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Abstract
In this paper, we investigate the use of the
Mouse Tracking for Reading (MoTR) method
for a sample of Romanian texts. MoTR is a
novel measurement tool that is meant to col-
lect word-by-word reading times. In a typical
MoTR trial, the text is blurred, except for a
small area around the mouse pointer and the
participants must move the mouse to reveal and
read the text. In the current experiment, partici-
pants read such texts and afterwords answered
comprehension questions, aiming to evaluate
reading behavior and cognitive engagement.
Mouse movement is recorded and analyzed to
evaluate attention distribution across a sentence,
providing insights into incremental language
processing. Based on all the information gath-
ered, the study confirms the feasibility of this
method in a controlled setting and emphasizes
MoTR’s potential as an accessible and natural-
istic approach for studying text comprehension.

1 Introduction

Language understanding is one of the most com-
plex human cognitive activities. Whether reading
or listening, the human brain processes linguis-
tic input incrementally, integrating each word as
it is encountered. This is known as incremental
language processing and is characterized by both
sequentiality and variability: some words are pro-
cessed quickly, others require more cognitive effort
due to low predictability, frequency, or syntactic
complexity (Smith and Levy, 2013).

One of the main goals of psycholinguistics is to
measure this incremental effort in real time. Early
work in the 1970s introduced the gaze-contingent
moving window paradigm, which involved making
display changes in the text based on eye position
as participants were reading, and then examining
how these changes influenced eye movement be-
havior (McConkie and Rayner, 1975). Early stud-
ies demonstrated how parafoveal and foveal vision

interact during reading and established the method-
ological foundation for modern incremental pro-
cessing research. Eye-tracking provides the most
precise measurement but is expensive and requires
specialized equipment.

To address these limitations, alternative
paradigms have been proposed. Self-paced reading
(SPR) (Just et al., 1982) and the Maze task (Boyce
et al., 2020; Forster et al., 2009) can be deployed
online at low cost, but they involve linear reading
and artificial constraints, affecting the interaction
with the text.

In this paper we investigate the usage of Mouse
Tracking for Reading (MoTR) method (Wilcox
et al., 2024) on Romanian texts. The method was
designed to balance the high accuracy and natural-
ness of eye-tracking with the low cost and online
availability of other “self-paced” incremental mea-
surements, such as SPR and Maze (Wilcox et al.,
2024). In our MoTR experiment, participants are
presented with several texts that are blurred, ex-
cept for a small area around the mouse, which is
clear. They have to move the mouse to reveal and
read the text, and its position is recorded for post-
processing (see Figure 1). After completing the
reading of each sentence, the participants answer a
comprehension question related to the text read, to
validate the quality of the data and confirm the cog-
nitive engagement of the candidate. Until now, pub-
lished studies using MoTR have been conducted
on English texts, often relying on corpora such as
the Provo Corpus (Luke and Christianson, 2018;
Wilcox et al., 2024), with relatively small docu-
mented applications in other languages (Schneider
et al., 2021; Haveriku et al., 2025; Oğuz et al.,
2025).

In this context, the present work addresses an
important gap, being the first to test MoTR on Ro-
manian texts.

The texts used in our experiment are Romanian
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Figure 1: Example of the blurred interface used in the
MoTR experiment. The only word visible in this image
is “lucruri” (English things)

.

Sentence len Complexity
Eng. Rom. Eng. Rom.

mean 22.82 24.46 0.24 0.13
std 7.74 8.62 0.19 0.25
min 7 9 0.02 0
max 45 49 0.93 1
samples 569 569
sentences 158 158

Table 1: Statistics comparing the English and Romanian
Human Translation sentences (and 569 lexical complex-
ity annotated samples). Romanian complexity annota-
tions have a higher variance and a lower average com-
plexity than the original English counterparts.

versions of the Multilingual Lexical Simplification
Pipeline (MLSP) Shared Task 2024 competition
dataset (Ghaddar et al., 2024a) The Romanian part
has been created by manually translating the origi-
nal English data such that each sentence contains
similar lexical complexity annotations to the origi-
nals (Anghel et al., 2025). The data set is made so
that it can be easily integrated into MultiLS (Ghad-
dar et al., 2024b), a recently developed framework
for lexical analysis in multiple languages, provid-
ing a standardized context for comparative studies
of text complexity and comprehension. Statistics
regarding sentence length and annotated complex-
ity scores are visible in Table 1.

An important advantage of this corpus is that
certain words in each sentence are annotated with
explicit human judgments of complexity scores
assigned by five young adults. The complexity
scores reflect the estimated difficulty of each word
in its context. With this information, we analyze
the relationship between the linguistic complexity
of words and reading time, capturing the relation
between perceived lexical difficulty and linguistic
processing.

At the same time, we extend the existing exper-
imental infrastructure by developing a complete
pipeline in Romanian: from corpus preparation, to
their integration into Magpie framework and the

generation of comprehension questions. Overall,
the contribution of the paper consists both in the
methodological adaptation of MoTR for the Ro-
manian language, and in demonstrating its appli-
cability in the analysis of lexical complexity and
reading times in an experimental setting.

2 Methodology

2.1 A MoTR Trial

In each trial of this experiment, participants are
exposed to a web interface containing blurred text
(see Figure 1), except for a small clear area around
the tip of the mouse cursor. Each participant is in-
structed to move the mouse to reveal the text word
by word, thus allowing sequential reading of the
text. After the participant confirms the completion
of reading a text by pressing a button, they are pre-
sented with a question with a “yes” or “no” answer,
regarding the sentence read and intended to assess
comprehension of the read content. At that mo-
ment, the entire text is blurred, no longer visible.
Participants can move to the next screen only after
answering the question.

Cursor movements are recorded throughout the
reading, except for the moment when the partic-
ipant answers the comprehension question. The
cursor coordinates are subsequently analyzed as a
proxy for gaze direction, effectively simulating the
behavior of an eye-tracking system.

The experiment is implemented in Magpie1, a
web platform designed to conduct behavioral ex-
periments directly in the browser. It allows for
real-time transmission of cursor coordinates and
task flow management.

2.2 Participants and Data Collection

Five native Romanian speakers (3F, 2M), 22-30
years old, agreed to participate in the experiment
voluntarily. All participants are native Romanian
speakers and have at least completed high school.
None of them have diagnosed visual impairments.
The study was conducted in a restricted and con-
trolled environment, each session (approximately
2 hours per session) was directly monitored, to en-
sure that the rules and instructions were respected.

The data collected included:

• Mouse coordinates and timestamps

1Magpie is framework for building psychological online
experiments that run in the participants’ browser: https:
//magpie-experiments.org/

https://magpie-experiments.org/
https://magpie-experiments.org/
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• Word indices and reveal times

• Comprehension question responses

• Total reading duration per trial

To ensure that the MoTR method closely ap-
proximates the reader’s visual attention, several
parameters are calibrated:

• Spotlight size: 102 pixels - large enough to
disambiguate word focus, but small enough
to prevent excessive or fatiguing mouse move-
ments;

• Gradual blur transition - simulating the shift
from foveal to peripheral vision;

• Line spacing: 55px to avoid vertical interfer-
ence;

• Cursor sampling rate: 20Hz -balancing tem-
poral precision with transmission stability.

We make a small adaptation in terms of line spac-
ing from the configurations proposed by Wilcox
et al. (2024) so that users are less prone to acciden-
tally move the mouse on the lines below or above
the current reading areas.

3 Results

Our first objective is to provide an overview of
how participants use the MoTR method and the
variability that arises between individuals, items,
and trials. At this stage, we focus on analyzing
data from a single participant, selected due to their
representative behavior. This case serves as an
illustrative example of typical MoTR usage and
provides a clear foundation for interpreting results
in the broader analysis.

Total Reading Time (TRT) is used as our main
measure of processing effort. It captures the full
time spent on a word, including all refixations, and
is widely used as an indicator of deep syntactic
and semantic processing (Just and Carpenter, 1980;
Rayner, 1998).

To ensure cognitive engagement and data qual-
ity, each sentence in the experiment is followed
by a yes/no comprehension question. Participants
show high accuracy, with individual scores rang-
ing between 81% and 92%, and a group mean of
approximately 88.5%.

This high level of accuracy confirms that partici-
pants have a high degree of comprehension, making

the reading-time data more reliable. These results
suggest that the MoTR interface supports natural
reading and allows for meaningful variation in com-
prehension to be captured.

3.1 Correlation Analysis
We compute Pearson correlation coefficients to as-
sess the linear relationship between total reading
time and two basic lexical predictors:

r =

∑
(x−mx)(y −my)√∑

(x−mx)2
∑

(y −my)2
(1)

where:

• x, y are numerical vectors of equal length n,

• mx,my are the means of vectors x and y re-
spectively.

Variable Pearson r
Frequency Score -0.53
Word Length +0.58

Table 2: Pearson coefficients between totalReading-
Time and lexical predictors. Frequency shows a moder-
ate negative correlation with reading time, while word
length shows a positive correlation. Frequency scores
are obtained using the wordfreq library (Speer, 2022),
which compiles word frequencies from diverse sources
including Wikipedia, news, subtitles, and web data.

Pearson correlation analysis, as shown in Ta-
ble 2, reveals a negative relationship between word
frequency and reading time, and a positive one
between word length and reading time. These find-
ings align with well-established psycholinguistic
assumptions: frequent words are processed more
quickly, while longer words require more cognitive
effort (Smith and Levy, 2013).

3.2 Regression Analysis
To estimate the influence of lexical and ortho-
graphic features on reading time, we use a regres-
sion model using Support Vector Regression (SVR),
predicting continuous values by fitting a function
within a margin of tolerance (Awad and Khanna,
2015). Although we employ a linear kernel, we opt
for SVR instead of classic linear or Ridge regres-
sion due to its robustness in handling outliers and
its ability to ignore small errors via the ϵ-insensitive
loss function.

The model is implemented using the SVR mod-
ule from the scikit-learn library (Pedregosa
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et al., 2011). The penalty parameter C is chosen via
cross-validation and set to 100. Although this is a
relatively large value, it consistently yields optimal
predictive performance at cross-validation.

The SVR model predicts reading time as a lin-
ear combination of four features: frequency score,
word length, syllable count, and the presence of
diacritics. All features included in the model cap-
ture linguistic properties that influence processing
difficulty. Frequency, word length, and syllable
count are widely recognized as key factors influenc-
ing reading time (Rayner, 1998). We also include
diacritics because omitting an accent can momen-
tarily break the visual rhythm of a sentence and
add a small cognitive load during speed reading
(Marcet and Perea, 2022). Including diacritics in
the model helps capture a subtle but systematic as-
pect of Romanian orthography that can influence
reading behavior.

Each predictor is weighted by a learned coeffi-
cient βi, and the model includes an intercept term
β0. Formally, the model takes the form: totalRead-
ingTime ≈ β1· FrequencyScore + β2· WordLength
+ β3· Syllables + β4· HasDiacritics + β0.

Coefficient Value
β0 397.06
β1 −34.39
β2 186.38
β3 −21.93
β4 −9.58

Table 3: Estimated coefficients of the SVR model.

The intercept β0 is the baseline reading time. β1
shows that frequent words are read faster, while
β2 indicates that longer words take more time. β3
and β4 reflect smaller negative effects from syllable
count and diacritics.

Model Performance
The SVR model is evaluated using 10-fold cross-
validation, with the data split so that no sentences
appears in both training and test sets. The model
achieves a root mean square error (RMSE) of ap-
proximately 238.92 ms. The coefficient of deter-
mination (R2) is 0.37, indicating that around 37%
of the variance in reading times is explained by
the model. The Pearson correlation between pre-
dicted and actual values is r = 0.635 (p < 0.001),
suggesting a moderate and statistically significant
fit.

Metric Value
Coefficients [−34.39, 186.38,

−21.93, −9.58]
Intercept 397.06

RMSE (mean, CV) 238.92 ms
R2 Score 0.37

Pearson r 0.635 (p < 0.001)
Accuracy 87.24%

Table 4: Performance of the SVR model with a linear
kernel and four predictors.

In addition to classic error metrics (RMSE, R2),
we evaluate model performance using the accuracy
metric defined in (Hollenstein et al., 2022), where
real and predicted values are scaled to [0, 100], and
accuracy is defined as:

Accuracy = 100− MAE

where MAE (Mean Absolute Error) represents the
average absolute difference between predicted and
actual values.

Our model achieves an accuracy score of
87.24%, confirming a very good match between
predicted and normalized real reading times.

Figure 2: SVR predictions versus reading time. We
observe a good alignment between predictions and ac-
tual values, with reasonable dispersion around the line
y = x. We can observe a logarithmic tendency of read-
ing times.

Figure 2 indicates a reasonable alignment be-
tween the predicted and actual values, with no ob-
vious systematic deviations. The scatter around the
identity line suggests natural variation in reading
behavior.

The SVR model provides a flexible estimation of
the relationship between word features and reading
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time, showing strong predictive performance in a
cognitive-linguistic context (Li and Rudzicz, 2021).

3.3 Language Model Log-Probability
Linguistic surprisal is a computational measure of
how unpredictable a word is in its context, and im-
plicitly, how cognitively demanding it is to process
(Smith and Levy, 2013; Hale, 2001). According
to information theory, surprisal is defined as the
negative logarithm of the conditional probability:

Surprisal(wi) = − log2 P (wi | w1, w2, ..., wi−1)

This equation reflects the idea that a highly ex-
pected word (high probability) requires less cogni-
tive effort to process. In contrast, an unexpected
word with low probability lead to higher surprisal
values that typically requires longer reading time
(Levy, 2008; Smith and Levy, 2013).

In masked language models such as BERT, sur-
prisal is not based solely on the preceding context
but instead uses the entire sentence. As such, we
use the log-probability from the model as a proxy
for the surprisal of a target word wi.

Log-probability is calculated using the model
dumitrescustefan/bert-base-romanian-cased-v1, a
BERT-base model pre-trained on diverse Roma-
nian data sources (Wikipedia, OSCAR, etc.) and
adapted for masked language modeling tasks (Du-
mitrescu et al., 2020). The score is computed for
each word in the sentences by masking it and re-
trieving the model’s conditional probability. When
a word is split into multiple subtokens during tok-
enization, we mask all subtokens simultaneously
and compute the model’s joint probability for the
full word.

Figure 3: Distribution of log-probability values (> 1
bit) estimated using bert-base-romanian-cased. The
distribution is right-skewed, with relatively few words
showing high logprob.

For better visualization, we exclude very low
surprisal values (below 1 bit), which dominated the
frequency range and obscured the structure of more
informative intervals.

To investigate the influence of surprisal on real-
time processing, we analyze the relationship be-
tween estimated surprisal and total reading time
per word (totalReadingTime). The computed Pear-
son correlation coefficients shows the following
significant relationships:

Variable Pearson r
Surprisal vs. Reading Time +0.361
Frequency vs. Reading Time −0.540
Word Length vs. Reading Time +0.581

Table 5: Pearson correlation coefficients between pre-
dictors and reading time. Surprisal and word length
correlate positively with reading time, while frequency
correlates negatively.

These findings confirm that:

• Surprising words are associated with longer
reading times;

• Frequent words are processed more quickly;

• Longer words tend to require more time to
read.

To evaluate these predictors together, we fit a
multiple linear regression model with surprisal, fre-
quency, and word length as features. The estimated
model predicts reading time as a linear combination
of these three predictors. Each feature is multiplied
by a learned coefficient (β1, β2, β3), and the model
includes a constant term β0. Formally, the model
takes the form:

ReadingTime ≈ β1· Surprisal + β2· Frequency +
β3· WordLength + β0.

The model is statistically significant
(F (3, 3890) = 853.5, p < 0.001) and ex-
plains approximately 39.7% of the variance in
reading times (R2 = 0.397). The estimated
coefficients are:

• β1 = +16.35 (each additional bit of surprisal
increases reading time by 16 ms),

• β2 = −45.71 (higher word frequency reduces
reading time),

• β3 = +57.30 (each additional character in-
creases reading time).
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These results support the hypothesis that sur-
prisal, frequency, and length contribute systemat-
ically to the cognitive effort involved in lexical
processing (Levy, 2008).

3.4 Lexical Complexity and Reading Times

In addition to computationally derived predictors
(surprisal, frequency, and word length), we also
evaluate the relationship between a manually anno-
tated measure of lexical complexity (ht complexity)
and total reading time. The ht complexity values
reflects human judgments of how difficult each
word is to understand in its context, with higher
values indicating greater perceived difficulty. The
analysis is implemented by aligning annotated to-
kens with reading times from the dataset derived
through manual translation and revision of the
MLSP Shared Task 2024 corpus, as detailed in
(Cristea and Nisioi, 2024).

The results indicate a significant positive cor-
relation between lexical complexity and reading
time (r = 0.402, p < 0.0001), suggesting that more
complex units tend to require longer processing
times.

This finding supports the hypothesis that lexical
complexity directly impacts cognitive effort during
reading, consistent with earlier work on linguistic
processing and comprehension (Just and Carpenter,
1980).

3.5 Interindividual Variation in Reading
Behavior

To evaluate the consistency of relationships be-
tween linguistic features and reading time, we
extend our analysis to all five participants. This
broader view provides more detailed insight into
lexical effects and allows us to observe inter-
individual variability in language processing.

The average reading time (totalReadingTime)
varies considerably across participants, with means
ranging from approximately 435 to 604 millisec-
onds (Table 6).

In addition to the average reading times, the ob-
served variability within each participant reflects
clear differences in central tendency and dispersion.
These results point to individual differences in read-
ing styles and the stability of reading behavior (Just
and Carpenter, 1980; Rayner, 1998).

We run separate regressions for each participant
using word frequency and length as predictors. All
show the same direction of effects—frequent words

Participant Mean S.D. Min Max
P1 596.27 647.72 36.0 5751.0
P2 435.85 492.61 39.0 9011.0
P3 488.18 488.49 34.0 6349.0
P4 532.81 461.76 40.0 5400.0
P5 603.83 529.04 38.0 8005.0

Table 6: Descriptive statistics of reading times for each
participant, including mean, standard deviation, mini-
mum, and maximum values (all in milliseconds). Sub-
stantial differences can be observed across participants,
both in mean and dispersion, suggesting variable read-
ing styles.

are read faster, longer words slower—despite vari-
ation in strength. This confirms that core lexical
effects remain consistent across readers.

4 BERT-based Predictor

We use the bert-base-romanian-cased-v1 model
(Dumitrescu et al., 2020), a pretrained version on
large Romanian corpora that preserves the standard
BERT architecture. The contextual embeddings
generated by this encoder are integrated into a re-
gression model, in order to predict the total reading
time of a word based on the full sentence in which
it appears.

Applying a logarithmic transformation (as sug-
gested by the results in Figure 2) to the target value
significantly improves model performance. This
pre-processing step stabilizes the reading time dis-
tribution, reduces the influence of outliers, and al-
lows the model to learn more robust relationships
between contextual embeddings and cognitive read-
ing difficulty.

We evaluate the final model on a test set of 773
examples, yielding the following metrics:

• Pearson correlation coefficient: 0.76

• Spearman correlation coefficient: 0.78

• Mean Absolute Error (MAE): 0.41 (in log
space)

• Coefficient of determination R2: 0.56

These results confirm that large langauge models
encode strong features for predicting reading times.
The contextual embedding of the target token, com-
bined with additional linguistic features and a log-
transformed target, leads to accurate reading time
predictions. Figure 4 shows a clear alignment be-
tween predicted and actual reading times, reflecting
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the model’s strong predictive performance and ro-
bustness.

Figure 4: Predicted vs. actual reading times. The strong
alignment along the diagonal suggests that the BERT-
based model accurately predicts reading times from
contextual embeddings.

5 Conclusions

This study shows that the Mouse Tracking for Read-
ing (MoTR) method can be a practical and effective
way to study how people read and process Roma-
nian. Even though the number of participants was
small, the results suggest that MoTR works well in
controlled experiments.

One of MoTR’s main advantages is its simplicity
and accessibility. Because it runs in a web browser,
it can be used both online and in physical locations,
without the need of expensive equipment. While
it doesn’t offer the accuracy of eye-tracking, the
blurred context outside the spotlight eliminates un-
wanted parafoveal effects, offering control over the
text segments being read.

The statistical models confirm that reading times
are strongly influenced by word length, frequency,
and surprisal, findings that are in line with previous
psycholinguistic research.

This research makes a new contribution by ap-
plying the MoTR paradigm in an experimental set-
ting using Romanian, using a corpus adapted and
validated for this task.

Future work involves expanding the experiment
to a larger sample to increase confidence in results,
a comparison between MoTR and traditional eye-
tracking data, and the impact of time-guided lexical

complexity predictions.
In conclusion, MoTR’s ability to capture sub-

tle aspects of cognitive processing during reading,
along with its technical accessibility, makes it a
strong alternative to traditional methods in experi-
mental psycholinguistics.
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