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Abstract

The quality of training data is an essential factor
for training large language models (LLMs) as it
directly impacts their performance. While high-
quality data is crucial for training competitive
LLMs, existing preprocessing pipelines still
partly rely on rules, which are computationally
cheap but also inherently limited to simpler pat-
terns. Model-based filtering on the other hand,
is more flexible and can detect finer-grained
patterns and semantics, but often requires sub-
stantial amounts of labeled data. While there
are models for common problems (such as tox-
icity classification), this is often only the case
for resource-rich languages and well-studied
problems—leaving gaps in coverage for other
languages, problems, or combinations thereof.
In this work, we investigate the feasibility of
model-based preprocessing despite the absence
of labeled data. We use active learning to
bootstrap a sentence-level multi-label classi-
fier that detects textual problems of traditional
text cleaning approaches. With only 498 ex-
amples, the final classifier reaches macro- and
micro-F1 scores of 0.80 and 0.84, making it
suitable for practical use. Moreover, we find
that it captured subtle errors compared to a rule-
based baseline. We publish the training code,
a labeled corpus quality classification dataset,
and the resulting classifier1.

1 Introduction

Pre-training large language models (LLMs) re-
quires not only vast amounts of textual data but
also high-quality content, as recent studies show
the impact of data quality on downstream perfor-
mance (Raffel et al., 2020; Penedo et al., 2023;
Longpre et al., 2024; Li et al., 2024).

While there have been many efforts to curate and
clean LLM pre-training corpora, only some of the
possible steps use model-based approaches such as
language identification (Joulin et al., 2016; Grave

1https://github.com/maximilian-bley/
german-webtext-quality-classification

Figure 1: The development process of our approach.
We begin by defining seven corpus quality labels along
with their annotation guidelines, then we annotate a gold
standard for evaluation, and finally train a corpus quality
classifier with active learning.

et al., 2018), perplexity-based filtering (Ankner
et al., 2025; Thrush et al., 2025), predicting sim-
ilarity to reference text (Li et al., 2024), toxic or
adult content detection (Soldaini et al., 2024), or
the targeted search for certain contents such as
educational texts (Wettig et al., 2024). However,
there still are various preprocessing steps that re-
semble traditional text cleaning. They target noise
that usually results from text extraction artifacts in
web corpora such as, among others, incorrectly for-
matted text, non-linguistic content, random word
sequences, letter spacing, encoding errors, or re-
peating characters, and are still predominantly rule-
based (Albalak et al., 2024). Developing such rules
is known to be time-consuming, often highly tai-
lored to specific domains and languages, and may
fail to capture more subtle issues compared to su-
pervised models (Laurençon et al., 2022; Longpre
et al., 2024; Henriksson et al., 2025).

Supervised learning, however, requires a substan-
tial amount of training data. While there are some
existing datasets for tasks such as toxic or adult
content detection, they only cover a limited num-
ber of languages, and moreover, to the best of our
knowledge, none of them address the problems that
are usually handled by rule-based filtering. With

https://github.com/maximilian-bley/german-webtext-quality-classification
https://github.com/maximilian-bley/german-webtext-quality-classification
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smaller2 language models3 becoming increasingly
effective, we argue that it is time to widen the scope
of model-based preprocessing.

To investigate the feasibility of model-based pre-
processing, we train a supervised corpus quality
classifier with seven classes: six representing dis-
tinct types of textual deficiencies and one capturing
the absence of those.4 Since no training data exists
for this particular task, we apply active learning,
an iterative approach that aims to minimize annota-
tion effort. We begin by developing a classification
scheme and corresponding annotation guidelines.
To evaluate the resulting classifier, we create a gold
standard through iterative annotation, optimizing la-
bel agreement among three annotators (Pustejovsky
and Stubbs, 2012; Klie et al., 2024). Figure 1 sum-
marizes our three-staged development process.

We investigate the following research questions:

RQ1 How effective is a sentence-level classifier in
recognizing several text quality classes, given
an active learning scenario with a budget of
an 8-hour day of annotation?

RQ2 How does the resulting classifier that has
been trained only on few examples perform in
comparison to a rule-based approach?

Contributions (1) We develop and refine a clas-
sification scheme and corresponding guidelines to
obtain a gold dataset for evaluation. (2) We per-
form an active learning experiment investigating
the feasibility of a sentence-level classifier, built for
a specific domain and language in under 8 hours.
(3) We compare our approach to a rule-based one.

Results The final classifier shows reasonable per-
formance despite being trained on only 498 exam-
ples, reaching macro- and micro-F1 scores of 0.80
and 0.84 respectively. Compared to a rule-based
baseline, our approach achieves improvements of
four to five percentage points in F1 and captures
certain types of errors, often more subtle, that the
rule-based system tends to miss. We publish the
training code, a labeled corpus, and the classifier.

2The distinction of what is considered a small model is
evolving, but the important aspect is that at the current time
larger models quickly render computation efforts infeasible,
while small models can process large amounts of data despite
of limited compute resources.

3We rely on the definition of Rogers and Luccioni (2024)
for LLMs, which includes encoder models.

4We use model to refer to the base architecture (e.g.,
BERT (Devlin et al., 2019)), and classifier to denote the model
including a task-specific classification head.

2 Related Work

Preprocessing of Web Data The web has long
been used as an important source of text data in
natural language processing (Kilgarriff and Grefen-
stette, 2003), but requires cleaning procedures to
remove noisy parts such as boilerplate code, encod-
ing errors, non-linguistic content, or broken text.
In the context of LLM training, text cleaning has
gained renewed attention, since carefully-curated
high-quality data is the currently best known recipe
for training strong models (Penedo et al., 2023,
2024). Some preprocessing steps involve hand-
crafted (often language-specific) rules that have
been developed in and adopted from previous
work such as the C4 (Raffel et al., 2020) and
ROOTS (Laurençon et al., 2022) corpora. Similar
(or partly even identical) heuristics have been con-
firmed in follow-up work and are still used in more
recent datasets such as FineWeb (Penedo et al.,
2024). Notably, while some preprocessing steps,
such as language identification, are realized using
models, many cleaning steps still rely on rules.

Active Learning Transformer-based language
models (Vaswani et al., 2017; Devlin et al., 2019)
have shown considerable results in the context of
active learning for text classification using only a
small amount of data (Ein-Dor et al., 2020; Mar-
gatina et al., 2021; Schröder et al., 2022), encour-
aging this work where a lack of training data is a
severe obstacle. With language models continu-
ously increasing in size, some recent approaches
even attempt to replace the human annotator with
an LLM (Xiao et al., 2023; Kholodna et al., 2024).
Many contemporary corpora are, however, very
large, and computational costs are still an obsta-
cle for practical active learning (Romberg et al.,
2025), therefore we opt to use small language
models, which have shown remarkable effective-
ness (Nachtegael et al., 2023; Schröder and Heyer,
2024; Gonsior et al., 2025), while at the same time
allowing us to process larger volumes of data.

The majority of the recent work at the intersec-
tion of language models, active learning, and text
classification revolves around single-label classi-
fication (among others in the works of Ein-Dor
et al. (2020) and Lesci and Vlachos (2024)), while
studies focusing on multi-label active learning are
rare (e.g., Wertz et al. (2022a,b, 2023) and Wang
and Liu (2023)). Moreover, active learning re-
search is often operationalized through simulated
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experiments (Margatina and Aletras, 2023). There-
fore, practical multi-label active learning applica-
tions are highly important to investigate the effec-
tiveness of contemporary active learning.

3 Quality Criteria and Gold Standard

Our approach is not limited to a specific corpus or
language. The following work is conducted at the
example of German web text, which is reflected in
the class descriptions and textual examples.

3.1 Quality Criteria Labels
We define low-quality labels to capture visible de-
ficiencies that interrupt the flow of a text on the
lexical and syntactical level. Conversely, text with-
out such interruptions is considered high-quality
(or clean). These labels are inspired mostly by
rules from related work (e.g., by Raffel et al., 2020;
Kreutzer et al., 2022; Laurençon et al., 2022) and
from a field-tested rule-based approach, developed
for the same kind of data (Goldhahn et al., 2012).5

To provide examples to the reader, exemplary
sentences with their corresponding label sets are
presented in Table 1, where one label is highlighted
for each example. The respective classes are de-
fined in the following:

Sentence Boundary Sentence boundary errors
occur if the start or ending of a sentence is mal-
formed. This is the case if it begins with a lower
case letter or an atypical character, or lacks a proper
terminal punctuation mark (e.g., period, exclama-
tion mark, or question mark).

Grammar Mistake Grammar mistakes are any
grammatical errors such as incorrect articles, cases,
word order and incorrect use or absence of words.
Moreover, random-looking sequences of words,
usually series of nouns, should be tagged. In most
cases where this label is applicable, the sentence’
comprehensibility or message is impaired.

Spelling Anomaly A spelling anomaly is tagged
when a word does not correspond to German
spelling. This includes typos and incorrect cap-
italization (e.g. “all caps” or lower-case nouns).
Spelling anomalies are irregularities that occur
within the word boundary, meaning here text be-
tween two whitespaces. In particular, individual let-
ters or nonsensical word fragments are also tagged.

5https://github.com/
Leipzig-Corpora-Collection/
sentencecleaner

Punctuation Error Punctuation errors are
tagged if a punctuation symbol has been placed
incorrectly or is missing in the intended place. This
includes comma errors, missing quotation marks
or parentheses, periods instead of question marks
or incorrect or missing dashes or hyphens.

Non-linguistic Content Non-linguistic content
includes all types of encoding errors, language-
atypical occurrences of numbers and characters
(e.g. random sequences of characters or letters),
code (remnants), URLs, hashtags and emoticons.

Letter Spacing Letter spacings are deliberately
inserted spaces between the characters of a word.

Clean Assigned if none of the other labels apply.

3.2 Active Learning
To overcome the lack of labeled data, we aim to use
active learning (Lewis and Gale, 1994), an iterative
approach whose goal is to maximize model perfor-
mance while minimizing human annotation effort.
During each iteration, a so-called query strategy
selects examples, which are labeled by a human
annotator. The model is then retrained on all data
labeled so far, and the process repeats in the next
iteration.

3.3 Gold Standard and Annotation
While this work is not limited to a specific corpus,
we need to evaluate the targeted corpus quality clas-
sifier. For this reason, we introduce a dataset, which
will be used as a gold standard. This considerable
effort is only conducted to enable an experimental
evaluation.

Data Through a direct request to the Leipzig Cor-
pora Collection6 (Goldhahn et al., 2012) we ob-
tained 165M sentences (∼ 4 B tokens) of German
web text. The resulting text originates from var-
ious crawls from 2018. The data is already pre-
processed (through text extraction from HTML,
sentence splitting, and deduplication). In the fol-
lowing, we operate on the resulting sentences.

Annotation Process We rely on agile annota-
tion (Alex et al., 2010; Pustejovsky and Stubbs,
2012; Klie et al., 2024), to iteratively annotate
the gold standard over three rounds. During each
round, all three annotators (the authors of this work)
label a set of given sentences independently. Inter-
annotator agreement (IAA) is then assessed using

6https://wortschatz-leipzig.de/en

https://github.com/Leipzig-Corpora-Collection/sentencecleaner
https://github.com/Leipzig-Corpora-Collection/sentencecleaner
https://github.com/Leipzig-Corpora-Collection/sentencecleaner
https://wortschatz-leipzig.de/en
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Example sentence Labels

© zhu difeng | Visionen zum intelligenten Zuhause gibt es schon lange, und teilweise
sind sie sehr ambitioniert.
EN: © zhu difeng | Visions of the intelligent home have been around for a long time,

and some of them are very ambitious.

Sentence Boundary, Grammar
Mistake, Non-linguistic Content

Medisana Luftbefeuchter Ultrabreeze zusätzlichem Nachtlicht

EN: Medisana humidifier Ultrabreeze additional night light

Grammar Mistake, Sentence
Boundary

Wie viel Geld wollen wir fÃ1⁄4r den Kalender ausgeben?

EN: How much money do we want to spend fÃ1⁄4r the calendar?

Spelling Anomaly, Non-linguistic
Content

Pegasus Solero SL 28 Zoll 58cm Schwarz ..
EN: Pegasus Solero SL 28 Inches 58cm Black..

Punctuation Error, Sentence
Boundary, Grammar Mistake

Zweitens: Ich L I E B E Beeren < 3 In jeglicher Form, Art und GrÃ¶ÃŸe.

EN: Second: I L O V E berries < 3 In all shapes and siÃ¶ÃŸs.

Non-linguistic Content, Grammar
Mistake, Spelling Anomaly, Letter
Spacing

V O R T R A G u n d G E S P R Ä C H
EN: T A L K a n d D I S C U S S I O N

Letter Spacing, Sentence
Boundary, Grammar Mistake,
Spelling Anomaly

Die Spiel- und Lernstube ist Kontakt- und Anlaufstelle für Kinder, Jugendliche,

Eltern und Bewohner im Stadtteil.
EN: The play and learning center is a point of contact and a drop-in center for children,

adolescents, parents, and residents in the neighborhood.

Clean

Table 1: Exemplary sentences (in German with an English translation below) and their respective gold labels.

Cohen’s Kappa for each pair of annotators and each
label. The score is analyzed and shortcomings of
the guidelines or difficult edge cases are discussed.
After this, class definitions or the guidelines are
adjusted (e.g., by adding new positive or negative
examples) and the sentences are relabeled.

Since we follow an iterative approach, any time
we revise the guidelines for all classes, we would
need to relabel every sentence in the batch to re-
flect the updated definitions. To keep the effort
manageable, we relabeled the entire batch only in
the first round. In the subsequent two rounds, we
focused on specific classes that showed significant
discrepancies between annotators.

The first batch of examples (460 in total)
was collected using multi-label Adaptive-Active-
Learning (Li and Guo, 2013) to primarily identify
error cases. The second batch consisted of 600
randomly selected examples to increase text diver-
sity, while the third batch comprised 275 manually
collected examples aimed to cover previously un-
derrepresented classes.

We report agreement scores of each batch of
the initially labeled version in comparison with the
final version in Table 2. We see the largest improve-

Batch Initial IAA Final IAA Size

First batch 0.54 0.74 460
Second batch 0.71 0.71 600
Third batch 0.72 0.75 275

Table 2: IAA (Cohen’s Kappa) between three coders
for the iterative labeling approach over three iterations.

ments in the first batch. This can be attributed to
the initially low inter-annotator agreement, which
prompted a thorough discussion, followed by a
complete relabeling of the whole batch. We re-
peated this process two times. After that, we only
selected examples from low-performing classes.
We saw a moderate increase in IAA in the third
batch, but not in the second one. Although there
were clear improvements in the initial IAA values
for batches 2 and 3, the final IAA value of 0.74 for
the first batch could not be reached.

Final Dataset The three batches are combined
and a majority voting is used to merge the labels.
We had to discard 16 sentences which contained
harmful content or Personally Identifiable Infor-
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Label IAA # Examples

Sentence Boundary 0.86 439
Grammar Mistake 0.76 594
Spelling Anomaly 0.61 290
Punctuation Error 0.41 78
Non-linguistic Content 0.75 147
Letter Spacing 0.96 25
Clean 0.80 577

Avg/Total 0.74 2150

Table 3: Class-wise and averaged inter-annotator agree-
ment, class distribution and number of class examples
(2150 labels in 1319 sentences) of our gold standard.

mation. The final inter-annotator agreement and
additional dataset statistics are shown in Table 3.
According to the Kappa interpretation of Landis
and Koch (1977), with an average of 0.74 we reach
a substantial agreement level (0.6–0.8).

4 Experiments

In this experiment, we examine the feasibility of
detecting the proposed text quality classes, in a
scenario where training data and annotation time
are severely limited (RQ 1). For this purpose, we
bootstrap a classifier with active learning that is
evaluated against the annotated gold standard. To
further assess the effectiveness of the resulting clas-
sifier, we compare it to a rule-based baseline, which
detects similar textual issues (RQ 2).

4.1 Experimental Setup

To reflect realistic constraints, we simulate the sce-
nario of a small team facing large volumes of un-
labeled data with a limited annotation budget by
imposing a time budget of one working day (8
hours). Active learning is warm-started with an
initial training pool of 70 hand-picked examples
(∼ 10 examples per class). In each round, the query
strategy returns a batch of 20 sentences to a human
annotator. To improve the fine-tuning stability, we
train the classifier from scratch, e.g., from the pre-
trained base model, after every batch.

Data A new dataset is used, which was created
as described in Section 3, based on more recent
crawling data of the same project, crawled in 2022
with 136M extracted sentences (∼ 3.4 B tokens).

Classification For classification, we use Set-
Fit (Tunstall et al., 2022), an efficient fine-tuning

paradigm that leverages contrastive learning. Using
a sampling strategy, it generates similar and dissim-
ilar sentence pairs which are used to train a siamese
network. In the multi-label setting, sentences are
considered similar (positive pair), if they have a
label in common, and dissimilar otherwise (nega-
tive pair). While there are variations to SetFit, we
stayed close to the original version in which a Sen-
tence Transformer (Reimers and Gurevych, 2019)
is fine-tuned and the classification operates on the
resulting embeddings. Instead of a logistic regres-
sion head, however, we opted for a neural network
head, which is faster for even a moderate number
of classes at a similar classification performance.

Base Model As the base model, we create a Sen-
tence Transformer (Reimers and Gurevych, 2019)
by mean pooling over the output layer from multi-
lingual DistilBERT (Sanh et al., 2019) (135 M pa-
rameters). Compared to BERT, DistilBERT con-
tains only half the number of layers and is therefore
more efficient regarding training and inference.

Query Strategy We use multi-label Adaptive-
Active-Learning (AAL; Li and Guo, 2013) as the
query strategy, which balances two scores to find
informative samples: (1) Max-Margin Uncertainty
Sampling (MMUS) and (2) Label-Cardinality-
Inconsistency (LCI). MMUS calculates the dis-
tance between the maximum of the predicted nega-
tive labels and the minimum of the predicted posi-
tive labels, according to a fixed threshold (e.g., 0.5).
If the distance is small, the sample is considered
highly informative. LCI assumes that multi-label
instances often have a similar label count. It com-
putes the deviation of the predicted label count
from the average in the so far annotated data (for
details, see Section 4 in Li and Guo, 2013).

One limitation of selecting data based on pre-
dictions is that the data has to be passed forward
through the classifier before any selection criteria
can be applied. To make this step feasible, dur-
ing every round we subsample 10K unlabeled sen-
tences before applying the query strategy. A batch
of the 20 highest-scoring samples is selected.

Implementation The implementation for the ac-
tive learning routine and query strategies are based
on small-text7 (Schröder et al., 2023), an ac-
tive learning library specialized in text classifica-
tion, with integrations for transformers and SetFit.

7https://github.com/webis-de/
small-text

https://github.com/webis-de/small-text
https://github.com/webis-de/small-text
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Metric Value

Fmacro
1 0.80

Fmicro
1 0.84

Subset Acc 0.67

Table 4: Active learning results for 498 examples.

Class F1 # Count

Sentence Boundary 0.96 169
Grammar Mistake 0.86 256
Spelling Anomaly 0.57 158
Punctuation Error 0.62 77
Non-linguistic Content 0.77 110
Letter Spacing 0.94 11
Clean 0.86 145

Table 5: Class-wise active learning results with the
number of training examples per class.

To ease the process for the annotator, we connected
the annotation tool argilla8 to our backend.

5 Results

5.1 Active Learning Experiment

The experiment took 7 hours and 50 minutes in
total, during which 22 batches with 20 examples
each were processed. Re-training from scratch
with every newly annotated batch required overall 5
hours on one Nvidia Tesla A30 (24 GB), querying
in total ∼ 1 hour, labeling less than 2 hours. The
human annotator in this experiment was the first
author of this paper. During the annotation process
12 samples had to be discarded due to the problems
mentioned above (see Section 3.3).

In Table 4, we report F1 and subset accuracy
of the last active learning round on our gold stan-
dard, which used 498 examples for the training
(428 samples + 70 initial examples). The classi-
fier achieves average scores of Fmacro

1 = 0.80 and
Fmicro
1 = 0.84. The subset accuracy of 0.67 is suf-

ficiently high, considering that only exactly match-
ing label combinations are considered correct. The
class scores vary considerably, ranging from 0.57
to 0.96 (see Table 5). Every second sentence was
annotated with the label “Grammar Mistake” (256
examples), followed by “Sentence Boundary” (169
examples) in terms of frequency (last column of
Table 5). When comparing F1 values, there is no

8https://github.com/argilla-io/argilla

indication that a higher number of training exam-
ples always results in higher scores (e.g., when
comparing “Grammar Mistake” = 0.86 and “Sen-
tence Boundary” = 0.96). This can also be shown
with other low-quality classes, notably including

“Letter Spacing” that only required 11 examples to
achieve a score of 0.94.

To further investigate the active learning process,
we reproduce the classifier’s progression during the
experiment by training checkpoints with different
seeds at every two batches of training data and plot
the results (see Figure 2). For example, we train
five times with all the training data, which was
sampled until batch four (70 initial and 80 queried
examples), then train five times on batch six, and so
on. Figure 2 shows improvements across all classes,
with steeper increases initially that gradually level
off over the course of the experiment, albeit at dif-
ferent rates. Although the macro F1 curve shows
signs of stagnation during the last two batches, in-
creasing the annotation budget may yield further
improvements. However, the point at which per-
formance would begin to decline remains unclear.
One approach would be to proceed cautiously by
reducing the active learning batch size.

Figure 2: Macro and class-wise F1 in relation to train
examples per batch, showing classification progress dur-
ing the active learning cycle. Re-trained with 5 seeds at
every second batch. Batch 0 are the 70 initial examples.

5.2 Comparison to Rule-Based Filtering

To further investigate the classifier’s performance,
we compare it against a rule-based baseline, Sen-
tencecleaner, which was developed within the con-
text of the project through which our dataset was
obtained (Goldhahn et al., 2012). This tool applies
a set of 40 rules to filter out low-quality sentences
and is typically used on web crawling data. These

https://github.com/argilla-io/argilla
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Not-Clean Clean

Sentencecleaner 0.8181 0.8150
Corpus Quality Classifier 0.8673 0.8603

Table 6: Comparison in F1 score between our super-
vised approach and a rule-based baseline, both devel-
oped for the same task and dataset. Evaluated against
not-clean and clean sentences from our gold standard.

rules include checks for character or symbol ratios,
letter spacing and invalid sentence boundaries.9

Quantitative Comparison We apply a black-box
evaluation, comparing both methods solely based
on their outputs against our gold standard, focus-
ing on their ability to detect impaired and clean
sentences. Classifications are considered not-clean
when the classifier identifies any low-quality label
or when any Sentencecleaner rule applies, whereas
classifications are considered clean when the class

“Clean” is correctly predicted or no Sentencecleaner
rules are applicable. Table 6 shows that our ap-
proach outperforms by 4.92 (not-clean) and 4.53
(clean) percentage points in F1, demonstrating both
better error detection and clean text recognition.

Qualitative Comparison To have a better under-
standing of which additional patterns the classifier
can find, we perform a brief qualitative comparison.

We first review examples that were incorrectly
filtered out by the rule-based baseline, but correctly
retained by our approach. Among those 39 sen-
tences, 12 could be captured with simple rule ad-
justments. This would be feasible, for example, for
the rule according to which sentences are marked as
not clean if they begin with a number that is not part
of a valid date format. In addition, 26 sentences
were filtered out by a rule prohibiting a sentence
length of more than 255 characters which is a good
example of how difficult it is to find reasonable
thresholds. Of the 56 sentences that triggered this
rule, half were true positives and half were false
positives, yielding a precision of just 50%.

We also look at the 107 sentences, which our
classifier is correctly predicting as not clean and
the rule-based approach missed. Among these, it
is notable that the majority (92 sentences) contain

“Grammar Mistake” in their label set, which cov-
ers all sorts of violations that affect the compre-

9https://github.com/
Leipzig-Corpora-Collection/
sentencecleaner

hensibility of a sentence. To further investigate
the error patterns, we grouped them into different
subcategories and briefly describe them (see Ta-
ble 7). There are 51 cases where a finite verb form
is missing (“Missing Predicate”), e.g. headlines
(news, e-commerce, advertisement, etc.), product
descriptions or bullet points. They all have typi-
cal characteristics of well-formed sentences, like
starting with a capital lettered word, ending with
a punctuation mark while not containing any mis-
placed or random symbols. The second largest
group contains 28 cases with foreign language parts
(∼ 50% non-German text), which are, according
to our definition, grammar violations (“Language
Mixing”). The remaining cases comprise various
textual anomalies, including incoherent sentences,
missing word boundaries causing lexical merging,
and sentences that appear truncated (“Gibberish”,

“Merged Words” and “Truncation”).
To assess the severity of the overlooked er-

rors, We also examined the classifier’s limitations,
specifically the 104 sentences it mistakenly identi-
fied as clean. When looking at the examples and
their gold labels, the two most common label sets
are the single labels “Spelling Anomaly” (40 cases)
and “Grammar Mistake” (31 cases). Single-label
occurrences often reflect subtle errors, which could
be confirmed by examining the actual text content.

6 Discussion

Considering the total amount of time (8h) and train-
ing data (498 examples), we argue that our pro-
posed setup worked sufficiently well to build a
classifier for text cleaning and could serve as a
blueprint for data efficient training. Although this
has been demonstrated on German web crawls, our
pipeline is agnostic to language and domain: only
the annotation scheme and seed examples would
need to be adapted.

Without further experiments, however, it is not
clear how these methods will perform in compari-
son to traditional supervised-learning using random
data points. Nevertheless, during the annotation of
the second batch of the gold standard—600 random
examples—we observed that ∼ 50% of sentences
were clean. In contrast, within the active learn-
ing training data, the class “Clean” was sampled
only 145 times (29%), thereby focusing annota-
tion effort on noisy examples. This suggests that
the traditional supervised classifier will likely be
trained on fewer error cases compared to using ac-

https://github.com/Leipzig-Corpora-Collection/sentencecleaner
https://github.com/Leipzig-Corpora-Collection/sentencecleaner
https://github.com/Leipzig-Corpora-Collection/sentencecleaner
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Pattern Exemplary sentence

Missing Predicate Große Abgeschlagenheit und Trägheit des Körpers.
EN: Great fatigue and sluggishness of the body.

Language Mixing Nun, das lässt sich übertragen: What is a school but the people?
EN: Well, that can be transferred: What is a school but the people?

Gibberish Ist dort Folklore, war schon der 16. Angriff.
EN: Is folklore there, was already the 16th attack.

Merged Words Erdäpfelgulasch - Der SpeisenzustellerEs befinden sich keine Produkte im Warenkorb.
EN: Potato goulash - The food delivererThere are no products in your basket.

Truncation Wie in anderen Bundesländern muss auch in.
EN: As in other federal states, this must also be done in.

Table 7: Various low-quality patterns, the classifier additionally found, in comparison to a rule-based approach.

tive learning, which will reduce performance of our
low-quality classes, but may improve on “Clean”.

When looking at additional low-quality patterns
that our approach identifies (Table 7), we find vari-
ous textual problems, some of which are less obvi-
ous to recognize by looking at the surface structure
alone. One could argue that certain “Missing Pred-
icate” instances, such as headlines that only lack fi-
nite verbs, do not constitute low-quality text. While
this does make sense at the document level, where
the text might serve its function as a summariz-
ing heading, our sentence-level approach assesses
quality focused on syntactically valid sentences.

The comparison also demonstrates the inherent
problem in selecting suitable threshold values in
rule-based approaches, as can be seen with the
imprecise sentence length heuristic.

It is worth noting that our seven-class schema
represents only a first effort to define web text qual-
ity and does not fully capture what constitutes low
(or high) quality sentences. This work focused
on data efficient training methods rather than the
development of a comprehensive taxonomy.

To obtain a rough estimate of GPU requirements
for corpus preprocessing, we processed 1 M sen-
tences (∼ 25 M tokens) on a Nvidia H100 (80GB),
which took ∼ 123.10 s. Extrapolating to 1 T cor-
responds to about 1388 GPU hours.10 While this
constitutes a significant resource demand, scaling
across multiple GPUs or nodes would render even
corpora an order of magnitude larger computation-
ally feasible. Moreover, this estimate reflects the
contemporary throughput, but as GPU capabilities
and computational speed continue to advance, the

10We use vanilla inference using the SetFit library, but we
observed that the throughput plateaued beyond a certain batch
size, even though GPU memory was not saturated. We suspect
that with code optimizations, the runtime could be further
reduced, so the reported number serves as a lower bound.

boundary of what is feasible will steadily expand.

7 Conclusions

In this work, we proposed a labeling scheme for
corpus quality classification, provided a gold stan-
dard of 1,319 annotated sentences for German web
data, and applied active learning to bootstrap a clas-
sifier that predicts corpus quality indicators. For
evaluation purposes, we created a gold standard us-
ing an iterative annotation process, which yielded a
corpus with substantial inter-annotator agreement
(with a Cohen’s Kappa of 0.74), making it suitable
for further use.

Using a multi-label active learning setup, we
trained a classifier that predicts the defined quality
labels for German language with a macro F1 score
of 0.80 and micro F1 of 0.84 despite using only
498 training examples in total, labeled over the
course of 8 hours. We showed that our supervised
approach outperforms a rule-based one developed
for the same task. Additionally, we find that the
classifier is able to capture error types, particularly
those involving the comprehensibility of a sentence,
which the rule-based baseline tends to miss.

This work demonstrates a successful proof of
concept for enabling model-based filtering through
LLM-based active learning for text classification in
resource-constrained scenarios. As capabilities of
LLMs grow and computational costs decline, pre-
processing of larger volumes becomes increasingly
feasible, and as a result we predict that prepro-
cessing will shift towards small efficient models,
making preprocessing for specific languages and
domains increasingly prevalent.

Limitations

We did not continue training a pre-trained Sen-
tence Transformer (ST) model for SetFit, but boot-
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strapped one from a vanilla transformer model
(due to a lack of a comparable German ST model),
which may produce suboptimal sentence-level em-
beddings compared to one whose representations
have been pre-trained on sentence pairs and cosine
similarity loss. We encourage exploring the use
of a pre-trained ST, as this could further improve
performance. While we were not aware of a suit-
able model for German, the multi-lingual model
from Reimers and Gurevych (2019) is a promising
candidate for further investigation.

During the creation of the gold standard, we
discovered a bug in the query strategy used to
select data for the first batch. We assume these
sentences were drawn roughly randomly like the
second batch, but still covered more error cases.

Ethical Statement

The dataset annotations may exhibit bias reflect-
ing the perspectives of the annotators, who are all
computer science researchers, potentially limiting
the diversity of opinions represented in our qual-
ity assessments. Additionally, our definition of
high quality correlates strongly with standard Ger-
man grammar, which may inadvertently exclude
dialectal variations or linguistic phenomena such
as code-switching. This presents a particular con-
cern given that LLM pre-training corpora should
ideally be as representative as possible of natural
language variation. To address these limitations,
we will release our dataset and model to enable
further investigation of these problems.
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