror the structure
of the classic NLP pipeline (Tenney et al., 2019).

Attention during reading has also been exten-
sively studied in human eye-movement research.
Eye-movements track much of linguistic process-
ing, including both lower-level word processing
(Just and Carpenter, 1980; Clifton Jr. et al., 2007)
and higher-level comprehension (Reichle et al.,
2010; Southwell et al., 2020).

While transformer attention is not explicitly
modeled after human attention in text processing,
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both mechanisms seem to process text by allocat-
ing resources on relevant linguistic targets. This
similarity, combined with the broader effort of ex-
plainability research to explain artificial models in
human terms, has driven comparisons of model at-
tention to human eye-movement patterns. From a
cognitive science perspective, the goal of this com-
parison is to determine the cognitive plausibility of
computational models like transformers. This in-
volves understanding whether they merely achieve
high, human-like performance due to genuinely as-
similating the human cognitive process, or due to
other artificial processes learned independently.

Previous work (Kozlova et al., 2024; Bensemann
etal., 2022; Eberle et al., 2022; Morger et al., 2022;
Wau et al., 2024; Hollenstein and Beinborn, 2021;
Brandl and Hollenstein, 2022) has investigated this
parallel using various techniques to extract atten-
tion scores from transformers and compare them
to eye-movements from established eye-tracking
datasets. However, several knowledge gaps exist.
Most existing literature has focused on encoder
transformer models, leaving open the question of
whether more advanced and recent decoder mod-
els can equally align with eye-movements. Addi-
tionally, since many studies neglect the impact of
low-level text properties on eye-movements, any
correlation driven primarily by these surface-level
features would be insufficient evidence of deeper
cognitive alignment. Finally, eye-tracking datasets
consist of multiple eye-tracking features that pro-
vide informative signals regarding reading patterns.
However, these features are often intercorrelated,
so they may capture redundant aspects of the same
underlying attention mechanism. The literature has
not been able to consolidate overlapping informa-
tion from multiple features into a single analysis,
where previous studies most often focus arbitrarily
on a single metric.

To address the identified knowledge gaps, this
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study compares the attention mechanism of a
decoder-only model with human attention during
reading. It employs both correlation analysis and
predictive modeling using PCA-reduced represen-
tations of eye-tracking features and accounting for
surface-level properties of the text. Moreover, the
effect of different attention representation methods
(raw attention, attention flow, and gradient-based
saliency) is investigated on the results. The results
provide insights into how the model architecture,
attention method, and reading task collectively in-
fluence the similarity of model attention patterns to
eye-movement behavior.

2 Background

2.1 Human attention and Eye-Movements

Eye-movement research has a long and successful
history in studying human cognitive tasks. Eye-
movements in reading are shown to provide infor-
mation about cognitive language processing, like
syntactic parsing and semantic integration (Fra-
zier and Rayner, 1982), expectations about the
text (Ehrlich and Rayner, 1981), and reading goals
(Rayner, 2009).

Eye-movements consist of fixations and sac-
cades (Rayner et al., 2006). Saccades are short,
rapid movements to other parts of the text, while
fixations occur when eyes remain stationary in
between saccades (Reichle et al., 2003) and are
considered the key point of information process-
ing. Eye-tracking measures focus on different ag-
gregations of these movements, such as the to-
tal fixated time on each word. Both low-level
bottom-up processing and higher-level comprehen-
sion are reflected in eye-tracking measures. Famil-
iar (Clifton Jr. et al., 2007), or frequently occurring
words (Inhoff and Rayner, 1986) are subject to
faster processing, whereas rare occurring words
such as novel proper nouns tend to have longer
fixations (Barrett and Hollenstein, 2020). Longer
words also receive longer fixations, while shorter
words are more likely to be skipped. Word length
additionally interacts with the functional role of a
word, where function words are fixated less than
content words (Rayner, 2009). More top-down
processes like assessing the predictability of the
text given the preceding context draws shorter gaze
durations and the reverse holds for unpredictable,
surprising words (Ehrlich and Rayner, 1981).
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2.2 The Rise of Transformer Models and the
Quest for Interpretability

Transformer models were introduced when
Vaswani et al. (2017) proposed attention as a novel
method for handling contextual relations in lan-
guage models. The attention mechanism com-
pares different embedding representations of the
sequence to determine the degree of relevance be-
tween each pair of words. The model then attends
to important parts of the sequence depending on
these relevance scores. The exceptional perfor-
mance of these models and the intuition and trans-
parency of the attention mechanism drew much
attention from both deep learning and interpretabil-
ity research. As transformer models are advancing,
there is a growing demand to interpret not only
their outputs, but also the internal mechanisms that
lead to those outputs. The first advancements in
interpretability emerged from the Computer Vision
field (Simonyan et al., 2014; Zeiler and Fergus,
2014), where saliency maps were used to trace
model decisions back to input pixels. This tech-
nique estimates the contributions of input raw data
or intermediate activations to model predictions
(Li et al., 2022) and is also commonly applied to
NLP research. For transformer architectures specif-
ically, attention-based and gradient-based methods
have gained popularity for representing importance
allocated to the input sequence.

2.2.1 The interpretability debate

Raw attention scores extracted directly from the
model provide an easily understandable weighting
of the input sequence. For example, in the original
paper introducing attention, Vaswani et al. (2017)
showed that examining the raw attention towards
ambiguous pronouns like “its” could reveal how
anaphora resolution is represented in the model.
Previous work correlating raw attention and hu-
man eye-gaze shows mixed findings. While Sood
et al. (2020) reported non-significant correlations
for later layers of models like XI.Net, Bensemann
et al. (2022), Eberle et al. (2022) and Morger et al.
(2022) found strong correlations in early Trans-
former layers. Bensemann et al. (2022) noted that
correlation strength is generally higher in early lay-
ers and not dependent on the model’s size, though it
can be influenced by the training process. Kozlova
et al. (2024) similarly found strong early-layer cor-
relations in the context of anaphora resolution. Eye-
gaze features like First Fixation Duration (FFD) are



often found to align better with single-pass model
behavior than cumulative measures like Fixation
Count (F) or Total Reading Time (TRT), as FFD
reflects initial processing (Ikhwantri et al., 2023).
Furthermore, research has explored the ability of
language models to predict human eye-movements
as an indicator of their cognitive plausibility (Hol-
lenstein et al., 2022).

However, the increased focus on faithful expla-
nations opened a debate about the effectiveness of
the attention mechanism as an explanation method.
Some critics (Jain and Wallace, 2019) argue that
raw attention weights do not always strongly cor-
relate with gradient-based measures of feature im-
portance, and that different attention distributions
can lead to effectively identical model predictions
(Jain and Wallace, 2019; Serrano and Smith, 2019),
questioning whether attention provides a unique
explanation for the model’s behavior. However,
Wiegreffe and Pinter (2019) argued that producing
identical explanations to gradient-based methods
is not necessary for plausible model explanations,
especially when the goal shifts from explaining the
model’s predictions to broadly understanding the
model’s internal behavior (Bastings and Filippova,
2020). Nevertheless, attention flow and saliency-
based methods have been proposed as more suit-
able for quantifying word importance in sentence
processing.

Attention flow (Abnar and Zuidema, 2020) is an
interpretation method based on flow networks from
graph theory. This method tackles the problem of
uniform raw attention in higher layers and models a
global view of attention, as it captures the entire in-
formation propagation through the network layers.
In attention flow, the raw attention graph is treated
as a flow network that consists of nodes connected
by directed edges. A flow function assigns values
to edges such that the maximum total flow from
a source node reaches a target node, under some
capacity and conservation constraints.

Gradient-based saliency differs from attention-
based methods as it does not utilize the trans-
former’s attention mechanism'. Instead, it mea-
sures how sensitive the model output is to changes
in each input token’s embeddings. For each target
token in the sequence, gradients are computed with
respect to all input tokens and are normalized to

"Even though gradient-based saliency relies on input-
output gradients rather than attention scores, it is loosely
referred to as an attention method in this study for brevity,
in the sense of attributing importance to the input.
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produce a saliency score for each token.

Hollenstein and Beinborn (2021) found that fix-
ation durations correlate better with saliency-based
than with attention-based importance, suggesting
saliency as a more cognitively plausible metric for
interpretation. Morger et al. (2022) supported this
finding for gradient-based saliency and for atten-
tion flow, across multiple languages. Similarly,
Eberle et al. (2022) observed strong alignment of
attention flow with human fixation times in natural
reading, competitive with a specialized cognitive
model of human reading (E-Z reader).

2.2.2 Alignment in task-specific contexts

Human reading strategies are task-dependent and
influence how attention is allocated to different
parts of the sequence. Task specificity thus plays a
crucial role in the alignment between human and
model attention. While Wu et al. (2024) found that
finetuning models on task-specific objectives can
enhance correlations with human gaze when us-
ing saliency methods, Eberle et al. (2022) showed
that task-specific finetuning did not significantly in-
crease correlation, and models aligned better with
natural reading patterns than with task-specific
ones. Brandl and Hollenstein (2022) further demon-
strated that more in-depth reading (characterized
by longer total reading times and lower skipping
rates) generally correlates better with model atten-
tion compared to faster, shallow reading.

2.3 Our contribution

Despite evidence that transformer attention pat-
terns align with human reading behavior, most
existing work has focused on encoder-only or
encoder-decoder architectures, leaving questions
about newer decoder-only models that process text
left-to-right (Hollenstein and Beinborn, 2021). Ad-
ditionally, many studies overlook text properties’
influence on eye-movements and lack methods for
integrating multiple eye-tracking features in the
analysis. While Wu et al. (2024) investigates an
early decoder-only model (GPT-2), their analy-
sis focused on gradient-based saliency in a task-
specific setting. This study compares decoder-only
model attention with human attention using raw at-
tention, attention flow, and gradient-based saliency
across both natural and task-specific reading. We
address three research questions: (RQ1) To what
extent do human eye-movements correlate with de-
coder model attention? (RQ2) Can decoder models
predict eye-movements independently of text fea-



tures like word frequency, length, and surprisal?
(RQ3) How does Principal Component Analysis
of eye-tracking features and task-specificity affect
these correlations and predictions?

3 Methods

3.1 Eye-tracking Data

This study uses the Zurich Cognitive Language Pro-
cessing Corpus (ZuCo) (Hollenstein et al., 2018).
ZuCo combines EEG and eye-tracking recordings
from English native speakers reading natural sen-
tences. 12 participants read sentences under differ-
ent conditions (tasks). In Task 2 ("Normal Read-
ing”) the participants were asked to read 300 sen-
tences containing certain relations and answer a
comprehension question after each sentence. In
Task 3 (" Task-specific Reading”), the participants
were instructed to focus on a specific relation type
before reading the sentence. 407 sentences were
presented in blocks of the same relation so the
subjects knew what relation to look for. For each
sentence, the participants had to indicate whether
the specified relation was present in the sentence
or not.

The raw eye-tracking data consists of the follow-
ing eye-tracking features on the word-level: gaze
duration (GD), total reading time (TRT), first fix-
ation duration (FFD), single first duration (SFD),
go-past time (GPT), fixation count (F) and mean
pupil size (mPS). These features are normalized to
their relative value in each sentence and then are
averaged across participants to ensure robustness
across different sentences and reading behaviors.

This study compares human and model data in
two ways: (1) by analyzing each gaze feature in-
dividually, and (2) by combining the most infor-
mative aspects of these features using Principal
Component Analysis (PCA). A PCA representa-
tion is derived separately for each task across all
sentences within that task, with each word repre-
sented by its normalized eye-tracking values. We
experimented with different numbers of compo-
nents to identify the optimal balance between com-
pact representation and captured variance. Ideally,
a single component is preferred, as it encodes the
most compact and efficient representation of the
multidimensional eye-tracking data.

3.2 Model Attention

This study uses Llama 3.1-8B for investigating
transformer attention, which is a latest generation
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decoder model, and BERT-base-uncased for the
encoder comparison. Both BERT and Llama mod-
els remain in their pretrained states without task-
specific fine-tuning because the goal is to investi-
gate the fundamental model alignment with human
attention, rather than deliberately optimizing it. For
both models, explicit instructions similar to those
the participants received are prepended to the input
sentences to better resemble the original experi-
ment and guide model attention closer to the hu-
man cognitive task. Attention patterns are extracted
using standard forward passes without masking to
reveal how each model’s attention mechanism re-
sponds to the same instructional context during
inference.

3.2.1 Raw attention

The input is tokenized and passed through the
model to obtain the raw attention scores for each
layer, averaged across attention heads. Because
tokenization can split original words into smaller
subtokens, the attention scores are aligned with the
human data by assigning each original word the
maximum attention score among its subtokens, fol-
lowing the approach of Sood et al. (2020). The
final score for each word in each layer is computed
as the average attention it receives from all other
words (including instruction words). A normaliza-
tion by the sum of the total attention is applied
to obtain relative attention scores per word and to
account for variability across sentences.

3.2.2 Attention flow

Attention flow is calculated using Edmonds-Karp’s
maximum-flow algorithm (Edmonds and Karp,
1972). The last token is considered the target ’sink™
token in each sentence, where reading presumably
’stops”. For the Llama model, attention flow is im-
plemented under a reduced number of paths to re-
spect its causal attention structure. Finally, a decay
is applied to account for the inherent bias to early
input tokens in decoder models, using the position-
based weighting proposed by Metzger et al. (2022).

3.2.3 Gradient-based saliency

Saliency is calculated by taking the L1 normalized
gradient of the model’s output logit with respect
to each input token embedding. This process is re-
peated with each token serving as the prediction tar-
get, and the resulting saliency scores are averaged
across all targets to obtain a global saliency score
for each token. As with previous methods, token-



level saliency scores are combined at the word level
and normalized to reflect relative saliency within
each sentence.

3.3 Analysis

The eye-tracking data (both PCA-reduced and indi-
vidual features) are compared word by word with
the transformer scores using Spearman’s correla-
tion. In addition to correlation analysis, we use
linear regression models (ordinary least squares)
to assess whether there is a predictive relation-
ship between model attention and eye-gaze, and to
measure how additional text features linked to eye-
movements may influence this relationship. The
predictive relationship is assessed through adjusted
R? on unseen data (20% of the dataset). We in-
corporate 5 text-related features as additional pre-
dictors alongside model attention: word frequency
(across many corpora), word length, functional cat-
egory (function vs. content words) and surprisal
derived from the respective transformer model.

Four regression models are fitted for each combi-
nation of transformer model (BERT, Llama), atten-
tion method (raw attention, attention flow, gradient-
based saliency) and reading task (Task 2, Task 3).
To determine whether model attention improves
predictive capacity, we compare performance to
a baseline model that uses only text features as
independent variables. We similarly compare the
PCA model to the average performance of models
predicting individual eye-gaze features, with PCA
predictions transformed back to the original fea-
ture space. Both comparisons use the Wilcoxon
signed-rank test of mean squared errors between
regression models. To further analyze the contribu-
tion of attention and text features to the regression
models, we visualize feature importance using ab-
solute t-values?.

4 Results

4.1 Experiment 1: Replication

The correlation analysis between BERT raw at-
tention and human eye-movements successfully
replicates previous findings. BERT’s first layer
shows the highest correlations with Task 2 eye-
movements (¢ = 0.69,0 = 0.02), as indicated
by the blue line in Figure 1, which is consistent
with results from Morger et al. (2022). Correlation

2Code is available in Github: https:/github.com/maria-
mouratidi/thesis
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Figure 1: Average layer-wise correlations of each trans-
former’s raw attention across 6 eye-tracking features.

strength generally decreases across subsequent lay-
ers. A similar trend is observed in Task 3, where the
first layer again exhibits the strongest correlation
(. = 0.56,0 = 0.008), as shown by the orange
line.

The results with the alternative attention meth-
ods also replicate previous findings. Attention
flow shows the strongest correlations with human
eye-movements. For Task 2, the correlation is
@ = 0.74,0 = 0.007 (blue plain bar, Figure 2),
while for Task 3 p = 0.62,0 = 0.007 (orange
plain bar). These results align with Eberle et al.
(2022), who found that attention flow produces bet-
ter alignment with human eye-movements than the
strongest correlating layer of raw attention.

Gradient-based saliency performs less strongly
across both tasks. Task 2 correlations reach
p = 0.68,0 = 0.02 (blue hatched bar, Figure
2), matching the score reported by Hollenstein
and Beinborn (2021). Task 3 correlations are
p = 0.53,0 = 0.005 (orange hatched bar), simi-
lar to results from Wu et al. (2024). This makes
saliency the least correlating attention method with
human eye-movements for the BERT model. For
all attention methods, Task 3 correlations mirror
Task 2 patterns but at reduced magnitudes, con-
sistent with previous work (Eberle et al., 2022).
All reported correlations are statistically significant
(a < 0.05).

4.2 Experiment 2: Extension
4.2.1 What about Llama?

Correlations of Llama’s raw attention with human
eye-movements fall visibly lower than BERT cor-
relations. Llama’s first layer shows almost negative
correlations with Task 2 eye-movements, while the
second layer is the one with the highest correla-
tions (4 = 0.4, 0 = 0.009), as shown by the purple
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Figure 2: Average correlations across 6 eye-tracking
features with each transformer’s attention flow and
gradient-based saliency.

line in Figure 1. Like BERT, correlations decrease
in subsequent layers, though with some upward
trend toward the final layers. Task 3 correlations
in Llama remain close to Task 2 correlations, and
even exceed them in some layers (yellow line, Fig-
ure 1) showing that task-specific patterns are not
affecting Llama as much as BERT.

Similarly to raw attention, attention flow and
gradient-based saliency produce more moderate
correlations with Task 2 and Task 3 eye-movements
compared to BERT, with saliency (r = 0.27,r =
0.18) showing a clear advantage over flow (r
—0.11,r = 0.05) (purple and yellow bars, Figure
2). All correlations for the Llama model are statis-
tically significant (o < 0.05).

4.2.2 Predicting eye-movements

The regression models demonstrate clear benefits
from incorporating transformer attention as a fea-
ture. For BERT (left panel, Figure 3), all atten-
tion methods significantly outperform the text-only
baseline (blue bars). Moreover, attention flow con-
tributes to the highest model fit for all tasks and DV
conditions, reaching an overall R? ~ 0.5 (orange
bars). This result is predictable from the higher
correlations of attention flow with the eye-tracking
features in Figure 2.

Llama (right panel, Figure 3) shows more mod-
est performance than BERT. The models incorpo-
rating raw attention achieve R? values between
0.3 and 0.4 and both raw attention and saliency
outperform the baseline across all conditions. As
expected, attention flow does not significantly im-
prove predictive capacity, except for the Task 2
Gaze condition. A clear pattern that emerges for
both models is that Task 2 eye-movements are more
predictable than Task 3 from all attention methods.
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Figure 3: R? adjusted scores of the regression models,
with or without attention as a feature. On the x-axis
are the prediction targets and task conditions of each
model. For the Gaze models, performance is averaged
over each eye-tracking target. Asterisks indicate signifi-
cant improvement over baseline, while crosses indicate
significant improvement of PCA over the Gaze variant.

4.2.3 Reducing eye-tracking features

During the PCA exploration phase, we noticed that
the SFD and GPT features accounted for most of
the variance in a potential second PCA component.
This is likely due to the nature of these features:
SFD becomes zero when words receive multiple fix-
ations, so it is often sparse, and GPT is likely more
noisy as an intermediate feature between immedi-
ate processing (like FFD) and overall processing
measures (like TRT). To maintain model simplic-
ity, we removed SFD and GPT from the analysis
entirely?. This reduction resulted in 94% explained
variance in the first PCA component for Task 2 and
97% for Task 3. The simplified approach allows us
to retain only one PCA component per task while
preserving the most informative gaze patterns.
The cross annotations in Figure 3 demonstrate
that all text-only PCA baselines show statistically
significant improvement over their corresponding
Gaze variants. This pattern extends to models using
attention as well, where more than half outperform
their Gaze counterparts in both BERT and Llama
and both tasks. For the remaining PCA models
that do not reach significance, the performance
differences are minimal. This finding indicates that
a single-PCA representation of the most important
eye-tracking features can successfully replace the
training procedure of multiple Gaze models.

4.2.4 Attention’s role in prediction

To gain some perspective of the contribution of at-
tention methods to predicting eye-movements, we
examine the average feature importances over all

3This makes a total of 5 eye-tracking features included in

the analysis. Whenever 6 features are mentioned, it means
that the PCA component is also considered as a feature.



linear regression models. As seen in the upper pan-
els of Figure 4, all attention methods for the BERT
model receive the highest significance compared
to the other text features. Attention flow demon-
strates the greatest difference from other features,
with only length and surprisal showing significant
contributions. Llama models present a different
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Figure 4: Feature importances based on mean absolute
t-value across models predicting 6 eye-tracking features.
”Ns” signifies non significant t-values (p > 0.05)

pattern, in the lower panels of Figure 4. Raw atten-
tion shows greater contribution than other attention
methods but competes closely with word length
in Task 3. Other attention methods maintain high
contributions in Task 2 but become insignificant in
Task 3. For non-raw attention methods in Llama,
word length becomes a large contributor, followed
by surprisal.

To further explore relationships between features
that may influence their respective relative impor-
tance in the predictions, we examine correlations
between attention methods and text features in Fig-
ure 5. BERT shows attention patterns that align
with established eye-movement research. Higher
frequency words receive smaller BERT attention
values, while longer, content words draw more at-
tention than short, function words. Notably, sur-
prisal appears only slightly represented in BERT’s
attention mechanism. When it comes to Llama,
similar correlation directions appear for raw at-
tention, but in smaller magnitudes. Here, model
attention using any method is more correlated to
surprisal than any other text feature.

5 Discussion

We return to our research questions to briefly reiter-
ate the key findings: Regarding correlation strength
(RQ1), decoder-only models like Llama show
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Figure 5: Correlations of text features with each atten-
tion method on a word-level.

medium-strength correlations with human eye-
movements when using raw attention or gradient-
based saliency. For RQ2, regression models
combining Llama raw attention or gradient-based
saliency with other text features achieve moderate
performance in predicting human reading behavior.
The regression models’ predictive success relies
heavily on attention, followed by word length and
surprisal features. Concerning feature reduction
and task effects (RQ3), a single PCA component
successfully replaces individual gaze targets while
maintaining equivalent, or more favorable align-
ment results. Across all attention methods, both
BERT and Llama show stronger alignment with
Task 2 eye-movements than Task 3, suggesting that
task-specific departures from normal reading are
not equally well encoded in pretrained model atten-
tion mechanisms. The following sections provide
deeper discussion of these findings and their impli-
cations.

5.1 What do layer-wise correlations imply?

The layer-wise raw attention correlations may hint
at the type of linguistic processing that is most sim-
ilar between humans and models. Early layers typi-
cally process surface-level features before higher-
level semantic integration occurs, in both encoder
(Tenney et al., 2019) and decoder models (Vig and
Belinkov, 2019). Thus, the fact that higher correla-
tions occur in early layers (first layer for BERT and
second for Llama) suggests that better alignment
can be found in bottom-up processes. This finding
also has theoretical grounding in eye-movement
research. The oculomotor control system can guide
saccades before full lexical identification occurs
(Rayner et al., 2011), and other early processing
features like word length and frequency (Inhoff and
Rayner, 1986) have robust independent effects on
word skipping and fixation durations.

However, the correlation patterns are not mono-
tonic across layers. Later layers show stronger cor-
relations than middle layers. This suggests that



final layers may be more similar to the higher-
level processing that also influences gaze behavior,
for example when expectations about the text are
formed using contextual information (Ehrlich and
Rayner, 1981), or when the reader is more engaged
in next-word prediction (Goldstein et al., 2022).

5.2 Why is Llama falling behind?

We consider two primary explanations for the align-
ment gap between the encoder and decoder model.

5.2.1 Pre-training objectives

First, Llama is a generative model optimized for
next-token prediction, while BERT is trained in
masked language modeling to capture bidirectional
contextual representations. This fundamental dif-
ference in training objectives may explain why
BERT aligns more with human reading behav-
ior, which primarily involves comprehension rather
than generation. Although the brain engages in
next-word prediction during reading (Goldstein
et al., 2022), the autoregressive nature of decoder
models may not fully capture the integrative parts
of human language comprehension that involve
both forward and backward contextual dependen-
cies. This difference is empirically supported by
our feature correlation analysis, where Llama at-
tention correlates most strongly with surprisal (a
prediction-based feature) while BERT attention cor-
relates mostly with the other text features (Figure
5).

5.2.2 The role of model size

This study’s comparison between BERT-base
(110M parameters) and Llama 3.1-8B (8B parame-
ters) confounds architecture type with model scale.
The substantial size difference may contribute to
the observed alignment gaps, as larger models
can distribute attention-relevant information across
more parameters and layers. The specific model
variants were chosen because of 1) BERT-base-
uncased for replication and validation of previous
work and 2) Llama 3.1-8B for the best performance-
efficiency tradeoff among available decoder mod-
els. Nevertheless, future work should compare
models of similar sizes to isolate architectural ef-
fects from scale effects.

5.3 Why is alignment with task-specific
reading more difficult?

Task 3 eye-movements occur under fundamentally
different reading conditions than Task 2, leading
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to smaller alignment with pretrained transformers.
In the task-specific condition, readers form expec-
tations about which words or syntactic structures
might signal the specified relation, leading to more
selective attention distribution among words (Hol-
lenstein et al., 2020). When searching for specific
words, reading resembles visual search, and certain
text-level influences on eye-movements like word
frequency disappear. (Rayner, 2009). Even when
receiving explicit instructions, the models cannot
replicate this type of selective attention. This limi-
tation appears to be fundamental to current pretrain-
ing techniques rather than architecture-specific, as
both encoder (BERT) and decoder (LLlama) mod-
els show consistently better alignment with natural
reading than task-specific reading. This suggests
that neither masked language modeling nor autore-
gressive prediction objectives adequately prepare
models for goal-directed attention strategies.

5.4 To each their own attention method

The results of different attention extraction meth-
ods vary significantly between the two models.
Attention flow aligns best with eye-movements
for BERT, while raw attention performs better for
Llama. This may relate to the original motivation
for attention flow, which was proposed as a way
to represent attention in encoder models (Abnar
and Zuidema, 2020). In decoder models, atten-
tion is restricted to preceding tokens, leading to an
early token bias. When this effect is normalized as
recommended by Abnar and Zuidema (2020), the
attention signal may become more diluted. This
highlights the need to carefully match the attention
explanation method to both the model architecture
and the explanation task.

5.5 One dimension for all eye-tracking
features

Models using the PCA representation match or out-
perform Gaze models in correlation and regres-
sion analyses. This approach serves primarily as
a methodological efficiency tool rather than aim-
ing to increase predictive power. By capturing
the shared variance across multiple eye-tracking
features in a single component, PCA removes re-
dundancy inherent in correlated features while pre-
serving the essential reading patterns. So we were
able to remove this practical challenge of determin-
ing which of the many available features are suit-
able for the comparison, without distorting them
using averaging techniques. When PCA models



show similar alignment patterns to individual fea-
ture models, this suggests that much of the vari-
ance relevant to the comparison is captured by a
common underlying dimension of reading behav-
ior. This has implications for future eye-tracking
studies, where researchers may be able to focus
their analysis on this common dimension rather
than examining all traditional eye-tracking mea-
sures individually, when the goal is understanding
attention alignment with computational models.

6 Conclusion

This study examined the alignment between
decoder-only models and human attention during
reading. Overall, eye-movement data correlated
with and was predictable from transformer atten-
tion, suggesting partial model alignment with hu-
man language processing. Early layers showed
stronger alignment with eye-movements, hinting
that bottom-up processes are more consistent with
human reading behavior. However, lower align-
ment with task-specific reading suggests these
pretrained models lack human-like flexibility to
adapt attention based on task goals. Despite these
shared patterns across architectures, the decoder
model underperformed compared to the encoder
model, showing lower correlations, weaker predic-
tive power, and different patterns of feature pri-
oritization, likely due to architectural differences.
Finally, different methods of representing trans-
former attention significantly impact alignment
comparisons, which emphasizes the importance
of well-motivated, model and task-specific choices
in explaining transformer mechanisms.

6.1 Limitations

This work assumes eye-movements provide suf-
ficient information about cognitive language pro-
cessing, though eye-tracking misses covert cogni-
tive mechanisms and information processed out-
side the fixation region (Rayner, 2009; Reingold
etal., 2016). Additionally, different attention expla-
nation methods produce variable results, creating
uncertainty about their faithfulness in explaining
transformer attention mechanisms. Ultimately, any
attention method is only a proxy to the true model
representation.
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