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Department of

Computational Linguistics,
Department of

Informatics
University of Zurich
Zurich, Switzerland

lenaann.jaeger@uzh.ch

Abstract

Direct Preference Optimisation (DPO) has
emerged as an effective approach for align-
ing large language models (LLMs) with hu-
man preferences. However, its reliance on bi-
nary feedback restricts its ability to capture nu-
anced human judgements. To address this limi-
tation, we introduce a gaze-informed extension
that incorporates implicit, fine-grained signals
from eye-tracking-while-reading into the DPO
framework. Eye movements, reflecting real-
time human cognitive processing, provide fine-
grained signals about the linguistic characteris-
tics of the text that is being read. We leverage
these signals and modify DPO by introducing
a gaze-based additional loss term, that quan-
tifies the differences between the model’s in-
ternal sentence representations and cognitive
(i.e., gaze-based) representations derived from
the readers’ gaze patterns. We explore the use
of both human and synthetic gaze signals, em-
ploying a generative model of eye movements
in reading to generate supplementary training
data, ensuring the scalability of our approach.
We apply the proposed approach to modelling
linguistic acceptability. Experiments conducted
on the CoLA dataset demonstrate performance
gains in grammatical acceptability classifica-
tion tasks when the models are trained in the
gaze-augmented setting. These results demon-
strate the utility of leveraging gaze data to align
language models with human preferences. All
code and data are available from Github.

1 Introduction

Direct Preference Optimisation (DPO, Rafailov
et al., 2023) has recently emerged as a scalable,
computationally efficient, stable method for align-
ing language models with human preferences. Un-
like Reinforcement Learning from Human Feed-
back (RLHF, Christiano et al., 2017) or Reinforce-
ment Learning from AI Feedback (RLAIF, Lee
et al., 2024), it does not require a separate reward

model and allows a policy model to internalise the
preferences directly. However, DPO relies only
on binary pairs of preferred and dispreferred re-
sponses, and this simplicity leads to a critical lim-
itation: binary feedback provides no information
about how strongly one response is preferred over
another, limiting the model’s ability to align with
nuanced human judgements. Recent studies have
demonstrated that integrating explicit, fine-grained
preference labels—such as ranked lists or ordinal
scores— into a DPO-based framework improves
the alignment of a policy model with human prefer-
ences (Liu et al., 2025; Zhao et al., 2024). However,
collecting explicit high-quality detailed annotations
from humans at scale is labour-intensive and costly.

To address the outlined limitations, we introduce
a method that leverages implicit human feedback
from eye-tracking data collected during reading.
Eye movements are considered the gold-standard
method to investigate cognitive processes under-
lying language processing (Rayner, 1998; Clifton
et al., 2007). Because eye movement patterns sys-
tematically reflect processing difficulty and readers’
evaluations of linguistic input, these gaze signals
can provide detailed, fine-grained indicators of hu-
man preferences, reducing reliance on explicit de-
tailed human ranking or rewards from auxiliary
models. In our approach, we integrate gaze-based
signals into the DPO training pipeline, allowing
the model to incorporate nuanced human feedback
beyond binary supervision while retaining DPO’s
computational efficiency. Recent advances in gen-
erative models of eye movements in reading fur-
ther support the scalability of this method (Prasse
et al., 2023; Deng et al., 2023b; Bolliger et al.,
2023, 2025) since they make it possible to gener-
ate synthetic human-like scanpaths and increase
the training dataset without collecting data from
humans.

The specific downstream task we focus on is

https://github.com/annabondar3/aleyegnment
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modelling grammatical acceptability (terms gram-
maticality and acceptability are used interchange-
ably) judgements. Models for this task are typi-
cally trained using supervised learning with binary
labels that categorise sentences into acceptable ver-
sus unacceptable ones. However, psycholinguistic
research (Lau et al., 2017; Francis, 2021) demon-
strates that speakers perceive grammatical accept-
ability along a gradient rather than as a binary la-
bel. Eye-tracking data holds potential to inform
the model about the degree of ungrammaticality,
as psycholinguistic evidence demonstrates that eye
movement patterns vary depending on the degree of
grammar violations (Tuninetti et al., 2015; Rayner
et al., 2004). Similarly, eye movements in reading
can provide information on the type, strength of
ungrammaticality (Braze et al., 2002) and its lo-
cation within the utterance (Vasishth et al., 2013;
Frazier and Rayner, 1982). Once an ungrammati-
cality is encountered, the reader’s eye-movement
patterns tend to exhibit longer fixation durations,
an increased number of regressions, and disrupted
saccadic movements—reflecting increased process-
ing difficulty and reanalysis effort. These findings
suggest that eye-tracking data can supply the fine-
grained online signal missing from binary anno-
tations and inform the model about the strength,
locus, and characteristics of grammar violations as
perceived by humans. Building on this foundation,
we investigate two principal research questions: (i)
whether integrating gaze signals into DPO during
training improves model performance on grammat-
ical acceptability; and (ii) whether increasing the
amount of training data by adding synthetic gaze
data leads to further gains in model performance.

2 Related Work

2.1 Human-Preferences Alignment

Direct Preference Optimisation has been proposed
as a streamlined alternative to RLHF and RLAIF, as
it trains directly on binary preferred–dispreferred
pairs and does not require a learned reward
model (Rafailov et al., 2023). However, this
pairwise supervision limits the model’s capac-
ity to reflect how strongly one response is pre-
ferred over another. Recent work has introduced
methods to incorporate finer-grained information.
One of these methods—Ordinal Preference Op-
timisation (OPO)—replaces binary comparisons
with ranked lists, enabling the model to capture
relative distances among responses (Zhao et al.,

2024). Another approach—Listwise Preference
Optimisation (LiPO)—extends this idea by for-
mulating alignment as a learning-to-rank prob-
lem (Liu et al., 2025). An alternative method,
namely Margin Matching Preference Optimisation
(MMPO), retains the pairwise format of the re-
sponses and attaches real-valued quality margins
to each pair (Kim et al., 2024). All of these ap-
proaches rely on explicit, graded feedback, either
from human annotations or reward models, which
can be costly to obtain or may diverge from human
judgements when using external LLMs to score the
responses (Bavaresco et al., 2025).

2.2 Eye Movements in Reading as Indicators
of Grammatical Violations

Eye-tracking studies have demonstrated that gaze
patterns reliably identify the locus, type, and
strength of grammatical violations (Schotter and
Dillon, 2025). Readers precisely localise syntactic
anomalies, leading to immediate regressions and
increased fixation durations at points of structural
disambiguation or grammatical inconsistency (Fra-
zier and Rayner, 1982; Vasishth et al., 2013). Fur-
thermore, distinct gaze signatures differentiate vio-
lation types: syntactic errors (e.g., agreement mis-
matches or structural ambiguities) typically cause
rapid regressions and increased first fixation du-
rations, whereas semantic and pragmatic anoma-
lies predominantly affect later reading measures,
such as regression-path duration and total fixation
time (Braze et al., 2002).

Eye movements also systematically reflect the
strength of violation. Strong violations, such as
outright ungrammatical constructions or semanti-
cally impossible continuations, provoke immediate
disruptions in first-pass reading times and frequent
regressions. Conversely, milder violations, such
as subtle semantic implausibilities or pragmatic
errors, result in delayed and comparatively moder-
ate reading disruptions, evident primarily through
increased regression-path durations and cumula-
tive reading times (Rayner et al., 2004; Tuninetti
et al., 2015; Joseph et al., 2009; Schotter and Dil-
lon, 2025; Schotter and Jia, 2016). Overall, these
findings demonstrate the utility of eye-tracking as
a fine-grained implicit feedback on the processing
of grammatical violations in real-time language
comprehension.
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2.3 Eye-Tracking-while-Reading for Natural
Language Processing

Eye movements in reading have been leveraged
for model evaluation and interpretation, including
the assessment of a model’s and cognitive plausi-
bility (Bolliger et al., 2024; Beinborn and Hol-
lenstein, 2024; Haller et al., 2024; Goodkind and
Bicknell, 2018; Bensemann et al., 2022; Eberle
et al., 2022; Sood et al., 2020a; Hollenstein and
Beinborn, 2021).

Besides model evaluation and interpretation,
gaze signals have proven effective for training and
evaluating NLP models. Recent research demon-
strated that eye movements in reading can be lever-
aged as a supervisory signal to enhance model per-
formance on various downstream NLP tasks. Early
research employed eye-tracking data in the form
of auxiliary input alongside the text embeddings
for named entity recognition, sentiment analysis,
sarcasm detection, part-of-speech tagging (Hollen-
stein and Zhang, 2019; Mishra et al., 2016; Barrett
et al., 2016; Tiwari et al., 2023). Other studies inte-
grated reading measures into models to guide atten-
tion mechanism directly for visual question answer-
ing, sentence compression and paraphrase genera-
tion, sentiment analysis (Sood et al., 2020b; Long
et al., 2017; Sood et al., 2023). Further research
utilised gaze data in transfer learning settings, task-
ing the models to predict reading measures as an
auxiliary training objective for sarcasm detection,
readability prediction, or machine reading compre-
hension (Yang and Hollenstein, 2023; Deng et al.,
2023a; González-Garduño and Søgaard, 2018; Mal-
maud et al., 2020). A more recent line of research
reordered the input sequence according to the scan-
paths (Yang and Hollenstein, 2023; Deng et al.,
2024) at the fine-tuning stage. All of the listed
frameworks have demonstrated the utility of eye
movements in reading for a wide range of NLP
tasks and have exhibited comparable performance
using either real human or synthetic eye-tracking
data.

Most recently, eye-tracking data has been in-
tegrated into frameworks aimed at aligning hu-
man preferences, specifically in reward modelling
within RLHF paradigms (López-Cardona et al.,
2025). Eye movements have also shown promis-
ing results for constructing datasets reflecting hu-
man preferences (Kiegeland et al., 2024; Lopez-
Cardona et al., 2025). Nevertheless, directly apply-
ing gaze data to preference alignment frameworks

without relying on intermediate reward models re-
mains unexplored. We address this gap and demon-
strate the utility of eye-tracking-while-reading data
for directly aligning large language models with
human preferences.

3 Preliminaries

We first provide a short overview of Direct Prefer-
ence Optimisation (DPO, Rafailov et al., 2023), a
method for aligning language models with human
preferences. This approach is a further develop-
ment of RLHF (Ouyang et al., 2022) and relies on
a policy model—the model being trained—a refer-
ence model—a frozen, pre-trained checkpoint used
to regularise training and keep the policy close to
its initial weights—and a reward model, which as-
signs rewards to outputs produced by the policy.
DPO eliminates this reward model and instead op-
timises the policy to increase the (log-)probability
of preferred over dispreferred responses directly.

Given a dataset of triples (r, x1, x0)—a prompt
r with a preferred (chosen) response x1 and a dis-
preferred (rejected) response x0—DPO updates a
policy πθ relative to a fixed reference policy πref by
maximising the Bradley–Terry log-likelihood:

max
θ

E(r,x1,x0)

[
log σ

(
β
(
log πθ(x

1|r)
πref(x1|r)

− log πθ(x
0|r)

πref(x0|r)
))]

,

(1)
where σ is a sigmoid function that maps the dif-

ference in log-probability ratios between the policy
and reference models to a value in (0, 1), which can
be interpreted as the probability that the policy as-
signs a higher probability to the preferred response
x1, β is a temperature parameter that controls the
sensitivity of the model to small differences be-
tween the preferred and dispreferred options. This
objective directly increases the model’s relative
log-probability of preferred over dispreferred re-
sponses.

4 Problem Setting

The task of linguistic acceptability classification is
a supervised learning problem, where the goal is to
determine whether a given natural language expres-
sion conforms to the grammatical norms of a partic-
ular language variety. Formally, let X ⊂ Σ∗ denote
all possible input strings over a finite vocabulary
Σ. Each input x ∈ X is a sentence. The output
is Y ∈ {0, 1}, where y = 1 indicates an accept-
able expression and y = 0 denotes an unacceptable
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one. Given a dataset D = {(xn, yn)}Nn=1 sampled
from X × Y , the objective is to find a function
fθ : X → [0, 1] parametrised by θ, where fθ(x)
represents the predicted probability of acceptability.
We investigate two questions: (i) whether incorpo-
rating human eye-tracking signals at training time
improves performance on grammatical acceptabil-
ity classification, and (ii) whether adding synthetic
gaze provides further gains beyond human signals
alone.

We evaluate our models and report the perfor-
mance with accuracy, F1, and Matthews correlation
coefficient on held-out data.

5 Data

5.1 The CoLAGaze Corpus

We utilised the CoLAGaze eye-tracking-while-
reading corpus (Bondar et al., 2025) to integrate
implicit human feedback into the Direct Preference
Optimisation framework. The dataset comprises
eye-tracking data collected from 42 participants
reading 153 pairs of (un)grammatical sentences
manually selected from the Corpus of Linguistic
Acceptability (CoLA; Warstadt et al., 2019). Each
participant read either the grammatical or the un-
grammatical counterpart of each sentence. These
sentences span a diverse range of grammatical vi-
olations, including syntactic, morphosyntactic, se-
mantic, and pragmatic anomalies. Detailed infor-
mation on the original data collection procedure,
preprocessing steps, and computation of reading
measures can be found in Bondar et al. (2025).
The full corpus contains 6,246 data points in total.
For our analyses, we selected data from 38 well-
calibrated participants, resulting in a total of 5,814
data points.

5.2 Synthetic Data

In addition to the human data provided by Co-
LAGaze, we trained Eyettention (Deng et al.,
2023b), a state-of-the-art generative model of eye
movements in reading, to produce synthetic scan-
paths (i.e., sequences of fixations and saccades) for
an additional 30 sentence pairs from CoLA (see
Appendix B for more details), with the goal of
extending the training set beyond the original Co-
LAGaze data and assess whether gaze-informed
models can benefit from synthetic gaze signals dur-
ing training.

6 Method

6.1 DPO with Binary Feedback

To address the linguistic acceptability classification
task, we fine-tune a 7-billion-parameter instruction-
tuned Mistral model within the Direct Preference
Optimisation framework. To fit the DPO setup
we form a set of 153 pairwise preferences P ={(

x1c , x
0
c

)}C

c=1
, where x1c represents a grammati-

cal sentence and x0c its ungrammatical counterpart,
and C represents the total number of pairs. The
DPO setup employs two pretrained LLMs: the pol-
icy model πθ, initialised from the instruction-tuned
Mistral checkpoint and fine-tuned during training,
and the reference model πref, which shares the ini-
tial parameters of the policy model but remains
frozen throughout fine-tuning to stabilise learning
and avoid catastrophic forgetting. Given a prompt
r that explicitly instructs the model to identify the
grammatical sentence from the pair (x1c , x

0
c) (for

details on the prompt, see Section 7), the policy
model is trained to generate the grammatical sen-
tence as output. We optimise the parameters of
the model using the standard DPO objective (for
details on standard DPO, see Section 3).

6.2 DPO Augmented with Gaze-Based
Implicit Feedback

6.2.1 Eye-Tracking Feature Selection
We used sentence-level eye-tracking measures from
CoLAGaze calculated after correcting for vertical
drift. Specifically, we selected a subset of eye-
tracking features most predictive of sentence-level
acceptability across all violation types included
in CoLAGaze. To select the subset from the Co-
LAGaze dataset, we fit a binomial generalised lin-
ear mixed model to predict sentence labels from
the eye-tracking features and perform greedy back-
ward (recursive) elimination, removing one feature
at a time and refitting the model. Feature selection
is guided by the Bayesian Information Criterion
(BIC) (Schwarz, 1978). The final set of features is
the one that minimises BIC.

Once the subset of the eye-tracking features is se-
lected, we train our gaze-augmented large language
models with two sets of eye-tracking measures (see
Appendix C for a comprehensive list of measures
and their definitions): measures based on event
counts (e.g. number of fixations, number of regres-
sions) and measures based on durations (e.g. total
fixation duration, first-pass reading time). Models
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augmented with synthetic eye-tracking data utilise
only event-count based features, as the Eyettention
model employed for synthetic data generation does
not predict fixation durations.

6.2.2 Integration of the Eye-Tracking Data
To integrate the cognitive information into the DPO
framework, we introduce an additional gaze-based
loss term ℓET to the original DPO loss function,
that quantifies the alignment of the model’s internal
sentence representations h to cognitive (i.e., gaze-
based) representations g derived from the sequence
of eye-movement events s (see Figure 1 for a visual-
isation of how the gaze-based loss term is derived).
To compute the eye-tracking based loss term, for a
grammatical–ungrammatical pair (x1c , x

0
c), we ob-

tain the sentence embeddings h1c , h
0
c ∈ Rd from

the policy model πθ. To get the embeddings we
tokenise the two sentences from each pair into two
separate sequences Txc = { t1, . . . , t|Txc | }, feed
each of the sequences to the model πθ, extract the
hidden states of the last layer H ∈ RTx×d from the
model and use mean pooling to derive a sentence
representation

hc =
1

Txc

Txc∑
q=1

Hq, (2)

where q is a token position in a sequence. To
integrate gaze data into the loss, we form eye-
tracking feature vectors gc, consisting of the se-
lected sentence-level eye-tracking features from
CoLAGaze (see 6.2.1). Let I1c and I0c denote the
set of readers who saw x1c and x0c , respectively1;
for each reader i ∈ I1c , or j ∈ I0c , and for each
sentence x1c , or x0c , we form a sentence-level gaze
feature vector g1c,i ∈ RF , or g0c,j ∈ RF , where F is
the number of gaze features. For each sentence pair
(x1c , x

0
c) we form K = 20 cross-participant vector

pairs by independently sampling indices ik ∈ I1c
and jk ∈ I0c with replacement for each pair; these
indices are fixed once at the start of training. (we
treat the number of pairs K as a hyperparameter,
see Appendix A for details) and compute the dif-
ference between them ∆

(k)
gazec = g1c,ik − g0c,jk . We

then treat each tuple consisting of the prompt, the
grammatical and ungrammatical sentences and the
gaze vector difference (r, x1c , x

0
c ,∆

(k)
gazec) as a sepa-

rate gaze-augmented training instance. For each of
1The stimuli were presented in Latin square such that each

reader saw either grammatical or ungrammatical version of
each sentence

the instances we compute the gaze-based loss term

ℓ
(k)
ETc

= cos(h1c , h
0
c)

∥∥∆(k)
gazec

∥∥
2
. (3)

Because cos(h1c , h
0
c) is in the range [−1, 1], ℓETc

penalises the model when the sentence embeddings
are too similar while the differences in human gaze
patterns are large — in this case the cosine term
is close to 1 and the Euclidean distance between
the gaze vectors

∥∥∆(k)
gazec

∥∥
2

is large, this results into
large positive gaze-based loss. On the other hand,
when the sentence representations are already well
separated (cosine term closer to -1), the gaze-based
loss term ℓ

(k)
ETc

becomes negative and implicitly re-
wards the model by decreasing the total loss. Train-
ing minimises the expectation over the final loss:

Ltotal = E(r,x1,x0,∆gaze)

[
LDPO(θ) + α ℓET

]
, (4)

where α is a tuned hyperparameter. By training
the model with a gaze-based loss term we intend
to align the model’s representations with human
cognitive processing signals.

7 Experiments

7.1 Training Setup
We fine-tuned the 7-billion-parameter instruction-
tuned Mistral model in several configurations to
evaluate whether integrating implicit feedback de-
rived from eye-tracking data into Direct Preference
Optimisation enhances downstream performance
on grammatical acceptability classification. See
Figure 2 for a summary of the training and eval-
uation pipeline. Training details are available in
Appendix A.

We model grammatical acceptability as a binary
classification task, implemented as text generation
with a decoder-only transformer. At training, for
each item, both grammatical and ungrammatical
sentences are presented in a single prompt:

Select the grammatically correct
sentence:
A) <sent A>
B) <sent B>

The assignment of the grammatical option to A
or B is random to avoid position cues. The pol-
icy model πθ computes log-probabilities for each
sentence; grammatical sentences are treated as pre-
ferred responses and ungrammatical ones as dispre-
ferred.

We augmented the DPO framework with gaze
data in several configurations. First, we incorpo-
rated implicit human gaze feedback, where the
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Figure 1: As depicted in the left blue box, for each grammatical–ungrammatical sentence pair c, we randomly
sample 20 gaze vectors per grammatical sentence x1 and per ungrammatical one x0, drawn from different readers.
From the sampled gaze vectors we then randomly pick a gaze vector for the grammatical sentence and a gaze vector
for its ungrammatical counterpart and pair these gaze vectors, resulting into 20 gaze vector pairs. For each pair
of gaze vectors, we compute the Euclidean distance between them to quantify the difference in gaze behaviour
for the grammatical sentence compared to its ungrammatical counterpart. As shown in the right green box, we
simultaneously, extract hidden representations of the sentences from the policy model and calculate the cosine
similarity between the grammatical and ungrammatical sentences, reflecting their proximity in the model’s internal
representation space. Each gaze distance is then multiplied by the similarity of the hidden representations to produce
a scalar eye-tracking-based loss ℓ(k)ETc

.

eye-tracking-based loss was derived from selected
CoLAGaze features, using both event durations
and event-count measures. Second, we exper-
imented with using only count based features
to assess whether duration based measures con-
tribute to performance gains. Third, we extended
this setup by incorporating synthetic eye-tracking
data, by adding synthetic scanpaths on 30 addi-
tional sentence pairs generated by the Eyettention
model (see B for details). Finally, we investigated
whether averaging gaze features across all read-
ers—representing an “average reader”—still leads
to improved performance.

7.2 Baselines

We evaluated our method against three text-only
baselines based on the instruction-tuned Mistral
checkpoint. First, the Base model corresponds to
the original checkpoint without any task-specific
fine-tuning.

Second, we trained a Supervised Fine-Tuning
(SFT) variant by optimising a cross-entropy loss
on the 153 grammatical–ungrammatical sentence
pairs from CoLA. When the policy model is trained
in the SFT setting, it is fine-tuned to generate the
acceptability label y from a prompt t containing
a sentence xn to be classified with a labelyn as
being either grammatical (1) or ungrammatical (0)

and a question “Is this sentence grammatical?”.
SFT minimises the cross-entropy loss (negative
log-likelihood) over dataset D defined in Section
4:

LSFT(θ) = −E(x,y)∼D
[
log πθ

(
y | t, x

)]
≈ − 1

N

N∑
n=1

log πθ
(
y | t, xn

)
.

(5)

Third, we trained a text-only DPO model (see
Section 6.1 for details) using the same sentence
pairs as in the previous training settings, relying
solely on binary acceptability supervision without
any cognitive signals.

7.3 Ablation
To further validate our findings, we conduct an ab-
lation study eliminating the eye-tracking features
in the additional loss term ℓ. In this variant, the
standard DPO objective is augmented only with
the cosine similarity between the two sentence em-
beddings, cos(h1c , h

0
c), omitting the gaze-difference

term (i.e., effectively setting ∥∆(k)
gazec∥2 = 0).

7.4 Evaluation Setup
At test time, we use only the text data from the held-
out CoLA training and development sets. Each test
sentence is fed to the model alongside the following
prompt:
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Figure 2: As depicted in the left part of the figure, during DPO training, the model receives a prompt containing
a pair of sentences—one grammatical and one ungrammatical—and is tasked to select the grammatical one. We
extract the probability of the grammatical and ungrammatical sentence being generated and use them for DPO. As
the central block of the figure shows, we fine-tune the model and explore three training configurations: (i) using only
binary preference labels (text-only), (ii) augmenting the labels with human gaze data, and (iii) further incorporating
synthetic gaze data into the training. At evaluation, shown in the right side of the figure, the model is given a
single sentence and prompted to classify it as grammatical or ungrammatical. Eye-tracking data is not used during
evaluation.

Is this sentence grammatical or
ungrammatical? <sent>

We report results separately on two subsets (both
sourced from CoLA training and CoLA develop-
ment set): sentences that share linguistic character-
istics with the training data, such as similar syntac-
tic constructions and lexical items (in-domain sub-
set in the original CoLA dataset), and those that dif-
fer substantially from the training distribution (out-
of-domain subset in the original CoLA dataset).
Performance is measured using accuracy, F1 score,
and Matthews correlation coefficient (MCC).

8 Results and Discussion

The results for grammatical acceptability classifi-
cation on CoLA are summarised in Table 1.

Supervised Fine-Tuning performed notably
worse than the instruction-tuned base model, ob-
taining an MCC of 0.463 in-domain and 0.410 out-
of-domain. The model trained with text-only DPO
also failed to surpass the base model’s performance
with an MCC of 0.460 and 0.406 for in-domain
and out-of-domain, respectively. This drop in per-
formance could be attributed in part to the small
size of the dataset used for training (fine-tuning or
DPO), which may have led the model to overfit and
generalise poorly (Barnett et al., 2024). Addition-
ally, the Supervised Fine-Tuning and DPO training
was conducted using quantised low-rank adaptation
(QLoRA, Dettmers et al., 2023), potentially further

limiting the effective model capacity (Wang et al.,
2024).

The best-performing model was Mistral fine-
tuned using DPO augmented with eye-tracking fea-
tures—both event-count and duration based. This
model achieved an MCC of 0.510 in-domain and
0.502 out-of-domain. Relative to the baseline
instruction-tuned Mistral model, gaze-augmented
DPO improved the MCC by 0.037 points in-domain
and 0.074 points out-of-domain. Similar improve-
ments were observed for F1 and accuracy metrics.
These results indicate benefits from integrating eye-
tracking signals into the optimisation objective. In
particular, this method appears useful in a low re-
source settings, as in our study the models were
trained on only 153 sentence pairs. Finally, our
ablation study demonstrates that, as expected, re-
moving the gaze signal leads to inferior model per-
formance.

We further compared gaze augmentation with
all gaze-derived features against leveraging a re-
duced set containing only fixation- and saccade-
count based features. The results showed an ad-
vantage of using all gaze features, suggesting that
duration based gaze features contribute additional
information beyond fixation counts alone.

Overall, the model trained with both gaze-event-
count and duration based features outperformed
the baseline and the models trained on text only.
The results hold for all of the settings in which
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Model Gaze Data Synthetic Data Aggregated Test Set Accuracy↑ F1↑ MCC↑
Base ✗ ✗ ✗ in-domain 76.62 0.83 0.473
Base ✗ ✗ ✗ out-of-domain 72.87 0.79 0.428
SFT ✗ ✗ ✗ in-domain 70.402.45 0.7500.033 0.4630.009
SFT ✗ ✗ ✗ out-of-domain 64.872.36 0.6780.037 0.4100.019
DPO ✗ ✗ ✗ in-domain 72.600.19 0.7780.004 0.4600.006
DPO ✗ ✗ ✗ out-of-domain 67.200.41 0.7340.03 0.4060.008
Ablation ✗ ✗ ✗ in-domain 76.240.54 0.82170.0053 0.47110.0058
Ablation ✗ ✗ ✗ out-of-domain 73.740.68 0.79290.0083 0.45210.0029
DPO all feat-s ✗ ✗ in-domain 80.170.667 0.8640.006 0.5100.013
DPO all feat-s ✗ ✗ out-of-domain 79.330.872 0.8550.008 0.5020.008
DPO count feat-s ✗ ✗ in-domain 79.530.110 0.8580.001 0.4990.002
DPO count feat-s ✗ ✗ out-of-domain 78.790.469 0.8480.004 0.4960.009
DPO all feat-s ✗ ✓ in-domain 79.760.135 0.8680.002 0.4900.005
DPO all feat-s ✗ ✓ out-of-domain 78.150.070 0.8540.001 0.4550.001
DPO count feat-s ✗ ✓ in-domain 76.240.288 0.8210.007 0.4720.001
DPO count feat-s ✗ ✓ out-of-domain 73.060.551 0.7880.008 0.4360.003
DPO count feat-s ✓ ✓ in-domain 76.150.134 0.8210.002 0.4710.002
DPO count feat-s ✓ ✓ out-of-domain 73.450.820 0.7910.009 0.4460.007

Table 1: Results of training Mistral model on 153 sentence pairs from CoLA in different configurations: in-domain
and out-of-domain subsets. Accuracy, F1 (positive = grammatical), and MCC are reported as meanSD over 3
random seeds. Gaze Data indicates whether human eye-tracking features were used; Synthetic Data indicates
whether synthetic gaze features were additonally used; Aggregated refers to whether gaze features were aggregated
across readers. All feat-s in the Gaze Data columns means that both duration and event-count based features were
used at training, count feat-s means that only event-count based features were leveraged.

the gaze data with all of the features was used —
augmented with the data not aggregated across the
readers, and with scanpaths aggregated across the
readers. These findings are in line with the seminal
work by Kliegl et al. (1982), who first showed that
both duration and event-count based measures are
informative about processing difficulty. The DPO
training with event-count based features does not
consistently lead to performance gains — while
using the data not aggregated across the readers is
beneficial, aggregating across participants leads to
a decrease in performance in in-domain evaluation
settings. Models where training was augmented
with synthetic gaze data showed only marginal
improvements over the base model on the out-of-
domain test set. We attribute this to several factors,
namely the small size of the synthetic dataset, the
usage of a single gaze-feature vector per sentence,
and the reliance on event-count reading measures
only. Future research might investigate the inte-
gration of synthetic data with both duration and
event-count based features, and explore the use of
larger synthetic datasets.

Finally, future work may examine word-level
eye-tracking features instead of sentence-level mea-
sures, as these have the potential to localise ungram-
maticality within sentences and thereby provide the
model with a more fine-grained and informative su-
pervision signal.

9 Conclusion

We introduced a gaze-informed extension of Di-
rect Preference Optimisation that aligns a large
language model’s internal representations with
human cognitive processing signals. By inte-
grating an eye-tracking loss term—derived from
sentence-level differences in reading patterns
observed on grammatical versus ungrammati-
cal sentences—into the DPO objective, our ap-
proach injects graded, implicit feedback into train-
ing. Our experiments on CoLAGaze show that
gaze-augmented models consistently outperform
text-only baselines, and that both duration-based
and count-based eye-tracking features provide use-
ful signals beyond text alone.
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A Implementation Details

The pretrained checkpoint was sourced from a
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applied parameter-efficient tuning and therefore
updated only the LoRA parameters (rank r=16,
α=32, dropout = 0.1, no bias). We optimised with
the AdamW optimiser under a cosine schedule with
a 10-step warm-up, batch size 8, and a maximum
sequence length of 512 tokens.

We trained with three random seeds (17, 23, 42).
Table 2 lists the hyperparameters explored in the
grid search; the final setting was selected based on
the lowest validation loss.

Table 2: Hyperparameter grid.

Hyperparameter Values

Learning rate 2×10−6, 3×10−6, 5×10−6

Weight decay 0.02, 0.03
Training steps 600, 700, 1000, 3000, 4700, 6120
β 0.2, 0.3
α 0.10, 0.05
Number of pairs 20, 30, 40

B Generation of Synthetic Eye Movement
Data

To extend the eye movements dataset for train-
ing the model in the gaze-augmented DPO setting
we generate the synthetic eye movements-while-
reading data, particularly we predict the scanpaths
for 30 sentence pairs from the CoLA dataset, pre-
process the gaze data to extract the event count-
based reading measures and train the models on
both human and synthetic eye movements data.

Scanpath prediction is the task of mapping a to-
kenised sentence x = (w1, . . . , wT ) to a variable-
length sequence of eye-movement events s =
(e1, . . . , em), where each fixation event comprises
the index pi ∈ {1, . . . , T} of the fixated token.
We formalise this as learning a conditional distri-
bution P (s | x; θ), instantiated via autoregressive
sequence models or structured prediction frame-
works, by minimizing the negative log-likelihood:

L (θ) = −
M∑
i=1

logP (ei | e<i, x; θ) .

We used two corpora to train the Eyettention
model: CELER (Berzak et al., 2022) and Co-
LAGaze (introduced above). CELER is a large-
scale eye-tracking dataset comprising gaze record-
ings from 365 participants, including both native
(L1) and non-native (L2) English speakers with
varying levels of language proficiency and linguis-
tic backgrounds. The participants read a total of

28,548 sentences, randomly sampled from Wall
Street Journal (WSJ) newswire text. The dataset
provides word-level fixation data, which we used
to train the generative model of eye movements.

We generated synthetic fixation sequences for
30 CoLA training sentences using Eyettention, a
dual-encoder Transformer for scanpath generation.
We evaluated three training configurations: (i) pre-
train on CELER (Berzak et al., 2022) and fine-tune
on CoLAGaze, (ii) train on CELER only, and (iii)
train on CoLAGaze only. Hyperparameters fol-
lowed the original Eyettention setup. Each configu-
ration used 5-fold cross-validation with the original
“new sentence” split.

Training
Data

Fine-Tuning
Data

Testing Data NLD↓

CELER – CoLAGazeall 0.4930.074
CoLAGaze – CoLAGazeall 0.4870.008
CELER CoLAGaze CoLAGazeall 0.4910.008
CELER – CoLAGazeung 0.4910.014
CoLAGaze – CoLAGazeung 0.4840.012
CELER CoLAGaze CoLAGazeung 0.4870.017

Table 3: Eyettention training configurations and scan-
path quality on CoLAGaze. Normalised Levenshtein
Distance (NLD; lower is better) is reported as meanSD

over readers. COLAGAZEall = all sentences; CO-
LAGAZEung = ungrammatical subset.

Performance was measured on a held-out Co-
LAGaze subset using normalised Levenshtein dis-
tance (NLD) between synthetic and human scan-
paths: for each sentence–reader pair we computed
the Levenshtein distance, divided it by the max-
imum scanpath length, and then averaged across
readers. We report results for all sentences and for
the ungrammatical subset. The three configurations
performed similarly; the CoLAGaze-only model
was marginally better on both subsets (Table 3).
We therefore used this model to generate synthetic
scanpaths. From these scanpaths we extracted the
same event-count features as for human data, using
the identical preprocessing pipeline, and integrated
them into the DPO training pipeline.

C Reading Measures

To integrate human cognitive signals into the DPO
framework, we extracted a diverse set of eye-
tracking measures that capture different aspects of
on-line reading behaviour. These measures reflect
temporal and spatial dynamics of eye movements
and have been shown in psycholinguistic research
to be sensitive to lexical and syntactic properties of
text. We report them in Table 4.
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Reading Measure Definition
Second pass duration (IQR, mean) sum of fixation durations when a word is revisited after the first

pass reading is complete, before the third pass
Go past time (mean, SD, IQR) sum of all fixation durations from the first fixation on a word

until the reader moves to a word to the right (progresses forward
in the text)

First duration (median, IQR) duration of the first fixation on a word, regardless of whether it
was fixated in the first pass or not

Rereading time duration of all fixation after the first pass
Gaze duration (SD, median, mean) of all fixation durations on a word during first pass reading

(before the eyes leave the word for the first time)
Normalised outgoing regressions count
(SD)

number of regressions initiated from a word normalised by the
total number of progressive saccades in a sentence

Saccade length (median, SD) absolute horizontal distance of a saccade, measured in number
of characters

Regression rate proportion of regressions out of total incoming and outgoing
saccades

Reading duration total time spent reading each item, normalized by sentence
length

Total fixation duration (SD) sum of all fixation durations on a word across all passes
First fixation duration (SD, IQR, mean) duration of the first fixation on a word during the first pass
Saccade duration (SD, IQR) saccade duration in milliseconds
Normalised saccade duration (IQR) saccade duration normalized by total reading time
Word in Fixed Context First and Total
Fixation Duration (mean)

first and total fixation duration on a word in a fixed context
(see Berzak et al., 2018 for more details) normalised by the
context overall reading duration

Information Cluster First and Total Fix-
ation Duration (mean, SD)

first and total fixation duration on a word in an information
cluster (see Berzak et al., 2017 for more details) normalised by
the cluster overall reading duration

Syntactic Cluster Total Fixation Dura-
tion (mean)

total fixation duration on a word in a syntactic cluster
(see Berzak et al., 2018 for more details) normalised by the
cluster overall reading duration

Table 4: Eye-tracking measures employed to augment DPO framework. For each measure we report its definition
and the aggregation statistic(s) used to obtain a sentence-level vector (mean/median/SD/IQR).


