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Preface

It is our great pleasure to present the proceedings of the Gaze4dNLP: The First International Workshop
on Gaze Data and Natural Language Processing, held on 12th September, 2025 in Varna as part of
RANLP (Recent Advances in Natural Language Processing) 2025. The workshop brought together
researchers from diverse backgrounds to discuss recent advances and research methodologies in reading,
eye tracking, and NLP.

This year, we received 16 submissions, each of which was reviewed by at least 2 members of our
program committee. After a rigorous selection process, 9 papers were accepted for presentation
and inclusion in these proceedings. The contributions span a wide range of topics, including eye
tracking, mouse tracking, aligning language models with reading data, using language model surprisal
in predicting reading times.

We would like to express our gratitude to the authors for their high-quality submissions and to the
program committee for their contributions in the reviewing process.

We hope that the papers collected here will inspire further research, foster collaboration, and contribute
to the advancement of the interdisciplinary area that combines NLP with eye tracking.

Cengiz Acartiirk, Jagiellonian University, Poland
Burcu Can, University of Stirling, Scotland, UK
Cagr Coltekin, University of Tiibingen, Germany
Jamal Nasir, University of Galway, Ireland
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What determines where readers fixate next? Leveraging NLP to investigate
human cognition
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Abstract

During reading, readers perform rapid forward
and backward eye movements through text, called
saccades. How these saccades are targeted in the
text is not yet fully known, particularly regarding
the role of higher-order linguistic processes in guid-
ing eye-movement behaviour in naturalistic read-
ing. Current models of eye movement simulation
in reading either limit the role of high-order linguis-
tic information or lack explainability and cognitive
plausibility. In this study, we investigate the influ-
ence of linguistic information on saccade targeting,
i.e. determining where to move our eyes next, by
predicting which word is fixated next based on
a limited processing window that resembles the
amount of information humans readers can pre-
sumably process in parallel within the visual field
at each fixation. Our preliminary results suggest
that, while word length and frequency are impor-
tant factors for determining the target of forward
saccades, the contextualized meaning of the previ-
ous sequence, as well as whether the context word
had been fixated before and the distance of the pre-
vious saccade, are important factors for predicting
backward saccades.

1 Introduction

The eye movements of readers can reveal aspects
of the cognitive mechanism that underlies language
processing during reading. Decades of research
have explored the explanatory power of eye move-
ments to better understand which factors play a
role in text comprehension (Rayner, 1998; Rayner
et al., 2006). One well-established phenomenon in
reading is the idea that lexical information, such
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as word length, frequency, and surprisal, influ-
ences the durations and locations of fixations in
text (Kliegl et al., 2004). However, the influence of
higher-level language processing on saccade tar-
geting is less well known (Warren et al., 2011;
Vasishth et al., 2013). Cognitive models of eye
movements in reading vary in how saccade pro-
gramming is simulated, and most models leave
postlexical information implicit (e.g. Reichle et al.,
2009). Furthermore, current machine learning ap-
proaches for predicting fixation location in reading
are limited in shedding light on human language
processing. They do little to explicate what drives
saccade decisions and have few parallels to psy-
cholinguistic theories and to behavioural evidence
about the human cognitive systems engaged in read-
ing.

Here we investigate to what extent we can suc-
cessfully leverage deep learning methods to investi-
gate a fundamental question about human language
processing: what determines saccade programming
during reading? We approach the prediction of the
next fixation location as a classification problem at
the word level, spanning a window of words that ap-
proximates the parallel processing of words in the
human visual field (n-3 to n+3) (Snell and Grainger,
2019). In addition, we tailor the input of the model
according to what information is likely to be avail-
able to the reader at each fixation. To represent the
low-level linguistic information available for all
words in the processing window, word length, fre-
quency, and surprisal (i.e. negative log-probability)
are employed. To represent higher-level linguistic
information available on each previous word and
the currently fixated word in the input sequence,
we employ contextualized word embeddings from
GPT-2, a unidirectional large language model (Rad-
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ford et al., 2019). Finally, previous fixation infor-
mation is included to capture some of the dynam-
ics of the sequential nature of eye movements. In
sum, we attempt to combine the mapping power
of neural networks with a more cognitively plausi-
ble set-up to understand what determines the next
fixation target in human reading.

2 Related Work

The task of predicting fixation locations in read-
ing has been mainly addressed with one of the two
modeling strategies: theory-driven or data-driven.
Theory-driven models are cognitive models that
simulate eye movements in reading by computa-
tionally implementing psycholinguistic theories of
reading with the goal of revealing the cognitive
mechanisms involved in reading. The next fixation
location is explicitly determined, i.e., it is clear
how the model arrives at each saccadic decision.
However, they are hardly ever evaluated on unseen
texts and readers, and are limited in explaining the
role of high-order linguistic information in saccade
targeting. In E-Z reader (Reichle et al., 2009), for
example, saccade targeting is limited to the range
of word n-1 to word n+2, and is mainly determined
by word length, frequency and predictability. Re-
gressions occur randomly with a certain probabil-
ity set by the modeler. Perhaps a more elegant
mechanism is proposed by SWIFT (Engbert et al.,
2005), in which the probability of each word in the
model’s four-word processing window to be the
next saccade target is proportional to its relative
word activation in an attention gradient. However,
SWIFT is limited in that higher-level language pro-
cessing is not accounted for. SEAM (Rabe et al.,
2024) partially addresses this limitation by hav-
ing sentence-level dependencies indirectly affect
word activations, but this effect only occurs be-
tween verbs and subjects.

In contrast, data-driven models of eye movement
simulations solely focus on accurately predicting
eye movements by harnessing advanced machine
learning methods while using previous (and future)
fixations and/or linguistic information as input.
These models rely on the predictive power of ma-
chine learning methods to achieve accurate predic-
tion of fixations on a variety of texts, with different
reading goals and reader profiles. They do this with-
out guidance of theories of reading and little to no
parallel with human cognition with respect to the
model input and/or architecture. The first success-

ful data-driven model (Nilsson and Nivre, 2009)
employed logistic regression with manually engi-
neered features extracted from the text stimuli and
the previous eye movements of readers to predict
the next saccade target location within a five-word
window around the currently fixated word; feature
importance was not reported. Wang et al. (Wang
et al., 2019) combined CNN, LSTM and CRFs to
predict next fixation location, based on word length,
part-of-speech, and bag-of-words representations,
but no regressions nor refixations were produced
by the model. Dweng et al. (Deng et al., 2023) pro-
posed Eyettention, which combines the fixation se-
quence (represented by non-contextualized BERT
embeddings, fixation duration and landing position)
and the word sequence (represented by contextu-
alized BERT embeddings and word length) using
two (bi-)LSTMs and a cross-attention layer. This
model was surpassed in performance by ScanDL
(Bolliger et al., 2023), a sequence-to-sequence dif-
fusion model that generates synthetic scanpaths by
also combining the fixation sequence and the word
sequence (both represented by BERT embeddings).
While data-driven models have been so far more
successful than theory-driven ones in accurately
predicting fixation locations, they still lack explana-
tory power and cognitive plausibility to be useful
models to investigate human cognition in reading:
Much of the information driving prediction is left
implicit (e.g. predicting upcoming fixations based
on previous fixations does not explain what under-
lies saccade targeting), and most information used
in the input is not plausibly available to a human
reader at each fixation step (e.g. future fixations,
and many/all upcoming words).

3 Method

We formulated saccade targeting in reading as a
classification problem, where the model has to de-
cide which word to fixate next given a set of can-
didate words in the input sequence. The classifier
was a shallow fully connected neural network, with
one hidden layer of 128 nodes, ReLu activation and
a drop-out layer !. The input sequence consisted of
a window of seven words, i.e. the fixated word plus
three words before and three words after, to approx-
imate the limited amount of information a human
reader can likely take in the visual field at each

'Pilot studies were performed with CNNs and LSTMs to
preserve the word structure in the input, but, surprisingly, the
fully-connected neural network yielded the best results.



fixation. To represent lexical information on each
word in the input sequence, we used word length,
frequency, and surprisal, which are assumed to be
available to the reader to some degree through ei-
ther past word recognition or current parafoveal
processing. To represent higher-order language
information, we used the contextualized word em-
bedding of the fixated word from GTP-2, which is
assumed to encode the meaning constructed from
the text up to the fixated word. Finally, to capture
some of the dynamics inherent to the sequential
nature of eye movements, we added information on
whether each word in the input sequence has been
fixated before, the previous fixation duration and
the previous saccade length. All features were z-
normalized, except for the word embedding and the
binary feature encoding whether or not the word
had been fixated before.

We trained the classifier on the L1-English part
of the MECO corpus (Siegelman et al., 2022), using
5-fold cross-validation with a 80/20 split based on
text ids. The material consists of the first 10 texts of
the corpus, structured similarly to Wikipedia-style
encyclopaedic entries, covering a diverse range of
topics. Each text had approximately 200 words
and 10 sentences. All participants (n = 46) were
native speakers of English and university students.
They were instructed to read the texts silently and
answer (four) comprehension questions after each
text. We used the fixation dataset available in the
“fixation report” folder, in the path “release 1.0/ver-
sion 1.2/primary data/eye tracking data/fixation re-
port”, in the OSF directory of the MECO corpus.
We only included the fixations on words that had
three words to the left and three words to the right,
resulting in 66,383 fixations in total. Around 34%
of these fixations were to word n+1, followed by
25% to word n+2, 18% to word n, 10% to word
n-1, 7% to word n+3, 3% to word n-2, and 1% to
word n-3.

Model evaluation consisted of measuring the
F1 scores (2 x (precision x recall) /precision +
recall) for each word position in the input se-
quence (seven words, including currently fixated
word) and the macro-averaged F1 score across
word positions. We compare the model perfor-
mance with three baselines: OB1-reader (Snell
et al., 2018), a cognitive model of eye movement
control in reading, in which saccade targeting is de-
termined by word recognition and visual attention;
the same model trained on random input vectors;

and a majority baseline, which always predicts the
majority class (word n+1). To evaluate OB1-reader,
we ran 10 simulations on the corpus texts and, for
each simulation, we selected the fixations that over-
lapped between the model simulation and the cor-
pus, and checked whether the next fixation target
was the same. We then reported the resulting F1
score averaged over simulations.

4 Results

As can be seen in Table 1, our model outperforms
the baselines, including the OB1-reader model, al-
though the difference in macro-averages is small.
The easiest saccade to predict is to word n+1, which
is also the most frequent. Backward saccades are
the most difficult to predict, and the farther away
from the current fixation, the lower the perfor-
mance in predicting saccade targeting. OB1-reader
performs remarkably well compared to our model,
especially at one-word regressions and refixations.
Overall, our model improves saccade targeting pre-
diction compared to the baselines, but still performs
below chance for word skips and refixations, and
poorly for backward saccade targeting.

To determine feature importance, we replaced
one feature at a time by its average over the dataset
and retrained the model with the ablated feature.
Table 2 shows the model performance when remov-
ing each feature. When word length is ablated, the
model performance especially drops in predicting
word skips (word positions 2 and 3). Word fre-
quency also seemed to affect two word-skipping
(word position 3). Whether or not the context word
has been fixated before is predictive of backward
saccades (word positions -1, -2, and -3), as well
as refixations and two-word skipping (word po-
sitions 0 and 3). Embeddings seems to be infor-
mative for backward saccades, but not for word
skipping (word positions 2 and 3). Finally, while
the previous fixation duration does not seem to
be an informative feature in general, the previous
saccade distance supports to some extent the predic-
tion of backward saccades (word positions -3 and
-2) as well as two-word skipping (word position
3). In sum, word length and frequency were impor-
tant features for the prediction of forward saccades,
while the fixated word’s contextualized embedding,
whether the word has been fixated before and the
previous saccade length were mainly informative
of backward sacacades.



-3 -2 -1 0 1 macro-avg
Classifier .002 £.005 .001 £.002 .05 £.017 .24+£.018 .56+.024 .46+£.018 .12+.038 .20 +.006
OBl-reader 0 0 d1£.002 30+£.01 31+£.01 .324.004 .15+.006 .17 £ .002*
Random 0 0 .01 £.008 .11 +.006 .44 £.016 .35+.011 .004 £.006 .11 £.004 *
Majority 0 0 0 0 S1£.017 0 .07 £.002 *

Table 1: F1 scores averaged over cross-validation splits for each true word position target, as well as averaged over
positions. * means that the score was significantly different from the classifier model.

-3 -2 -1 0 1 2 3 macro-avg
Classifier .002 £.005 .001 £.002 .05 +£.017 .24 £.018 .56 £.024 .46 £+.018 .12 +£.038 .20 £.006
w/o word length .002 £.005 .001 £.002 .04 +.01 23+.03 54+.02 42£.02 .07+.02 .19 +.008 *
w/o word frequency 0 .003 £.008 .05+.02 .25+.008 .55+£.02 45+£.01 .074.02 .19 £.003 *
w/o word surprisal 0 002 £.003 .04+.01 24£.01 .56+.02 46=£.01 .10+.03 .20=£.003
w/o has-been-fixated 0 0 01+.01 214+£.02 55+£.02 45£.01 .06+.06 .18+.01%
w/o embedding 0 0 02+.01 244+£.02 59+£.02 50£.01 .17+.06 .22+.01
w/o previous fixation duration .004 £.006 .001 £.002 .06+£.02 254+.02 56+£.03 46+.01 .10£.03 .20=+.005
w/o previous saccade distance 0 0 0401 26£.02 56x.02 46+.01 .09+.04 .20=£.004

Table 2: Feature ablation. This table displays the F1 scores averaged over cross-validation splits for each true word
position target, as well as averaged over positions, for each model version in which one feature is ablated. * means

that the score was significantly different from the full classifier model.

5 Discussion

In this study, we attempted to investigate the cog-
nitive processes underlying saccade targeting in
reading using deep learning. We sought to leverage
machine learning while using input whose infor-
mation content may resemble more closely what
is plausibly available to human readers during sac-
cade planning. Importantly, we attempted to fill
a gap in understanding the role of high-order lan-
guage information by investigating to what extent
the text meaning, as represented by contextualized
embeddings, supports where readers tend to fixate
next, beyond lower-level lexical information. Our
preliminary results indicated that forward saccades
tend to be more driven by automatic, oculomotor
cues, as well as low-level linguistic cues, such as
word length and frequency, whereas backward sac-
cades are more heterogeneous, with the semantics
of the previous context playing a role, but also fac-
tors possibly related to oculomotor error, such as
skipping a word due to overshooting, as suggested
by the features “has-been-fixated” and “previous
saccade amplitude”. Our results are in line with
well-established findings in the literature that sup-
port the major role of lower-order linguistic fea-
tures in forward saccades (Rayner, 1998; Kliegl
et al., 2004; Engbert et al., 2005) and the heteroge-

neous nature of backward saccades (Von Der Mals-
burg and Vasishth, 2011; Inhoff et al., 2019; Wilcox
et al., 2024). Furthermore, refixations seemed to be
driven by word length and whether the word had
been fixated before, but, surprisingly, not by factors
pertaining word meaning, such as frequency, sur-
prisal and its contextualized embedding, suggesting
that, at least in this dataset, most refixations were a
result of oculomotor and low-level linguistic cues.
Ultimately, our goal is to model the complex inter-
play between the oculomotor system and language
processing that drives saccade targeting in read-
ing. Combining the predictive power of machine
learning methods with more cognitively plausible
and interpretable modeling may shed light on the
mechanisms behind this process.

6 Limitations and Future Work

The model proposed here fails to predict back-
ward saccades with an acceptable level of accu-
racy. Previous correlational research has suggested
PMI scores to be predictors of regression target-
ing in reading (Wilcox et al., 2024). A follow-up
study may explore the potential of such measure
in informing the prediction of backward saccade
targeting in reading. In addition, the dynamics of
eye movements is not fully explored in our model,



as only information on the previous fixation is used.
It is possible that information on more previous
fixations is needed to capture the complex relation
between the sequence of eye movements and the
sequence of language input.

Finally, we assumed that word length, frequency
and surprisal of the words in the upcoming con-
text are fully available to the reader, which is a
simplification. As a follow-up, this information
will be modulated by OB 1-reader’s visual attention
gradient, based on eccentricity and visual acuity.
That is, the closer the words are to the fixation the
more accurate the linguistic information available.
Future work may investigate whether our neural
network model can be merged with a cognitive
model, such as OB1-reader, to use word activations
generated by the cognitive model as a proxy of low-
order visual and linguistic information, together
with high-order linguistic information represented
by contextualized embeddings, to predict saccade
targeting. More of the dynamics of the relation be-
tween eye movements and language input might be
indirectly captured by the cognitive model’s word
activations.
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Abstract

This study evaluates the effectiveness of sur-
prisal estimates from six publicly available
large language models (LLMs) in predicting
reading times in Brazilian Portuguese (BP), us-
ing eye-tracking data from the RastrOS corpus.
We analyze three key reading time measures:
first fixation duration, gaze duration, and to-
tal fixation time. Our results demonstrate that
surprisal significantly predicts all three mea-
sures, with a consistently linear effect observed
across all models and the strongest effect for
total fixation duration. We also find that larger
model size does not necessarily provide bet-
ter surprisal estimates. Additionally, entropy
reduction derived from Cloze norms adds mini-
mal predictive value beyond surprisal, and only
for first fixation duration. These findings repli-
cate known surprisal effects in BP and provide
novel insights into how different models and
linguistic predictors influence reading time pre-
dictions.

1 Introduction

In recent years, the use of large language models
(LLMs) has emerged as a productive approach in
cognitive science and psycholinguistics to better un-
derstand human language processing (Hale (2001);
Armeni et al. (2017); Wilcox et al. (2020)). These
models provide estimates of word predictability,
which can be formalised through information-
theoretic measures as surprisal.

Surprisal quantifies the unexpectedness of a
word given its preceding context. It has been
shown that this measure correlates with reading
time metrics obtained through eye-tracking exper-
iments (Smith and Levy (2013); Hofmann et al.
(2022); Demberg and Keller (2008)). These find-
ings support theories claiming that human language
comprehension is governed, at least to some extent,
by the efficient processing of probabilistic informa-
tion.
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Despite extensive research on surprisal linked
to cognitive processing, the focus has largely been
on English, leaving cross-linguistic applicability
underexplored. Wilcox et al. (2023a) showed how
well language model surprisal can predict reading
times in eleven languages, providing important in-
formation regarding cross-linguistic variability in
the cognitive processing of language. However,
Brazilian Portuguese (BP) was notably absent from
this analysis, leaving a gap in our understanding
of the role of surprisal in the processing of this
language.

To address this gap, the present study focuses
on BP, employing the RastrOS corpus, a large-
scale eye-tracking dataset collected from students
in higher education in Brazil, which also includes
carefully constructed norms of predictability of
words (Leal et al., 2022).

The aim of this study is to evaluate how surprisal
values derived from a variety of publicly available
LLMs predict three key eye-tracking reading time
measures: first fixation duration, gaze duration,
and total fixation time in Brazilian Portuguese. Fur-
thermore, we investigate the role of entropy reduc-
tion as a contributing factor in modelling reading
times. We also assess the linearity of the relation-
ship between surprisal and reading times, deter-
mining whether linear models sufficiently capture
this mapping or whether more complex patterns are
present.

Our work not only provides missing data for
Brazilian Portuguese but also identifies the most
effective publicly available LLMs for modelling hu-
man reading behaviour in this language. Moreover,
it offers a baseline for researchers aiming to use sur-
prisal to analyse linguistic phenomena in Brazilian
Portuguese following information-theoretic prin-
ciples such as the Uniform Information Density
(UID) hypothesis (Jaeger and Levy, 2006).

The remainder of the paper is organised as fol-
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lows. Section 2 reviews related work on using
LLMs to model reading times. Section 3 presents
the dataset, describes the large language models
tested, and explains our evaluation methods. Sec-
tion 4 then presents the results. We conclude with
a summary of our findings and directions for future
work in Section 5, followed by a discussion of the
study’s limitations in Section 6.

2 Related Work

Wilcox et al. (2023a) examined surprisal’s relation-
ship to reading times in eleven languages across
five language families. Using monolingual and
multilingual transformer-based language models
(trained on the Wiki40B dataset, Guo et al. (2020),
and mGPT, Shliazhko et al. (2024)), they showed
that both surprisal and contextual entropy predict
reading times, and that the relationship between
surprisal and reading time is linear.

This linear relationship was also supported by
Xu et al. (2023), who analysed seven languages
and found evidence of superlinear effects in some
cases, with results highly dependent on the lan-
guage model used to estimate surprisal.

Additionally, Wilcox et al. (2023b) tested the
quality—power (QP) hypothesis, which posits that
higher-quality language models (LMs) better pre-
dict human reading behaviour. By training LMs
on 13 languages with varying amounts of train-
ing data (from 1 million to 1 billion tokens), they
found that, in most cases, models trained on more
tokens showed stronger predictive power for eye-
tracking data, supporting the QP hypothesis within
the tested range.

Lin and Schuler (2025) proposed a neural study
to complement these observations regarding read-
ing time. By evaluating surprisal estimates from 17
Transformer models across three language families
using fMRI data, they showed that the positive re-
lationship between model perplexity and predictive
power also generalizes to neural measures.

However, regarding LLMs, Oh and Schuler
(2023) demonstrated that despite having better per-
plexity, larger models predict human reading times
less accurately. Specifically, they tend to underpre-
dict reading times for named entities and overpre-
dict for function words, suggesting that memoriza-
tion in these models reduces their alignment with
human processing.

This tendency is also observed by Liu et al.
(2023) who examined the effect of temperature

scaling on large language model surprisal estimates
and their fit to English reading time data, showing
that calibration improves with model size, and tem-
perature scaling significantly enhances prediction.

Moreover, Nair and Resnik (2023) demonstrated
that while surprisal theory explains how a word’s
predictability influences processing difficulty via
probabilistic updating, it does not fully capture all
aspects of incremental processing, such as effects
from low-frequency words and garden-path disam-
biguation. To address these limitations, Wang et al.
(2025) developed a model that integrates syntac-
tic information with statistical surprisal estimated
from LLMs, resulting in significantly higher cor-
relations with human reading times than surprisal
alone.

Therefore, although surprisal alone cannot fully
account for cognitive language processing, it has
a significant impact across many languages. Addi-
tionally, both the size of the language model and
the amount and quality of training data affect the
relationship between reading time and word pre-
dictability. Consequently, it is crucial to identify
the best language model for each language (and lan-
guage variety) before applying surprisal estimates
in various research fields.

3 Methodology

3.1 Eye-Tracking Data

The RastrOS corpus was developed to support
psycholinguistic research on Brazilian Portuguese
(BP), particularly focusing on lexical predictability
and sentence processing. It comprises two main
components: predictability norms collected via a
Cloze test and eye-tracking data gathered from
reading tasks.

A total of 393 native BP speakers from six Brazil-
ian universities participated in the Cloze test, pri-
marily undergraduate students. Each participant
completed Cloze tasks on five randomly selected
paragraphs, balanced across three genres: journal-
istic (40%), literary (20%), and popular science
(40%).

The Cloze corpus includes 50 paragraphs, com-
prising 120 sentences and 2,494 words (2,831 to-
kens). Source texts were drawn from the Lacio-
Web corpus (Aluisio et al., 2004), public domain
literature, and contemporary online texts.

Participant responses were compared to target
words based on orthographic match, morphosyntac-
tic class (PoS), and inflection, with semantic simi-



larity assessed via word embeddings. The dataset
is annotated with PoS tags (using the Palavras
parser; Bick 2000), word frequency (from Cor-
pus Brasileiro (Sardinha, 2010) and BrWaC (Wag-
ner Filho et al., 2018)), and includes surprisal and
entropy reduction values derived from the Cloze
test results.

The eye-tracking data of the RastrOS were col-
lected from 37 undergraduate students and were
recorded using the EyeLink 1000 eye-tracker at a
sampling rate of 1000 Hz.

Participants read 120 sentences taken from the
same 50-paragraph Cloze corpus, a total of 2,494
words total (2,831 tokens including punctuation).
Each sentence is annotated with 36 eye-tracking
metrics (e.g., first fixation duration, gaze duration,
and total fixation time).

3.2 Large Language Models

For our analysis, we selected six publicly available
large language models that vary in the number of
parameters and the training data used:

1. Bloom-560m! (Workshop, 2022) - Multilin-
gual model trained on 1.5 TB of pre-processed
text, of which 11.1% is Portuguese. 559 mil-
lion parameters distributed over 24 layers with
16 attention heads and 1024-dimensional hid-
den states.

2. Bloomz-7b1% (Muennighoff et al., 2022) -
Same training corpus as bloom-560m but with
7 billion parameters over 30 layers with 32
attention heads, and 4096-dimensional hid-
den states. bloomz is a fine-tuned version of
bloom, trained with multitask instructions to
improve zero-shot performance.

3. Llama-2-7B-hf® — Pretrained on 2 trillion to-
kens from public sources, then fine-tuned with
public instruction datasets and over one mil-
lion human-annotated examples. It has 1024
hidden dimensions with 32 attention heads
over 32 layers (Wang et al., 2023). Evaluation
tests were performed only in English.

4. Llama-3-2-1B* — 1 billion parameter model,
pretrained on up to 9 trillion tokens of data in

'https://huggingface.co/bigscience/
bloom-560m

2bigscience/bloomz—7b1

*https://huggingface.co/meta-1lama/
Llama-2-7b-hf

‘nttps://huggingface.co/meta—-1lama/
Llama-3.2-1B

8 different languages (including Portuguese)
from publicly available sources.

5. Llama-3-2-3B° — Same training data as llama-
3-2-1B but with 3 billion parameters,

6. Mistral-7b® — Trained on a mix of web data
and code, with 7 billion parameters. It has 32
layers, 32 attention heads, and a hidden size
of 4096 dimensions. The model evaluation
was conducted exclusively on English (Jiang
et al., 2023).

With this selection, our aim is to provide a mean-
ingful comparison between language models of
different sizes and training objectives, including
models fine-tuned for specific tasks (e.g., bloomz-
7b1), and models primarily focused on English
(e.g., llama-2-7B-hf and mistral-7B), despite being
trained on multilingual data. Unfortunately, only
the BLOOM models provide sufficient information
about the proportion of Portuguese in their training
data, although they do not specify which variety of
Portuguese was used.

3.3 Evaluation Methods

To evaluate the performance of the different lan-
guage models in predicting reading times, we
adopted the methodology proposed by Wilcox et al.
(2023a).

Thus, although the RastrOS corpus provides 36
different word-based measures of reading time, we
focus on three commonly used metrics (Rayner,
1998):

1. First fixation duration - the duration of the first
fixation on a word during its first pass. Anno-
tated as IA_FIRST_FIXATION_DURATION

in RastrOS.
2. Gaze duration - the sum of all
first-pass fixations on a  word.

IA_FIRST_RUN_DWELL_TIME in RastrOS.

3. Total fixation duration - the sum of all
fixations on a word during the trial.
IA_DWELL_TIME in RastrOS.

First fixation reflects the initial processing of a
word and is associated with early stages of lexical

Shttps://huggingface.co/meta-1lama/
Llama-3.2-3B

®https://huggingface.co/mistralai/
Mistral-7B-vO0.1



access. Gaze duration captures the time spent on
a word during first-pass reading and is sensitive
to lexical and syntactic processing. Total fixation
time includes any regressions back to the word and
reflects later stages of comprehension, such as re-
analysis or integration difficulties (Rayner, 1998).

3.3.1 Surprisal

To compute word-level surprisal values, we used
the surprisal Python library’. Sentences from Ras-
trOS were first recomposed and loaded in their
original order. Using the AutoHuggingFaceModel
interface provided by the library, we instantiated
each selected model and computed token-level sur-
prisal values for each recomposed sentence. As
a post-processing step, we merged the subword
tokens produced by the language models to recon-
struct the original words for analysis.

The regression models follow the structure pro-
posed by Wilcox et al. (2023a), aiming to predict
the reading time y(w;, w<¢) of a word w; given
its preceding context w«¢. The predictor vector x;
includes not only information about the target word
wy, but also features from the two preceding words
wy—1 and w2, in order to account for potential
spillover effects on reading time.

Each model includes baseline predictors such
as word length and log unigram frequency (corre-
sponding to Word_Length and Freq_brWaC_log in
RastrOS) for the target word and the two preceding
words. These features form the baseline structure
of the predictor vector x; at position .

We used linear mixed-effects regression models,
implemented via the Imer() function from the Ime4
R package (Bates et al., 2015).

To measure how much surprisal improves model
performance, we compare the baseline model (Ap-
pendix A, equation 1) to models that include sur-
prisal values, specifically the surprisal of the target
word and its two preceding words as estimated by
the LLM (Appendix A, equation 2). The delta is
defined as the difference in per-word log-likelihood
between the surprisal-enhanced model and the base-
line: a positive delta indicates that surprisal helps
the model better explain that word’s reading time.
By aggregating these deltas across all words, we
assess whether incorporating surprisal significantly
improves prediction accuracy.

Additionally, all regression models are trained
and evaluated using 10-fold cross-validation. To

"https://pypi.org/project/surprisal/
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assess the significance of the observed differences
(A) between target and baseline models, we use
a paired permutation test. This non-parametric
test evaluates whether A significantly differs from
zero and whether different models differ from each
other, without assuming any specific distribution of
the test statistic. p-values are computed based on
the empirical distribution of likelihood differences,
estimated by averaging over permutations of the
likelihood values.

For each reading time measure, we compared the
A values obtained using surprisal estimates from
the LL.Ms listed in Subsection 3.2.

3.3.2 Entropy Reduction

Wilcox et al. (2023a) tested the influence of con-
textual entropy as a predictor, comparing it to a
baseline model that included the features from the
baseline structure combined with surprisal values.

Rather than using contextual entropy, we em-
ployed entropy reduction values from the RastrOS
corpus (Entropy_Reduction), derived from Cloze
test results. Lowder et al. (2018) demonstrated
that entropy reduction significantly predicts read-
ing time. This is limitation of this approach when
compared to entropy estimates generated by a lan-
guage model trained on a large corpus. Never-
theless, we decided to use the available entropy
reduction values provided by the corpus to have at
least an estimation of the effect.

Thus, using baselines that include surprisal val-
ues, we compared models for each reading measure
and LLM by adding entropy reduction as a predic-
tor, considering the target token and the two preced-
ing tokens for both surprisal and entropy reduction,
with A and the statistical tests as described in 3.3.1.
The model including entropy reduction is described
in Appendix B.

3.3.3 Linearity

For the analysis of surprisal and entropy reduction
as predictors, we used regression models that as-
sume a linear relationship between surprisal and
reading time as supported by previous studies (e.g.,
Smith and Levy (2013); Wilcox et al. (2020); and
Shain et al. (2024)). However, as recent work has
challenged this assumption, proposing superlinear
(e.g., Meister et al. (2021) and Hoover et al. (2022))
or sublinear (Hoover et al., 2023) links, we decided,
following Wilcox et al. (2023a) to test this by com-
paring the performance A of our linear models
with models capable of capturing non-linear rela-



tionships.

To analyse linearity, we used generalized addi-
tive models (GAMs), which flexibly capture poten-
tial non-linear effects.

If the GAM fits a visually linear pattern, this
supports the hypothesis of a linear link. We mod-
elled reading times based on Freq_brWaC log,
Word_Length, and surprisal from sentence-level.
Our GAMs included smooth terms for current
and previous word surprisal and tensor product
terms to model non-linear interactions between log-
frequency and word length, following the method
applied by Wilcox et al. (2023a).

Thus, we compared generalized additive mod-
els (GAMs) that model surprisal effects on reading
time either as linear terms or as flexible non-linear
smooth functions, alongside a baseline model with-
out surprisal, as described in Appendix C. Using
10-fold cross-validation, we calculated the predic-
tion error (RMSE) for each model on held-out data
and computed the improvement A over the baseline
(without surprisal) for both linear and non-linear
surprisal models. We then tested the significance of
these improvements and differences between linear
and non-linear models using paired permutation
tests.

4 Results

4.1 Suprisal Models Compared to Baseline

Figure 1 presents the mean A log-likelihood per
word for each LLM across all three reading time
measures, shown as separate panels.

Regarding the different reading time measures,
surprisal shows the highest predictive power for
total fixation time duration, followed by gaze du-
ration, and finally the lowest A values for first
fixation duration. These results align with those
reported by Wilcox et al. (2023a), showing similar
magnitudes of A across reading measure condi-
tions.

The analysis of the models concerning first fixa-
tion duration shows that the A values are approxi-
mately 0.0025. All A values are significantly differ-
ent from O (p < 0.001). The pairwise comparison
of the different models shows that there are no sta-
tistically significant differences among them.

Regarding the gaze duration, there is a higher
variation in A values, with larger standard error
bars. Statistical tests show that, for all models,
A differs significantly from 0, except for bloomz-
7b1 (p = 0.0014). When comparing the different
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language models, the statistical tests indicate that
the models have significantly different A values,
except for:

¢ ]lama-2-7b similar to bloom-560, llama-3-2-
1B, and llama-3-2-3B

¢ llama-3-2-3B similar to llama-3-2-1B

¢ mistral_7B similar to llama-3-2-3B and llama-
2-7b

Finally, when considering total fixation time, ex-
cept for bloomz-7b1, A values are around 0.05
and are all significantly different from 0. Also, all
models differ in the pairwise comparison, except
for:

e mistral_7B which is similar to llama-2-7b,
llama-3-2-1B, and llama-3-2-3B

¢ Jlama-2-7b, similar to llama-3-2-1B

These results show that the best models are not
necessarily those with the highest number of param-
eters, as for gaze duration, statistically similar re-
sults were obtained for models with 560 million, 1,
3, and 7 billion parameters. This effect is even more
pronounced when considering total fixation time,
with some statistically similar results observed for
models with 1, 3, and 7 billion parameters.

The overall analysis of Figure 1 indicates that
the best model—considering both gaze and total
fixation durations—is llama-3-2-3B. Moreover, it
is notable that the fine-tuned model bloomz-7b1,
despite having 7 billion parameters, performs the
worst in predicting reading times. Additionally,
although not evaluated in languages other than En-
glish, mistral_7B shows statistically similar A val-
ues when compared to llama-3-2-3B.

The estimated effects of surprisal, including co-
efficients and standard errors for each model, are
presented in Table 1.

We observe some consistency among the mod-
els with the best A values. The most discrepant
model is bloom-7B1, reflecting its poor perfor-
mance. Other predictors also show significant ef-
fects, except for the log frequency of the second
word preceding the target, which was statistically
significant only for bloom-7B1.

4.2 Entropy Reduction Models Compared to
Surprisal Baseline

The A results comparing baseline models (with
surprisal) to models that include both entropy re-
duction and surprisal are presented in Figure 2.



First Fixation Gaze Total Fixation
Cr Mean A Log-Lil per Word with SE Ci Mean A Log-Lil per Word with SE Cross-validated Mean A Log-Likelihood per Word with SE
) ° °
5 0.0100 5 0.020 5
= = =
3 3 8
20.0075 20.015 80.06
] o 9
3 3 3
2 2 2
= = =0.04
e 0.0050 e} 0.010 e
i o o
> > &>
S 0.0025 S 0.005 5002
< < <
c c c
& & &
2 0.0000 2 0.000 20.00
S N N Q Q@ Q s N o R Q@ Q& S o 2 @ Q
C N A A Y CHE A A Y K A A A
N & <& o o & & v & & > & & & N & 7 &
«° ¢ N & ° & @ N N W &° X g & N W
Y SN Y SN Y 7 AN SN Y Y S Y 4 DY
) K ) KL KL L) L) K ) L7 L7 L) 2 K 2 K7 KL L)
Surprisal Model Surprisal Model Surprisal Model

Figure 1: Predictive power of surprisal across reading time measures and LLMs. Dots indicate mean A log-
likelihood per word; error bars show 1 standard error of the mean. Note that each panel uses a different y-axis

scale.
First Fixation Gaze Total Fixation

° Ci Mean A Log-Lil per Word with SE) ° Ci Mean A Log-Li per Word with SE ° Cross-validated Mean A Log-Likelihood per Word with SE
S  0.002  0.002

z g g

50008 g 0.001 g 0.001

2 2 2

T T T

=0.004 LB ) S TR L AL R o S
&> & &

S S S

£0.002 £-0.001 £-0.001

o} o} o}

o [s] a

c c c

é 0.000 T é -0.002 é -0.002

\J N \Z N \Z
& N oA 'r& {ﬁ& \«‘b & N oA ,V\‘b Wr& \4‘0 & N oA ,V\‘b Wr& \4‘0
& v & o o R & G 3 o o @7 & v & o o @7
& & S & & & &) & N & & & &) & N & & &
o 3° W & & S 3° W & & 5 3° W & &
Q7 » Q7 © © Q7 Q7 ° Q7 © © Q7 Q7 o Q7 © © Q7
B KR B & Ry B KR B L& L B R B L& L B

Model (Surprisal SRP model name)

Model (Surprisal SRP model name)

Model (Surprisal SRP model name)

Figure 2: Predictive power of entropy reduction across reading time measures and LLMs. Dots indicate mean A
log-likelihood per word; error bars show *1 standard error of the mean. Note that each panel uses a different y-axis

scale.

Model Effect Std. Error
bloom-560 9.52 0.15
bloom-7B1 5.01 0.13
llama-2-7B 8.16 0.14
llama-3-2-1B  8.57 0.15
llama-3-2-3B  8.61 0.15
mistral-7B 8.37 0.15

Table 1: Surprisal coefficient for the target word in a
linear model including surprisal, frequency, and word
length as predictors (considering target word and the
two previous ones).

The statistical analyses show that, for first fixa-
tion duration, all A values are significantly differ-
ent from 0, although the models perform similarly.
In contrast, for both gaze duration and total fixation
duration, all A values are close to 0, and no signifi-
cant differences between models were observed.

Wilcox et al. (2023a) observed an improvement
in the prediction of gaze duration when adding con-
textual entropy as a predictor, with a weak—albeit
consistent—effect across languages. In our study,
however, we do not observe the same effect. In-
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cluding entropy reduction appears to have a posi-
tive impact (independent of the language model)
only for first fixation duration, and even then, the
A values are low (around 0.004).

4.3 Linearity analysis

Figure 3 presents the results of comparing the A
obtained from a linear GAM model with surprisal
to a baseline model without surprisal, as well as the
corresponding A values from a non-linear model,
for the prediction of total fixation duration.

As expected from the results presented in Sec-
tion 3.3.1, the statistical tests showed that all A
are significantly different from 0. Moreover, when
comparing the linear A with the non-linear one for
each language model, we observe that the results
are not significantly different.

Thus, these results corroborate the claim that the
effect of surprisal on reading time is linear, consis-
tent with the findings of Wilcox et al. (2020). This
linear effect is observed across all LLMs consid-
ered, regardless of parameter size, training data, or
supported languages.

Figure 4 shows the differences in surprisal ef-
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Figure 3: Comparison Between Linear and Non-linear Models for the prediction of total fixation duration. Dots
indicate mean A log-likelihood per word; error bars represent the standard error of the mean delta RMSE across

cross-validation folds..

fects between linear and non-linear models for each
LLM. A linear fit can be observed, especially in
the denser regions of surprisal values. Notably, the
model bloom-7b-1, which showed the poorest A
values when the effect of surprisal was analysed,
also exhibits the greatest visual deviation from lin-
earity in the non-linear model.

Similar results are observed for both first fixation
and gaze durations, although the non-linear models
exhibit substantially larger error bars for the first
fixation measures.

4.4 Part-of-Speech Analysis

As a complementary analysis, we investigated the
linearity of the relationship between surprisal esti-
mates and eye-tracking measures across different
parts of speech (PoS) in the RastrOS corpus.

To do this, we conducted ordinary least squares
(OLS) linear regression analyses on data aggre-
gated by PoS. Entries with erroneous PoS tags (i.e.,
”ERR”, which appeared twice in the corpus) were
excluded. For each PoS category, we computed
the mean values of surprisal estimates from six lan-
guage models, as well as mean fixation durations.

For each surprisal model, we then performed
an OLS regression using SciPy’s linregress func-
tion, obtaining the slope, intercept, coefficient of
determination (R?), p-value, and standard error.

Table 2 presents the slope, R?, and p-value from
the OLS regression for each language model across
parts of speech.
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Model slope R? p-value
bloom-560 71.88 0.86 <0.001
bloom-7B1 4586 0.62 <0.001
llama-2-7B 38.82 0.53 <0.001
llama-3-2-1B 3595 0.51 <0.001
llama-3-2-3B 4791 0.57 <0.001
mistral-7B 65.05 0.71 <0.001

Table 2: Slope, R?, and p-values from OLS regressions
of surprisal estimates (per LLM) on total fixation dura-
tion aggregated by part of speech..

The LLM with the highest R? value is bloom-
560, followed by mistral-7B. Indicating that for
this aggregated analysis in terms of PoS, the small-
est model gave the best results. However, in this
case, we considered a simpler regression analysis,
considering only the fixed effect of surprisal.

Figure 5 presents the linear regression plot ob-
tained using bloom-560, showing the estimated
mean total fixation time (i.e., IA_DWELL_TIME)
as a function of the mean surprisal value for each
part of speech (PoS) in RastrOS.

As expected, parts of speech typically associated
with longer word forms and higher information
load (e.g., verbs, nouns, and adjectives) exhibit
higher values of both reading time and surprisal. In
contrast, conjunctions, determiners, and pronouns
show lower values, while auxiliary verbs are the
least surprising and associated with the shortest
reading times. The same tendency was observed
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Figure 4: Surprisal versus reading time relationship: Non-linear GAMs are in red and linear control GAMs are in
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Figure 5: Linear regression plot of mean surprisal es-
timates against total fixation duration for each part-of-
speech (PoS) category for bloom-560. Each point repre-
sents a PoS tag, labeled accordingly. Red lines indicate
the best-fit regression line.

for all LLMs.

5 Conclusion

In this study, we examined the ability of surprisal
estimates from six publicly available large lan-
guage models (LLMs) to predict reading times in
Brazilian Portuguese (BP), using eye-tracking data
from the RastrOS corpus. Our findings confirm
that surprisal significantly correlates with three key
reading time measures (i.e., first fixation duration,
gaze duration, and total fixation time) supporting
the role of probabilistic predictability in BP pro-
cessing.

The best-performing model, Llama-3-2-3B, ap-
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pears to outperform others, including larger or fine-
tuned models such as Bloomz-7b1, suggesting that
model architecture and training data quality may
be more important than sheer size. Moreover, the
relationship between surprisal and reading times
was consistently linear, aligning with previous find-
ings. However, entropy reduction, calculated from
Cloze norms, provided minimal additional predic-
tive power.

These results extend surprisal-based research to
BP and offer a baseline for model selection in fu-
ture studies.

6 Limitations

Several limitations should be noted, first, the Ras-
trOS corpus, though carefully constructed, is rela-
tively small and genre-biased (e.g., dominated by
journalistic texts), which may limit the generaliz-
ability of our findings.

Second, the language models tested were primar-
ily trained on multilingual data with unclear propor-
tions of Portuguese, and none were specifically op-
timized for BP. This raises questions about whether
models trained exclusively on BP data might pro-
vide better fits.

Third, our entropy reduction analysis relied on
Cloze norms rather than model-derived entropy,
potentially underestimating its predictive power.

Finally, while we focused on surprisal as a key
predictor, other linguistic factors, such as syntactic
complexity, were not considered and may have an
impact on reading time variance.
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A Appendix A

For the tests assessing the effect of surprisal, we
use the following models: (1) Baseline and (2) with
surprisal.
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reading_time ~ Freq_brWaC_log

+ Word_Length

+ prev_freq + prev_len (1)
+ prev2_freq + prev2_len

+ (1 | SESSION_LABEL)

reading_time ~ prev_surp
+ prev2_surp
+ Freq_-brWaC_log
+ Word_Length
+ prev_freq + prev_len
+ prev2_freq + prev2_len
+ (1 | SESSION_LABEL)
(2)
B Appendix B

For the tests assessing the effect of entropy reduc-
tion, we use the model 2 in Appendix A as baseline
and (3) with entropy.

reading_time ~ prev_surp
+ prev2_surp
+ entropy_Reduction
+ prev_entropy
+ prev2_entropy
+ Freq_brWaC_log
+ Word_Length
+ prev_freq + prev_len
+ prev2_freq + prev2_len
+ (1 | SESSION_LABEL)
(3)
C Appendix C

The GAM formula used for non-linear models we
use is:

reading_time ~ s(surp, bs = "cr”’, k = 6)
+ s(prev_surp, bs = "cr”,
k =6)
+ te(Freq_brWaC log,
Word _Length, bs = cr”)
+ te(prev_freq, prev_len,

bS — ”Cr”)

“4)



And for linear models:

reading_time ~ surp + prev_surp
+ te(Freq_brWaC log,
Word_Length, bs = "cr”)
+ te(prev_freq, prev_len,
bs = "cr”)

)
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Abstract

Egocentric sensing using wearable devices of-
fers a unique first-person perspective for driver
behavior analysis and monitoring, with the po-
tential to accurately capture rich multimodal
cues such as eye gaze, head motion, and hand
activity directly from the driver’s viewpoint. In
this paper, we introduce a multimodal driver be-
havior recognition framework utilizing Meta’s
Project Aria smart glasses, along with a novel,
synchronized egocentric driving dataset com-
prising high-resolution Red Green Blue (RGB)
video, gaze-tracking data, Inertial Measure-
ment Unit (IMU) signals, hand pose land-
marks, and YOLO-based semantic object de-
tections. All sensor data streams are tempo-
rally aligned and segmented into fixed-length
clips, each manually annotated with one of
six distinct driver behavior classes: Driving,
Left Mirror Check, Right Wing Mirror Check,
Rear-view Mirror Check, Mobile Phone Us-
age, and Idle. We design a Transformer-based
recognition framework in which each modal-
ity is processed by a specialized encoder and
then fused via Temporal Transformer layers
to capture cross-modal temporal dependencies.
To investigate the trade-off between accuracy
and efficiency for real-time deployment, we
introduce two model variants: EgoDriveMax,
optimized for maximum accuracy, and Ego-
DriveRT, designed for real-time performance.
These models achieve classification accuracies
of 98.6% and 97.4% respectively. Notably,
EgoDriveRT delivers strong performance de-
spite operating with only 104K parameters and
requiring just 2.65 ms per inference without
the use of a specialized graphical processing
unit—highlighting its potential for efficient,
real-time in-cabin driver monitoring.
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Figure 1: Project Aria Glasses. (Engel et al., 2023)

1 Introduction

Egocentric sensing offers powerful capabilities for
capturing and interpreting human behavior in com-
plex, real-world scenarios. In particular, the fu-
sion of diverse sensor modalities can provide a
rich, temporally aligned representation of user ac-
tions. However, integrating these heterogeneous
data streams in a unified framework while ensuring
real-time performance poses substantial technical
challenges. Driver behavior analysis and action
recognition provide a compelling and high-stakes
application domain to explore and evaluate such
systems.

In this work, we investigate the technical fea-
sibility of such an approach to driver behavior
recognition through a proof-of-concept system
using Meta’s Project Aria glasses (Engel et al.,
2023). Our approach integrates high-resolution
RGB video, eye gaze tracking, hand pose land-
marks, IMU data, and semantic object detections
to recognize six driver behaviors. We demonstrate
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that effective multimodal fusion can be achieved
while maintaining real-time performance, introduc-
ing two Transformer-based architectures that ex-
plore the accuracy-efficiency trade-off: EgoDrive-
Max and EgoDriveRT.

Our contributions are threefold: (1) we demon-
strate the technical feasibility of real-time driver
behaviour recognition using multimodal egocentric
sensing, (2) we propose two efficient Transformer-
based architectures that achieve high accuracy un-
der strict latency and resource constraints, and (3)
we introduce a proof-of-concept style, egocentric
driving dataset comprising the aligned aforemen-
tioned data streams. Although our evaluation is
conducted in a controlled setting with a singular
participant and vehicle, the consistently strong per-
formance across diverse driver actions indicates
the potential for scalable deployment in real-world
driver monitoring systems.

2 Related Work

Egocentric Vision. A rapidly growing area within
computer vision, primarily driven by advances in
wearable and augmented reality technologies. Meta
are an established force in this domain, particularly
in the open-source ecosystem, due to major con-
tributions such as the Ego4D dataset (Grauman
et al., 2021), the Project Aria initiative itself (Engel
etal.,2023) and the HOT3D dataset (Banerjee et al.,
2024), among others. Interest has also begun to per-
meate through into the automotive research space
with implementations such as EgoFormer (Qazi
et al., 2024), EgoSpeed-Net (Ding et al., 2022) and
others paving the way for egocentric driver behav-
ior modeling and in-cabin understanding.

Beyond Meta and the automotive sector, the aca-
demic egocentric vision landscape includes sev-
eral influential datasets and methodologies. Epic-
Kitchens-100 (Damen et al., 2020) provides fine-
grained action recognition in kitchen environments,
while EGTEA Gaze+ (Li et al., 2018) combines
egocentric video with gaze data for activity under-
standing. Recent advances in egocentric representa-
tion learning include EgoVLM (Vinod et al., 2025)
for vision-language understanding and EgoNCE
(Lin et al., 2022) for self-supervised learning from
temporal relationships.

Multimodal Learning. Effective multimodal
learning requires architectures capable of aligning
and fusing heterogeneous data streams with varying
sampling rates and representational characteristics.
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Recent work has explored various fusion strate-
gies, from early concatenation to attention-based
approaches. Meta also possess a strong foothold
in this research community, with implementations
such as ’Reading in the Wild’ (Yang et al., 2025)
demonstrating transformer-based multimodal fu-
sion using RGB, head pose, and eye-tracking data,
for the recognition of the reading action in a variety
of scenarios. Also created by Meta’s researchers,
Moon et al. (2023)’s IMU2CLIP work represents a
significant advance in aligning IMU sensor data
with textual representations through contrastive
learning, displaying how motion sensors can be
integrated into multimodal frameworks and provid-
ing a potential avenue for resource efficient human
action recognition via motion-to-text conversion.

Many of the recent advancements in this area
have been driven by either transformer-based archi-
tectures or contrastive learning focused approaches.
Contrastive Language-Image Pretraining (CLIP)
(Radford et al., 2021) and its variants demon-
strate effective cross-modal alignment through con-
trastive objectives, while works like VLMo (Bao
et al., 2022) explore *Mixture-of-Modality-Experts’
based approaches for vision-language tasks.

Automotive Action Recognition. Action
Recognition implementations for automotive appli-
cations in the academic world have traditionally re-
lied on exocentric cameras and/or single-modality
approaches. Martin et al. (2019)’s Drive&Act
dataset represents the most comprehensive effort in
this space, utilizing multiple cameras types along-
side pose estimation for robust driver behavior
recognition in numerous lighting conditions from
the third-person perspective. Furthermore, several
other works such as those from Lin et al. (2021)
and Li et al. (2024) explore alternative methodolo-
gies such ss RGB-D cameras and mmWave radars
for driver-centric behavior identification.

Hoskeri (2023)’s proof-of-concept work comes
closest to our approach, demonstrating the feasibil-
ity of using smart glasses with forward-facing cam-
eras and IMU sensors for basic driver monitoring.
Their controlled lab-based study achieved strong
performance (93-99% F1) on limited steering and
head movement patterns, establishing initial feasi-
bility but leaving open questions about multimodal
integration and real-world deployment.

However, the landscape of driver behavior recog-
nition also includes a wide range of non-academic
implementations. In the commercial sector, Tesla’s



cabin-facing camera system and Seeing Machines’
Driver Monitoring Systems (DMS) represent cur-
rent industry standards, typically achieving 95%+
accuracy for basic attention detection but with
limited behavioral granularity. Smart Eye’s Al-
powered systems demonstrate real-time gaze track-
ing capabilities, though primarily for attention mon-
itoring rather than detailed action recognition.

Finally, the challenge of achieving real-time per-
formance with such systems is an extremely per-
tinent one and has driven research into numerous
efficiency focused architectures, with those from
the commercial domain subject to much more strin-
gent regulations than those from academia.

3 EgoDrive Dataset

To investigate the technical feasibility of multi-
modal egocentric driver behavior recognition, we
developed a proof-of-concept style dataset. Our
dataset design prioritizes technical requirements
over scale and scope, with the resulting dataset
potentially serving as a template for future multi-
modal egocentric behavioral analysis studies cap-
tured using Project Aria (Engel et al., 2023).

_— Project Aria -~ COMPLIMENTARY
. - T YRSHRe [ G @

(

RGB, IMU etc. —I—Gaze / Hand Pose Data—

Temporal
Alignment
[
DEIE]
Annotation

Action
Sample
Creation

Training
Dataset
Creation

Figure 2: Dataset Creation Flowchart.

3.1 Data Gathering

As previously stated, all data was captured using
Meta’s Project Aria glasses as a single, integrated
sensing platform. A major advantage of this ap-
proach is its inherent temporal synchronization
across modalities, simplifying the reliable align-
ment of modality-specific timestamps by ensuring
all data is referenced to a common device-time. We
selected RGB camera (15fps), eye-tracking cam-
eras (30fps), Simultaneous Localization and Map-
ping (SLAM) cameras (15fps), and IMUs (800Hz
and 1KHz) based on their complementary roles
in behavioral analysis: visual context, attention
tracking, spatial awareness, and motion dynam-
ics respectively. All recording adhered to General
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Data Protection Regulations (GDPR) , including
informed consent where feasible, anonymization in
post-processing, and secure data handling (GDPR,
2016).

A controlled, single-participant approach allows
for the isolation of technical challenges in mul-
timodal processing for a proof-of-concept based
study, without confounding factors from inter-
participant variability. Following the culmination
of the data capture process, hand tracking and gaze
estimates were obtained through Meta’s Machine
Perception Services (MPS).

3.2 Dataset Creation

Creating a temporally aligned multimodal dataset
from asynchronous sensor streams poses several
technical challenges, which our methodology had
to overcome.

RGB timestamps are designated as the primary
temporal reference. IMU data—comprising 6D
input from both the accelerometer(3D) and gyro-
scope(3D) —is linearly interpolated to match the
RGB frame rate, resulting in a standardized sample
shape of (Sequence Length, IMU Hz/RGB FPS, 6).
Gaze data, sampled at twice the RGB rate, is tem-
porally aligned using a simplified, mean nearest-
neighbor matching strategy. This produces a single
(x, y) pixel-coordinate gaze point per RGB frame
and results in a sample shape of (Sequence Length,
2). Hand landmark data, returned by Meta’s Ma-
chine Perception Services (MPS), at the same sam-
pling rate as the RGB stream, required no resam-
pling. Each sample is thus represented with a shape
of (Sequence Length, 8), where each §8-dimensional
vector corresponds to the x-y positions of the left
and right wrists and palms.

This alignment pipeline maintains temporal co-
herence across modalities, while preserving each
sensor’s native sampling behavior. In addition, se-
mantic context was incorporated through object de-
tections generated by a custom-trained YOLOv11
model tailored for in-cabin environments (see Sec-
tion 4 for training details). Each frame’s detections
are encoded as a fixed-length feature vector, with
details limited to four key objects. Each of the four
objects was represented using five dimensions: a
binary presence indicator (0 or 1), the x and y coor-
dinates of the top-left corner of the bounding box,
followed by the bounding box’s height and width.



Figure 3: Annotated Dataset Samples

Following on from the dataset’s compilation,
manual frame-by-frame annotation mapped frame
indices to six behaviorally relevant classes: Driv-
ing, Left Wing Mirror Check, Right Wing Mirror
Check, Rear-view Mirror Check, Mobile Phone
Usage, and Idle. These classes were selected to
represent distinct attention patterns and physical
actions that create differentiable multimodal sig-
natures. Each training sample spans 32 frames
(2.13s), with longer actions segmented into multi-
ple samples and shorter actions padded to maintain
consistent temporal context. The final dataset, pro-
cessed for training, consisted of 2,448 samples,
with a real-world consistent bias towards the "Driv-
ing’ action, with the exact class distribution visible
in Figure 4.

Driving (1464)

Idle (206)
Phone (164)

Rearview (260)

Right Wing (164)

Figure 4: Dataset Class Distribution

4 Methodology

To address the challenge of fusing asynchronous
and heterogeneous sensor streams, we adopt a mod-
ular processing pipeline centred around modality-
specific encoders and transformer blocks. Full
training methodologies for both the final models
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as well as the in-cabin object detection model are
detailed below.

4.1 Object Detection Model

As previously stated, object detections for this im-
plementation resulted from the training of a cus-
tom object detection model. Training frames were
randomly sampled from the RGB streams of the
main dataset and manually annotated with eight
object classes: Right Wing Mirror, Left Wing Mir-
ror, Rearview Mirror, Gear Stick, Infotainment
Unit, Speedometer, Steering Wheel, and Mobile
Phone. This process resulted in a dataset of over
4,000 annotated images. Once annotation was com-
plete, the dataset was divided into an 80/10/10
train/validation/test split. A YOLOv11 backbone
for fine-tuning was selected for its balance of effi-
ciency and performance, achieving a precision of
96.5% and a mAP50-95 of 88.1% after training.

4.2 Model Architectures

We designed a Transformer-based architecture to
address the core technical challenge of fusing het-
erogeneous sensor streams with different sampling
rates and representational characteristics. Our ap-
proach processes each modality through special-
ized, unimodal encoders that extract meaningful
features, which are then projected into a shared
embedding space and passed through Temporal
Transformer blocks for cross-modal reasoning.

Each sensor stream requires tailored processing
to handle its unique characteristics. The RGB en-
coder processes visual sequences (B, T, C, H, W) us-
ing a pretrained Swin-Tiny Video Transformer (Liu
et al., 2021) for spatial features, complemented by
a ResNet-18 (He et al., 2015) motion stream com-
puting frame differences. Both streams are fused
through projection networks and temporal 1D con-
volutions.

The gaze encoder projects normalized (0-1) x,y
coordinates through linear layers, also followed by
1D convolutions, while the hand landmark encoder
handles missing landmarks through learnable re-
placement vectors and validity masks, processing
three parallel streams (coordinates, masks, missing-
ness patterns) through feedforward networks and
temporal attention.

Finally, object detection features undergo lin-
ear projection and 1D convolution for temporal
modeling, while the IMU encoder processes sig-
nal through stacked 1D Convolutional Neural Net-
works (CNN) with pooling, followed by Gated Re-
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Figure 5: EgoDriveMax Architecture

current Unit (GRU) (Chung et al., 2014) layers for
long-term modeling.

Projected features from all available modalities
are concatenated and processed through one or
more (stacked) Temporal Transformer blocks with
multi-head attention, enabling the model to learn
complex dependencies between behavioral cues
across different sensor streams. A subsequent Lay-
erNorm module is used to stabilize outputs.

4.3 Architectural Variants

To explore the accuracy-efficiency trade-off criti-
cal for real-time deployment, we developed two
architectural variants that demonstrate different ap-
proaches to multimodal processing:

As shown in Table 1, the EgoDriveMax variant
prioritizes absolute accuracy with 2 Transformer
blocks, 4 attention heads, 256-dimensional features,
and full RGB processing, totaling 42M parameters,
while EgoDriveRT instead targets real-time per-
formance with 1 block, 2 heads, 32-dimensional
features, and RGB encoder removal, resulting in
just 104K parameters - a 400x parameter reduction.
Dropout was standardized across both models at a
value of 0.1.

Model Blocks Heads Feature Dim. RGB

Max 2 4 256 v
RT 1 2 32 X

Table 1: Configuration details for the Max and RT model
variants.

4.4 Training

All models were trained using a 60/20/20
train/validation/test split for a maximum of 20
epochs, with early stopping (patience = 5) to pre-
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vent overfitting. Optimization was performed using
the Adam optimizer (Kingma and Ba, 2017) with
a learning rate of 1 x 10~%4. Categorical Cross-
Entropy loss was applied due to the multi-class
nature of the task. To address class imbalance,
loss weighting was used to increase the penalty for
misclassifying underrepresented classes.

EgoDriveMax was trained on a single NVIDIA
A100 GPU using Google Colab, while EgoDriveRT
was trained locally on an Apple M4 chip. All train-
ing metrics and experiment logs were tracked using
Weights & Biases (W&B).

Figure 6 shows the validation accuracy curve for
EgoDriveRT, illustrating stable and smooth conver-
gence. The EgoDriveMax model exhibited compa-
rable convergence behavior during training.

Validation Loss vs. Training Step

144 —e— Validation Loss
1.2
1.04
0.8

0.6 q

Validation Loss

0.4

0.2

300 400 500

Step

100 200

Figure 6: EgoDriveRT Validation Curve

5 Results

5.1 Proof-of-Concept Validation

We evaluate our approach to assess the technical
feasibility of real-time multimodal driver behavior
recognition. Our results demonstrate that effective
multimodal fusion can achieve strong performance
while maintaining practical inference constraints.
Table 2 shows our primary finding: the
lightweight EgoDriveRT model achieves 97.4%



accuracy with just 2.65ms inference time on Ap-
ple’s M4 chip using the Metal Performance Shaders
framework, compared to EgoDriveMax’s 98.6% ac-
curacy at 1595ms.

F1 Params Inf Time
42M  1595ms
104K 2.65ms

Model Acc
EgoDriveMax 98.6 % 98.0%
EgoDriveRT 97.4% 96.6%

Table 2: Model variant test results.

This 400x parameter reduction (104K vs 42M)
with minimal accuracy loss demonstrates that effi-
cient multimodal architectures can capture essential
behavioral patterns without requiring computation-
ally expensive visual processing. Inference results
displayed via annotated results from the EgoDrive-
Max model can be viewed below in Figure 7.

Figure 7: Example Action Detections

5.2 Per-Action Analysis

Table 3 displays the individual per-action results us-
ing both model variants, illustrating some interest-
ing findings. The RT model’s superior performance
on Left Mirror Check (100% vs 96.9%) suggests
that for certain actions, the simplified architecture
may avoid overfitting to visual features while better
leveraging complementary modalities like gaze and
head motion.

The consistently strong performance across all
actions using both models supports the effective-
ness of the core technical approach for distinguish-
ing behaviorally relevant driver actions. However,
this performance may also be partially influenced
by the controlled scope of the study; in broader,
more diverse scenarios, a decline in performance
would be a reasonable expectation.

Action Acc Prec Rec Model
Left Wing Mirror  96.9% 100% 96.9% Max
Left Wing Mirror 100% 100% 100% RT

Right Wing Mirror97.4% 100% 97.44% Max

Right Wing Mirror 94.9% 100% 94.9% RT
Rearview Mirror 97.9% 97.9% 97.9% Max
Rearview Mirror  91.2% 100% 91.2% RT
Mobile Phone 94.1% 94.1% 94.1% Max
Mobile Phone 96.3% 89.7% 96.3% RT
Driving 99.3% 98.7% 99.3% Max
Driving 98.7% 97.3% 98.7% RT
Idle 100% 100% 100% Max
Idle 97.1% 97.1% 97.1% RT

Table 3: Model variant test results.

5.3 Ablation Study

To evaluate the contribution of each modality to
overall performance, we conducted five additional
training runs of the EgoDriveMax model, each time
removing a singular modality. Due the complexity
and robustness introduced by the multimodal setup,
the model maintained strong performance across all
ablations. Nonetheless, several meaningful trends
emerged.

Modalities @ Acc Prec Rec F1

All 98.6% 98.5% 97.6% 98.02 %
w/o Obj Dets 97.6% 97.4% 96.5% 96.9%
w/o Gaze 98.0% 97.6% 97.2% 97.4%
w/o RGB 97.4% 96.6% 97.3% 96.9%
w/o Hands  98.2% 98.0% 97.2% 97.6%
w/o IMU 97.4% 96.3% 97.3% 96.7%

Table 4: Ablation test results across different modality
combinations.

As expected, the configuration using all available
modalities achieved the highest scores across all
evaluation metrics. Analyzing the F1 scores from
the ablation runs, the IMU stream was found to be
the most influential, providing the most discrimi-
native features to the model. This was followed
by object detections and RGB video frames, both
of which contributed significantly. In contrast, the
removal of gaze features and hand landmarks led
to only minor drops in performance. This suggests
that these modalities may be partially redundant,
with their information content potentially approxi-
mated by other inputs—e.g., gaze direction could
be inferred from a combination of object detection



bounding box locations and IMU-based motion
patterns, reducing the utility of explicit gaze data.

6 Conclusions and Limitations

This work demonstrates the technical feasibility
of real-time multimodal egocentric driver behavior
recognition using wearable sensors. The most sig-
nificant finding is that our lightweight EgoDriveRT
model achieves near-optimal performance (97.4%
accuracy) with 400x fewer parameters than the
EgoDriveMax model and sub-3ms inference times.
This efficiency suggests that the rich behavioral
information captured through gaze tracking, hand
pose, IMU data, and semantic object detection may
be sufficient for accurate driver action recognition
without computationally expensive visual process-
ing.

Our single-participant controlled study validates
the core technical approach, though inherently lim-
its the generalizability of findings to broader pop-
ulations and while the results certainly establish
technical feasibility, real-world deployment would
require validation across diverse drivers, vehicles,
and environmental conditions, as well as an ex-
panded action set, to ensure robust performance.

7 Future Work

Future research should prioritize multi-participant
validation to capture inter-individual variability and
explore on-device deployment strategies to pre-
serve user privacy. The modular design also opens
opportunities for personalization and continuous
learning in long-term deployments. Furthermore,
should future generations of the Project Aria de-
vice include onboard compute, this work presents
the foundations for the development of a fully self-
contained driver monitoring system. Finally, the
architectural insights and dataset methodology pre-
sented here offer a strong foundation for building
scalable, efficient, and context-aware egocentric
driver monitoring systems.
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Comparing Eye-gaze and Transformer Attention Mechanisms in Reading
Tasks
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Abstract

As transformers become increasingly preva-
lent in NLP research, evaluating their cogni-
tive alignment with human language process-
ing has become essential for validating them as
models of human language. This study com-
pares eye-gaze patterns in human reading with
transformer attention using different attention
representations (raw attention, attention flow,
gradient-based saliency). We employ both sta-
tistical correlation analysis and predictive mod-
eling using PCA-reduced representations of
eye-tracking features across two reading tasks.
The findings reveal lower correlations and pre-
dictive capacity for the decoder model com-
pared to the encoder model, with implications
for the gap between behavioral performance
and cognitive plausibility of different trans-
former designs.

1 Introduction

The impressive capabilities of Transformer models
in linguistic tasks have revolutionized Language
Models in Natural Language Processing (NLP) re-
search. A key difference in their architecture from
previous models is the incorporation of an attention
mechanism, which assigns a degree of relevance
between words in the input. Previous work has
shown that transformer models show signs of pro-
cessing steps similar to humans (Clark et al., 2019;
Voita et al., 2019), and tend to mirror the structure
of the classic NLP pipeline (Tenney et al., 2019).

Attention during reading has also been exten-
sively studied in human eye-movement research.
Eye-movements track much of linguistic process-
ing, including both lower-level word processing
(Just and Carpenter, 1980; Clifton Jr. et al., 2007)
and higher-level comprehension (Reichle et al.,
2010; Southwell et al., 2020).

While transformer attention is not explicitly
modeled after human attention in text processing,
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both mechanisms seem to process text by allocat-
ing resources on relevant linguistic targets. This
similarity, combined with the broader effort of ex-
plainability research to explain artificial models in
human terms, has driven comparisons of model at-
tention to human eye-movement patterns. From a
cognitive science perspective, the goal of this com-
parison is to determine the cognitive plausibility of
computational models like transformers. This in-
volves understanding whether they merely achieve
high, human-like performance due to genuinely as-
similating the human cognitive process, or due to
other artificial processes learned independently.

Previous work (Kozlova et al., 2024; Bensemann
etal., 2022; Eberle et al., 2022; Morger et al., 2022;
Wau et al., 2024; Hollenstein and Beinborn, 2021;
Brandl and Hollenstein, 2022) has investigated this
parallel using various techniques to extract atten-
tion scores from transformers and compare them
to eye-movements from established eye-tracking
datasets. However, several knowledge gaps exist.
Most existing literature has focused on encoder
transformer models, leaving open the question of
whether more advanced and recent decoder mod-
els can equally align with eye-movements. Addi-
tionally, since many studies neglect the impact of
low-level text properties on eye-movements, any
correlation driven primarily by these surface-level
features would be insufficient evidence of deeper
cognitive alignment. Finally, eye-tracking datasets
consist of multiple eye-tracking features that pro-
vide informative signals regarding reading patterns.
However, these features are often intercorrelated,
so they may capture redundant aspects of the same
underlying attention mechanism. The literature has
not been able to consolidate overlapping informa-
tion from multiple features into a single analysis,
where previous studies most often focus arbitrarily
on a single metric.

To address the identified knowledge gaps, this

Proceedings of First International Workshop on Gaze Data and NLP associated with RANLP 2025,
pages 26-36, Varna, Bulgaria, Sep 12, 2025.

https://doi.org/10.26615/978-954-452-104-2-004


https://doi.org/10.26615/978-954-452-104-2-004

study compares the attention mechanism of a
decoder-only model with human attention during
reading. It employs both correlation analysis and
predictive modeling using PCA-reduced represen-
tations of eye-tracking features and accounting for
surface-level properties of the text. Moreover, the
effect of different attention representation methods
(raw attention, attention flow, and gradient-based
saliency) is investigated on the results. The results
provide insights into how the model architecture,
attention method, and reading task collectively in-
fluence the similarity of model attention patterns to
eye-movement behavior.

2 Background

2.1 Human attention and Eye-Movements

Eye-movement research has a long and successful
history in studying human cognitive tasks. Eye-
movements in reading are shown to provide infor-
mation about cognitive language processing, like
syntactic parsing and semantic integration (Fra-
zier and Rayner, 1982), expectations about the
text (Ehrlich and Rayner, 1981), and reading goals
(Rayner, 2009).

Eye-movements consist of fixations and sac-
cades (Rayner et al., 2006). Saccades are short,
rapid movements to other parts of the text, while
fixations occur when eyes remain stationary in
between saccades (Reichle et al., 2003) and are
considered the key point of information process-
ing. Eye-tracking measures focus on different ag-
gregations of these movements, such as the to-
tal fixated time on each word. Both low-level
bottom-up processing and higher-level comprehen-
sion are reflected in eye-tracking measures. Famil-
iar (Clifton Jr. et al., 2007), or frequently occurring
words (Inhoff and Rayner, 1986) are subject to
faster processing, whereas rare occurring words
such as novel proper nouns tend to have longer
fixations (Barrett and Hollenstein, 2020). Longer
words also receive longer fixations, while shorter
words are more likely to be skipped. Word length
additionally interacts with the functional role of a
word, where function words are fixated less than
content words (Rayner, 2009). More top-down
processes like assessing the predictability of the
text given the preceding context draws shorter gaze
durations and the reverse holds for unpredictable,
surprising words (Ehrlich and Rayner, 1981).
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2.2 The Rise of Transformer Models and the
Quest for Interpretability

Transformer models were introduced when
Vaswani et al. (2017) proposed attention as a novel
method for handling contextual relations in lan-
guage models. The attention mechanism com-
pares different embedding representations of the
sequence to determine the degree of relevance be-
tween each pair of words. The model then attends
to important parts of the sequence depending on
these relevance scores. The exceptional perfor-
mance of these models and the intuition and trans-
parency of the attention mechanism drew much
attention from both deep learning and interpretabil-
ity research. As transformer models are advancing,
there is a growing demand to interpret not only
their outputs, but also the internal mechanisms that
lead to those outputs. The first advancements in
interpretability emerged from the Computer Vision
field (Simonyan et al., 2014; Zeiler and Fergus,
2014), where saliency maps were used to trace
model decisions back to input pixels. This tech-
nique estimates the contributions of input raw data
or intermediate activations to model predictions
(Li et al., 2022) and is also commonly applied to
NLP research. For transformer architectures specif-
ically, attention-based and gradient-based methods
have gained popularity for representing importance
allocated to the input sequence.

2.2.1 The interpretability debate

Raw attention scores extracted directly from the
model provide an easily understandable weighting
of the input sequence. For example, in the original
paper introducing attention, Vaswani et al. (2017)
showed that examining the raw attention towards
ambiguous pronouns like “its” could reveal how
anaphora resolution is represented in the model.
Previous work correlating raw attention and hu-
man eye-gaze shows mixed findings. While Sood
et al. (2020) reported non-significant correlations
for later layers of models like XI.Net, Bensemann
et al. (2022), Eberle et al. (2022) and Morger et al.
(2022) found strong correlations in early Trans-
former layers. Bensemann et al. (2022) noted that
correlation strength is generally higher in early lay-
ers and not dependent on the model’s size, though it
can be influenced by the training process. Kozlova
et al. (2024) similarly found strong early-layer cor-
relations in the context of anaphora resolution. Eye-
gaze features like First Fixation Duration (FFD) are



often found to align better with single-pass model
behavior than cumulative measures like Fixation
Count (F) or Total Reading Time (TRT), as FFD
reflects initial processing (Ikhwantri et al., 2023).
Furthermore, research has explored the ability of
language models to predict human eye-movements
as an indicator of their cognitive plausibility (Hol-
lenstein et al., 2022).

However, the increased focus on faithful expla-
nations opened a debate about the effectiveness of
the attention mechanism as an explanation method.
Some critics (Jain and Wallace, 2019) argue that
raw attention weights do not always strongly cor-
relate with gradient-based measures of feature im-
portance, and that different attention distributions
can lead to effectively identical model predictions
(Jain and Wallace, 2019; Serrano and Smith, 2019),
questioning whether attention provides a unique
explanation for the model’s behavior. However,
Wiegreffe and Pinter (2019) argued that producing
identical explanations to gradient-based methods
is not necessary for plausible model explanations,
especially when the goal shifts from explaining the
model’s predictions to broadly understanding the
model’s internal behavior (Bastings and Filippova,
2020). Nevertheless, attention flow and saliency-
based methods have been proposed as more suit-
able for quantifying word importance in sentence
processing.

Attention flow (Abnar and Zuidema, 2020) is an
interpretation method based on flow networks from
graph theory. This method tackles the problem of
uniform raw attention in higher layers and models a
global view of attention, as it captures the entire in-
formation propagation through the network layers.
In attention flow, the raw attention graph is treated
as a flow network that consists of nodes connected
by directed edges. A flow function assigns values
to edges such that the maximum total flow from
a source node reaches a target node, under some
capacity and conservation constraints.

Gradient-based saliency differs from attention-
based methods as it does not utilize the trans-
former’s attention mechanism'. Instead, it mea-
sures how sensitive the model output is to changes
in each input token’s embeddings. For each target
token in the sequence, gradients are computed with
respect to all input tokens and are normalized to

"Even though gradient-based saliency relies on input-
output gradients rather than attention scores, it is loosely
referred to as an attention method in this study for brevity,
in the sense of attributing importance to the input.
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produce a saliency score for each token.

Hollenstein and Beinborn (2021) found that fix-
ation durations correlate better with saliency-based
than with attention-based importance, suggesting
saliency as a more cognitively plausible metric for
interpretation. Morger et al. (2022) supported this
finding for gradient-based saliency and for atten-
tion flow, across multiple languages. Similarly,
Eberle et al. (2022) observed strong alignment of
attention flow with human fixation times in natural
reading, competitive with a specialized cognitive
model of human reading (E-Z reader).

2.2.2 Alignment in task-specific contexts

Human reading strategies are task-dependent and
influence how attention is allocated to different
parts of the sequence. Task specificity thus plays a
crucial role in the alignment between human and
model attention. While Wu et al. (2024) found that
finetuning models on task-specific objectives can
enhance correlations with human gaze when us-
ing saliency methods, Eberle et al. (2022) showed
that task-specific finetuning did not significantly in-
crease correlation, and models aligned better with
natural reading patterns than with task-specific
ones. Brandl and Hollenstein (2022) further demon-
strated that more in-depth reading (characterized
by longer total reading times and lower skipping
rates) generally correlates better with model atten-
tion compared to faster, shallow reading.

2.3 Our contribution

Despite evidence that transformer attention pat-
terns align with human reading behavior, most
existing work has focused on encoder-only or
encoder-decoder architectures, leaving questions
about newer decoder-only models that process text
left-to-right (Hollenstein and Beinborn, 2021). Ad-
ditionally, many studies overlook text properties’
influence on eye-movements and lack methods for
integrating multiple eye-tracking features in the
analysis. While Wu et al. (2024) investigates an
early decoder-only model (GPT-2), their analy-
sis focused on gradient-based saliency in a task-
specific setting. This study compares decoder-only
model attention with human attention using raw at-
tention, attention flow, and gradient-based saliency
across both natural and task-specific reading. We
address three research questions: (RQ1) To what
extent do human eye-movements correlate with de-
coder model attention? (RQ2) Can decoder models
predict eye-movements independently of text fea-



tures like word frequency, length, and surprisal?
(RQ3) How does Principal Component Analysis
of eye-tracking features and task-specificity affect
these correlations and predictions?

3 Methods

3.1 Eye-tracking Data

This study uses the Zurich Cognitive Language Pro-
cessing Corpus (ZuCo) (Hollenstein et al., 2018).
ZuCo combines EEG and eye-tracking recordings
from English native speakers reading natural sen-
tences. 12 participants read sentences under differ-
ent conditions (tasks). In Task 2 ("Normal Read-
ing”) the participants were asked to read 300 sen-
tences containing certain relations and answer a
comprehension question after each sentence. In
Task 3 (" Task-specific Reading”), the participants
were instructed to focus on a specific relation type
before reading the sentence. 407 sentences were
presented in blocks of the same relation so the
subjects knew what relation to look for. For each
sentence, the participants had to indicate whether
the specified relation was present in the sentence
or not.

The raw eye-tracking data consists of the follow-
ing eye-tracking features on the word-level: gaze
duration (GD), total reading time (TRT), first fix-
ation duration (FFD), single first duration (SFD),
go-past time (GPT), fixation count (F) and mean
pupil size (mPS). These features are normalized to
their relative value in each sentence and then are
averaged across participants to ensure robustness
across different sentences and reading behaviors.

This study compares human and model data in
two ways: (1) by analyzing each gaze feature in-
dividually, and (2) by combining the most infor-
mative aspects of these features using Principal
Component Analysis (PCA). A PCA representa-
tion is derived separately for each task across all
sentences within that task, with each word repre-
sented by its normalized eye-tracking values. We
experimented with different numbers of compo-
nents to identify the optimal balance between com-
pact representation and captured variance. Ideally,
a single component is preferred, as it encodes the
most compact and efficient representation of the
multidimensional eye-tracking data.

3.2 Model Attention

This study uses Llama 3.1-8B for investigating
transformer attention, which is a latest generation
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decoder model, and BERT-base-uncased for the
encoder comparison. Both BERT and Llama mod-
els remain in their pretrained states without task-
specific fine-tuning because the goal is to investi-
gate the fundamental model alignment with human
attention, rather than deliberately optimizing it. For
both models, explicit instructions similar to those
the participants received are prepended to the input
sentences to better resemble the original experi-
ment and guide model attention closer to the hu-
man cognitive task. Attention patterns are extracted
using standard forward passes without masking to
reveal how each model’s attention mechanism re-
sponds to the same instructional context during
inference.

3.2.1 Raw attention

The input is tokenized and passed through the
model to obtain the raw attention scores for each
layer, averaged across attention heads. Because
tokenization can split original words into smaller
subtokens, the attention scores are aligned with the
human data by assigning each original word the
maximum attention score among its subtokens, fol-
lowing the approach of Sood et al. (2020). The
final score for each word in each layer is computed
as the average attention it receives from all other
words (including instruction words). A normaliza-
tion by the sum of the total attention is applied
to obtain relative attention scores per word and to
account for variability across sentences.

3.2.2 Attention flow

Attention flow is calculated using Edmonds-Karp’s
maximum-flow algorithm (Edmonds and Karp,
1972). The last token is considered the target ’sink™
token in each sentence, where reading presumably
’stops”. For the Llama model, attention flow is im-
plemented under a reduced number of paths to re-
spect its causal attention structure. Finally, a decay
is applied to account for the inherent bias to early
input tokens in decoder models, using the position-
based weighting proposed by Metzger et al. (2022).

3.2.3 Gradient-based saliency

Saliency is calculated by taking the L1 normalized
gradient of the model’s output logit with respect
to each input token embedding. This process is re-
peated with each token serving as the prediction tar-
get, and the resulting saliency scores are averaged
across all targets to obtain a global saliency score
for each token. As with previous methods, token-



level saliency scores are combined at the word level
and normalized to reflect relative saliency within
each sentence.

3.3 Analysis

The eye-tracking data (both PCA-reduced and indi-
vidual features) are compared word by word with
the transformer scores using Spearman’s correla-
tion. In addition to correlation analysis, we use
linear regression models (ordinary least squares)
to assess whether there is a predictive relation-
ship between model attention and eye-gaze, and to
measure how additional text features linked to eye-
movements may influence this relationship. The
predictive relationship is assessed through adjusted
R? on unseen data (20% of the dataset). We in-
corporate 5 text-related features as additional pre-
dictors alongside model attention: word frequency
(across many corpora), word length, functional cat-
egory (function vs. content words) and surprisal
derived from the respective transformer model.

Four regression models are fitted for each combi-
nation of transformer model (BERT, Llama), atten-
tion method (raw attention, attention flow, gradient-
based saliency) and reading task (Task 2, Task 3).
To determine whether model attention improves
predictive capacity, we compare performance to
a baseline model that uses only text features as
independent variables. We similarly compare the
PCA model to the average performance of models
predicting individual eye-gaze features, with PCA
predictions transformed back to the original fea-
ture space. Both comparisons use the Wilcoxon
signed-rank test of mean squared errors between
regression models. To further analyze the contribu-
tion of attention and text features to the regression
models, we visualize feature importance using ab-
solute t-values?.

4 Results

4.1 Experiment 1: Replication

The correlation analysis between BERT raw at-
tention and human eye-movements successfully
replicates previous findings. BERT’s first layer
shows the highest correlations with Task 2 eye-
movements (¢ = 0.69,0 = 0.02), as indicated
by the blue line in Figure 1, which is consistent
with results from Morger et al. (2022). Correlation

2Code is available in Github: https:/github.com/maria-
mouratidi/thesis
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Figure 1: Average layer-wise correlations of each trans-
former’s raw attention across 6 eye-tracking features.

strength generally decreases across subsequent lay-
ers. A similar trend is observed in Task 3, where the
first layer again exhibits the strongest correlation
(u = 0.56,0 = 0.008), as shown by the orange
line.

The results with the alternative attention meth-
ods also replicate previous findings. Attention
flow shows the strongest correlations with human
eye-movements. For Task 2, the correlation is
@ = 0.74,0 = 0.007 (blue plain bar, Figure 2),
while for Task 3 p = 0.62,0 = 0.007 (orange
plain bar). These results align with Eberle et al.
(2022), who found that attention flow produces bet-
ter alignment with human eye-movements than the
strongest correlating layer of raw attention.

Gradient-based saliency performs less strongly
across both tasks. Task 2 correlations reach
p = 0.68,0 = 0.02 (blue hatched bar, Figure
2), matching the score reported by Hollenstein
and Beinborn (2021). Task 3 correlations are
p = 0.53,0 = 0.005 (orange hatched bar), simi-
lar to results from Wu et al. (2024). This makes
saliency the least correlating attention method with
human eye-movements for the BERT model. For
all attention methods, Task 3 correlations mirror
Task 2 patterns but at reduced magnitudes, con-
sistent with previous work (Eberle et al., 2022).
All reported correlations are statistically significant
(a < 0.05).

4.2 Experiment 2: Extension
4.2.1 What about Llama?

Correlations of Llama’s raw attention with human
eye-movements fall visibly lower than BERT cor-
relations. Llama’s first layer shows almost negative
correlations with Task 2 eye-movements, while the
second layer is the one with the highest correla-
tions (4 = 0.4, 0 = 0.009), as shown by the purple



0.8

& 06 A Method
: . l flow
% 0.4 7 EE saliency
£ 7
o
. 72 1 .
[ |
» 0.0 4 7
L]
-0.2

Llama Llama
Task 2 Task 3

BERT BERT
Task 2 Task 3

Figure 2: Average correlations across 6 eye-tracking
features with each transformer’s attention flow and
gradient-based saliency.

line in Figure 1. Like BERT, correlations decrease
in subsequent layers, though with some upward
trend toward the final layers. Task 3 correlations
in Llama remain close to Task 2 correlations, and
even exceed them in some layers (yellow line, Fig-
ure 1) showing that task-specific patterns are not
affecting Llama as much as BERT.

Similarly to raw attention, attention flow and
gradient-based saliency produce more moderate
correlations with Task 2 and Task 3 eye-movements
compared to BERT, with saliency (r = 0.27,r =
0.18) showing a clear advantage over flow (r =
—0.11,7 = 0.05) (purple and yellow bars, Figure
2). All correlations for the Llama model are statis-
tically significant (o < 0.05).

4.2.2 Predicting eye-movements

The regression models demonstrate clear benefits
from incorporating transformer attention as a fea-
ture. For BERT (left panel, Figure 3), all atten-
tion methods significantly outperform the text-only
baseline (blue bars). Moreover, attention flow con-
tributes to the highest model fit for all tasks and DV
conditions, reaching an overall R? ~ 0.5 (orange
bars). This result is predictable from the higher
correlations of attention flow with the eye-tracking
features in Figure 2.

Llama (right panel, Figure 3) shows more mod-
est performance than BERT. The models incorpo-
rating raw attention achieve R? values between
0.3 and 0.4 and both raw attention and saliency
outperform the baseline across all conditions. As
expected, attention flow does not significantly im-
prove predictive capacity, except for the Task 2
Gaze condition. A clear pattern that emerges for
both models is that Task 2 eye-movements are more
predictable than Task 3 from all attention methods.
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Figure 3: R? adjusted scores of the regression models,
with or without attention as a feature. On the x-axis
are the prediction targets and task conditions of each
model. For the Gaze models, performance is averaged
over each eye-tracking target. Asterisks indicate signifi-
cant improvement over baseline, while crosses indicate
significant improvement of PCA over the Gaze variant.

4.2.3 Reducing eye-tracking features

During the PCA exploration phase, we noticed that
the SFD and GPT features accounted for most of
the variance in a potential second PCA component.
This is likely due to the nature of these features:
SFD becomes zero when words receive multiple fix-
ations, so it is often sparse, and GPT is likely more
noisy as an intermediate feature between immedi-
ate processing (like FFD) and overall processing
measures (like TRT). To maintain model simplic-
ity, we removed SFD and GPT from the analysis
entirely>. This reduction resulted in 94% explained
variance in the first PCA component for Task 2 and
97% for Task 3. The simplified approach allows us
to retain only one PCA component per task while
preserving the most informative gaze patterns.
The cross annotations in Figure 3 demonstrate
that all text-only PCA baselines show statistically
significant improvement over their corresponding
Gaze variants. This pattern extends to models using
attention as well, where more than half outperform
their Gaze counterparts in both BERT and Llama
and both tasks. For the remaining PCA models
that do not reach significance, the performance
differences are minimal. This finding indicates that
a single-PCA representation of the most important
eye-tracking features can successfully replace the
training procedure of multiple Gaze models.

4.2.4 Attention’s role in prediction

To gain some perspective of the contribution of at-
tention methods to predicting eye-movements, we
examine the average feature importances over all

3This makes a total of 5 eye-tracking features included in
the analysis. Whenever 6 features are mentioned, it means
that the PCA component is also considered as a feature.



linear regression models. As seen in the upper pan-
els of Figure 4, all attention methods for the BERT
model receive the highest significance compared
to the other text features. Attention flow demon-
strates the greatest difference from other features,
with only length and surprisal showing significant
contributions. Llama models present a different

Task 2 Task 3

[t| (BERT)

O™ attention frequency _ length role  surprisal role  surprisal

IN]
S

[tl (Llama)

@

attention frequency  length role  surprisal attention frequency  length role  surprisal

Figure 4: Feature importances based on mean absolute
t-value across models predicting 6 eye-tracking features.
”Ns” signifies non significant t-values (p > 0.05)

pattern, in the lower panels of Figure 4. Raw atten-
tion shows greater contribution than other attention
methods but competes closely with word length
in Task 3. Other attention methods maintain high
contributions in Task 2 but become insignificant in
Task 3. For non-raw attention methods in Llama,
word length becomes a large contributor, followed
by surprisal.

To further explore relationships between features
that may influence their respective relative impor-
tance in the predictions, we examine correlations
between attention methods and text features in Fig-
ure 5. BERT shows attention patterns that align
with established eye-movement research. Higher
frequency words receive smaller BERT attention
values, while longer, content words draw more at-
tention than short, function words. Notably, sur-
prisal appears only slightly represented in BERT’s
attention mechanism. When it comes to Llama,
similar correlation directions appear for raw at-
tention, but in smaller magnitudes. Here, model
attention using any method is more correlated to
surprisal than any other text feature.

5 Discussion

We return to our research questions to briefly reiter-
ate the key findings: Regarding correlation strength
(RQ1), decoder-only models like Llama show
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Figure 5: Correlations of text features with each atten-
tion method on a word-level.

medium-strength correlations with human eye-
movements when using raw attention or gradient-
based saliency. For RQ2, regression models
combining Llama raw attention or gradient-based
saliency with other text features achieve moderate
performance in predicting human reading behavior.
The regression models’ predictive success relies
heavily on attention, followed by word length and
surprisal features. Concerning feature reduction
and task effects (RQ3), a single PCA component
successfully replaces individual gaze targets while
maintaining equivalent, or more favorable align-
ment results. Across all attention methods, both
BERT and Llama show stronger alignment with
Task 2 eye-movements than Task 3, suggesting that
task-specific departures from normal reading are
not equally well encoded in pretrained model atten-
tion mechanisms. The following sections provide
deeper discussion of these findings and their impli-
cations.

5.1 What do layer-wise correlations imply?

The layer-wise raw attention correlations may hint
at the type of linguistic processing that is most sim-
ilar between humans and models. Early layers typi-
cally process surface-level features before higher-
level semantic integration occurs, in both encoder
(Tenney et al., 2019) and decoder models (Vig and
Belinkov, 2019). Thus, the fact that higher correla-
tions occur in early layers (first layer for BERT and
second for Llama) suggests that better alignment
can be found in bottom-up processes. This finding
also has theoretical grounding in eye-movement
research. The oculomotor control system can guide
saccades before full lexical identification occurs
(Rayner et al., 2011), and other early processing
features like word length and frequency (Inhoff and
Rayner, 1986) have robust independent effects on
word skipping and fixation durations.

However, the correlation patterns are not mono-
tonic across layers. Later layers show stronger cor-
relations than middle layers. This suggests that



final layers may be more similar to the higher-
level processing that also influences gaze behavior,
for example when expectations about the text are
formed using contextual information (Ehrlich and
Rayner, 1981), or when the reader is more engaged
in next-word prediction (Goldstein et al., 2022).

5.2 Why is Llama falling behind?

We consider two primary explanations for the align-
ment gap between the encoder and decoder model.

5.2.1 Pre-training objectives

First, Llama is a generative model optimized for
next-token prediction, while BERT is trained in
masked language modeling to capture bidirectional
contextual representations. This fundamental dif-
ference in training objectives may explain why
BERT aligns more with human reading behav-
ior, which primarily involves comprehension rather
than generation. Although the brain engages in
next-word prediction during reading (Goldstein
et al., 2022), the autoregressive nature of decoder
models may not fully capture the integrative parts
of human language comprehension that involve
both forward and backward contextual dependen-
cies. This difference is empirically supported by
our feature correlation analysis, where Llama at-
tention correlates most strongly with surprisal (a
prediction-based feature) while BERT attention cor-
relates mostly with the other text features (Figure
5).

5.2.2 The role of model size

This study’s comparison between BERT-base
(110M parameters) and Llama 3.1-8B (8B parame-
ters) confounds architecture type with model scale.
The substantial size difference may contribute to
the observed alignment gaps, as larger models
can distribute attention-relevant information across
more parameters and layers. The specific model
variants were chosen because of 1) BERT-base-
uncased for replication and validation of previous
work and 2) Llama 3.1-8B for the best performance-
efficiency tradeoff among available decoder mod-
els. Nevertheless, future work should compare
models of similar sizes to isolate architectural ef-
fects from scale effects.

5.3 Why is alignment with task-specific
reading more difficult?

Task 3 eye-movements occur under fundamentally
different reading conditions than Task 2, leading
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to smaller alignment with pretrained transformers.
In the task-specific condition, readers form expec-
tations about which words or syntactic structures
might signal the specified relation, leading to more
selective attention distribution among words (Hol-
lenstein et al., 2020). When searching for specific
words, reading resembles visual search, and certain
text-level influences on eye-movements like word
frequency disappear. (Rayner, 2009). Even when
receiving explicit instructions, the models cannot
replicate this type of selective attention. This limi-
tation appears to be fundamental to current pretrain-
ing techniques rather than architecture-specific, as
both encoder (BERT) and decoder (LLlama) mod-
els show consistently better alignment with natural
reading than task-specific reading. This suggests
that neither masked language modeling nor autore-
gressive prediction objectives adequately prepare
models for goal-directed attention strategies.

5.4 To each their own attention method

The results of different attention extraction meth-
ods vary significantly between the two models.
Attention flow aligns best with eye-movements
for BERT, while raw attention performs better for
Llama. This may relate to the original motivation
for attention flow, which was proposed as a way
to represent attention in encoder models (Abnar
and Zuidema, 2020). In decoder models, atten-
tion is restricted to preceding tokens, leading to an
early token bias. When this effect is normalized as
recommended by Abnar and Zuidema (2020), the
attention signal may become more diluted. This
highlights the need to carefully match the attention
explanation method to both the model architecture
and the explanation task.

5.5 One dimension for all eye-tracking
features

Models using the PCA representation match or out-
perform Gaze models in correlation and regres-
sion analyses. This approach serves primarily as
a methodological efficiency tool rather than aim-
ing to increase predictive power. By capturing
the shared variance across multiple eye-tracking
features in a single component, PCA removes re-
dundancy inherent in correlated features while pre-
serving the essential reading patterns. So we were
able to remove this practical challenge of determin-
ing which of the many available features are suit-
able for the comparison, without distorting them
using averaging techniques. When PCA models



show similar alignment patterns to individual fea-
ture models, this suggests that much of the vari-
ance relevant to the comparison is captured by a
common underlying dimension of reading behav-
ior. This has implications for future eye-tracking
studies, where researchers may be able to focus
their analysis on this common dimension rather
than examining all traditional eye-tracking mea-
sures individually, when the goal is understanding
attention alignment with computational models.

6 Conclusion

This study examined the alignment between
decoder-only models and human attention during
reading. Overall, eye-movement data correlated
with and was predictable from transformer atten-
tion, suggesting partial model alignment with hu-
man language processing. Early layers showed
stronger alignment with eye-movements, hinting
that bottom-up processes are more consistent with
human reading behavior. However, lower align-
ment with task-specific reading suggests these
pretrained models lack human-like flexibility to
adapt attention based on task goals. Despite these
shared patterns across architectures, the decoder
model underperformed compared to the encoder
model, showing lower correlations, weaker predic-
tive power, and different patterns of feature pri-
oritization, likely due to architectural differences.
Finally, different methods of representing trans-
former attention significantly impact alignment
comparisons, which emphasizes the importance
of well-motivated, model and task-specific choices
in explaining transformer mechanisms.

6.1 Limitations

This work assumes eye-movements provide suf-
ficient information about cognitive language pro-
cessing, though eye-tracking misses covert cogni-
tive mechanisms and information processed out-
side the fixation region (Rayner, 2009; Reingold
etal., 2016). Additionally, different attention expla-
nation methods produce variable results, creating
uncertainty about their faithfulness in explaining
transformer attention mechanisms. Ultimately, any
attention method is only a proxy to the true model
representation.
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Abstract

Eye tracking offers an objective window on
real-time cognitive processing of information
being read: longer fixations, more regressions,
and wider pupil dilation reliably index linguis-
tic difficulty. Yet, there is a paucity of the avail-
able corpora annotated with eye-tracking fea-
tures. We introduce in this paper the FETA cor-
pus — a French Eye-TrAcking corpus '. It com-
bines three types of texts (general, medical and
clinical) in two versions (original and manually
simplified). These texts are read by 46 partici-
pants, from which we collect eye-tracking data
through dozens of eye-tracking features.

1 Introduction

Literacy, when reading general purpose and health-
related information, depends critically on a reader’s
ability to understand such information (Eklics and
Fekete, 2024; Brown, 2008). For instance, pa-
tients and the general public consult health-related
sources — diagnosis leaflets, drug leaflets, web por-
tals — on a daily basis (Fox, 2014), yet these ma-
terials are often written at a level well above the
average reading proficiency (McCray, 2005). Text
simplification (lexical, syntactic, or semantic) has
therefore become a central strategy for improving
accessibility (Saggion, 2017), but robust evalua-
tion of simplification quality remains challenging
(Grabar and Saggion, 2022). Eye tracking offers
an objective window on real-time cognitive pro-
cessing: longer fixations, more regressions, and
wider pupil dilation reliably index linguistic diffi-
culty (Singh et al., 2016). Employing gaze data
to detect complex fragments can guide automatic
or human adaptation of text, ultimately facilitating
patient-oriented communication. Despite the matu-
rity of eye-movement research in English (Hollen-
stein et al., 2022; Kuperman et al., 2020; Cop et al.,

'https://hdl.handle.net/11403/feta
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2017), French still lacks an openly available, large-
scale corpus that combines (i) general-language
and technical texts, (ii) technical medical and clini-
cal texts, (iii) parallel simplified versions of texts,
and (iv) fine-grained eye-tracking annotations.

To fill in this gap we introduce the FETA
(French Eye-TrAcking) corpus designed through
an eye-tracking experiment that captures reading
behaviour across three text types (medical, clinical,
general), each paired with manually produced lexi-
cal, syntactic, and semantic simplifications. Thus,
our work makes several key contributions: it com-
bines three types of texts (general, medical and
clinical) in two versions (original and simplified),
and gathers eye-tracking data from 46 participants.

In what follows, we describe the corpus texts
(original documents and creation of their simplified
versions) in Section 2. In Section 3, we describe the
experimental protocol and participants. Section 4 is
dedicated to the pre-processing of the eye-tracking
data and extraction of eye-tracling features. Section
5 introduces the description of the eye-tracking-
annotated corpus: metrics for the texts and eye-
tracking features. Finally, we conclude in Section
6 and drow up some limitations in Section 7.

2 Corpus Construction

Our study employs a balanced, French-language
corpus consisting of 16 texts sourced from two
publicly available resources: the CLEAR cor-
pus (Grabar and Cardon, 2018), corpus of clini-
cal cases (Grabar et al., 2020), and general texts
from Wikipedia. The set of 14 texts processed
spans three text types: general-language articles
from Wikipedia present common topics like Week-
end or Camelot, medical-language articles from
Wikipedia describe some specialized topics like
Vascular Cerebral Accidents or Obstetrics, and clin-
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Original

Simplified

Les hémocultures ont permis d’isoler un Staphylo-
coccus aureus.

(Blood cultures made it possible to isolate a Staphy-
lococcus aureus.)

Les hémocultures (analyses des bactéries
éventuelles dans le sang) ont montré la présence
de la bactérie Staphylococcus aureus.

(Blood cultures (tests for possible bacteria in the
blood) showed the presence of the Staphylococcus

aureus bacterium.)

Un cathéter a été posé.
(A catheter was inserted.)

Un cathéter a été posé pour évacuer ’urine.
(A catheter was inserted to drain the urine.)

Table 1: Examples of manual simplification presented in the inline original format, with translations.

ical cases from toxicology and gastrology. Clinical
cases describe symptoms, diagnoses, treatments,
and follow-ups for individual patients or small co-
horts. Their narrative structure resembles hospital
discharge summaries and is densely packed with
specialised terminology and reasoning about thera-
peutic choices. Such texts impose a high cognitive
load on lay readers who must comprehend health
information relevant to themselves or their relatives.
Original clinical texts contain 653 words, general
texts contain 1,684 words, and medical texts 2,906
words. A detailed breakdown by screen and sen-
tence is provided in Table 4 (Appendix).

To facilitate controlled eye-tracking experiments,
we partitioned the 14 texts into two equally bal-
anced sets, Set I and Set 2, each containing a uni-
form mix of medical articles, clinical cases, and
general texts, thereby equalising topic distribution
and baseline difficulty across sets. Each text has
been manually simplified as explained in Section
2.1 and examplified in Table 1. Then, we compose
two presentation versions:

* Version A: half the texts appear in their origi-
nal form, the remainder in simplified form.

* Version B: the original/simplified assignment
is reversed, creating a mirror of Version A.

Random assignment to Set 1 or 2 gave each par-
ticipant one version per text, preserving counterbal-
ancing and single exposure

The primary aim of the experiment is to record
eye-tracking indicators during natural text reading.
To complement these gaze data with a behavioural
measure of comprehension, we administer short
multiple-choice questions after selected text seg-
ments. Each question pertains to the segment that
has just been read, and participants respond by
choosing True, False, or I don’t know. To keep the
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reading experience as natural as possible and to
minimise task interruption, comprehension ques-
tions are presented for only a random subset of
segments.

2.1 Simplification Pipeline

All texts were manually simplified in respect
with the plain-language recommendations (OCDE,
2015) at syntactic, lexical and semantic levels, as
examplified in Table 1.

Syntactic level. Syntactic simplification aimed to
reduce structural complexity by transforming em-
bedded and multi-clause constructions into shorter,
clause-minimal units. Where possible, passive con-
structions were rewritten in the active voice to make
sentence roles (agent, action, patient) more explicit.

In addition, we prioritized the use of direct
(subject—verb—object) word order to avoid ambigu-
ity, clarified negations, and systematically avoided
gerunds and past participial forms. As a result, sim-
plified versions contain more sentences than their
originals.

Lexical level. Lexical simplification involved re-
placing domain-specific or low-frequency terms
with more accessible alternatives to improve com-
prehensibility. Different strategies were applied:
i) high-frequency synonyms were used when se-
mantic precision could be maintained, ii) hyper-
nyms, or more general terms, were substituted for
complex medical terminology, and iii) in-text defi-
nitions were inserted in parentheses directly after
specialised terms to support interpretation. These
strategies aimed to retain the intended meaning
while lowering lexical complexity for readers with-
out specialised knowledge. In many cases, the
original term was kept alongside its explanation to
aid familiarity and consistency.



Semantic level. Semantic simplification focused
on enriching the text with contextual information
to make implicit knowledge more explicit. This
was especially important in clinical texts, where
technical discourse often assumes prior medical
knowledge that general readers may not possess.
The goal was to reduce inferential effort by clarify-
ing relationships, causes, effects, and by defining
specialized concepts in context. Several seman-
tic strategies were applied: i) causal or descriptive
links were added to explain the function or conse-
quence of a condition, like in the third example in
Table 1, in which the role of catheter is explained;
ii) integrated paraphrases combined description and
terminology to bridge gaps in understanding. These
modifications clarify the meaning of complex med-
ical expressions and also anchor them in relatable
concepts.

Overall, the simplified corpus exhibits (i) more
sentences through syntactic segmentation, (ii)
sometimes more lexemes through lexical substi-
tutions, and (iii) richer contextual clues through
semantic elaboration. Hence, the material remains
fair to the original meaning but is cognitively easier
for non-specialist readers.

3 Experimental Protocol and Participants

3.1 Experimental Protocol

The protocol is composed of several steps:

Pre-screening (online). Prior to scheduling,
each participant completed a form collecting demo-
graphic data (age, gender, highest education), oc-
ular health information (e.g. myopia, astigmatism,
corrective lenses), reading habits, and informed-
consent details about the study.

Day-of self-evaluation. On arrival, participants
filled out a two-pages, self-assessment question-
naire on the perceived difficulty of understanding
medical information in daily life, using a four-point
Likert scale: very easy/easy/difficult/very difficult.

Set-up and calibration. Gaze was recorded
with a Tobii Pro Spectrum eye tracker sampling at
600 Hz. Text stimuli were presented on a 24-inch
monitor at a native resolution of 2880 x 1620 px;
Participants were seated 60 cm from the display
(adjusted by = 5 cm to accommodate height and op-
timise calibration), as on Figure 1. A random five-
point calibration was accepted when accuracy and
precision thresholds of 0.5° and 0.2°, respectively,
were met. Calibration quality was manually in-
spected, and participants who marginally exceeded
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Figure 1: Experiment set-up and calibration.

these thresholds were retained if visual inspection
confirmed stable gaze traces.

Familiarisation block contained several slides:
Slide I: introductory instructions; Slide 2: a short,
easy text common to all participants; Slides 3—4:
two comprehension questions on this text, an-
swered aloud (True/False/l don’t know).

Main reading block. Each participant was ran-
domly assigned to Set I or Set 2 and to Version
A or Version B. The block comprised in average
59 slides: original or simplified texts according to
the set—version counter-balancing scheme. Slides
advanced via a mouse click. All comprehension
questions were to be answered loudly.

Mid-session break. After the first timeline (half
of the slides), participants took a short pause. A
second five-point recalibration followed the break.

Second timeline and debrief. The remaining
slides were presented, after which participants an-
swered some oral questions on perceived text diffi-
culty and comprehension ease. The entire experi-
ment lasted about 50 to 70 minutes, depending on
how the participant read.

3.2 Participant Demographics

Forty-six native French speakers (32 women, 14
men; age range 18-43 years, M = 23.3, SD =
6.7) took part in the study. Their educational back-
grounds were diverse but none held a medical or
healthcare qualification. All reported normal or
corrected-to-normal vision. Participants received
an honorarium of €12. To balance exposure to text
conditions, they were randomly assigned to four
counter-balanced groups: Set 1-A (n=12), Set 1-B
(n=11), Set 2-A (n=11), and Set 2-B (n=12). More
detailed information is provided in the Table 3.



4 Pre-processing and Annotation

Text—-Gaze Alignment. Text presentation and
word-level AOIs (one per word) were handled auto-
matically in Tobii Pro Lab. Fixations were matched
to those AOIs within the software, eliminating cus-
tom tokenization or manual ID assignment.

Feature Extraction and Normalisation. Eye-
movement events were classified in Tobii Pro Lab
using the I-VT (Velocity-Threshold Identification)
algorithm with the following settings:

Eye selection: average of both eyes.

Noise reduction: moving median (window = 3 sam-
ples).

Velocity calculator: window length = 20 ms.

I-VT threshold: 30 deg/s.

Fixation merging: max. gap = 75 ms; max. angle
=0.5°.

Discard short fixations: min. fix. duration = 60 ms.

5 Dataset Statistics
5.1 Text Metrics

Table 4 in the Appendix compares original and sim-
plified versions for each text (number of screens,
sentences, and words). We can see that, across
the corpus, simplification primarily increased the
number of sentences due to syntactic simplification,
with more modest changes in word counts.

By domain, clinical texts rose from 32 to 42
sentences (+31.3%) and from 653 to 805 words
(+23.3%). General texts showed a strong sen-
tence increase (73 — 107, +46.6%) but virtually
no change in word count (1684 — 1691, +0.4%),
reflecting many short sentence splits without added
explanations. Medical texts increased from 144 to
179 sentences (+24.3%) and from 2,906 to 3,081
words (+6.0%).

5.2 Gaze Metrics

For every word—participant pair we release ten eye-
movement features. The full list of features is in
Appendix 8.1.

Figure 2 shows the difference in reading
original and simplified clinical text for the 7To-
tal_duration_of _fixations feature.

Table 2 reports the median and inter-quartile
range (IQR) of each feature, aggregated by domain
(clinical, medical, general) and by version (original,
simplified). The headline metric, Total Fixation
Duration (TFD), shows a clear reduction in reading
effort (Figure 3): in clinical texts, the median TFD
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d'orthopéedie pour une infection grave (arthrite sepiique) de la
hanche gauche qui lui fait mal depuis 10 jours. La discussion
avec le patient et son examen n’ont pas permis de comprendre le

Figure 2: Original clinical case (top) and Simplified

clinical case (bottom)

Table 2: Median and inter-quartile range (IQR) of
word-level total fixation duration (in milliseconds).

Domain Version Median (ms) IQR (ms)
Clinical  Original 225 435
Simplified 187 342
Medical Original 203 375
Simplified 193 357
General  Original 183 333
Simplified 182 323

drops —17%; in medical texts —6%; in general texts
-3%.

Effect of Simplification on Fixation Duration

g 400
ko)
—_
£ 300 |
g B Original
e 200 - Simplified
|_.
c
2 100
o]
=

0 4

Clinical General Medical

Figure 3: Median word-level fixation duration by do-
main and version.

6 Conclusion and Future Work

We introduced the FETA (French Eye-TrAcking)
corpus, built with general-language and health doc-
uments in two versions (technical and manually
simplified), thus covering several topics and genres.
This corpus was read by 46 participants, through
a precise experimental protocol. This permitted to
collect several eye-tracking features, of which 10
are provided as part of the FETA corpus.

Besides, eye-tracking data are also being col-
lected from speech-language pathology students,



which will permit to compare the reading from
non-specialised and specised participants.

7 Limitations

Although all recordings met our calibration crite-
ria, occasional attentional shifts or transient tracker
losses may have gone undetected. Consequently,
some fixations — especially at line breaks — could
be mis-assigned, lowering word-level accuracy.

To preserve natural reading, only eleven
multiple-choice questions were randomly inserted
across the 50 slides. This design prevents us from
verifying comprehension on every individual slide,
which means that local misunderstandings might
therefore remain unnoticed.

Due to Tobii Pro Lab’s limitations in processing
large datasets, raw data export proved challenging.
We will include additional eye-tracking features
and raw data as data processing continues.

8 Ethical Considerations

Participation in this study is voluntary, with in-
formed consent obtained from all participants, en-
suring compliance with the European General Data
Protection Regulation (EU) 2016/679 and the modi-
fied French Data Protection Act of January 6, 1978.
All personal data collected in the course of this
research are anonymized to protect participant pri-
vacy and are accessible only by the designated
project manager. This study has been registered
in the University of Lille registry under reference
2022-075, affirming our commitment to uphold-
ing the highest standards of data protection and
participant rights.
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8.1 Appendices

Table 3: Participant overview by experimental group.

Set n FM Age BA MA PhD Emp
1A 12 9/3 1942 6 2 2 5

1B 11 8/3 1835 8 2 1 4
2A 11 7/4 1843 9 1 1 4
2B 12 8/4 1836 8 3 1 2
Total 46 32/14 1843 34 8 5 15

BA = Bachelor’s (Licence); MA = Master’s; PhD =
Doctorate; Emp = "Employed” counts anyone working
(including student+worker). Levels are those held at the time
of the experiment.

Features provided.

Duration_of first_fixation: time (ms) of the first
fixation on a word.

First-pass_duration: camulative fixation time from
first entering the word until leaving it to the right.
First-pass_first_fixation_duration:  first-fixation
duration restricted to the first-pass window.
First-pass_regression: binary flag (1 = gaze exits
the word to the left during first pass).
Maximum_duration_of fixations / Mini-
mum_duration_of fixations: longest and shortest
single fixations on the word.
Number _of fixations: count of fixations on the
word.

Re-reading_duration: fixation time accumulated
after the first pass.

Regression-path_duration: time from first entering
the word until leaving it to the right after any
regressions.

Total_duration _of fixations: sum of all fixation
durations on the word (early + late).
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8.2 Appendices

Table 4: Comparison of Original and Simplified Texts

Text type Text name Version Screens Sentences Tokens

Clinical  gastro original 3 17 285
simplified 3 19 323

obGyn original 3 11 249
simplified 3 24 307

toxico original 4 19 398
simplified 5 29 469

gastro original 3 13 255
simplified 3 25 336

General camelot original 8 42 840
simplified 8 58 880

quince original 7 44 751
simplified 7 54 785

popcorn original 9 44 865
simplified 7 51 752

weekend original 9 31 843
simplified 9 49 811

Medical autopsy original 10 39 943
simplified 9 65 925

stroke original 3 10 276
simplified 3 22 328

chikungunya original 21 102 1983
simplified 21 138 1975

erytheme original 7 34 653
simplified 9 58 960

obstetrics original 12 57 1104
simplified 12 65 1202

ulcer original 15 77 1526
simplified 15 92 1551
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Abstract

In this paper, we investigate the use of the
Mouse Tracking for Reading (MoTR) method
for a sample of Romanian texts. MoTR is a
novel measurement tool that is meant to col-
lect word-by-word reading times. In a typical
MOoTR trial, the text is blurred, except for a
small area around the mouse pointer and the
participants must move the mouse to reveal and
read the text. In the current experiment, partici-
pants read such texts and afterwords answered
comprehension questions, aiming to evaluate
reading behavior and cognitive engagement.
Mouse movement is recorded and analyzed to
evaluate attention distribution across a sentence,
providing insights into incremental language
processing. Based on all the information gath-
ered, the study confirms the feasibility of this
method in a controlled setting and emphasizes
MOoTR’s potential as an accessible and natural-
istic approach for studying text comprehension.

1 Introduction

Language understanding is one of the most com-
plex human cognitive activities. Whether reading
or listening, the human brain processes linguis-
tic input incrementally, integrating each word as
it is encountered. This is known as incremental
language processing and is characterized by both
sequentiality and variability: some words are pro-
cessed quickly, others require more cognitive effort
due to low predictability, frequency, or syntactic
complexity (Smith and Levy, 2013).

One of the main goals of psycholinguistics is to
measure this incremental effort in real time. Early
work in the 1970s introduced the gaze-contingent
moving window paradigm, which involved making
display changes in the text based on eye position
as participants were reading, and then examining
how these changes influenced eye movement be-
havior (McConkie and Rayner, 1975). Early stud-
ies demonstrated how parafoveal and foveal vision
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interact during reading and established the method-
ological foundation for modern incremental pro-
cessing research. Eye-tracking provides the most
precise measurement but is expensive and requires
specialized equipment.

To address these limitations, alternative
paradigms have been proposed. Self-paced reading
(SPR) (Just et al., 1982) and the Maze task (Boyce
et al., 2020; Forster et al., 2009) can be deployed
online at low cost, but they involve linear reading
and artificial constraints, affecting the interaction
with the text.

In this paper we investigate the usage of Mouse
Tracking for Reading (MoTR) method (Wilcox
et al., 2024) on Romanian texts. The method was
designed to balance the high accuracy and natural-
ness of eye-tracking with the low cost and online
availability of other “self-paced” incremental mea-
surements, such as SPR and Maze (Wilcox et al.,
2024). In our MoTR experiment, participants are
presented with several texts that are blurred, ex-
cept for a small area around the mouse, which is
clear. They have to move the mouse to reveal and
read the text, and its position is recorded for post-
processing (see Figure 1). After completing the
reading of each sentence, the participants answer a
comprehension question related to the text read, to
validate the quality of the data and confirm the cog-
nitive engagement of the candidate. Until now, pub-
lished studies using MoTR have been conducted
on English texts, often relying on corpora such as
the Provo Corpus (Luke and Christianson, 2018;
Wilcox et al., 2024), with relatively small docu-
mented applications in other languages (Schneider
et al., 2021; Haveriku et al., 2025; Oguz et al.,
2025).

In this context, the present work addresses an
important gap, being the first to test MoTR on Ro-
manian texts.

The texts used in our experiment are Romanian
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lucruri fi

Figure 1: Example of the blurred interface used in the
MoTR experiment. The only word visible in this image
is “lucruri” (English things)

Sentence len | Complexity

Eng. Rom. | Eng. Rom.
mean 22.82 2446 | 024 0.13
std 774 862 | 0.19 0.25
min 7 9 0.02 0
max 45 49 0.93 1
samples 569 569
sentences 158 158

Table 1: Statistics comparing the English and Romanian
Human Translation sentences (and 569 lexical complex-
ity annotated samples). Romanian complexity annota-
tions have a higher variance and a lower average com-
plexity than the original English counterparts.

versions of the Multilingual Lexical Simplification
Pipeline (MLSP) Shared Task 2024 competition
dataset (Ghaddar et al., 2024a) The Romanian part
has been created by manually translating the origi-
nal English data such that each sentence contains
similar lexical complexity annotations to the origi-
nals (Anghel et al., 2025). The data set is made so
that it can be easily integrated into MultiLS (Ghad-
dar et al., 2024b), a recently developed framework
for lexical analysis in multiple languages, provid-
ing a standardized context for comparative studies
of text complexity and comprehension. Statistics
regarding sentence length and annotated complex-
ity scores are visible in Table 1.

An important advantage of this corpus is that
certain words in each sentence are annotated with
explicit human judgments of complexity scores
assigned by five young adults. The complexity
scores reflect the estimated difficulty of each word
in its context. With this information, we analyze
the relationship between the linguistic complexity
of words and reading time, capturing the relation
between perceived lexical difficulty and linguistic
processing.

At the same time, we extend the existing exper-
imental infrastructure by developing a complete
pipeline in Romanian: from corpus preparation, to
their integration into Magpie framework and the
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generation of comprehension questions. Overall,
the contribution of the paper consists both in the
methodological adaptation of MoTR for the Ro-
manian language, and in demonstrating its appli-
cability in the analysis of lexical complexity and
reading times in an experimental setting.

2 Methodology
2.1 A MoTR Trial

In each trial of this experiment, participants are
exposed to a web interface containing blurred text
(see Figure 1), except for a small clear area around
the tip of the mouse cursor. Each participant is in-
structed to move the mouse to reveal the text word
by word, thus allowing sequential reading of the
text. After the participant confirms the completion
of reading a text by pressing a button, they are pre-
sented with a question with a “yes” or “no” answer,
regarding the sentence read and intended to assess
comprehension of the read content. At that mo-
ment, the entire text is blurred, no longer visible.
Participants can move to the next screen only after
answering the question.

Cursor movements are recorded throughout the
reading, except for the moment when the partic-
ipant answers the comprehension question. The
cursor coordinates are subsequently analyzed as a
proxy for gaze direction, effectively simulating the
behavior of an eye-tracking system.

The experiment is implemented in Magpie', a
web platform designed to conduct behavioral ex-
periments directly in the browser. It allows for
real-time transmission of cursor coordinates and
task flow management.

2.2 Participants and Data Collection

Five native Romanian speakers (3F, 2M), 22-30
years old, agreed to participate in the experiment
voluntarily. All participants are native Romanian
speakers and have at least completed high school.
None of them have diagnosed visual impairments.
The study was conducted in a restricted and con-
trolled environment, each session (approximately
2 hours per session) was directly monitored, to en-
sure that the rules and instructions were respected.
The data collected included:

* Mouse coordinates and timestamps

"Magpie is framework for building psychological online
experiments that run in the participants’ browser: https:
//magpie—experiments.org/



* Word indices and reveal times
* Comprehension question responses
* Total reading duration per trial

To ensure that the MoTR method closely ap-
proximates the reader’s visual attention, several
parameters are calibrated:

* Spotlight size: 102 pixels - large enough to
disambiguate word focus, but small enough
to prevent excessive or fatiguing mouse move-
ments;

* Gradual blur transition - simulating the shift
from foveal to peripheral vision;

* Line spacing: 55px to avoid vertical interfer-
ence;

* Cursor sampling rate: 20Hz -balancing tem-
poral precision with transmission stability.

We make a small adaptation in terms of line spac-
ing from the configurations proposed by Wilcox
et al. (2024) so that users are less prone to acciden-
tally move the mouse on the lines below or above
the current reading areas.

3 Results

Our first objective is to provide an overview of
how participants use the MoTR method and the
variability that arises between individuals, items,
and trials. At this stage, we focus on analyzing
data from a single participant, selected due to their
representative behavior. This case serves as an
illustrative example of typical MoTR usage and
provides a clear foundation for interpreting results
in the broader analysis.

Total Reading Time (TRT) is used as our main
measure of processing effort. It captures the full
time spent on a word, including all refixations, and
is widely used as an indicator of deep syntactic
and semantic processing (Just and Carpenter, 1980;
Rayner, 1998).

To ensure cognitive engagement and data qual-
ity, each sentence in the experiment is followed
by a yes/no comprehension question. Participants
show high accuracy, with individual scores rang-
ing between 81% and 92%, and a group mean of
approximately 88.5%.

This high level of accuracy confirms that partici-
pants have a high degree of comprehension, making
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the reading-time data more reliable. These results
suggest that the MoTR interface supports natural
reading and allows for meaningful variation in com-
prehension to be captured.

3.1 Correlation Analysis

We compute Pearson correlation coefficients to as-
sess the linear relationship between total reading
time and two basic lexical predictors:

S ma)y—my)
Vo )Py )P

r

)

where:
* z,y are numerical vectors of equal length n,

* mg, m, are the means of vectors x and y re-

spectively.
Variable Pearson r
Frequency Score -0.53
Word Length +0.58

Table 2: Pearson coefficients between foralReading-
Time and lexical predictors. Frequency shows a moder-
ate negative correlation with reading time, while word
length shows a positive correlation. Frequency scores
are obtained using the wordfreq library (Speer, 2022),
which compiles word frequencies from diverse sources
including Wikipedia, news, subtitles, and web data.

Pearson correlation analysis, as shown in Ta-
ble 2, reveals a negative relationship between word
frequency and reading time, and a positive one
between word length and reading time. These find-
ings align with well-established psycholinguistic
assumptions: frequent words are processed more
quickly, while longer words require more cognitive
effort (Smith and Levy, 2013).

3.2 Regression Analysis

To estimate the influence of lexical and ortho-
graphic features on reading time, we use a regres-
sion model using Support Vector Regression (SVR),
predicting continuous values by fitting a function
within a margin of tolerance (Awad and Khanna,
2015). Although we employ a linear kernel, we opt
for SVR instead of classic linear or Ridge regres-
sion due to its robustness in handling outliers and
its ability to ignore small errors via the e-insensitive
loss function.

The model is implemented using the SVR mod-
ule from the scikit-1learn library (Pedregosa



etal.,2011). The penalty parameter C'is chosen via
cross-validation and set to 100. Although this is a
relatively large value, it consistently yields optimal
predictive performance at cross-validation.

The SVR model predicts reading time as a lin-
ear combination of four features: frequency score,
word length, syllable count, and the presence of
diacritics. All features included in the model cap-
ture linguistic properties that influence processing
difficulty. Frequency, word length, and syllable
count are widely recognized as key factors influenc-
ing reading time (Rayner, 1998). We also include
diacritics because omitting an accent can momen-
tarily break the visual rhythm of a sentence and
add a small cognitive load during speed reading
(Marcet and Perea, 2022). Including diacritics in
the model helps capture a subtle but systematic as-
pect of Romanian orthography that can influence
reading behavior.

Each predictor is weighted by a learned coeffi-
cient 3;, and the model includes an intercept term
Bo. Formally, the model takes the form: fotalRead-
ingTime = 31- FrequencyScore + [5o- WordLength
+ (3- Syllables + (34- HasDiacritics + .

Coefficient | Value
Bo 397.06
061 —34.39
B9 186.38
53 —21.93
o —9.58

Table 3: Estimated coefficients of the SVR model.

The intercept 5 is the baseline reading time. (31
shows that frequent words are read faster, while
(9 indicates that longer words take more time. (3
and f34 reflect smaller negative effects from syllable
count and diacritics.

Model Performance

The SVR model is evaluated using 10-fold cross-
validation, with the data split so that no sentences
appears in both training and test sets. The model
achieves a root mean square error (RMSE) of ap-
proximately 238.92 ms. The coefficient of deter-
mination (R?) is 0.37, indicating that around 37%
of the variance in reading times is explained by
the model. The Pearson correlation between pre-
dicted and actual values is » = 0.635 (p < 0.001),
suggesting a moderate and statistically significant
fit.
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Metric Value
Coefficients [—34.39, 186.38,
—21.93, —9.58]
Intercept 397.06
RMSE (mean, CV) 238.92 ms
R? Score 0.37
Pearson r 0.635 (p < 0.001)
Accuracy 87.24%

Table 4: Performance of the SVR model with a linear
kernel and four predictors.

In addition to classic error metrics (RMSE, R?),
we evaluate model performance using the accuracy
metric defined in (Hollenstein et al., 2022), where
real and predicted values are scaled to [0, 100], and
accuracy is defined as:

Accuracy = 100 — MAE

where MAE (Mean Absolute Error) represents the
average absolute difference between predicted and
actual values.

Our model achieves an accuracy score of
87.24%, confirming a very good match between
predicted and normalized real reading times.

SVM: Averaged predictions per reading time

1400
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-
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Predicted time (averaged)

600 800 1000 1200 14
reading time (ms)

400

Figure 2: SVR predictions versus reading time. We
observe a good alignment between predictions and ac-
tual values, with reasonable dispersion around the line
y = x. We can observe a logarithmic tendency of read-
ing times.

Figure 2 indicates a reasonable alignment be-
tween the predicted and actual values, with no ob-
vious systematic deviations. The scatter around the
identity line suggests natural variation in reading
behavior.

The SVR model provides a flexible estimation of
the relationship between word features and reading

00



time, showing strong predictive performance in a
cognitive-linguistic context (Li and Rudzicz, 2021).

3.3 Language Model Log-Probability

Linguistic surprisal is a computational measure of
how unpredictable a word is in its context, and im-
plicitly, how cognitively demanding it is to process
(Smith and Levy, 2013; Hale, 2001). According
to information theory, surprisal is defined as the
negative logarithm of the conditional probability:

Surprisal(w;) = —logy P(w; | w1, wa, ..., w;i—1)

This equation reflects the idea that a highly ex-
pected word (high probability) requires less cogni-
tive effort to process. In contrast, an unexpected
word with low probability lead to higher surprisal
values that typically requires longer reading time
(Levy, 2008; Smith and Levy, 2013).

In masked language models such as BERT, sur-
prisal is not based solely on the preceding context
but instead uses the entire sentence. As such, we
use the log-probability from the model as a proxy
for the surprisal of a target word w;.

Log-probability is calculated using the model
dumitrescustefan/bert-base-romanian-cased-vli, a
BERT-base model pre-trained on diverse Roma-
nian data sources (Wikipedia, OSCAR, etc.) and
adapted for masked language modeling tasks (Du-
mitrescu et al., 2020). The score is computed for
each word in the sentences by masking it and re-
trieving the model’s conditional probability. When
a word is split into multiple subtokens during tok-
enization, we mask all subtokens simultaneously
and compute the model’s joint probability for the
full word.

Surprise distribution (>1 bit) with dumitrescustefan/bert-base-romanian-cased-v1

Surprise (bits)

Figure 3: Distribution of log-probability values (> 1
bit) estimated using bert-base-romanian-cased. The
distribution is right-skewed, with relatively few words
showing high logprob.
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For better visualization, we exclude very low
surprisal values (below 1 bit), which dominated the
frequency range and obscured the structure of more
informative intervals.

To investigate the influence of surprisal on real-
time processing, we analyze the relationship be-
tween estimated surprisal and total reading time
per word (totalReadingTime). The computed Pear-
son correlation coefficients shows the following
significant relationships:

Variable Pearson r
Surprisal vs. Reading Time +0.361
Frequency vs. Reading Time —0.540

Word Length vs. Reading Time +0.581

Table 5: Pearson correlation coefficients between pre-
dictors and reading time. Surprisal and word length
correlate positively with reading time, while frequency
correlates negatively.

These findings confirm that:

* Surprising words are associated with longer
reading times;

* Frequent words are processed more quickly;

* Longer words tend to require more time to
read.

To evaluate these predictors together, we fit a
multiple linear regression model with surprisal, fre-
quency, and word length as features. The estimated
model predicts reading time as a linear combination
of these three predictors. Each feature is multiplied
by a learned coefficient (51, 52, 53), and the model
includes a constant term (3y. Formally, the model
takes the form:

ReadingTime = [31- Surprisal + 35- Frequency +
B3+ WordLength + 5.

The model 1is statistically significant
(F(3,3890) = 853.5,p < 0.001) and ex-
plains approximately 39.7% of the variance in
reading times (R?> = 0.397). The estimated
coefficients are:

¢ 81 = +16.35 (each additional bit of surprisal
increases reading time by 16 ms),

e (B9 = —45.71 (higher word frequency reduces
reading time),

* B3 = +57.30 (each additional character in-
creases reading time).



These results support the hypothesis that sur-
prisal, frequency, and length contribute systemat-
ically to the cognitive effort involved in lexical
processing (Levy, 2008).

3.4 Lexical Complexity and Reading Times

In addition to computationally derived predictors
(surprisal, frequency, and word length), we also
evaluate the relationship between a manually anno-
tated measure of lexical complexity (ht_complexity)
and total reading time. The ht_complexity values
reflects human judgments of how difficult each
word is to understand in its context, with higher
values indicating greater perceived difficulty. The
analysis is implemented by aligning annotated to-
kens with reading times from the dataset derived
through manual translation and revision of the
MLSP Shared Task 2024 corpus, as detailed in
(Cristea and Nisioi, 2024).

The results indicate a significant positive cor-
relation between lexical complexity and reading
time (r = 0.402, p < 0.0001), suggesting that more
complex units tend to require longer processing
times.

This finding supports the hypothesis that lexical
complexity directly impacts cognitive effort during
reading, consistent with earlier work on linguistic
processing and comprehension (Just and Carpenter,
1980).

3.5 Interindividual Variation in Reading
Behavior

To evaluate the consistency of relationships be-
tween linguistic features and reading time, we
extend our analysis to all five participants. This
broader view provides more detailed insight into
lexical effects and allows us to observe inter-
individual variability in language processing.

The average reading time (fotalReadingTime)
varies considerably across participants, with means
ranging from approximately 435 to 604 millisec-
onds (Table 6).

In addition to the average reading times, the ob-
served variability within each participant reflects
clear differences in central tendency and dispersion.
These results point to individual differences in read-
ing styles and the stability of reading behavior (Just
and Carpenter, 1980; Rayner, 1998).

We run separate regressions for each participant
using word frequency and length as predictors. All
show the same direction of effects—frequent words
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Participant Mean S.D. Min Max
P1 596.27 647.72 36.0 5751.0
P2 43585 49261 39.0 9011.0
P3 488.18 48849 34.0 6349.0
P4 532.81 461.76 40.0 5400.0
P5 603.83 529.04 38.0 8005.0

Table 6: Descriptive statistics of reading times for each
participant, including mean, standard deviation, mini-
mum, and maximum values (all in milliseconds). Sub-
stantial differences can be observed across participants,
both in mean and dispersion, suggesting variable read-
ing styles.

are read faster, longer words slower—despite vari-
ation in strength. This confirms that core lexical
effects remain consistent across readers.

4 BERT-based Predictor

We use the bert-base-romanian-cased-vI model
(Dumitrescu et al., 2020), a pretrained version on
large Romanian corpora that preserves the standard
BERT architecture. The contextual embeddings
generated by this encoder are integrated into a re-
gression model, in order to predict the total reading
time of a word based on the full sentence in which
it appears.

Applying a logarithmic transformation (as sug-
gested by the results in Figure 2) to the target value
significantly improves model performance. This
pre-processing step stabilizes the reading time dis-
tribution, reduces the influence of outliers, and al-
lows the model to learn more robust relationships
between contextual embeddings and cognitive read-
ing difficulty.

We evaluate the final model on a test set of 773
examples, yielding the following metrics:

* Pearson correlation coefficient: 0.76
* Spearman correlation coefficient: 0.78

e Mean Absolute Error (MAE): 0.41 (in log
space)

« Coefficient of determination R?: 0.56

These results confirm that large langauge models
encode strong features for predicting reading times.
The contextual embedding of the target token, com-
bined with additional linguistic features and a log-
transformed target, leads to accurate reading time
predictions. Figure 4 shows a clear alignment be-
tween predicted and actual reading times, reflecting



the model’s strong predictive performance and ro-
bustness.

Predictions vs. actual values
(BERT model)

Predicted values (log RT)

T
7
Real values (log RT)

Figure 4: Predicted vs. actual reading times. The strong
alignment along the diagonal suggests that the BERT-
based model accurately predicts reading times from
contextual embeddings.

5 Conclusions

This study shows that the Mouse Tracking for Read-
ing (MoTR) method can be a practical and effective
way to study how people read and process Roma-
nian. Even though the number of participants was
small, the results suggest that MoTR works well in
controlled experiments.

One of MoTR’s main advantages is its simplicity
and accessibility. Because it runs in a web browser,
it can be used both online and in physical locations,
without the need of expensive equipment. While
it doesn’t offer the accuracy of eye-tracking, the
blurred context outside the spotlight eliminates un-
wanted parafoveal effects, offering control over the
text segments being read.

The statistical models confirm that reading times
are strongly influenced by word length, frequency,
and surprisal, findings that are in line with previous
psycholinguistic research.

This research makes a new contribution by ap-
plying the MoTR paradigm in an experimental set-
ting using Romanian, using a corpus adapted and
validated for this task.

Future work involves expanding the experiment
to a larger sample to increase confidence in results,
a comparison between MoTR and traditional eye-
tracking data, and the impact of time-guided lexical
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complexity predictions.

In conclusion, MoTR’s ability to capture sub-
tle aspects of cognitive processing during reading,
along with its technical accessibility, makes it a
strong alternative to traditional methods in experi-
mental psycholinguistics.
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Abstract

This eye-tracking study links language-model
surprisal and contextual entropy to how 23 non-
expert adults read French health texts. Par-
ticipants read seven texts (clinical case, med-
ical, general), each available in an Original
and Simplified version. Surprisal and entropy
were computed with eight autoregressive mod-
els (82M—8B parameters), and four comple-
mentary eye-tracking measures were analyzed.
Surprisal correlates positively with early read-
ing measures, peaking in the smallest GPT-
2 models (r 0.26) and weakening with
model size. Entropy shows the opposite pat-
tern, with negative correlations strongest in the
7B-8B models (r ~ —0.13), consistent with a
skim-when-uncertain strategy. Surprisal effects
are largest in Clinical Original passages and
drop by ~20% after simplification, whereas
entropy effects are stable across domain and
version. These findings expose a scaling para-
dox — where different model sizes are optimal
for different cognitive signals — and suggest that
French plain-language editing should focus on
rewriting high-surprisal passages to reduce pro-
cessing difficulty, and on avoiding high-entropy
contexts for critical information.

~
~

1 Introduction

Developing efficient methods to detect reading dif-
ficulty in healthcare materials is crucial for text
simplification efforts (Fox, 2014). However, stan-
dard readability metrics provide limited insight into
where and why readers struggle. Healthcare mate-
rials are frequently difficult for patients to under-
stand (Rey et al., 2023), yet traditional measures
fail to capture the localized nature of reading dif-
ficulty. Eye-tracking shows that effort is highly
localized: readers invest extra time where their ex-
pectations are violated or where contextual uncer-
tainty is high, then skim easier stretches (Ehrlich

These authors contributed equally to this work.
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and Rayner, 1981; Rayner, 1998). Probabilistic
language models (LMs) quantify these two infor-
mation states that drive reading difficulty. Surprisal
captures the unexpectedness of the word that ac-
tually appears and robustly predicts reading time
(Smith and Levy, 2013; Goodkind and Bicknell,
2018). Contextual entropy captures an anticipatory
state: high entropy can induce skipping or shorter
gazes, whereas low entropy makes prediction er-
rors costlier (Linzen and Jaeger, 2016; Pimentel
et al., 2023). Early eye movement measures reflect
immediate processing difficulty, while late mea-
sures indicate integration and comprehension costs
(Camblin et al., 2007). Recent work reveals a scal-
ing paradox: surprisals from very large transform-
ers (> 2B) can diverge from human reading times,
whereas mid-sized GPT-2 models sometimes align
better (Oh and Schuler, 2023). This suggests that
model size alone does not guarantee better psy-
cholinguistic validity. Moreover, nearly all evi-
dence comes from English newspapers or novels,
with minimal work on health genres or French.
Using French clinical and general texts in origi-
nal and simplified versions, we investigate which
LM-based predictors best track reading difficulty
for automated simplification systems. Specifically:
RQ1: Do effects vary by Domain (Clinical vs Gen-
eral) and Version (Original vs Simplified)?

RQ2: Which LMs align best with human data for
each predictor?

In what follows, we describe the corpus texts (orig-
inal documents and the creation of their simplified
versions) in Section 2. In Section 3, we present the
methodology. Section 4 is dedicated to the results.
Finally, we conclude in Section 5.
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Figure 1: Mean Correlation

2 Data
2.1 Texts

We constructed a dataset of French-language texts
from general and medical domains, based on ex-
cerpts from two corpora: CLEAR (Grabar and Car-
don, 2018) and CAS (Grabar et al., 2020).

Each text was manually simplified following
(OCDE, 2015) guidelines through syntactic, lexi-
cal, and semantic modifications, typically resulting
in longer, clearer versions. Counterbalancing elim-
inated familiarity bias by exposing each participant
to only one version of each text. Table 2 in the
Appendix contains the full breakdown by words,
sentences and screens.

2.2 Participants & Procedure

Gaze data were recorded using a Tobii Pro Spec-
trum eye tracker sampling at 600 Hz.

Texts were presented slide-by-slide, with some
slides including comprehension questions for en-
gagement. Tobii Pro Lab managed text presenta-
tion and automatically defined word-level Areas of
Interest (AOISs).

The sample comprised 23 French participants
aged 18-42 years (M = 22.8, SD = 6.2). Partici-
pants come from various social backgrounds - in-
cluding students, doctoral students, and working
professionals - but none have medical training.

3 Modeling
3.1 Language Models

We evaluated eight pre-trained autoregressive LMs
spanning nearly three orders of magnitude in
size (Table 1). Selection criteria were (i) good
French coverage and (ii) architectural variety: four
Byte-Pair Encoding (BPE) tokenisers (DistilGPT-2,
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GPT-2, two Qwen variants, Llama-3.1) and four
SentencePiece models (Gemma-1B, Mistral-7B,
Qwen-4B, Llama-8B). All models were run via
HuggingFace Transformers with identical
inference settings (temperature = 0, no sam-

pling).

3.2 Eye-Movement Measures

We focus on four eye—movement measures, each
indexing a distinct stage of processing:
Duration of first fixation (DFF) — immediate lexi-
cal access (time of the very first fixation);
First-pass duration (FPD) — initial comprehen-
sion (total dwell time during the first encounter);
Number of fixations (NFix) — overall processing
effort (count of all fixations on the word);
Re-reading duration (RRD) - later integra-
tion/repair (time spent re-visiting the word).
These measures collectively span the complete
timeline from initial word recognition to final com-
prehension, allowing us to assess how psycholin-
guistic predictions manifest across different aspects
of the reading process.

3.2.1 Surprisal

We computed word-level surprisal as the negative
log probability of each word given its left context:

.y wi,l)
(D
For each sentence, we obtained the model’s prob-
ability distribution over the vocabulary at each posi-
tion using a forward pass, extracted the probability
assigned to the observed word, and converted to
bits using base-2 logarithms. Surprisal values were
aggregated from subword tokens to word level by

Surprisal(w;) = —logy P(w; | wy, ..
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Figure 2: Mean correlations between model-generated surprisal (left panel) and entropy (right panel) with four

eye-tracking measures.

DistilGPT2 (82M parameters) consistently outperforms medium-sized Qwen-4B (4B

parameters) and large Llama-8B (8B parameters) across the reading measures.

Model Parameters
DistilGPT2 82M
GPT2 124M
Qwen3-0.6B 600M
Gemma-3-1B-IT 1B
Qwen3-4B 4B
Mistral-7B-Instruct-v0.3 7B
Qwen3-8B 8B
Llama-3.1-8B-Instruct 8B

Table 1: Overview of language models evaluated in this
study, ranging from 82M to 8B parameters.

summing surprisal across all tokens comprising
each word.

3.2.2 Contextual Entropy

We calculated the entropy of the model’s predictive
distribution at each word position:

~3" P | e)logy Plw|c) ()

where ¢; = wyq, . ..
text.

This measure captures the model’s uncertainty
about what word should come next, independent
of the actual word that appears. Higher entropy
values indicate greater uncertainty in the model’s
predictions.

, w;—1 represents the left con-

3.3 Data Processing and Token Alignment

3.3.1 Pre-processing

We rebuilt sentence strings by concatenating word
tokens and normalising surrounding punctuation.
For eye-movement data, duration metrics kept only
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positive values, whereas count metrics kept zeros
but dropped negatives. Outliers were trimmed with
measure-specific cut-offs: the upper 99 % for du-
rations and the upper 95 % for counts. Analyses
were run only when a cell contained at least ten
valid observations, ensuring stable statistics.

3.3.2 Character-Position Mapping Algorithm

The technical challenge involved aligning model
subword tokens with human word boundaries.
French words often tokenize into multiple sub-
words (e.g., “L’obstétrique” — [’L’”, “obsté”,
“trique”]), but humans process complete ortho-
graphic words.

Our alignment algorithm proceeded as follows:
(1) Extract character spans for each token using
the tokenizer’s offset mapping
(2) Define word boundaries from whitespace-
delimited text
(3) For each word, identify all overlapping tokens
using character position intersection
(4) Sum surprisal values of overlapping tokens to
obtain word-level surprisal
(5) Average entropy values across tokens within
each word
(6) Handle edge cases (partial overlaps, missing
tokens) with fallback procedures

This method generalizes across tokenization
schemes and languages, enabling consistent sur-
prisal calculation regardless of subword segmen-
tation. The algorithm successfully aligned tokens
with word boundaries across all experimental con-
ditions.



3.4 Statistical Analysis

3.4.1 Pearson Correlation Coefficient

We employed Pearson product-moment correlation
as our primary statistical measure to quantify the
linear relationship between language model pre-
dictions and human eye-movement behavior. The
Pearson correlation coefficient r is defined as:

_ 2 (@i = T)(yi —¥)
Vit (@i — 22V (i — 9)?

where x; represents individual language model
predictions (surprisal or entropy values), y; rep-
resents corresponding eye-movement measures, T
and ¢ are sample means, and n is the number of
word-level observations.

3)

Txy

3.4.2 Correlation Analysis Framework

For every participant —text—metric cell we com-
puted Pearson correlations between each predic-
tor and the corresponding eye measure. The fully
crossed design produced 23 participants X 8 texts
x 4 metrics x 2 predictors = 1 472 correlation tests
(counterbalancing included).

Surprisal correlation : r between word-level sur-
prisal and the eye metric.

Entropy correlation: r between contextual en-
tropy and the eye metric.
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Figure 3: Domain Analysis

4 Results

Figure 1 summarises the aggregate correlations. In
the left panel, surprisal (blue) is positive for every
model, peaking in the two GPT-2 variants (r /= .25)
and tapering off as size increases. Entropy (orange)
is negative and grows in magnitude, reaching r ~
—0.14 for the 7-8 B transformers. Hence small
models best capture surprisal-driven slow-downs,
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while large models best capture the skim-when-
uncertain effect indexed by entropy.

The right panel aggregates across models to com-
pare eye-tracking metrics. Surprisal is strongest for
NFix and FPD, weaker for RRD, and minimal for
DFF . Entropy exhibits the reverse profile: it is most
negative for NFix, moderate for FPD, and near zero
on later measures — supporting the interpretation
that surprisal indexes integration difficulty, whereas
entropy reflects a strategic (skim-when-uncertain)
allocation of attention.

Figure 2 contrasts a small (DistilGPT-2, 82 M),
mid-size (Qwen-4B, 4 B) and large (Llama-8B, 8
B) model across the four eye metrics.

Surprisal. The ordering of effects is preserved
across models, but magnitudes shrink as model size
increases: DistilGPT-2 reaches r = 0.48 on NFix
and r = 0.33 on FPD, whereas LLlama-8B falls to
r = 0.38 and r = 0.24, respectively. Small models
therefore yield the clearest surprisal signal.

Entropy. The pattern is reversed. DistilGPT-
2 shows near-zero correlations, Qwen-4B shows
moderately negative correlations, and Llama-8B
shows the strongest negative effects (r = —0.25
on NFix, r —0.18 on FPD). The ranking of
measures also flips: entropy effects are largest for
fixation count and first-pass metrics, but minimal
for DFF and RRD.

Figure 3 plots predictor strength by domain and
simplification. Surprisal peaks in Clinical Orig-
inal passages (r .32), drops to r .29 af-
ter simplification, and is lower overall in General
texts (r ~ .27 —.28). Clinical terminology there-
fore amplifies error-driven slow-downs, and plain-
language rewriting mitigates — but does not elimi-
nate — this cost.

Entropy (orange) stays small and negative in
every condition (r ~ —0.03 ——0.05) and shows
no clear domain or version effect, implying that the
skim-when-uncertain strategy is domain-invariant.

In short, simplification primarily reduces
surprisal-based integration effort in specialized
texts, while entropy-based allocation of attention
remains unchanged.

~
~

~
~

5 Conclusion & Future Work

We demonstrate that LM-derived surprisal and en-
tropy capture different aspects of French reading
behavior, with effects that depend on text type: clin-
ical originals produce the largest surprisal-driven
slow-downs, while entropy effects remain modest



and stable across conditions. Small GPT-2 mod-
els best predict surprisal-based processing costs,
whereas large 7-8B models best predict entropy-
driven skimming behavior. Future work will (i)
extend the corpus to longer passages and more
readers, (ii) model text-level variation more explic-
itly by identifying which text properties modulate
surprisal and entropy effects, (iii) investigate in-
dividual differences in reading strategies, and (iv)
develop an automated simplification pipeline.

The current analysis is limited to clinical and
general texts. Future studies will incorporate medi-
cal texts to examine domain effects more compre-
hensively.
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6 Appendix

Table 2: Comparison of Original and Simplified Texts

text_type text_name version total_screens total_sentences total_words
clinical toxico original 4 19 398
simplified 5 29 469
clinical gastro original 3 13 255
simplified 3 13 336
general weekend original 9 31 844
simplified 9 49 811
general camelot original 8 42 840
simplified 8 58 880
medical  obstetrics  original 12 57 1104
simplified 12 65 1202
medical  stroke original 3 10 276
simplified 3 22 328
medical  ulcer original 15 77 1526
simplified 15 92 1551
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Abstract

Direct Preference Optimisation (DPO) has
emerged as an effective approach for align-
ing large language models (LLMs) with hu-
man preferences. However, its reliance on bi-
nary feedback restricts its ability to capture nu-
anced human judgements. To address this limi-
tation, we introduce a gaze-informed extension
that incorporates implicit, fine-grained signals
from eye-tracking-while-reading into the DPO
framework. Eye movements, reflecting real-
time human cognitive processing, provide fine-
grained signals about the linguistic characteris-
tics of the text that is being read. We leverage
these signals and modify DPO by introducing
a gaze-based additional loss term, that quan-
tifies the differences between the model’s in-
ternal sentence representations and cognitive
(i.e., gaze-based) representations derived from
the readers’ gaze patterns. We explore the use
of both human and synthetic gaze signals, em-
ploying a generative model of eye movements
in reading to generate supplementary training
data, ensuring the scalability of our approach.
We apply the proposed approach to modelling
linguistic acceptability. Experiments conducted
on the CoL A dataset demonstrate performance
gains in grammatical acceptability classifica-
tion tasks when the models are trained in the
gaze-augmented setting. These results demon-
strate the utility of leveraging gaze data to align
language models with human preferences. All
code and data are available from Github.

1 Introduction

Direct Preference Optimisation (DPO, Rafailov
et al., 2023) has recently emerged as a scalable,
computationally efficient, stable method for align-
ing language models with human preferences. Un-
like Reinforcement Learning from Human Feed-
back (RLHF, Christiano et al., 2017) or Reinforce-
ment Learning from Al Feedback (RLAIF, Lee
et al., 2024), it does not require a separate reward
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model and allows a policy model to internalise the
preferences directly. However, DPO relies only
on binary pairs of preferred and dispreferred re-
sponses, and this simplicity leads to a critical lim-
itation: binary feedback provides no information
about how strongly one response is preferred over
another, limiting the model’s ability to align with
nuanced human judgements. Recent studies have
demonstrated that integrating explicit, fine-grained
preference labels—such as ranked lists or ordinal
scores— into a DPO-based framework improves
the alignment of a policy model with human prefer-
ences (Liu et al., 2025; Zhao et al., 2024). However,
collecting explicit high-quality detailed annotations
from humans at scale is labour-intensive and costly.

To address the outlined limitations, we introduce
a method that leverages implicit human feedback
from eye-tracking data collected during reading.
Eye movements are considered the gold-standard
method to investigate cognitive processes under-
lying language processing (Rayner, 1998; Clifton
et al., 2007). Because eye movement patterns sys-
tematically reflect processing difficulty and readers’
evaluations of linguistic input, these gaze signals
can provide detailed, fine-grained indicators of hu-
man preferences, reducing reliance on explicit de-
tailed human ranking or rewards from auxiliary
models. In our approach, we integrate gaze-based
signals into the DPO training pipeline, allowing
the model to incorporate nuanced human feedback
beyond binary supervision while retaining DPO’s
computational efficiency. Recent advances in gen-
erative models of eye movements in reading fur-
ther support the scalability of this method (Prasse
et al., 2023; Deng et al., 2023b; Bolliger et al.,
2023, 2025) since they make it possible to gener-
ate synthetic human-like scanpaths and increase
the training dataset without collecting data from
humans.

The specific downstream task we focus on is

Proceedings of First International Workshop on Gaze Data and NLP associated with RANLP 2025,
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modelling grammatical acceptability (terms gram-
maticality and acceptability are used interchange-
ably) judgements. Models for this task are typi-
cally trained using supervised learning with binary
labels that categorise sentences into acceptable ver-
sus unacceptable ones. However, psycholinguistic
research (Lau et al., 2017; Francis, 2021) demon-
strates that speakers perceive grammatical accept-
ability along a gradient rather than as a binary la-
bel. Eye-tracking data holds potential to inform
the model about the degree of ungrammaticality,
as psycholinguistic evidence demonstrates that eye
movement patterns vary depending on the degree of
grammar violations (Tuninetti et al., 2015; Rayner
et al., 2004). Similarly, eye movements in reading
can provide information on the type, strength of
ungrammaticality (Braze et al., 2002) and its lo-
cation within the utterance (Vasishth et al., 2013;
Frazier and Rayner, 1982). Once an ungrammati-
cality is encountered, the reader’s eye-movement
patterns tend to exhibit longer fixation durations,
an increased number of regressions, and disrupted
saccadic movements—reflecting increased process-
ing difficulty and reanalysis effort. These findings
suggest that eye-tracking data can supply the fine-
grained online signal missing from binary anno-
tations and inform the model about the strength,
locus, and characteristics of grammar violations as
perceived by humans. Building on this foundation,
we investigate two principal research questions: (i)
whether integrating gaze signals into DPO during
training improves model performance on grammat-
ical acceptability; and (ii) whether increasing the
amount of training data by adding synthetic gaze
data leads to further gains in model performance.

2 Related Work

2.1 Human-Preferences Alignment

Direct Preference Optimisation has been proposed
as a streamlined alternative to RLHF and RLAIF, as
it trains directly on binary preferred—dispreferred
pairs and does not require a learned reward
model (Rafailov et al., 2023). However, this
pairwise supervision limits the model’s capac-
ity to reflect how strongly one response is pre-
ferred over another. Recent work has introduced
methods to incorporate finer-grained information.
One of these methods—Ordinal Preference Op-
timisation (OPO)—replaces binary comparisons
with ranked lists, enabling the model to capture
relative distances among responses (Zhao et al.,
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2024). Another approach—Listwise Preference
Optimisation (LiPO)—extends this idea by for-
mulating alignment as a learning-to-rank prob-
lem (Liu et al., 2025). An alternative method,
namely Margin Matching Preference Optimisation
(MMPO), retains the pairwise format of the re-
sponses and attaches real-valued quality margins
to each pair (Kim et al., 2024). All of these ap-
proaches rely on explicit, graded feedback, either
from human annotations or reward models, which
can be costly to obtain or may diverge from human
judgements when using external LLMs to score the
responses (Bavaresco et al., 2025).

2.2 Eye Movements in Reading as Indicators
of Grammatical Violations

Eye-tracking studies have demonstrated that gaze
patterns reliably identify the locus, type, and
strength of grammatical violations (Schotter and
Dillon, 2025). Readers precisely localise syntactic
anomalies, leading to immediate regressions and
increased fixation durations at points of structural
disambiguation or grammatical inconsistency (Fra-
zier and Rayner, 1982; Vasishth et al., 2013). Fur-
thermore, distinct gaze signatures differentiate vio-
lation types: syntactic errors (e.g., agreement mis-
matches or structural ambiguities) typically cause
rapid regressions and increased first fixation du-
rations, whereas semantic and pragmatic anoma-
lies predominantly affect later reading measures,
such as regression-path duration and total fixation
time (Braze et al., 2002).

Eye movements also systematically reflect the
strength of violation. Strong violations, such as
outright ungrammatical constructions or semanti-
cally impossible continuations, provoke immediate
disruptions in first-pass reading times and frequent
regressions. Conversely, milder violations, such
as subtle semantic implausibilities or pragmatic
errors, result in delayed and comparatively moder-
ate reading disruptions, evident primarily through
increased regression-path durations and cumula-
tive reading times (Rayner et al., 2004; Tuninetti
et al., 2015; Joseph et al., 2009; Schotter and Dil-
lon, 2025; Schotter and Jia, 2016). Overall, these
findings demonstrate the utility of eye-tracking as
a fine-grained implicit feedback on the processing
of grammatical violations in real-time language
comprehension.



2.3 Eye-Tracking-while-Reading for Natural
Language Processing

Eye movements in reading have been leveraged
for model evaluation and interpretation, including
the assessment of a model’s and cognitive plausi-
bility (Bolliger et al., 2024; Beinborn and Hol-
lenstein, 2024; Haller et al., 2024; Goodkind and
Bicknell, 2018; Bensemann et al., 2022; Eberle
et al., 2022; Sood et al., 2020a; Hollenstein and
Beinborn, 2021).

Besides model evaluation and interpretation,
gaze signals have proven effective for training and
evaluating NLP models. Recent research demon-
strated that eye movements in reading can be lever-
aged as a supervisory signal to enhance model per-
formance on various downstream NLP tasks. Early
research employed eye-tracking data in the form
of auxiliary input alongside the text embeddings
for named entity recognition, sentiment analysis,
sarcasm detection, part-of-speech tagging (Hollen-
stein and Zhang, 2019; Mishra et al., 2016; Barrett
et al., 2016; Tiwari et al., 2023). Other studies inte-
grated reading measures into models to guide atten-
tion mechanism directly for visual question answer-
ing, sentence compression and paraphrase genera-
tion, sentiment analysis (Sood et al., 2020b; Long
et al., 2017; Sood et al., 2023). Further research
utilised gaze data in transfer learning settings, task-
ing the models to predict reading measures as an
auxiliary training objective for sarcasm detection,
readability prediction, or machine reading compre-
hension (Yang and Hollenstein, 2023; Deng et al.,
2023a; Gonzalez-Garduiio and Sggaard, 2018; Mal-
maud et al., 2020). A more recent line of research
reordered the input sequence according to the scan-
paths (Yang and Hollenstein, 2023; Deng et al.,
2024) at the fine-tuning stage. All of the listed
frameworks have demonstrated the utility of eye
movements in reading for a wide range of NLP
tasks and have exhibited comparable performance
using either real human or synthetic eye-tracking
data.

Most recently, eye-tracking data has been in-
tegrated into frameworks aimed at aligning hu-
man preferences, specifically in reward modelling
within RLHF paradigms (L6pez-Cardona et al.,
2025). Eye movements have also shown promis-
ing results for constructing datasets reflecting hu-
man preferences (Kiegeland et al., 2024; Lopez-
Cardona et al., 2025). Nevertheless, directly apply-
ing gaze data to preference alignment frameworks
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without relying on intermediate reward models re-
mains unexplored. We address this gap and demon-
strate the utility of eye-tracking-while-reading data
for directly aligning large language models with
human preferences.

3 Preliminaries

We first provide a short overview of Direct Prefer-
ence Optimisation (DPO, Rafailov et al., 2023), a
method for aligning language models with human
preferences. This approach is a further develop-
ment of RLHF (Ouyang et al., 2022) and relies on
a policy model—the model being trained—a refer-
ence model—a frozen, pre-trained checkpoint used
to regularise training and keep the policy close to
its initial weights—and a reward model, which as-
signs rewards to outputs produced by the policy.
DPO eliminates this reward model and instead op-
timises the policy to increase the (log-)probability
of preferred over dispreferred responses directly.

Given a dataset of triples (r, 2!, 2°)—a prompt
r with a preferred (chosen) response 2! and a dis-
preferred (rejected) response x°—DPO updates a
policy g relative to a fixed reference policy mr by
maximising the Bradley—Terry log-likelihood:

1
max By 1 20) [ log o (B (log %

7o (2°]r)
Wref'(xolr)

—log ))} ,
ey
where ¢ is a sigmoid function that maps the dif-
ference in log-probability ratios between the policy
and reference models to a value in (0, 1), which can
be interpreted as the probability that the policy as-
signs a higher probability to the preferred response
x!, B is a temperature parameter that controls the
sensitivity of the model to small differences be-
tween the preferred and dispreferred options. This
objective directly increases the model’s relative
log-probability of preferred over dispreferred re-
sponses.

4 Problem Setting

The task of linguistic acceptability classification is
a supervised learning problem, where the goal is to
determine whether a given natural language expres-
sion conforms to the grammatical norms of a partic-
ular language variety. Formally, let X C ¥* denote
all possible input strings over a finite vocabulary
Y. Each input z € X is a sentence. The output
is Y € {0,1}, where y = 1 indicates an accept-
able expression and y = 0 denotes an unacceptable



one. Given a dataset D = { (2, )}, sampled
from X x )Y, the objective is to find a function
fo : X — [0, 1] parametrised by 6, where fy(z)
represents the predicted probability of acceptability.
We investigate two questions: (i) whether incorpo-
rating human eye-tracking signals at training time
improves performance on grammatical acceptabil-
ity classification, and (ii) whether adding synthetic
gaze provides further gains beyond human signals
alone.

We evaluate our models and report the perfor-
mance with accuracy, F;, and Matthews correlation
coefficient on held-out data.

5 Data

5.1 The CoLAGaze Corpus

We utilised the CoLAGaze eye-tracking-while-
reading corpus (Bondar et al., 2025) to integrate
implicit human feedback into the Direct Preference
Optimisation framework. The dataset comprises
eye-tracking data collected from 42 participants
reading 153 pairs of (un)grammatical sentences
manually selected from the Corpus of Linguistic
Acceptability (CoLA; Warstadt et al., 2019). Each
participant read either the grammatical or the un-
grammatical counterpart of each sentence. These
sentences span a diverse range of grammatical vi-
olations, including syntactic, morphosyntactic, se-
mantic, and pragmatic anomalies. Detailed infor-
mation on the original data collection procedure,
preprocessing steps, and computation of reading
measures can be found in Bondar et al. (2025).
The full corpus contains 6,246 data points in total.
For our analyses, we selected data from 38 well-
calibrated participants, resulting in a total of 5,814
data points.

5.2 Synthetic Data

In addition to the human data provided by Co-
LAGaze, we trained Eyettention (Deng et al.,
2023b), a state-of-the-art generative model of eye
movements in reading, to produce synthetic scan-
paths (i.e., sequences of fixations and saccades) for
an additional 30 sentence pairs from CoLA (see
Appendix B for more details), with the goal of
extending the training set beyond the original Co-
LAGaze data and assess whether gaze-informed
models can benefit from synthetic gaze signals dur-
ing training.
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6 Method

6.1 DPO with Binary Feedback

To address the linguistic acceptability classification
task, we fine-tune a 7-billion-parameter instruction-
tuned Mistral model within the Direct Preference
Optimisation framework. To fit the DPO setup
we form a set of 153 pairwise preferences P =
{(z,20) }5:1, where z. represents a grammati-
cal sentence and 20 its ungrammatical counterpart,
and C represents the total number of pairs. The
DPO setup employs two pretrained LLMs: the pol-
icy model 7y, initialised from the instruction-tuned
Mistral checkpoint and fine-tuned during training,
and the reference model 7¢, which shares the ini-
tial parameters of the policy model but remains
frozen throughout fine-tuning to stabilise learning
and avoid catastrophic forgetting. Given a prompt
r that explicitly instructs the model to identify the
grammatical sentence from the pair (z}, 20) (for
details on the prompt, see Section 7), the policy
model is trained to generate the grammatical sen-
tence as output. We optimise the parameters of
the model using the standard DPO objective (for
details on standard DPO, see Section 3).

6.2 DPO Augmented with Gaze-Based
Implicit Feedback

6.2.1 Eye-Tracking Feature Selection

We used sentence-level eye-tracking measures from
CoL AGaze calculated after correcting for vertical
drift. Specifically, we selected a subset of eye-
tracking features most predictive of sentence-level
acceptability across all violation types included
in CoLAGaze. To select the subset from the Co-
LAGaze dataset, we fit a binomial generalised lin-
ear mixed model to predict sentence labels from
the eye-tracking features and perform greedy back-
ward (recursive) elimination, removing one feature
at a time and refitting the model. Feature selection
is guided by the Bayesian Information Criterion
(BIC) (Schwarz, 1978). The final set of features is
the one that minimises BIC.

Once the subset of the eye-tracking features is se-
lected, we train our gaze-augmented large language
models with two sets of eye-tracking measures (see
Appendix C for a comprehensive list of measures
and their definitions): measures based on event
counts (e.g. number of fixations, number of regres-
sions) and measures based on durations (e.g. total
fixation duration, first-pass reading time). Models



augmented with synthetic eye-tracking data utilise
only event-count based features, as the Eyettention
model employed for synthetic data generation does
not predict fixation durations.

6.2.2 Integration of the Eye-Tracking Data

To integrate the cognitive information into the DPO
framework, we introduce an additional gaze-based
loss term /gt to the original DPO loss function,
that quantifies the alignment of the model’s internal
sentence representations h to cognitive (i.e., gaze-
based) representations g derived from the sequence
of eye-movement events s (see Figure 1 for a visual-
isation of how the gaze-based loss term is derived).
To compute the eye-tracking based loss term, for a
grammatical-ungrammatical pair (x}, 20), we ob-
tain the sentence embeddings h!, h? € R? from
the policy model my. To get the embeddings we
tokenise the two sentences from each pair into two
separate sequences T, = {t1,...,tr, |}, feed
each of the sequences to the model 7y, extract the
hidden states of the last layer H € R”=*? from the
model and use mean pooling to derive a sentence

representation

1

h, = —
c Txc

> H,, )
qg=1

where ¢ is a token position in a sequence. To
integrate gaze data into the loss, we form eye-
tracking feature vectors g., consisting of the se-
lected sentence-level eye-tracking features from
CoLAGaze (see 6.2.1). Let I and I? denote the
set of readers who saw x! and 20, respectively';
for each reader i € I}, or j € I?, and for each
sentence .}, or 20, we form a sentence-level gaze
feature vector giﬂ- € RY, or gg ;€ R¥, where F is
the number of gaze features. For each sentence pair
(z}, 20) we form K = 20 cross-participant vector
pairs by independently sampling indices i € I}
and j;, € I? with replacement for each pair; these
indices are fixed once at the start of training. (we
treat the number of pairs K as a hyperparameter,
see Appendix A for details) and compute the dif-
ference between them Agjgec = glc’ik - g% i We
then treat each tuple consisting of the prompt, the
grammatical and ungrammatical sentences and the
gaze vector difference (r, z!, 29, Ag;%%) as a sepa-
rate gaze-augmented training instance. For each of

'The stimuli were presented in Latin square such that each
reader saw either grammatical or ungrammatical version of
each sentence
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the instances we compute the gaze-based loss term

3)

Because cos(h., h?) is in the range [—1,1], /T,
penalises the model when the sentence embeddings
are too similar while the differences in human gaze
patterns are large — in this case the cosine term
is close to 1 and the Euclidean distance between
the gaze vectors HAggec H2 is large, this results into
large positive gaze-based loss. On the other hand,
when the sentence representations are already well
separated (cosine term closer to -1), the gaze-based
loss term EI(fT)p becomes negative and implicitly re-
wards the model by decreasing the total loss. Train-
ing minimises the expectation over the final loss:

E(EkT)C = cos(h(lj7 hg) HAg;%ec

9

Etotal = E(r,x17xO7Agaze) [ﬁDPO(H) +a EET ] ’ (4)

where « is a tuned hyperparameter. By training
the model with a gaze-based loss term we intend
to align the model’s representations with human
cognitive processing signals.

7 Experiments

7.1 Training Setup

We fine-tuned the 7-billion-parameter instruction-
tuned Mistral model in several configurations to
evaluate whether integrating implicit feedback de-
rived from eye-tracking data into Direct Preference
Optimisation enhances downstream performance
on grammatical acceptability classification. See
Figure 2 for a summary of the training and eval-
uation pipeline. Training details are available in
Appendix A.

We model grammatical acceptability as a binary
classification task, implemented as text generation
with a decoder-only transformer. At training, for
each item, both grammatical and ungrammatical
sentences are presented in a single prompt:

Select the grammatically correct

sentence:
A) <sent_A>
B) <sent_B>

The assignment of the grammatical option to A
or B is random to avoid position cues. The pol-
icy model 7y computes log-probabilities for each
sentence; grammatical sentences are treated as pre-
ferred responses and ungrammatical ones as dispre-
ferred.

We augmented the DPO framework with gaze
data in several configurations. First, we incorpo-
rated implicit human gaze feedback, where the
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Figure 1: As depicted in the left blue box, for each grammatical-ungrammatical sentence pair ¢, we randomly
sample 20 gaze vectors per grammatical sentence ' and per ungrammatical one x°, drawn from different readers.
From the sampled gaze vectors we then randomly pick a gaze vector for the grammatical sentence and a gaze vector
for its ungrammatical counterpart and pair these gaze vectors, resulting into 20 gaze vector pairs. For each pair
of gaze vectors, we compute the Euclidean distance between them to quantify the difference in gaze behaviour
for the grammatical sentence compared to its ungrammatical counterpart. As shown in the right green box, we
simultaneously, extract hidden representations of the sentences from the policy model and calculate the cosine
similarity between the grammatical and ungrammatical sentences, reflecting their proximity in the model’s internal
representation space. Each gaze distance is then multiplied by the similarity of the hidden representations to produce

a scalar eye-tracking-based loss Eg%)c.

eye-tracking-based loss was derived from selected  and a question “Is this sentence grammatical?”.
CoL AGaze features, using both event durations = SFT minimises the cross-entropy loss (negative
and event-count measures. Second, we exper- log-likelihood) over dataset D defined in Section
imented with using only count based features 4:

to assess whether duration based measures con-

tribute to performance gains. Third, we extended Lser(0) = = Ey)-p [log 7T9(y R a:)]

this setup by incorporating synthetic eye-tracking 1 Q)
data, by adding synthetic scanpaths on 30 addi- ~ - N Z log 7r9(y . m”)'

tional sentence pairs generated by the Eyettention -

model (see B for details). Finally, we investigated Third, we trained a text-only DPO model (see

whether averaging gaze features across all read- ~ Section 6.1 for details) using the same sentence

ers—representing an “average reader”—still leads ~ pairs as in the previous training settings, relying
to improved performance. solely on binary acceptability supervision without
any cognitive signals.

7.2 Baselines 73  Ablation

We evaluated our method against three text-only  To further validate our findings, we conduct an ab-
baselines based on the instruction-tuned Mistral  lation study eliminating the eye-tracking features
checkpoint. First, the Base model corresponds to  in the additional loss term £. In this variant, the
the original checkpoint without any task-specific  standard DPO objective is augmented only with
fine-tuning. the cosine similarity between the two sentence em-
Second, we trained a Supervised Fine-Tuning  beddings, cos(hl, h?), omitting the gaze-difference
(SFT) variant by optimising a cross-entropy loss  term (i.e., effectively setting ”Ag;)zec |2 =0).
on the 153 grammatical-ungrammatical sentence
pairs from CoLA. When the policy model is trained
in the SFT setting, it is fine-tuned to generate the At test time, we use only the text data from the held-
acceptability label y from a prompt ¢ containing  out CoLA training and development sets. Each test
a sentence x, to be classified with a labely, as  sentence is fed to the model alongside the following
being either grammatical (1) or ungrammatical (0)  prompt:

7.4 Evaluation Setup
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Figure 2: As depicted in the left part of the figure, during DPO training, the model receives a prompt containing
a pair of sentences—one grammatical and one ungrammatical—and is tasked to select the grammatical one. We
extract the probability of the grammatical and ungrammatical sentence being generated and use them for DPO. As
the central block of the figure shows, we fine-tune the model and explore three training configurations: (i) using only
binary preference labels (text-only), (ii) augmenting the labels with human gaze data, and (iii) further incorporating
synthetic gaze data into the training. At evaluation, shown in the right side of the figure, the model is given a
single sentence and prompted to classify it as grammatical or ungrammatical. Eye-tracking data is not used during

evaluation.

Is this sentence grammatical or
ungrammatical? <sent>

We report results separately on two subsets (both
sourced from CoLA training and CoLLA develop-
ment set): sentences that share linguistic character-
istics with the training data, such as similar syntac-
tic constructions and lexical items (in-domain sub-
set in the original CoL A dataset), and those that dif-
fer substantially from the training distribution (out-
of-domain subset in the original CoLA dataset).
Performance is measured using accuracy, F1 score,
and Matthews correlation coefficient (MCC).

8 Results and Discussion

The results for grammatical acceptability classifi-
cation on CoL A are summarised in Table 1.
Supervised Fine-Tuning performed notably
worse than the instruction-tuned base model, ob-
taining an MCC of 0.463 in-domain and 0.410 out-
of-domain. The model trained with text-only DPO
also failed to surpass the base model’s performance
with an MCC of 0.460 and 0.406 for in-domain
and out-of-domain, respectively. This drop in per-
formance could be attributed in part to the small
size of the dataset used for training (fine-tuning or
DPO), which may have led the model to overfit and
generalise poorly (Barnett et al., 2024). Addition-
ally, the Supervised Fine-Tuning and DPO training
was conducted using quantised low-rank adaptation
(QLoRA, Dettmers et al., 2023), potentially further
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limiting the effective model capacity (Wang et al.,
2024).

The best-performing model was Mistral fine-
tuned using DPO augmented with eye-tracking fea-
tures—both event-count and duration based. This
model achieved an MCC of 0.510 in-domain and
0.502 out-of-domain. Relative to the baseline
instruction-tuned Mistral model, gaze-augmented
DPO improved the MCC by 0.037 points in-domain
and 0.074 points out-of-domain. Similar improve-
ments were observed for F1 and accuracy metrics.
These results indicate benefits from integrating eye-
tracking signals into the optimisation objective. In
particular, this method appears useful in a low re-
source settings, as in our study the models were
trained on only 153 sentence pairs. Finally, our
ablation study demonstrates that, as expected, re-
moving the gaze signal leads to inferior model per-
formance.

We further compared gaze augmentation with
all gaze-derived features against leveraging a re-
duced set containing only fixation- and saccade-
count based features. The results showed an ad-
vantage of using all gaze features, suggesting that
duration based gaze features contribute additional
information beyond fixation counts alone.

Overall, the model trained with both gaze-event-
count and duration based features outperformed
the baseline and the models trained on text only.
The results hold for all of the settings in which



Model Gaze Data | Synthetic Data | Aggregated | Test Set Accuracy? F11 MCCt
Base X X X in-domain 76.62 0.83 0.473
Base X X X out-of-domain 72.87 0.79 0.428
SFT X X X in-domain 70.402,45 0.7500‘033 0.4630_009
SFT X X X out-of-domain 64.87236 0.6780‘037 0.4100,019
DPO X X X in-domain 72.600,19 0.7780‘004 0.4600_006
DPO X X X out-of-domain 67.20041 0.734()‘03 0.406()‘008
Ablation X X X in-domain 76.240,54 0.82170‘0053 0.471 10.0058
Ablation X X X out-of-domain 73.74068 0-7929040083 0.452100029
DPO all feat-s X X in-domain 80.170.667 0.8640.006 0.5100.013
DPO all feat-s X X out-of-domain 79.330.872 0.8550.00s 0.5020.00s
DPO count feat-s X X in-domain 79.530.110 0.8580.001 0.4990.002
DPO count feat-s X X out-of-domain 78.790.469 0.8480.004 0.4960¢.009
DPO all feat-s X v in-domain 79.760.135 0.8680.002 0.4900.005
DPO all feat-s X v out-of-domain 78.150.070 0.8540.001 0.4550.001
DPO count feat-s X v in-domain 76.240,288 0.8210‘007 0.4720‘001
DPO count feat-s X v out-of-domain 73.060.551 0.7880.008 0.4360.003
DPO count feat-s v v in-domain 76.150.134 0.8210.002 0.4710.002
DPO count feat-s v v out-of-domain 73.450.820 0.7910.009 0.4460.007

Table 1: Results of training Mistral model on 153 sentence pairs from CoLA in different configurations: in-domain
and out-of-domain subsets. Accuracy, F1 (positive = grammatical), and MCC are reported as meangp over 3
random seeds. Gaze Data indicates whether human eye-tracking features were used; Synthetic Data indicates
whether synthetic gaze features were additonally used; Aggregated refers to whether gaze features were aggregated
across readers. All feat-s in the Gaze Data columns means that both duration and event-count based features were
used at training, count feat-s means that only event-count based features were leveraged.

the gaze data with all of the features was used —

augmented with the data not aggregated across the
readers, and with scanpaths aggregated across the
readers. These findings are in line with the seminal
work by Kliegl et al. (1982), who first showed that
both duration and event-count based measures are
informative about processing difficulty. The DPO
training with event-count based features does not
consistently lead to performance gains — while
using the data not aggregated across the readers is
beneficial, aggregating across participants leads to
a decrease in performance in in-domain evaluation
settings. Models where training was augmented
with synthetic gaze data showed only marginal
improvements over the base model on the out-of-
domain test set. We attribute this to several factors,
namely the small size of the synthetic dataset, the
usage of a single gaze-feature vector per sentence,
and the reliance on event-count reading measures
only. Future research might investigate the inte-
gration of synthetic data with both duration and
event-count based features, and explore the use of
larger synthetic datasets.

Finally, future work may examine word-level
eye-tracking features instead of sentence-level mea-
sures, as these have the potential to localise ungram-
maticality within sentences and thereby provide the
model with a more fine-grained and informative su-
pervision signal.
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9 Conclusion

We introduced a gaze-informed extension of Di-
rect Preference Optimisation that aligns a large
language model’s internal representations with
human cognitive processing signals. By inte-
grating an eye-tracking loss term—derived from
sentence-level differences in reading patterns
observed on grammatical versus ungrammati-
cal sentences—into the DPO objective, our ap-
proach injects graded, implicit feedback into train-
ing. Our experiments on CoLAGaze show that
gaze-augmented models consistently outperform
text-only baselines, and that both duration-based
and count-based eye-tracking features provide use-
ful signals beyond text alone.
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Appendix
A Implementation Details

The pretrained checkpoint was sourced from a
publicly available Hugging Face repository. All
models were trained on an NVIDIA GeForce RTX
4090 GPU. In all training configurations, we fine-
tuned the 7 B instruction-tuned Mistral model with
4 bit weight quantisation; both policy and refer-
ence models were quantised. During training, we



applied parameter-efficient tuning and therefore
updated only the LoRA parameters (rank r=16,
a=32, dropout = 0.1, no bias). We optimised with
the AdamW optimiser under a cosine schedule with
a 10-step warm-up, batch size 8, and a maximum
sequence length of 512 tokens.

We trained with three random seeds (17, 23, 42).
Table 2 lists the hyperparameters explored in the
grid search; the final setting was selected based on
the lowest validation loss.

Table 2: Hyperparameter grid.

Hyperparameter ~ Values

Learning rate 2x107%, 3x107°, 5x107°

Weight decay 0.02, 0.03

Training steps 600, 700, 1000, 3000, 4700, 6120
0.2,0.3

«@ 0.10, 0.05

Number of pairs 20, 30, 40

B Generation of Synthetic Eye Movement
Data

To extend the eye movements dataset for train-
ing the model in the gaze-augmented DPO setting
we generate the synthetic eye movements-while-
reading data, particularly we predict the scanpaths
for 30 sentence pairs from the CoL A dataset, pre-
process the gaze data to extract the event count-
based reading measures and train the models on
both human and synthetic eye movements data.
Scanpath prediction is the task of mapping a to-
kenised sentence x = (wy, . .., wy) to a variable-
length sequence of eye-movement events s
(e1,...,em), Where each fixation event comprises
the index p; € {1,...,T} of the fixated token.
We formalise this as learning a conditional distri-
bution P (s | x; ), instantiated via autoregressive
sequence models or structured prediction frame-
works, by minimizing the negative log-likelihood:

M
L) == logP(e; | eci,x;0).

i=1
We used two corpora to train the Eyettention
model: CELER (Berzak et al., 2022) and Co-
LAGaze (introduced above). CELER is a large-
scale eye-tracking dataset comprising gaze record-
ings from 365 participants, including both native
(L1) and non-native (L2) English speakers with
varying levels of language proficiency and linguis-
tic backgrounds. The participants read a total of
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28,548 sentences, randomly sampled from Wall
Street Journal (WSJ) newswire text. The dataset
provides word-level fixation data, which we used
to train the generative model of eye movements.

We generated synthetic fixation sequences for
30 CoLA training sentences using Eyettention, a
dual-encoder Transformer for scanpath generation.
We evaluated three training configurations: (i) pre-
train on CELER (Berzak et al., 2022) and fine-tune
on CoLLAGaze, (ii) train on CELER only, and (iii)
train on CoLAGaze only. Hyperparameters fol-
lowed the original Eyettention setup. Each configu-
ration used 5-fold cross-validation with the original
“new sentence” split.

Training Fine-Tuning | Testing Data NLD|
Data Data

CELER — CoLAGazeau 0.4930,074
CoLAGaze — CoLAGaze,, 0.4870.008
CELER CoLAGaze CoLAGazeau 0.491 0.008
CELER - CoLAGazeuw, | 0.491¢.014
CoLAGaze - CoLAGazeu, | 0.4840.012
CELER CoLAGaze CoLAGazeug | 0.4870.017

Table 3: Eyettention training configurations and scan-
path quality on CoLAGaze. Normalised Levenshtein
Distance (NLD; lower is better) is reported as meang p
over readers. COLAGAZE,; = all sentences; CO-
LAGAZE,g = ungrammatical subset.

Performance was measured on a held-out Co-
LAGaze subset using normalised Levenshtein dis-
tance (NLD) between synthetic and human scan-
paths: for each sentence—reader pair we computed
the Levenshtein distance, divided it by the max-
imum scanpath length, and then averaged across
readers. We report results for all sentences and for
the ungrammatical subset. The three configurations
performed similarly; the CoLAGaze-only model
was marginally better on both subsets (Table 3).
We therefore used this model to generate synthetic
scanpaths. From these scanpaths we extracted the
same event-count features as for human data, using
the identical preprocessing pipeline, and integrated
them into the DPO training pipeline.

C Reading Measures

To integrate human cognitive signals into the DPO
framework, we extracted a diverse set of eye-
tracking measures that capture different aspects of
on-line reading behaviour. These measures reflect
temporal and spatial dynamics of eye movements
and have been shown in psycholinguistic research
to be sensitive to lexical and syntactic properties of
text. We report them in Table 4.



Reading Measure

Definition

Second pass duration (IQR, mean)

Go past time (mean, SD, IQR)

First duration (median, IQR)

Rereading time
Gaze duration (SD, median, mean)

Normalised outgoing regressions count
(SD)
Saccade length (median, SD)

Regression rate
Reading duration

Total fixation duration (SD)

First fixation duration (SD, IQR, mean)
Saccade duration (SD, IQR)
Normalised saccade duration (IQR)
Word in Fixed Context First and Total
Fixation Duration (mean)

Information Cluster First and Total Fix-
ation Duration (mean, SD)

Syntactic Cluster Total Fixation Dura-
tion (mean)

sum of fixation durations when a word is revisited after the first
pass reading is complete, before the third pass

sum of all fixation durations from the first fixation on a word
until the reader moves to a word to the right (progresses forward
in the text)

duration of the first fixation on a word, regardless of whether it
was fixated in the first pass or not

duration of all fixation after the first pass

of all fixation durations on a word during first pass reading
(before the eyes leave the word for the first time)

number of regressions initiated from a word normalised by the
total number of progressive saccades in a sentence

absolute horizontal distance of a saccade, measured in number
of characters

proportion of regressions out of total incoming and outgoing
saccades

total time spent reading each item, normalized by sentence
length

sum of all fixation durations on a word across all passes
duration of the first fixation on a word during the first pass
saccade duration in milliseconds

saccade duration normalized by total reading time

first and total fixation duration on a word in a fixed context
(see Berzak et al., 2018 for more details) normalised by the
context overall reading duration

first and total fixation duration on a word in an information
cluster (see Berzak et al., 2017 for more details) normalised by
the cluster overall reading duration

total fixation duration on a word in a syntactic cluster
(see Berzak et al., 2018 for more details) normalised by the
cluster overall reading duration

Table 4: Eye-tracking measures employed to augment DPO framework. For each measure we report its definition
and the aggregation statistic(s) used to obtain a sentence-level vector (mean/median/SD/IQR).
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Abstract

This work introduces the first Romanian eye-
tracking dataset for reading and investigates
methods for predicting word-level total read-
ing times. We develop and compare a range of
models, from traditional machine learning us-
ing handcrafted linguistic features to fine-tuned
Romanian BERT architectures, demonstrating
strong correlations between predicted and ob-
served reading times. Additionally, we propose
a lexical simplification pipeline that leverages
these TRT predictions to identify and substi-
tute complex words, enhancing text readability.
Our approach is integrated into an interactive
web tool, illustrating the practical benefits of
combining cognitive signals with NLP tech-
niques for Romanian, a language with limited
resources in this area.

1 Introduction

Total Reading Time (TRT) refers to the cumulative
duration a reader fixates on a given word, includ-
ing all refixations. As an eye-tracking metric, TRT
serves as a reliable indicator of the cognitive pro-
cessing involved in both semantic and deep syn-
tactic analysis during reading (Frazier and Rayner,
1982; Pickering et al., 2004). Unlike other reading-
time metrics that may capture only initial attention,
TRT reflects the full depth of engagement a word
receives, offering valuable insight into processing
difficulty.

The prediction of word-level reading times and
their relationship to textual complexity have a long
history of investigations. Previous studies demon-
strate that models designed to estimate eye-tracking
measures, such as first fixation duration and total
reading time, can serve as effective indicators of
text readability (Gonzélez-Garduifio and Sggaard,
2017). Furthermore, eye-tracking data has been

§ Corresponding authors.

used to improve neural network models; for exam-
ple, Barrett et al. (2018) incorporate human atten-
tion patterns into recurrent neural networks, result-
ing in improved performance on a range of NLP
tasks. More recently, research by Hollenstein et al.
(2021) shows that large language models, including
multilingual BERT, can approximate human read-
ing behavior, supporting the integration of cogni-
tive signals into language model development and
evaluation. Additionally, it has been observed that
transformer models inherently encode eye-tracking
information during pre-training (Dini et al., 2025),
and that intermediate fine-tuning with eye-tracking
data does not negatively impact downstream task
performance.

In this paper, we present a work-in-progress and
several initial experiments on predicting word-level
TRT using eye-tracking data collected from native
Romanian speakers. Our work introduces the first
dataset of Romanian eye tracking recordings col-
lected in the framework of Multip]EYE' and we
propose a variety of machine learning approaches
to estimate TRT. All code is publicly available.

Accurate TRT prediction can inform a range of
downstream applications, particularly in the devel-
opment of cognitively informed tools such as lexi-
cal simplification systems and reading aids (Duffy
et al., 1988).

2 Data

The dataset used in this study originates from the
MultiplEYE project (Jakobi et al., 2025), and it
represents the first eye-tracking corpus for reading
in the Romanian language. It includes recordings
from four participants, all of whom are native Ro-
manian speakers.

"https://multipleye.eu/
https://github.com/ana0101/
eye—tracking

Proceedings of First International Workshop on Gaze Data and NLP associated with RANLP 2025,
pages 71-75, Varna, Bulgaria, Sep 12, 2025.

https://doi.org/10.26615/978-954-452-104-2-009
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The reading materials consist of 14 texts: 10
main texts, 2 practice texts, and 2 backup texts.
These texts span a variety of genres, the majority
being official Romanian translations from multiple
source languages. Due to minor translation incon-
sistencies and updates across sessions, each partic-
ipant read a slightly different version of the texts.
The eye-tracking experiments were conducted us-
ing the EyeLink 1000 Plus system.

We process the raw gaze data using the Py-
movements library (Krakowczyk et al., 2023) to
extract fixations and their alignment to correspond-
ing words in the text. For each word, the total
reading time is computed as the average duration
across all participants. To analyze how much the
TRT varies between the participants, we calculate
the coefficient of variation as the mean TRT di-
vided by the standard deviation of the TRT. The
coefficients are between 0 and 2, with a mean of
1.02 and a median of 0.98. The variation is quite
high, which is expected given the small number of
participants.

Figure 1 presents a histogram of the resulting,
averaged TRT values. A significant number of
words received a reading time of zero milliseconds,
indicating that these words are skipped entirely
during reading. This is a known and expected phe-
nomenon, especially for short or high-frequency
function words. Out of the 778 skipped words by
all the participants, 689 are function words. At the
opposite end of the spectrum, some examples of the
words with the highest TRTs are distorsiune (dis-
tortion), cosmodromicd (cosmodromic), gravifice
(gravitational), and premergdtoare (preliminary),
which are all long, complex words. All TRT val-
ues were standardized to have a mean of 0 and a
standard deviation of 1.

3 Results

We evaluate our models for predicting word-level
TRT using several metrics: Mean Squared Error
(MSE), R? score, Pearson and Spearman correla-
tion coefficients, and Accuracy. Accuracy is de-
fined as 100 — MAE, where MAE is the Mean
Absolute Error, with TRT values scaled to the
[0, 100] range, following established practices in
eye-tracking prediction (Hollenstein et al., 2021).

We consider two primary modeling approaches:
(1) traditional machine learning models trained
on handcrafted features, and (2) fine-tuning pre-
trained BERT models.
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Figure 1: Histogram of TRT.

3.1 Feature Extraction and Analysis

For each word, we extract several features to
aid in predicting the TRT. These include basic
scalar attributes such as word length, the num-
ber of subword tokens generated by the Roma-
nian BERT tokenizer (Dumitrescu et al., 2020),
word frequency (obtained via the wordfreq li-
brary (Speer, 2022)), and the log probability of the
word within its sentence context, estimated using a
masked language modeling approach.

To calculate the log probability, we employ the
pre-trained Romanian BERT model (Dumitrescu
et al., 2020). The process involves first tokenizing
the target word to determine its number of subword
tokens. Then, these tokens are replaced in the sen-
tence by an equal number of [MASK] tokens. The
masked sentence is passed through the language
model, which outputs probability distributions for
each [MASK] token. The log probability for the
word is taken as the negative logarithm of the prob-
ability assigned to the original first token by the
model. While we also experiment with summing or
averaging the log probabilities across all subword
tokens, using only the first token’s log probability
yields better predictive performance.

In addition to scalar features, we derive contex-
tual embeddings to capture semantic and syntactic
information. We extract these embeddings from
multiple layers of Romanian BERT: from the first,
middle, last, and an average of all layers. Since
BERT tokenizes words into subword units, we ag-
gregate the embeddings of all tokens belonging to
the same word by averaging them. This aggrega-
tion relies on character offset alignments to accu-
rately map subword tokens back to their original
words.
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Figure 2: Pearson correlation between TRT and ex-
tracted features.

Figure 2 presents the Pearson correlation coeffi-
cients between TRT and the scalar features. Among
these, word length shows the strongest correlation,
followed by frequency, log probability, and num-
ber of tokens. Notably, the negative correlation
between word length and frequency suggests that
longer words tend to appear less frequently.

3.2 Traditional Regression Models

We train several regression models, including Lin-
ear Regression, Support Vector Regression, Ran-
dom Forest, Gradient Boosting, Ridge Regression,
Neural Networks, and more. Each model is trained
on three feature sets: (1) only scalar features, (2)
only embeddings, and (3) a combination of both.
The data is split into train and test sets, with 80%
of the data used for training and 20% for testing,
which means 3796 words for training and 949
words for testing. When splitting the data, the
words from the same sentence are not present in
both the train and test sets. The features and read-
ing times are standardized to have zero mean and
unit variance.

All models achieve similar results: Pearson cor-
relations between 0.6 and 0.7, accuracy between
70% and 95%, MSE between 0.4 and 0.7, Spear-
man correlation between 0.6 and 0.75, and R?
scores ranging from 0.25 to 0.5.

Models trained on scalar features slightly outper-
form those trained on embeddings alone, although
combining both types yields the best results overall.
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Among the embeddings, the average of all BERT
layers generally performs best, so only the results
with these embeddings were considered.

3.3 Fine-Tuning Pre-trained Language
Models

‘We also fine-tune two Romanian BERT-based ar-
chitectures:

* BERT for Token Classification: Modified to
output a single regression value per token.

 BERT with Regression Head: Includes a
linear layer, ReLU activation, layer normal-
ization, dropout, and a final regression layer.

For token-level prediction, the TRT value of a
word is assigned to each of its subtokens. During
inference, token-level predictions are averaged to
compute the word-level TRT.

The data is split into train, validation, and test
sets, with 80% of the data used for training, 10%
for validation, and 10% for testing. The train set
contains 250 sentences, while the validation and
test sets contain 25 sentences each. The reading
times are standardized to have to have zero mean
and unit variance.

Training is done in three phases using a grad-
ual unfreezing strategy. For the first model, we
unfreeze 4 additional layers every 8 epochs; for
the second, we begin with only the regression head
for 5 epochs and then unfreeze 6 layers every 10
epochs. Both models use the AdamW optimizer
with a learning rate of 10~#, weight decay of 1074,
a cosine learning rate scheduler with warmup,
batch size of 8, and dropout of 0.3. Padding to-
kens are ignored in the loss computation.

Table 1 summarizes the results. Both models
perform comparably, achieving Pearson correla-
tions around 0.7, Spearman correlations around
0.73, MSE near 0.5, and accuracy close to 90%, re-
sults that are similar to one of the best-performing
traditional models, a neural network trained on all
features.

4 Discussion

Our experiments demonstrate that predicting word-
level reading times is feasible using both straight-
forward approaches, such as linear regression based
on easily interpretable features like word length and
frequency, as well as more sophisticated methods
involving fine-tuning transformer-based language



Model MSE | R? | Pearson | Spearman | Accuracy
BERT for Token Classification | 0.52 | 0.46 0.70 0.73 89.81
BERT with Regression Head 0.49 | 047 0.69 0.73 90.58
Neural network (all features) 0.41 | 0.44 0.69 0.74 90.43

Table 1: Performance of models.
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Figure 3: Metric ranges comparison between traditional
models and BERT models.

models. The strong correlation between reading
times and these features confirms their significance
in capturing cognitive processing effort. Figure 3
illustrates the compared results of both methods.

One compelling application of accurate reading
time prediction lies in lexical simplification. Since
TRT effectively reflects the processing difficulty
of words, it serves as a reliable indicator of lexical
complexity. By identifying words with high TRT
and substituting them with alternatives predicted to
have lower TRT, we can enhance text readability
and reduce overall reading effort.

To realize this, we implement a lexical simpli-
fication pipeline that first estimates the TRT for
all words in a given text, selects candidates with
elevated TRT, and generates potential replacements
using the Romanian BERT masked language model
(Dumitrescu et al., 2020). By masking the target
word and leveraging the model’s contextual predic-
tions, we produce candidate substitutions. Inspired
by Qiang et al. (2020), we experimented with con-
catenating the original and modified sentences in
different orders to improve candidate quality, find-
ing comparable improvements from both strategies.
Before computing the predicted TRT for the candi-
dates, we first make sure that the original word and
the candidate are the same part of speech.

To make these capabilities accessible, we de-
veloped a user-friendly web interface called Read-
ing Time Estimator. This tool enables users to

input text, visualize predicted reading times on
a word-by-word basis, and interactively simplify
complex words by selecting suitable replacements
with lower predicted TRT.

Overall, our work highlights the practical ben-
efits of integrating cognitive signals such as eye-
tracking data into NLP applications, particularly
for languages like Romanian that have limited re-
sources. A

5 Conclusions

In this paper, we introduced the first Romanian eye-
tracking dataset focused on reading behavior, and
demonstrated its utility in predicting word-level
total reading time using both traditional machine
learning and fine-tuned transformer-based models.
Our experiments show that features such as word
length and frequency are strong predictors of TRT,
and that fine-tuned Romanian BERT models can
achieve high predictive performance.

We also explored the practical implications of
reading time prediction in the context of lexical
simplification, proposing a pipeline that uses TRT
estimates to identify and replace complex words.
This system is implemented in an interactive web
application that showcases the potential for user-
centered NLP tools grounded in human reading
behavior.

Our results highlight the value of eye-tracking
data for advancing human-centered language tech-
nologies and pave the way for further work on
Romanian and other low-resource languages in the
domain of cognitive NLP.
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