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Abstract

This eye-tracking study links language-model
surprisal and contextual entropy to how 23 non-
expert adults read French health texts. Par-
ticipants read seven texts (clinical case, med-
ical, general), each available in an Original
and Simplified version. Surprisal and entropy
were computed with eight autoregressive mod-
els (82M—8B parameters), and four comple-
mentary eye-tracking measures were analyzed.
Surprisal correlates positively with early read-
ing measures, peaking in the smallest GPT-
2 models (r 0.26) and weakening with
model size. Entropy shows the opposite pat-
tern, with negative correlations strongest in the
7B-8B models (r ~ —0.13), consistent with a
skim-when-uncertain strategy. Surprisal effects
are largest in Clinical Original passages and
drop by ~20% after simplification, whereas
entropy effects are stable across domain and
version. These findings expose a scaling para-
dox — where different model sizes are optimal
for different cognitive signals — and suggest that
French plain-language editing should focus on
rewriting high-surprisal passages to reduce pro-
cessing difficulty, and on avoiding high-entropy
contexts for critical information.

~
~

1 Introduction

Developing efficient methods to detect reading dif-
ficulty in healthcare materials is crucial for text
simplification efforts (Fox, 2014). However, stan-
dard readability metrics provide limited insight into
where and why readers struggle. Healthcare mate-
rials are frequently difficult for patients to under-
stand (Rey et al., 2023), yet traditional measures
fail to capture the localized nature of reading dif-
ficulty. Eye-tracking shows that effort is highly
localized: readers invest extra time where their ex-
pectations are violated or where contextual uncer-
tainty is high, then skim easier stretches (Ehrlich
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and Rayner, 1981; Rayner, 1998). Probabilistic
language models (LMs) quantify these two infor-
mation states that drive reading difficulty. Surprisal
captures the unexpectedness of the word that ac-
tually appears and robustly predicts reading time
(Smith and Levy, 2013; Goodkind and Bicknell,
2018). Contextual entropy captures an anticipatory
state: high entropy can induce skipping or shorter
gazes, whereas low entropy makes prediction er-
rors costlier (Linzen and Jaeger, 2016; Pimentel
et al., 2023). Early eye movement measures reflect
immediate processing difficulty, while late mea-
sures indicate integration and comprehension costs
(Camblin et al., 2007). Recent work reveals a scal-
ing paradox: surprisals from very large transform-
ers (> 2B) can diverge from human reading times,
whereas mid-sized GPT-2 models sometimes align
better (Oh and Schuler, 2023). This suggests that
model size alone does not guarantee better psy-
cholinguistic validity. Moreover, nearly all evi-
dence comes from English newspapers or novels,
with minimal work on health genres or French.
Using French clinical and general texts in origi-
nal and simplified versions, we investigate which
LM-based predictors best track reading difficulty
for automated simplification systems. Specifically:
RQ1: Do effects vary by Domain (Clinical vs Gen-
eral) and Version (Original vs Simplified)?

RQ2: Which LMs align best with human data for
each predictor?

In what follows, we describe the corpus texts (orig-
inal documents and the creation of their simplified
versions) in Section 2. In Section 3, we present the
methodology. Section 4 is dedicated to the results.
Finally, we conclude in Section 5.
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Figure 1: Mean Correlation

2 Data
2.1 Texts

We constructed a dataset of French-language texts
from general and medical domains, based on ex-
cerpts from two corpora: CLEAR (Grabar and Car-
don, 2018) and CAS (Grabar et al., 2020).

Each text was manually simplified following
(OCDE, 2015) guidelines through syntactic, lexi-
cal, and semantic modifications, typically resulting
in longer, clearer versions. Counterbalancing elim-
inated familiarity bias by exposing each participant
to only one version of each text. Table 2 in the
Appendix contains the full breakdown by words,
sentences and screens.

2.2 Participants & Procedure

Gaze data were recorded using a Tobii Pro Spec-
trum eye tracker sampling at 600 Hz.

Texts were presented slide-by-slide, with some
slides including comprehension questions for en-
gagement. Tobii Pro Lab managed text presenta-
tion and automatically defined word-level Areas of
Interest (AOISs).

The sample comprised 23 French participants
aged 18-42 years (M = 22.8, SD = 6.2). Partici-
pants come from various social backgrounds - in-
cluding students, doctoral students, and working
professionals - but none have medical training.

3 Modeling
3.1 Language Models

We evaluated eight pre-trained autoregressive LMs
spanning nearly three orders of magnitude in
size (Table 1). Selection criteria were (i) good
French coverage and (ii) architectural variety: four
Byte-Pair Encoding (BPE) tokenisers (DistilGPT-2,
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GPT-2, two Qwen variants, Llama-3.1) and four
SentencePiece models (Gemma-1B, Mistral-7B,
Qwen-4B, Llama-8B). All models were run via
HuggingFace Transformers with identical
inference settings (temperature = 0, no sam-
pling).

3.2 Eye-Movement Measures

We focus on four eye—movement measures, each
indexing a distinct stage of processing:
Duration of first fixation (DFF) — immediate lexi-
cal access (time of the very first fixation);
First-pass duration (FPD) — initial comprehen-
sion (total dwell time during the first encounter);
Number of fixations (NFix) — overall processing
effort (count of all fixations on the word);
Re-reading duration (RRD) - Ilater integra-
tion/repair (time spent re-visiting the word).
These measures collectively span the complete
timeline from initial word recognition to final com-
prehension, allowing us to assess how psycholin-
guistic predictions manifest across different aspects
of the reading process.

3.2.1 Surprisal

We computed word-level surprisal as the negative
log probability of each word given its left context:

Surprisal(w;) = S Wi—1)
()
For each sentence, we obtained the model’s prob-
ability distribution over the vocabulary at each posi-
tion using a forward pass, extracted the probability
assigned to the observed word, and converted to
bits using base-2 logarithms. Surprisal values were

aggregated from subword tokens to word level by

—logy P(w; | wi, ..
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Figure 2: Mean correlations between model-generated surprisal (left panel) and entropy (right panel) with four

eye-tracking measures.

DistilGPT2 (82M parameters) consistently outperforms medium-sized Qwen-4B (4B

parameters) and large Llama-8B (8B parameters) across the reading measures.

Model Parameters
DistilGPT2 82M
GPT2 124M
Qwen3-0.6B 600M
Gemma-3-1B-IT 1B
Qwen3-4B 4B
Mistral-7B-Instruct-v0.3 7B
Qwen3-8B 8B
Llama-3.1-8B-Instruct 8B

Table 1: Overview of language models evaluated in this
study, ranging from 82M to 8B parameters.

summing surprisal across all tokens comprising
each word.

3.2.2 Contextual Entropy

We calculated the entropy of the model’s predictive
distribution at each word position:

=Y P(w|c;)logy P(w | e;) (2)

where ¢; = wi, . ..
text.

This measure captures the model’s uncertainty
about what word should come next, independent
of the actual word that appears. Higher entropy
values indicate greater uncertainty in the model’s
predictions.

, w;—1 represents the left con-

3.3 Data Processing and Token Alignment

3.3.1 Pre-processing

We rebuilt sentence strings by concatenating word
tokens and normalising surrounding punctuation.
For eye-movement data, duration metrics kept only

positive values, whereas count metrics kept zeros
but dropped negatives. Outliers were trimmed with
measure-specific cut-offs: the upper 99 % for du-
rations and the upper 95 % for counts. Analyses
were run only when a cell contained at least ten
valid observations, ensuring stable statistics.

3.3.2 Character-Position Mapping Algorithm

The technical challenge involved aligning model
subword tokens with human word boundaries.
French words often tokenize into multiple sub-
words (e.g., “L’obstétrique” — [’L’”, “obsté”,
“trique”]), but humans process complete ortho-
graphic words.

Our alignment algorithm proceeded as follows:
(1) Extract character spans for each token using
the tokenizer’s offset mapping
(2) Define word boundaries from whitespace-
delimited text
(3) For each word, identify all overlapping tokens
using character position intersection
(4) Sum surprisal values of overlapping tokens to
obtain word-level surprisal
(5) Average entropy values across tokens within
each word
(6) Handle edge cases (partial overlaps, missing
tokens) with fallback procedures

This method generalizes across tokenization
schemes and languages, enabling consistent sur-
prisal calculation regardless of subword segmen-
tation. The algorithm successfully aligned tokens
with word boundaries across all experimental con-
ditions.
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3.4 Statistical Analysis

3.4.1 Pearson Correlation Coefficient

We employed Pearson product-moment correlation
as our primary statistical measure to quantify the
linear relationship between language model pre-
dictions and human eye-movement behavior. The
Pearson correlation coefficient 7 is defined as:

_ > i (@i —7)(yi — 9)
Vi (@i = 2)2 /30 (v — §)°

where x; represents individual language model
predictions (surprisal or entropy values), y; rep-
resents corresponding eye-movement measures, &
and g are sample means, and n is the number of
word-level observations.

3)

Txy

3.4.2 Correlation Analysis Framework

For every participant —text —metric cell we com-
puted Pearson correlations between each predic-
tor and the corresponding eye measure. The fully
crossed design produced 23 participants x 8 texts
x 4 metrics x 2 predictors = 1 472 correlation tests
(counterbalancing included).

Surprisal correlation : r between word-level sur-
prisal and the eye metric.

Entropy correlation: r between contextual en-
tropy and the eye metric.
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Figure 3: Domain Analysis

4 Results

Figure 1 summarises the aggregate correlations. In
the left panel, surprisal (blue) is positive for every
model, peaking in the two GPT-2 variants (r ~.25)
and tapering off as size increases. Entropy (orange)
is negative and grows in magnitude, reaching r ~
—0.14 for the 7-8 B transformers. Hence small
models best capture surprisal-driven slow-downs,

55

while large models best capture the skim-when-
uncertain effect indexed by entropy.

The right panel aggregates across models to com-
pare eye-tracking metrics. Surprisal is strongest for
NFix and FPD, weaker for RRD, and minimal for
DFF. Entropy exhibits the reverse profile: it is most
negative for NFix, moderate for FPD, and near zero
on later measures — supporting the interpretation
that surprisal indexes integration difficulty, whereas
entropy reflects a strategic (skim-when-uncertain)
allocation of attention.

Figure 2 contrasts a small (DistilGPT-2, 82 M),
mid-size (Qwen-4B, 4 B) and large (Llama-8B, 8
B) model across the four eye metrics.

Surprisal. The ordering of effects is preserved
across models, but magnitudes shrink as model size
increases: DistilGPT-2 reaches » = 0.48 on NFix
and r = 0.33 on FFPD, whereas Llama-8B falls to
r = 0.38 and r = 0.24, respectively. Small models
therefore yield the clearest surprisal signal.

Entropy. The pattern is reversed. DistilGPT-
2 shows near-zero correlations, Qwen-4B shows
moderately negative correlations, and Llama-8B
shows the strongest negative effects (r = —0.25
on NFix, r —0.18 on FPD). The ranking of
measures also flips: entropy effects are largest for
fixation count and first-pass metrics, but minimal
for DFF and RRD.

Figure 3 plots predictor strength by domain and
simplification. Surprisal peaks in Clinical Orig-
inal passages (r .32), drops to r .29 af-
ter simplification, and is lower overall in General
texts (r ~ .27—.28). Clinical terminology there-
fore amplifies error-driven slow-downs, and plain-
language rewriting mitigates — but does not elimi-
nate — this cost.

Entropy (orange) stays small and negative in
every condition (r ~ —0.03 ——0.05) and shows
no clear domain or version effect, implying that the
skim-when-uncertain strategy is domain-invariant.

In short, simplification primarily reduces
surprisal-based integration effort in specialized
texts, while entropy-based allocation of attention
remains unchanged.

~
~

~
~

5 Conclusion & Future Work

We demonstrate that LM-derived surprisal and en-
tropy capture different aspects of French reading
behavior, with effects that depend on text type: clin-
ical originals produce the largest surprisal-driven
slow-downs, while entropy effects remain modest



and stable across conditions. Small GPT-2 mod-
els best predict surprisal-based processing costs,
whereas large 7-8B models best predict entropy-
driven skimming behavior. Future work will (i)
extend the corpus to longer passages and more
readers, (ii) model text-level variation more explic-
itly by identifying which text properties modulate
surprisal and entropy effects, (iii) investigate in-
dividual differences in reading strategies, and (iv)
develop an automated simplification pipeline.

The current analysis is limited to clinical and
general texts. Future studies will incorporate medi-
cal texts to examine domain effects more compre-
hensively.
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6 Appendix

Table 2: Comparison of Original and Simplified Texts

text_type text_name version total_screens total_sentences total_words
clinical toxico original 4 19 398
simplified 5 29 469
clinical gastro original 3 13 255
simplified 3 13 336
general weekend original 9 31 844
simplified 9 49 811
general camelot original 8 42 840
simplified 8 58 880
medical  obstetrics  original 12 57 1104
simplified 12 65 1202
medical  stroke original 3 10 276
simplified 3 22 328
medical  ulcer original 15 77 1526
simplified 15 92 1551
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