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Abstract

We introduce the first automatic animacy clas-
sifier for the Latvian language. Animacy, a
linguistic feature indicating whether a noun
refers to a living entity, plays an important
role in Latvian grammatical structures and syn-
tactic agreement, but remains unexplored in
Latvian NLP. We adapt and extend existing
methods to develop type-based animacy classi-
fiers that distinguish between human and non-
human nouns. Due to the limited utility of
Latvian WordNet, the classifier’s training data
was derived from the WordNets of Lithuanian,
English, and Japanese. These lists were inter-
sected and mapped to Latvian nouns from the
Tēzaurs dictionary through automatic transla-
tion. The resulting dataset was used to train
classifiers with fastText and LVBERT embed-
dings. Results show good performance from
a MLP classifier using the last four layers of
LVBERT, with Lithuanian data contributing
more than English. This demonstrates a viable
method for animacy classification in languages
lacking robust lexical resources and shows po-
tential for broader application in morphologi-
cally rich, under-resourced languages.

1 Introduction

There are many languages that are bound to go
extinct despite efforts to preserve them, while oth-
ers, such as English, are widely spoken and face
no such risk. The Latvian language is positioned
somewhere in between (Jansone, 2010), meaning
that its long-term survival depends on active efforts
to maintain and develop it. As the official language
of Latvia and one of the official languages of the
European Union, Latvian has around 1.5 million
native speakers1, significantly fewer than global
languages like English. This smaller speaker base
also means that Latvian is considerably less re-

1https://valoda.lv/valsts-valoda/

searched in fields such as natural language process-
ing (NLP) (Laucis and Jēkabsons, 2021). Ensuring
that Latvian keeps pace with advances in NLP is
essential not only for preserving and modernizing
the language but also for supporting its use in dig-
ital applications such as machine translation and
automated text processing.

One important but underexplored linguistic fea-
ture in NLP research, particularly for morphologi-
cally rich languages like Latvian, is animacy. Ani-
macy refers to how “alive” or independently acting
a noun’s referent is — humans and animals are ani-
mate, while objects are not. This distinction is en-
coded in the grammars of many natural languages,
influencing word order, case marking, and agree-
ment patterns. Studies suggest that incorporating
animacy into computational models can enhance
machine translation and parsing accuracy (Øvre-
lid, 2006, 2008), in addition to informing linguistic
studies. However, for Latvian, we are not aware of
the existence of any animacy classifier.

We present an approach to animacy classification
for Latvian nouns based on static and contextual
word embeddings. While other animacy classifiers
for under-resourced languages have used this ap-
proach (Tepei and Bloem, 2024 for Romanian), our
approach is novel in relying on lexical-semantic
resources for higher-resource languages. Previous
approaches rely on WordNet hypernym relations
to obtain a seed set of animacy-labeled data for
supervised learning, but as the Latvian WordNet
does not yet have a full tree of hypernym and hy-
ponym relations, we instead rely on the WordNets
for higher-resource languages and automatic trans-
lation to obtain such data.

2 Related Work

Three types of animacy are usually distinguished:
grammatical, biological and conceptual (de Swart

https://valoda.lv/valsts-valoda/
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and de Hoop, 2018). Entities that possess physical
characteristics such as the ability to die are said to
as biologically animate. The speaker’s perspective
and cultural upbringing serve as the foundation for
conceptual animacy. The way that people person-
ify or give non-living things agency reflects this,
for example, in mythology. Grammatical animacy,
however, illustrates how a language’s grammar re-
flects both biological and conceptual animacy. It
functions as a condition or semantic feature that af-
fects linguistic structures such as case marking and
verb agreement. Usually, the concept of animacy
is seen as being a continuous scale ranging from
humans to inanimate abstract objects. According
to Yamamoto (2006, p. 36), animacy is a matter
of gradience determined by the overall animacy
scale, hierarchy of persons, the agency scale, and
the individuation scale.

Despite animacy usually being viewed as exist-
ing on a continuous scale or a hierarchy (DeLancey,
1981), natural language requires that concepts be
categorized. The two most simple categorizations
would be distinguishing between animate and inan-
imate nouns or distinguishing between human and
non-human nouns. Most effects of grammatical
animacy are based on a binary split, with tripartite
systems being rare. As a consequence, most NLP
literature on animacy also discusses the distinction
between two to three categories.

Latvian does not mark animacy distinctions di-
rectly, but animacy has several effects on the gram-
maticality and felicitousness of sentences. Latvian
has a somewhat free word order; however, there are
more and less common sentence structures. Even
though all six word order variations for subject-
verb-object placement are possible, the most com-
mon structure is subject-verb-object (SVO) when
the subject is animate, and object-verb-subject
(OVS) is more frequent with inanimate subjects
(Voits, 2014). Seržant and Taperte (2016) found
that animacy plays a role in influencing the choice
between accusative and nominative case marking
in the Latvian debitive construction. Animate NPs
also appear to be more likely to trigger genitive
agreement, where the predicate agrees with the
noun in the genitive case rather than with the quan-
tifier. Inanimate NPs, on the other hand, do not
favor the genitive or quantifier agreement (Kalnača
and Lokmane, 2022, p. 85). These interactions be-
tween animacy and the felicitousness and grammat-
icality of sentences in Latvian suggest that animacy

could be a useful feature also for downstream NLP
tasks for Latvian, such as coreference resolution.

Animacy classifiers have been made for other
languages, including under-resourced ones. Some
of the first research on automatic animacy classifi-
cation for nouns was done by Øvrelid (2004) on ani-
macy classifiers for Norwegian (Øvrelid, 2005) and
for Swedish (Øvrelid, 2008; Øvrelid, 2009). These
classifiers are based on morphosyntactic features
that were selected on linguistic grounds to classify
into binary animate/inanimate categories. These
classifiers achieved quite good results, achieving
up to a 98.6% accuracy on unseen nouns. However,
they are based on large pre-annotated animacy cor-
pora, which is not something available for many
under-resourced languages.

Subsequently, Bowman and Chopra (2012) pro-
posed a classifier that classifies nouns into ten cat-
egories. This paper highlights the problem of try-
ing to classify nouns into more categories than are
expressed in grammar. It is more difficult to dis-
criminate animacy when grammaticality and felici-
tousness is only governed by human/non-human or
animate/inanimate categories as models can then
only rely on semantic cues, not syntactic or mor-
phological ones. Bloem and Bouma (2013) present
an animacy classification tool for Dutch, which
combines type-based classification using distribu-
tional features with a seed set of noun types that
were given an animacy label based on the Cornetto
lexical-semantic database (Vossen, 2006). They
tested classification with a two-way distinction
(human/nonhuman) and a three-way distinction
(animate human/animate nonhuman/inanimate).
Classification for the human/nonhuman distinc-
tion, which corresponds to distinctions made in
Dutch grammar, performed much better. Their
best-performing classification algorithm was a K-
nearest neighbour classifier.

More recent approaches have turned to transfer
learning to overcome data scarcity and enhance
generalization across tasks and languages. Transfer
learning has been widely used in natural language
processing to address the challenges posed by lim-
ited labeled data, especially in under-resourced lan-
guages. The approach involves reusing represen-
tations learned from a general task, such as lan-
guage modeling, for more specific tasks like an-
imacy classification. Pretrained models such as
FastText (Bojanowski et al., 2017) and contextual
models like BERT (Devlin et al., 2019) are com-
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monly used. For Latvian, LVBERT (Znotiņš and
Barzdiņš, 2020) provides pretrained embeddings
that can be applied to downstream tasks with mini-
mal task-specific training. Prior work suggests that
transfer learning can support tasks requiring seman-
tic generalization by utilizing knowledge encoded
during pretraining (Ruder et al., 2019; Conneau
et al., 2020). In the case of animacy, this includes
properties such as agency and sentience, which
may be implicitly captured by language models.

3 Methodology

3.1 Use of WordNets for animacy-annotated
lists

Based on the results of previous work and because
Latvian does not have a strict grammatical animacy
distinction, the animacy classifier we make distin-
guishes between human and non-human classes,
employing lemmas from a word list to make a
type-based classifier. Inspired by the recent ani-
macy classification work on the under-resourced
Romanian by Tepei and Bloem (2024), we used
hyponymy relations to extract a seed set of nouns
that were labeled for animacy using WordNet.

This labeling stems from the hierarchical struc-
ture of WordNet: It consists of a hierarchy of
synsets that are in hyponym and hypernym rela-
tions with each other, with specific synsets at the
bottom and general synsets at the top, representing
concepts such as entity and event. Under entity,
we find concepts such as life form and object. By
taking words from all synsets that are hyponyms of
one such high-level synset, such as the one corre-
sponding to human words, it is possible to obtain a
large number of words that refer to human entities.

However, Latvian WordNet (Paikens et al., 2023)
is still under construction and is largely lacking in
hyponymy and hypernymy relations, not contain-
ing a full tree of synsets. Therefore, we devel-
oped a different approach based on higher-resource
WordNets. More specifically, WordNets for three
languages— Lithuanian (Garabı́k and Pileckyte,
2013), English (Fellbaum, 1998) and Japanese
(Bond and Kuribayashi, 2023) were used to ex-
tract lists of human and non-human nouns. The
English WordNet was used for its interpretability,
and Japanese WordNet was used for its large word
tree containing a vast amount of noun relations
and for the fact that it is not an Indo-European lan-
guage, typologically distinct from both Latvian and
English. In contrast, the Lithuanian WordNet was

used because of its similarity with Latvian, the only
other living Baltic language.

As in previous work, we constructed the seed
sets of words with animacy labels by identifying
high-order hypernyms that contained no instance
of the other class for the three languages, namely,
asmuo, person and人 (all with the meaning person)
as the human targets for Lithuanian, English, and
Japanese, respectively. For the non-human class, all
other unique beginner synsets that do not contain
person as a hyponym were used for the inanimate
class. After having established these high-order
hypernym synsets, lists of all their hyponyms were
extracted to obtain human and non-human nouns
for all three languages.

3.2 Translating Latvian nouns
We used the online lexical resource Tēzaurs (Spek-
tors et al., 2025) to obtain a dataset of Latvian
nouns. All of these unique noun lemmas were au-
tomatically translated to Lithuanian, English, and
Japanese for comparison with the extracted lists of
animacy-labeled lists of nouns. To translate these
nouns, we used the Google Translate API2, which
was found by Rikters (2015) to perform well for
English-Latvian translation at the time.

The translations of the nouns were checked
against the animacy-labeled lists of nouns in the
three languages, and if a word was present in all
three animacy-labeled sets with the same label,
then its Latvian counterpart was included in an
animacy-labeled list for Latvian with the corre-
sponding label of human or non-human. This re-
striction reduces the possibility that translation er-
rors between particular language pairs affect the
quality of our seed set, as there was no manual
translation quality control and polysemous words
could have been translated incorrectly. In the end,
the list consists of 5183 nouns, of which 735 are
labeled as human.

3.3 FastText-based classifiers
We used pre-trained fastText embeddings (Bo-
janowski et al., 2017) to obtain static word vec-
tors for Latvian nouns. FastText was chosen for
its subword modeling capabilities, making it effec-
tive for morphologically rich languages, and prior
work found it to be the best-performing static em-
bedding for Latvian (Laucis and Jēkabsons, 2021).

2The API was called using the deep-translator li-
brary for Python: https://pypi.org/project/
deep-translator/

https://pypi.org/project/deep-translator/
https://pypi.org/project/deep-translator/
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Vectors were 300-dimensional, with character n-
grams of length 5, a window size of 5, and 10
negative samples, trained on Common Crawl and
Wikipedia. Each vector was paired with the ani-
macy label derived from the WordNet intersection.
We trained classifiers using K-nearest neighbors
(KNN) (k = 5), Random Forest (RF) (100 estima-
tors, Gini criterion), and Multi-Layer Perceptron
(MLP) (hidden size 100, α = 0.0001, learning rate
0.001) algorithms. We used these classifiers be-
cause they were used by Tepei and Bloem (2024),
who included them based on good performance in
previous work.

3.4 LVBERT-based classifiers
To explore the potential of contextual embeddings,
we used LVBERT (Znotiņš and Barzdiņš, 2020), a
transformer model trained on Latvian corpora. For
each noun token, we extracted either layer 0 (non-
contextualized) or a 3072-dimensional vector from
the concatenation of the final four layers (layers
9-12, following Hosseini et al. 2023).

We try the latter approach because deeper layers
capture richer semantic information (Devlin et al.,
2019), and concatenation has shown strong per-
formance in semantic similarity tasks. The first
non-special token (i.e., the noun) was used for clas-
sification. Layer 0 embeddings were also tested to
compare performance with fastText, as lower trans-
former layers may behave like static embeddings
(Vulić et al., 2021). We cannot tune LVBERT for
the task with a token classifier head as no corpus
with animacy annotation in context is available.

3.5 Evaluation methods
To assess the quality of the static and contextual
embedding-based classifiers, we split the labeled
noun types into an 80%/20% train/test set, which
was then used to perform a type-based evaluation
of the classifiers.

We also perform a token-based evaluation be-
cause it represents a more naturalistic use setting
despite the classifier being type-based. To this
end, we chose, compiled, and cleaned nine ran-
dom Wikipedia articles. Using the Python library
Stanza (Qi et al., 2020), which has a POS tagger
for Latvian trained on the Universal Dependencies
treebanks for Latvian (Pretkalniņa et al., 2018),
a list of nouns present in the texts was extracted
and manually annotated for animacy by a native
Latvian speaker. As the classifier is type-based,
the nouns are lemmatized before annotation and

prediction. Lemmas representing human collec-
tives (e.g., valdı̄ba ‘government’) were assigned
the non-human category due to them being treated
as inanimate in Latvian grammar, exemplified by
the use of demonstrative pronouns instead of per-
sonal pronouns. The classifiers were then used
to predict class membership for the given nouns.
Although the classifier is type-based and does not
consider the surrounding context of nouns, token-
based evaluation can provide a better benchmark of
the classifier’s performance in a naturalistic setting.

4 Results

4.1 Type-based evaluation
4.1.1 Results for the classifiers made with

fastText embeddings

Classifier Acc. Pre. Rec. F1
KNN 0.857 0.780 0.222 0.345
RF 0.878 0.915 0.307 0.461
MLP 0.900 0.728 0.653 0.688

Table 1: Type-based evaluation performance of fastText-
based classifiers. Baseline accuracy is 0.830.

For fastText-based classification of noun types,
the RF algorithm achieves a higher precision score
of 91.5% against the KNN and MLP models (see
table 1). However, the MLP algorithm shows better
recall and accuracy scores of 65.3% and 90.0%,
respectively. This entails that when the RF model
predicts the human class, it is almost always cor-
rect (precision); however, it is very conservative in
labeling nouns as human, leading to very low recall
of 30.7% (false negatives). On the other hand, the
high accuracy and recall scores for MLP show that
it is overall quite good at predicting class member-
ship, and it achieves the highest F1 score of 68.8%.
KNN shows the worst performance overall. Base-
line accuracy for this dataset is 83%, as 83% of the
test nouns are non-human.

4.1.2 Results for classifiers trained with
LVBERT embeddings

Using layer 0 embeddings from LVBERT (Znotiņš
and Barzdiņš, 2020) for classifier training did not
prove to be useful (see table 2), yielding worse
scores than their fastText counterparts (with the
exception of KNN).

Results with the last four layers of LVBERT
embeddings are better, with the MLP classifier
clearly outperforming the KNN and RF algorithms.
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Classifier Acc. Pre. Rec. F1
KNN 0.854 0.602 0.420 0.494
RF 0.842 0.620 0.176 0.274
MLP 0.880 0.697 0.523 0.597

Table 2: Type-based evaluation on LVBERT layer 0-
based classifiers. Baseline accuracy is 0.830.

Classifier Acc. Pre. Rec. F1
KNN 0.905 0.824 0.557 0.664
RF 0.849 0.913 0.119 0.210
MLP 0.916 0.795 0.682 0.734

Table 3: Type-based evaluation performance of
LVBERT last four layer concatenation-based classifiers

As shown in Table 3, the MLP classifier achieves
the highest accuracy (0.916), recall (0.682), and
F1 score (0.734) among the three LVBERT-based
classifiers, along with a strong precision score
(0.795). This indicates that the LVBERT-based
MLP classifier is both relatively accurate and bal-
anced in predicting the “human” class. The RF
classifier, while achieving the highest precision
(0.913) among the three, performs poorly in recall
(0.119) and F1 score (0.210). This reflects a con-
servative approach in labeling tokens as “human,”
resulting in many false negatives. The KNN classi-
fier surpasses the fastText-based KNN model. The
LVBERT-based MLP classifier outperforms the
fastText-based MLP classifier. Only the LVBERT-
based RF classifier does not outperform its fastText-
based counterpart. The performance dynamics of
the different algorithms remain the same in a type-
based evaluation, where the RF algorithm has the
highest precision, while MLP outperforms on the
other three metrics. This suggests that richer, con-
textualized representations from transformer mod-
els are beneficial when classifying noun animacy
at the type level.

4.2 Token-based evaluation

For the token-based evaluation with LVBERT, we
only used the last four layer approach due to su-
perior performance in the type-based evaluation.
This evaluation aims to show whether a more natu-
ralistic setting would affect the performance rank-
ings of the classifiers. Nine random Wikipedia arti-
cles on different topics were chosen preprocessed.
Next, a Latvian POS tagger trained on the UD (uni-
versal dependencies) treebank corpus for Latvian
(Pretkalniņa et al., 2018) was employed using the

Classifier Acc. Pre. Rec. F1
KNN 0.905 0.717 0.349 0.469
RF 0.931 0.911 0.468 0.618
MLP 0.894 0.542 0.771 0.636

Table 4: Token-based evaluation on fastText-based clas-
sifiers. Baseline accuracy is 0.880.

Classifier Acc. Pre. Rec. F1
KNN 0.910 0.636 0.578 0.606
RF 0.896 1.000 0.138 0.242
MLP 0.938 0.768 0.697 0.731

Table 5: Token-based evaluation on LVBERT-based
classifiers

Stanza (Qi et al., 2020) library for Python to obtain
a list of 1342 noun lemmas for animacy labeling.
All the lemmas were manually annotated by a na-
tive Latvian speaker with human/non-human labels
based on the meaning of the word token in context.
46 lemmas were excluded from this test set due to
POS-tagging errors or faulty text to obtain 1296
annotated lemmas, of which 908 were used for un-
seen prediction. Out of these 908 lemmas, 799
were annotated with the non-human label and 108
with the human label, setting the majority baseline
accuracy at 88.0%

In this evaluation, the LVBERT-based classi-
fiers generally outperform the fastText-based classi-
fiers. The LVBERT-based MLP classifier achieved
the highest accuracy (0.938) and F1 score (0.731)
across all settings. It also had the highest recall
(0.697), indicating stronger performance in identi-
fying human-referent nouns. The LVBERT-based
RF classifier, while achieving perfect precision
(1.000), showed a very low recall (0.138), suggest-
ing a highly conservative classification strategy that
avoids false positives but misses many actual hu-
man nouns. For fastText, overall results are lower
but still competitive, and RF classifiers perform
better here than they do on LVBERT embeddings.

4.3 Language resource ablation

As our methodology involves combining data from
higher-resource WordNets, we also evaluate the
contribution of each source language WordNet by
training and testing classifiers using only one of the
languages as source data. We perform the token-
based evaluation for all nouns that are not in the
training data (unseen nouns). This does mean that
each classifier has a different test set, as some lan-
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Language Acc. Pre. Rec. F1
Lithuanian 0.932 0.680 0.742 0.710
English 0.862 0.383 0.561 0.455
Japanese 0.908 0.632 0.655 0.643

Table 6: Token-based evaluation on LVBERT-based
MLP classifiers trained on single language WordNets.
Baseline accuracy differs per language.

guages have labels for more nouns than others, so
the results are not directly comparable, but it does
give an impression of the relative contribution of
each resource. Specifically, for the English-based
classifier there are 398 unseen nouns in our evalua-
tion set, for Japanese there are 434 and for Lithua-
nian (the smallest WordNet) there are 790. For
comparison, the original token-based evaluation
had 908 unseen nouns (not occurring in all three
resources). We perform this experiment in the best-
performing setting, using the last four layers of
LVBERT with the MLP classifier. The results are
shown in Table 6. We observe that the classifier
based on Lithuanian WordNet outperforms the oth-
ers, despite this resource being the smallest (6357
noun synsets, compared to 82,115 for English and
42,737 for Japanese). Latvian and Lithuanian are
closely related typologically, with both being East
Baltic languages. This result suggests that typo-
logical relatedness is more beneficial than resource
comprehensiveness for transfer learning for ani-
macy classification in a natural language setting.
However, the approach of combining all three lan-
guage resources still outperforms Lithuanian only
(0.731 vs 0.710 F1 score).

5 Discussion

This study introduced the first classifiers for pre-
dicting animacy (human vs. non-human) in Lat-
vian nouns, using a methodology adapted for a
low-resource setting. We evaluated 12 classi-
fiers based on fastText and LVBERT embeddings,
with animacy-labeled training data derived through
multilingual WordNet intersection and translation.
While we found that training data from a typo-
logically related language was more useful, the
best results were achieved by LVBERT-based MLP
classifiers using the final four layers of the model
trained on labels from an intersection of three lan-
guages’ WordNets. These outperformed fastText-
based models in both type- and token-based evalu-
ations, with the best model achieving 93.8% accu-

racy on unseen nouns.
Although all classifiers were trained on type-

level data, token-based evaluation showed that con-
textual embeddings can generalize well to more
naturalistic usage, even without explicit token-level
supervision. Layer 0 LVBERT embeddings, which
behave more like static vectors, underperformed
compared to deeper contextual layers. The success
of LVBERT shows that transformer-based repre-
sentations can be beneficial even in the absence of
large annotated corpora.

Another promising direction is to use generative
large language models’ zero-shot generalization
capability. Recent work demonstrates that GPT-3
can distinguish animate/inanimate entities in zero-
shot settings across languages (Pucci et al., 2025),
though this has not yet been explored in a classi-
fication task. Probing or fine-tuning LLMs such
as LVBERT, LitLat BERT, or multilingual open-
weight models (e.g., Gemma, LLaMA) on animacy
tasks could offer new insights and performance
improvements. Evaluating how well such models
generalize animacy features to under-resourced lan-
guages would help clarify their linguistic compe-
tence and applicability in downstream NLP tasks.

6 Conclusion

We present the first type-based approach to ani-
macy classification for Latvian nouns using cross-
lingual projection and multilingual lexical re-
sources. Animacy-labeled word lists were auto-
matically constructed by aligning English, Lithua-
nian, and Japanese WordNets with Latvian nouns
from the Tēzaurs dictionary via translation. This
enabled training data creation without manual an-
notation. We trained classifiers using fastText and
contextual LVBERT embeddings. Results showed
that LVBERT-based models—especially MLP with
concatenated final layers—outperformed fastText
models in both type- and token-based evaluations.
While RF classifiers achieved the highest precision,
MLPs offered better balance overall. A language
ablation study showed the most typologically re-
lated language to contribute more.

This work demonstrates the feasibility of ani-
macy classification in low-resource languages with-
out native WordNets. Despite limitations—such as
label noise from translation and lack of context in
static embeddings—our approach lays a foundation
for extending animacy annotation and classification
to other languages.
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7 Limitations

Several limitations remain. Training data labels
were derived via automatic translation, which may
introduce noise. Furthermore, type-based classi-
fiers cannot resolve context-sensitive cases of ani-
macy, such as polysemous words (medijs: psychic
or media in Latvian). In a naturalistic setting, our
classifier would have to be used after lemmatiza-
tion, and imperfect lemmatization due to the ex-
tensively inflected nature of Latvian might reduce
accuracy. Future work could focus on building
token-level classifiers, such as by tuning LVBERT.
This would require a corpus where nouns are an-
notated for animacy in context, which is currently
unavailable for Latvian. Another direction would
be to address the class imbalance in training data
by augmenting the human noun class through syn-
onym expansion.

8 Ethical considerations

We do not foresee any particular harmful impacts
of this work. While the pre-trained embeddings
we use may encode harmful biases, we could not
identify any reason to assume that these biases per-
tain to the human/nonhuman distinction that we
classify. Most concerns regarding bias identified in
the literature pertain to social identities that differ
between humans (e.g. gender bias). When deploy-
ing animacy classification of the type we propose,
we do recommend to evaluate that people with pro-
tected characteristics relevant to the use case aren’t
more likely to be misclassified as nonhuman, as
this may cause harm.
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