Predicting Total Reading Time Using Romanian Eye-Tracking Data
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Abstract

This work introduces the first Romanian eye-
tracking dataset for reading and investigates
methods for predicting word-level total read-
ing times. We develop and compare a range of
models, from traditional machine learning us-
ing handcrafted linguistic features to fine-tuned
Romanian BERT architectures, demonstrating
strong correlations between predicted and ob-
served reading times. Additionally, we propose
a lexical simplification pipeline that leverages
these TRT predictions to identify and substi-
tute complex words, enhancing text readability.
Our approach is integrated into an interactive
web tool, illustrating the practical benefits of
combining cognitive signals with NLP tech-
niques for Romanian, a language with limited
resources in this area.

1 Introduction

Total Reading Time (TRT) refers to the cumulative
duration a reader fixates on a given word, includ-
ing all refixations. As an eye-tracking metric, TRT
serves as a reliable indicator of the cognitive pro-
cessing involved in both semantic and deep syn-
tactic analysis during reading (Frazier and Rayner,
1982; Pickering et al., 2004). Unlike other reading-
time metrics that may capture only initial attention,
TRT reflects the full depth of engagement a word
receives, offering valuable insight into processing
difficulty.

The prediction of word-level reading times and
their relationship to textual complexity have a long
history of investigations. Previous studies demon-
strate that models designed to estimate eye-tracking
measures, such as first fixation duration and total
reading time, can serve as effective indicators of
text readability (Gonzélez-Garduiio and Sggaard,
2017). Furthermore, eye-tracking data has been
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used to improve neural network models; for exam-
ple, Barrett et al. (2018) incorporate human atten-
tion patterns into recurrent neural networks, result-
ing in improved performance on a range of NLP
tasks. More recently, research by Hollenstein et al.
(2021) shows that large language models, including
multilingual BERT, can approximate human read-
ing behavior, supporting the integration of cogni-
tive signals into language model development and
evaluation. Additionally, it has been observed that
transformer models inherently encode eye-tracking
information during pre-training (Dini et al., 2025),
and that intermediate fine-tuning with eye-tracking
data does not negatively impact downstream task
performance.

In this paper, we present a work-in-progress and
several initial experiments on predicting word-level
TRT using eye-tracking data collected from native
Romanian speakers. Our work introduces the first
dataset of Romanian eye tracking recordings col-
lected in the framework of Multip]EYE' and we
propose a variety of machine learning approaches
to estimate TRT. All code is publicly available.

Accurate TRT prediction can inform a range of
downstream applications, particularly in the devel-
opment of cognitively informed tools such as lexi-
cal simplification systems and reading aids (Duffy
et al., 1988).

2 Data

The dataset used in this study originates from the
MultiplEYE project (Jakobi et al., 2025), and it
represents the first eye-tracking corpus for reading
in the Romanian language. It includes recordings
from four participants, all of whom are native Ro-
manian speakers.

"https://multipleye.eu/
https://github.com/ana0101/
eye—tracking
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The reading materials consist of 14 texts: 10
main texts, 2 practice texts, and 2 backup texts.
These texts span a variety of genres, the majority
being official Romanian translations from multiple
source languages. Due to minor translation incon-
sistencies and updates across sessions, each partic-
ipant read a slightly different version of the texts.
The eye-tracking experiments were conducted us-
ing the EyeLink 1000 Plus system.

We process the raw gaze data using the Py-
movements library (Krakowczyk et al., 2023) to
extract fixations and their alignment to correspond-
ing words in the text. For each word, the total
reading time is computed as the average duration
across all participants. To analyze how much the
TRT varies between the participants, we calculate
the coefficient of variation as the mean TRT di-
vided by the standard deviation of the TRT. The
coefficients are between 0 and 2, with a mean of
1.02 and a median of 0.98. The variation is quite
high, which is expected given the small number of
participants.

Figure 1 presents a histogram of the resulting,
averaged TRT values. A significant number of
words received a reading time of zero milliseconds,
indicating that these words are skipped entirely
during reading. This is a known and expected phe-
nomenon, especially for short or high-frequency
function words. Out of the 778 skipped words by
all the participants, 689 are function words. At the
opposite end of the spectrum, some examples of the
words with the highest TRTs are distorsiune (dis-
tortion), cosmodromicd (cosmodromic), gravifice
(gravitational), and premergdtoare (preliminary),
which are all long, complex words. All TRT val-
ues were standardized to have a mean of 0 and a
standard deviation of 1.

3 Results

We evaluate our models for predicting word-level
TRT using several metrics: Mean Squared Error
(MSE), R? score, Pearson and Spearman correla-
tion coefficients, and Accuracy. Accuracy is de-
fined as 100 — MAE, where MAE is the Mean
Absolute Error, with TRT values scaled to the
[0, 100] range, following established practices in
eye-tracking prediction (Hollenstein et al., 2021).

We consider two primary modeling approaches:
(1) traditional machine learning models trained
on handcrafted features, and (2) fine-tuning pre-
trained BERT models.
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Figure 1: Histogram of TRT.

3.1 Feature Extraction and Analysis

For each word, we extract several features to
aid in predicting the TRT. These include basic
scalar attributes such as word length, the num-
ber of subword tokens generated by the Roma-
nian BERT tokenizer (Dumitrescu et al., 2020),
word frequency (obtained via the wordfreq li-
brary (Speer, 2022)), and the log probability of the
word within its sentence context, estimated using a
masked language modeling approach.

To calculate the log probability, we employ the
pre-trained Romanian BERT model (Dumitrescu
et al., 2020). The process involves first tokenizing
the target word to determine its number of subword
tokens. Then, these tokens are replaced in the sen-
tence by an equal number of [MASK] tokens. The
masked sentence is passed through the language
model, which outputs probability distributions for
each [MASK] token. The log probability for the
word is taken as the negative logarithm of the prob-
ability assigned to the original first token by the
model. While we also experiment with summing or
averaging the log probabilities across all subword
tokens, using only the first token’s log probability
yields better predictive performance.

In addition to scalar features, we derive contex-
tual embeddings to capture semantic and syntactic
information. We extract these embeddings from
multiple layers of Romanian BERT: from the first,
middle, last, and an average of all layers. Since
BERT tokenizes words into subword units, we ag-
gregate the embeddings of all tokens belonging to
the same word by averaging them. This aggrega-
tion relies on character offset alignments to accu-
rately map subword tokens back to their original
words.
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Figure 2: Pearson correlation between TRT and ex-
tracted features.

Figure 2 presents the Pearson correlation coeffi-
cients between TRT and the scalar features. Among
these, word length shows the strongest correlation,
followed by frequency, log probability, and num-
ber of tokens. Notably, the negative correlation
between word length and frequency suggests that
longer words tend to appear less frequently.

3.2 Traditional Regression Models

We train several regression models, including Lin-
ear Regression, Support Vector Regression, Ran-
dom Forest, Gradient Boosting, Ridge Regression,
Neural Networks, and more. Each model is trained
on three feature sets: (1) only scalar features, (2)
only embeddings, and (3) a combination of both.
The data is split into train and test sets, with 80%
of the data used for training and 20% for testing,
which means 3796 words for training and 949
words for testing. When splitting the data, the
words from the same sentence are not present in
both the train and test sets. The features and read-
ing times are standardized to have zero mean and
unit variance.

All models achieve similar results: Pearson cor-
relations between 0.6 and 0.7, accuracy between
70% and 95%, MSE between 0.4 and 0.7, Spear-
man correlation between 0.6 and 0.75, and R?
scores ranging from 0.25 to 0.5.

Models trained on scalar features slightly outper-
form those trained on embeddings alone, although
combining both types yields the best results overall.
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Among the embeddings, the average of all BERT
layers generally performs best, so only the results
with these embeddings were considered.

3.3 Fine-Tuning Pre-trained Language
Models

‘We also fine-tune two Romanian BERT-based ar-
chitectures:

* BERT for Token Classification: Modified to
output a single regression value per token.

 BERT with Regression Head: Includes a
linear layer, ReLU activation, layer normal-
ization, dropout, and a final regression layer.

For token-level prediction, the TRT value of a
word is assigned to each of its subtokens. During
inference, token-level predictions are averaged to
compute the word-level TRT.

The data is split into train, validation, and test
sets, with 80% of the data used for training, 10%
for validation, and 10% for testing. The train set
contains 250 sentences, while the validation and
test sets contain 25 sentences each. The reading
times are standardized to have to have zero mean
and unit variance.

Training is done in three phases using a grad-
ual unfreezing strategy. For the first model, we
unfreeze 4 additional layers every 8 epochs; for
the second, we begin with only the regression head
for 5 epochs and then unfreeze 6 layers every 10
epochs. Both models use the AdamW optimizer
with a learning rate of 10~%, weight decay of 1074,
a cosine learning rate scheduler with warmup,
batch size of 8, and dropout of 0.3. Padding to-
kens are ignored in the loss computation.

Table 1 summarizes the results. Both models
perform comparably, achieving Pearson correla-
tions around 0.7, Spearman correlations around
0.73, MSE near 0.5, and accuracy close to 90%, re-
sults that are similar to one of the best-performing
traditional models, a neural network trained on all
features.

4 Discussion

Our experiments demonstrate that predicting word-
level reading times is feasible using both straight-
forward approaches, such as linear regression based
on easily interpretable features like word length and
frequency, as well as more sophisticated methods
involving fine-tuning transformer-based language



Model MSE | R? | Pearson | Spearman | Accuracy
BERT for Token Classification | 0.52 | 0.46 0.70 0.73 89.81
BERT with Regression Head 0.49 | 047 0.69 0.73 90.58
Neural network (all features) 0.41 | 0.44 0.69 0.74 90.43

Table 1: Performance of models.
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Figure 3: Metric ranges comparison between traditional
models and BERT models.

models. The strong correlation between reading
times and these features confirms their significance
in capturing cognitive processing effort. Figure 3
illustrates the compared results of both methods.

One compelling application of accurate reading
time prediction lies in lexical simplification. Since
TRT effectively reflects the processing difficulty
of words, it serves as a reliable indicator of lexical
complexity. By identifying words with high TRT
and substituting them with alternatives predicted to
have lower TRT, we can enhance text readability
and reduce overall reading effort.

To realize this, we implement a lexical simpli-
fication pipeline that first estimates the TRT for
all words in a given text, selects candidates with
elevated TRT, and generates potential replacements
using the Romanian BERT masked language model
(Dumitrescu et al., 2020). By masking the target
word and leveraging the model’s contextual predic-
tions, we produce candidate substitutions. Inspired
by Qiang et al. (2020), we experimented with con-
catenating the original and modified sentences in
different orders to improve candidate quality, find-
ing comparable improvements from both strategies.
Before computing the predicted TRT for the candi-
dates, we first make sure that the original word and
the candidate are the same part of speech.

To make these capabilities accessible, we de-
veloped a user-friendly web interface called Read-
ing Time Estimator. This tool enables users to

input text, visualize predicted reading times on
a word-by-word basis, and interactively simplify
complex words by selecting suitable replacements
with lower predicted TRT.

Overall, our work highlights the practical ben-
efits of integrating cognitive signals such as eye-
tracking data into NLP applications, particularly
for languages like Romanian that have limited re-
sources. A

5 Conclusions

In this paper, we introduced the first Romanian eye-
tracking dataset focused on reading behavior, and
demonstrated its utility in predicting word-level
total reading time using both traditional machine
learning and fine-tuned transformer-based models.
Our experiments show that features such as word
length and frequency are strong predictors of TRT,
and that fine-tuned Romanian BERT models can
achieve high predictive performance.

We also explored the practical implications of
reading time prediction in the context of lexical
simplification, proposing a pipeline that uses TRT
estimates to identify and replace complex words.
This system is implemented in an interactive web
application that showcases the potential for user-
centered NLP tools grounded in human reading
behavior.

Our results highlight the value of eye-tracking
data for advancing human-centered language tech-
nologies and pave the way for further work on
Romanian and other low-resource languages in the
domain of cognitive NLP.
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