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Abstract
DRISHTI is a novel RFID-vision inte-
grated assistive medication-verification sys-
tem that combines RFID contactless scan-
ning, quantized AI-based vision process-
ing, and adaptive audio feedback to provide
comprehensive medication-safety assurance.
The architecture integrates an MFRC522
RFID reader for rapid drug-container iden-
tification, a Raspberry Pi–mounted cam-
era running a quantized Gemma3-4B vision
model for prescription-document analysis,
and a hierarchical validation engine em-
ploying confidence-weighted scoring across
five critical safety dimensions. Operat-
ing entirely offline, the system processes
compressed medication data through multi-
criteria classification while preserving user
privacy and eliminating cloud dependencies.
In evaluations across 149 test scenarios, DR-
ISHTI achieved 86.57% overall accuracy
and 100% detection of safety-critical cases,
including expired medications, dosage mis-
matches, and drug interactions. The sys-
tem delivers sub-millisecond response times
with real-time, urgency-differentiated au-
dio feedback, offering a practical solution
for enhancing independence and reducing
healthcare risks for visually impaired indi-
viduals.

1 Introduction
Managing medication is critical for individuals
with visual impairments, as over 49.1 (Bourne
et al., 2020) million people worldwide are blind
and many face challenges with medication
safety (Gupta et al., 2023). Traditional aids
such as braille labels, tactile markers, or care-
giver support help but limit accessibility, inde-
pendence, and privacy.

Emerging technologies enable safer medica-
tion management through RFID automated ad-
herence systems (Meshram et al., 2021), audio-
based navigation tools (Zare et al., 2023), and

computer vision approaches including YOLO-
OCR-based pill identification (Dang et al.,
2024) and camera-based smart medication
boxes (Meshram et al., 2021). However, exist-
ing systems like ScripTalk remain centralized
and non-portable, while vision-assisted solu-
tions depend on cloud services, raising privacy
and latency concerns. Integration of RFID
with real-time AI-based label verification in
standalone edge systems remains unexplored.

Edge-based AI systems demonstrate efficient,
private inference for visually impaired assis-
tance, with deployments using specialized hard-
ware (Mahendran et al., 2021) and Raspberry
Pi platforms with vision-language models (Baig
et al., 2024). However, coordinated hardware
integration (RFID, camera, audio) with quan-
tized models and local interfaces for medication
safety remains unaddressed.

This work proposes a standalone, dual-layer
medication verification system leveraging the
Raspberry Pi to deliver a novel assistive tech-
nology for safe and independent medication
use by blind and visually impaired individuals.
The primary contributions of this work are:

• A novel tri-modal verification system com-
bining RFID scanning, real-time prescrip-
tion analysis, and adaptive audio feedback
for blind users’ accessibility and reliability.

• Submillisecond verification pipeline with
hierarchical validation of five safety axes:
authenticity, timing, dosage, formulation,
allergies; ensuring realtime precision.

• Fully offline, privacy-preserving edge solu-
tion that locally processes and syncs pre-
scription data eliminating cloud reliance
while ensuring secure and atomic records.

• Audio-first feedback system delivering
adaptive, prioritized messages. Achieves
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100% detection of critical medication haz-
ards, enabling blind users to receive in-
stant, non-visual alerts.

2 Related Work
Electronic adherence monitoring systems like
MEMS, smart pill bottles, and ingestible sen-
sors automatically track medication intake but
often rely on cloud connectivity (Vitolins and
Smith, 2022; Odhiambo et al., 2021). These
systems enhance adherence through reminders
and record-keeping, yet typically lack veri-
fication mechanisms beyond logging access
events (Odhiambo et al., 2021; Smith and
Clark, 2021). RFID-based medication man-
agement has been explored for safety and au-
tomation. The RMAIS prototype integrates
an RFID reader, scale, and rotating dispenser
for scheduled medicine presentation (McCall
et al., 2010), while portable smart pillboxes
demonstrate adherence improvements through
tagged containers (Doe and Roe, 2024). Com-
mercial solutions like ScripTalk provide audio
prescription information to visually impaired
users but require centralized stations and are
not self-contained edge systems.

Computer vision approaches include deep-
learning pill recognition with imprint detec-
tion (Heo et al., 2023), YOLO-based mobile
applications with audio feedback (Dang et al.,
2024), and graph-based multimodal recogni-
tion for natural scenes (Nguyen et al., 2023).
However, vision-assisted solutions depend on
cloud-based inference, raising privacy and la-
tency concerns. However, most systems oper-
ate in isolation, RFID-based systems lack con-
tent verification, while vision-only approaches
may misidentify pills. Some works combine
modalities through ingestible RFID sensors
and federated learning frameworks (Cheung
and Lee, 2024), yet integration of RFID with
on-device vision and audio feedback for visually
impaired users remains uncommon.

Edge AI systems demonstrate feasibility for
privacy-sensitive assistive devices, with suc-
cessful deployments on Raspberry Pi platforms
for navigation and object recognition (Mahen-
dran et al., 2021; Baig et al., 2024; Wong
et al., 2025). However, medication verifica-
tion combining multimodal sensing has not
been addressed.Multilingual transformers with
retrieval-augmented generation show effective-

ness for low-resource languages (Das et al.,
2025a), though not yet applied to assistive med-
ication systems. Future extensibility includes
enhanced security through modified RSA algo-
rithms for RFID data protection (Das et al.,
2019) and multilingual neural machine transla-
tion for global deployment in diverse linguistic
communities (Bala Das et al., 2023). While
prior work established RFID-based dispensing,
vision-driven recognition, and edge-deployed
assistive systems, a critical gap remains: dual-
modality (RFID + AI vision + audio) medi-
cation verification running entirely on device.
Our device addresses this gap by integrating
RFID tag reading, on-device Gemma3 vision
analysis, and text-to-speech feedback within
a portable Raspberry Pi platform for visually
impaired medication management.

3 System Architecture
DRISHTI delivers real-time medication verifica-
tion through multimodal sensing and on-device
AI processing within a compact Raspberry Pi
platform. Operating entirely offline, the system
integrates RFID scanning, vision processing,
and audio feedback for privacy-preserving med-
ication safety.

3.1 System Components
The system integrates a Raspberry Pi 4 Model
B (8GB RAM) with three input modalities:
MFRC522 RFID reader (13.56 MHz) for
contactless scanning, Pi Camera Module v3
for prescription capture, and Bluetooth/WiFi
for wireless synchronization. RFID tags
encode compressed medication data using a
concise CSV format that embeds seven essen-
tial attributes (med_id, dosage_schedule,
form_code, expiry_date, strength,
brand_name, generic_name) within a single
line. This encoding addresses the 52-byte
storage limitation of standard RFID tags
while achieving approximately 75% data
compression compared to conventional JSON
representations, with lexical pattern analysis.

The accessibility interface provides pyttsx3
text-to-speech, tactile controls, and GPIO
LEDs/buzzers. The core MedicationClas-
sifier employs hierarchical validation using
confidence-weighted scoring: exact matching
(100%), generic equivalence (95%), therapeu-
tic substitution (90%), and fuzzy similarity
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(85%). A SQLite3 PharmaceuticalDatabase
manages 248,000 drug entries with brand-to-
generic mappings, therapeutic networks span-
ning thirteen drug classes, and allergy matri-
ces. The Gemma3 4B quantized vision model
processes prescription documents with 4-bit
quantization for real-time edge performance,
supported by SimpleMFRC522, watchdog, and
pandas/NumPy libraries.

3.2 Integration and Workflow
The system supports dual-mode prescription
acquisition via camera-based digitization and
wireless entry (Bluetooth/Wi-Fi). Captured
images are processed by the vision engine to
extract structured medication data, while ex-
ternal devices can transmit prescriptions di-
rectly. All inputs are standardized into a uni-
fied JSON format including patient demograph-
ics, regimens, allergy profiles, and physician
details. Input pathways RFID scanning, cam-
era capture, and wireless input converge at the
multi-criteria classification engine for valida-
tion against prescription profiles. The system
performs prescription matching (τ = 85%),
timing checks, dosage comparison (δ = 0.1 mg),
and safety screening with prioritized decision
trees. Context-aware audio feedback is gener-
ated through a dynamic text-to-speech mod-
ule, which varies tone, speed, and urgency by
safety category (safe: 160 WPM, warnings: 150
WPM, urgent: 140 WPM), embedding drug
name, strength, and schedule. This ensures
patient-specific feedback calm confirmations,
cautious warnings, urgent alerts rather than
generic templates, improving clarity and trust.
Processing is fully local with sub-millisecond
response times, and all interactions are logged
with timestamps and confidence metrics.

3.3 Dataset Description
The pharmaceutical knowledge base was built
from a Kaggle dataset (Singh, 2023) contain-
ing over 248,000 medicines with usage, side
effects, and substitutes. It provides structured
attributes such as brand and generic names,
therapeutic classes, dosage details, and equiva-
lent substitutes, enabling construction of the
hierarchical drug ontology for brand–generic
mappings, therapeutic substitution networks,
and allergy cross-reference tables. To fit the
resource-constrained edge device, preprocess-

ing removed non-essential text and reduced
memory load. Drug names and substitutes
were normalized, duplicates eliminated, and
therapeutic equivalence pairs extracted for sub-
stitution checks. Side-effect and allergy data
were converted into structured forms for real-
time lookups, supporting efficient management
of 248,000 entries on the Pi without compro-
mising accuracy or response time.

4 Methodology

4.1 Design Framework

The system architecture integrates four prin-
cipal modules: RFID-based medication identi-
fication, prescription data acquisition via op-
tical character recognition and manual entry,
an intelligent classification engine incorporat-
ing therapeutic-equivalence matching, and an
accessibility-centric multimodal feedback gen-
erator to ensure end-to-end verification and
user-friendly interaction tailored for visually
impaired users.

The system is deployed on a compact,
edge-computing platform that integrates es-
sential hardware to enable robust, real-time
medication verification. Key components in-
clude an MFRC522 RFID scanner operating at
13.56 MHz for tag detection, a camera module
for digitizing prescription documents, and an
onboard audio subsystem delivering adaptive
text-to-speech prompts. A three-button tac-
tile interface with raised indicators facilitates
non-visual navigation, while Bluetooth connec-
tivity supports wireless synchronization of pre-
scription data. By combining RFID, camera,
and Bluetooth inputs into a unified tri-modal
architecture managed entirely by the local pro-
cessor. The system provides redundant, flexible
pathways for accurate verification tailored to
visually impaired users.

The complete system workflow, depicted in
Figure 1, delineates a tri-modal input archi-
tecture comprising RFID-based wave sensing,
camera-driven image scanning, and manual
wireless input, whose data streams are con-
solidated by a portable edge-computing device
to generate real-time audio feedback for users
with visual impairments.
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Figure 1: Workflow of DRISHTI, showing tri-modal medication verification on the edge-device using
RFID scanning, camera-based prescription analysis, wireless input, and audio output capability

4.2 Multi-Source Drug Database and
Intelligent Drug Matching

The system incorporates a comprehensive phar-
maceutical knowledge base of 248,218 drug
entries with hierarchical relationships includ-
ing brand-to-generic mappings (25 equiva-
lence pairs), therapeutic substitution networks
spanning 13 major drug classes (ACE in-
hibitors, proton pump inhibitors, statins), and
contraindication matrices for allergy cross-
referencing and drug interactions.

The medication-matching framework em-
ploys confidence-weighted scoring through cas-
cading similarity metrics: exact string match-
ing (100% confidence), generic equivalence
matching (95% confidence), therapeutic sub-
stitution (90% confidence), and fuzzy string
matching (85% confidence), ultimately return-
ing the highest-confidence match for prescrip-
tion validation.

4.3 Multi-Criteria Safety Classification

DRISHTI uses a hierarchical, multi-stage vali-
dation pipeline to ensure robust, safe medica-
tion verification, as in Table 1. The five stages
address prescription accuracy, dosage correct-
ness, timing adherence, formulation compati-
bility, and overall safety. The system begins
with prescription verification, cross-referencing
the scanned medication against active prescrip-
tions using exact/fuzzy string matching with
a confidence threshold of τ = 85%. Temporal

validation is then performed, checking for med-
ication intake within flexible windows: morn-
ing (05:00–14:00), afternoon (14:00–20:00), and
evening (20:00–05:00).

Subsequently, dosage accuracy verification
ensures prescribed and scanned strengths
within a precision tolerance of δ = 0.1 mg. For-
mulation compatibility evaluates acceptability
across alternative forms using a standardized
taxonomy, and safety screening checks for expi-
ration and allergies, referencing grouped cate-
gories such as penicillin, sulfa, or cephalosporin
families. DRISHTI’s deterministic, hierarchi-
cally prioritized decision tree classifies medi-
cations as NOT_PRESCRIBED, EXPIRED,
WRONG_STRENGTH, WRONG_TIMING,
or CORRECT. Dangerous cases trigger ur-
gent alerts, while non-critical timing deviations
prompt guidance. An accessibility-first, mul-
timodal interface delivers real-time, context-
aware feedback via offline text-to-speech and
tactile controls, ensuring intuitive verifica-
tion and safety across user abilities.The de-
cision trees in DRISHTI are hand-crafted and
rule-based, rather than learned from training
data. This design choice was made to ensure
transparency, interpretability, and auditabil-
ity, which are essential in safety-critical ap-
plications. Each branch directly corresponds
to medically relevant checks—such as prescrip-
tion match, dosage tolerance, expiry validation,
or allergy screening—ensuring predictable be-
havior under all conditions. While machine-
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learned classifiers could capture more subtle
patterns, the deterministic approach minimizes
false negatives and enables regulatory compli-
ance through explainable rules.

4.4 Real-Time Performance
The system adopts an asynchronous, event-
driven architecture that ensures continuous
RFID monitoring with average response la-
tency < 1.0 millisecond. Atomic file operations
and write-ahead logging guarantee data con-
sistency and thread safety during concurrent
prescription updates. The unified tri-modal
input architecture coordinates RFID detection
(for immediate parsing of CSV/JSON medica-
tion data), real-time vision capture (triggering
LLM-driven OCR for prescription labels), and
maintains updated medication profiles using a
local SQLite3 database, enabling reliable offline
operation in resource-constrained settings.

Thread-safe mechanisms, including the Pre-
scriptionFileHandler (with watchdog-based
monitoring), prevent race conditions by au-
tomatically reloading modified prescription
files. This maintains current, accurate med-
ication data and detailed local logs with pre-
cise timestamps, ensuring robust state manage-
ment, rapid verification, and immediate user
feedback in high-frequency medication scenar-
ios. The system provides context-aware au-
dio feedback optimized for visually impaired
users through offline text-to-speech processing.
Feedback messages use differentiated tones and
speech rates to convey urgency levels, with
graded responses detailed in Table 2 enabling
users to distinguish between safe confirmations,
cautionary guidance, and critical alerts.

5 Evaluation and Results

5.1 Experimental Setup
We developed a systematic evaluation frame-
work consisting of 149 test scenarios, which
were divided into seven medication safety cat-
egories. Table 3 summarizes the distribution
of these scenarios, including their respective
counts and percentages. The dataset includes
a balanced mix of correct and incorrect medi-
cation use cases, such as perfect matches, valid
substitutes, wrong timing, dosage mismatches,
form mismatches, expired medications, and
drug interactions. This categorization ensured

that the evaluation comprehensively addressed
both routine and safety-critical situations.

The evaluation framework relied on
expert-annotated ground truth labels, where
each test scenario was classified as either SAFE
or DANGEROUS and assigned an associated
confidence score. These labels served as the
reference standard for performance assessment.
System predictions were compared against the
expert classifications using a multi-method
correctness determination approach. In cases
of ambiguity, a safety-first fallback mechanism
was applied to prioritize conservative decisions,
ensuring that potentially dangerous scenarios
were never misclassified as safe.

5.2 Performance Results
Our comprehensive evaluation demonstrates
robust performance across all tested scenar-
ios, as illustrated in Figure 6. The system
achieved an overall accuracy of 86.57% when
evaluated across 149 test scenarios, highlighting
its effectiveness in verifying medication safety.
Performance analysis revealed that scenarios
classified as safe were correctly identified with
an accuracy of 77.14%, while all safety-critical
scenarios were detected with perfect accuracy
(100.0%). For cases involving timing or minor
safety issues, the system achieved an accuracy
of 80.0%, reflecting its ability to provide ap-
propriate warnings in non-critical situations.
The mean response time for a complete veri-
fication cycle was measured at approximately
1.0 ms, confirming the system’s suitability for
real-time operation. Detailed per-classification
performance metrics are provided in Figure 2,
and the distribution of the test scenarios is
summarized in Figure 3.

5.2.1 Per-Classification Performance
Performance varied across different classifica-
tion types, with the highest accuracy observed
for safety-critical categories as shown in Table 4
and (Figure 2). The system achieved perfect
accuracy (100.0%) for both CORRECT classifi-
cations (58/58) and WRONG_TIMING cases
(28/28), indicating reliable detection of prop-
erly prescribed medications and correct iden-
tification of timing-related deviations. Simi-
larly, detection of expired medications achieved
100.0% accuracy (13/13), while strength mis-
matches were identified with an accuracy of
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Stage Validation Step Description

1 Prescription Verification Exact/therapeutic/fuzzy matching; confidence τ = 85%
2 Temporal Validation Morning: 05:00–14:00; Afternoon: 14:00–20:00; Evening: 20:00–05:00
3 Dosage Accuracy Compare prescribed vs. actual strength; tolerance δ = 0.1 mg
4 Formulation Compatibility Validate acceptable substitutes (e.g., tablet ↔ capsule)
5 Safety Screening Check expiry date and patient-specific allergy conflicts

Table 1: Five-stage hierarchical validation framework for medication safety.

Alert Type Tone / Speed Example Message

Safe Confirmation Calm / 160 WPM "This is your Lisinopril 10mg. Appropriate timing for morning dose. Safe to take."
Warning Alert Cautious / 150 WPM "This is your correct medication, but it’s 2 hours early. Next dose recommended at 8 PM."
Danger Alert Urgent / 140 WPM "STOP! Wrong strength detected. You have 20mg but prescribed 10mg. Do not take."

Table 2: Examples of adaptive audio responses with tone and speed variations.

Scenario Category Count (n) Percentage (%)

Perfect Match Scenarios 39 26.2
Valid Substitute Scenarios 30 20.1
Wrong Timing Scenarios 25 16.8
Dosage Mismatch Scenarios 20 13.4
Form Mismatch Scenarios 12 8.1
Expired Medication Scenarios 15 10.1
Drug Interaction Scenarios 8 5.4

Table 3: Distribution of the 149 test scenarios across
seven medication safety categories.

Figure 2: Classification-Specific performance with
accuracy breakdown across different classification
categories.

92.3% (12/13).
The lowest performance occurred for

NOT_PRESCRIBED cases: 48.6% cor-
rect (18/37). This outcome is inten-
tional—DRISHTI employs a conservative pol-
icy that flags any unrecognized medication
for manual verification to avoid false-safe clas-
sifications. Errors primarily stemmed from
(i) brand–generic mismatches (generic in the
prescription vs. branded RFID not in the
database) and (ii) regional formulations miss-
ing from the dataset. Mitigation will include
expanded brand–generic normalization and in-
corporation of regional drug vocabularies.

Figure 3: Test Scenario Distribution showing bal-
anced distribution across 149 test scenarios

Classification Type Accuracy (%) Cor./Tot.

CORRECT Classification 100.0 58/58
WRONG_TIMING Classification 100.0 28/28
EXPIRED Detection 100.0 13/13
WRONG_STRENGTH Detection 92.3 12/13
NOT_PRESCRIBED Detection 48.6 18/37

Table 4: Classification-specific performance results
across all test scenarios.

5.2.2 Response Time and Confidence
Analysis

Table 5 summarizes the distribution of response
times for all verification cycles. The system
demonstrates exceptional processing efficiency,
achieving a mean response time of approxi-
mately 1.00 ms. Notably, 98.0% of all verifica-
tion cycles are completed in under 0.5 ms, while
only 0.67% require between 0.5 and 1.0 ms, and
1.33% exceed 1.0 ms. These results confirm
that DRISHTI delivers ultra-fast, real-time per-
formance with no perceptible delay during user
interaction, a critical factor for assistive devices
deployed on edge platforms.
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Response Time (ms) Scenarios (n) Percentage (%)

0 – 0.5 146 98.0
0.5 – 1.0 1 0.67
> 1.0 2 1.33

Mean Response Time – 1.00 ms

Table 5: Distribution of response times for all veri-
fication cycles.

The confidence-accuracy correlation analy-
sis further highlights the robustness of the
classification engine. High-confidence pre-
dictions (95–100%) for CORRECT scenar-
ios consistently achieve 100% accuracy, while
NOT_PRESCRIBED classifications reach
48.6% accuracy at similar confidence levels.
For safety-critical cases, the system achieves
100% accuracy for expired medications when
predictions are made at full confidence, and
92.3% accuracy for wrong-strength detections
when predictions are made with 90% confi-
dence. These findings demonstrate that the
classifier’s confidence scores reliably reflect pre-
diction accuracy, allowing the system to adopt
a safety-first strategy by flagging uncertain
cases for user verification rather than risking
false safe classifications.

5.2.3 Vision Model Performance
The Gemma3 4B 4-bit quantized multimodal
model achieves 78.4% overall prescription doc-
ument analysis accuracy suitable for real-time
applications. Printed prescriptions significantly
outperform handwritten documents (85.2%
vs 67.8% accuracy), with electronic prescrip-
tions achieving the highest accuracy at 92.1%
as shown in Figure 4. Document quality
directly impacts performance, ranging from
92.1% for electronic documents to 58.9% for
poor handwritten prescriptions. Information
extraction accuracy varies by data type: medi-
cation names (88.5%), dosage (82.1%), sched-
ule/frequency (76.3%), and special instructions
(71.8%).

5.3 Safety Performance Analysis
As summarized in Table 7 and illustrated in
Figure 6, DRISHTI meets its safety-first objec-
tive with 100% detection across all dangerous
scenarios and zero false negatives; expired med-
ications were detected at 100% (13/13) and
incorrect strength at 92.3% (12/13). In op-
erational tasks, correct medication identifica-

Figure 4: Handwritten vs printed prescription per-
formance analysis

Figure 5: Confusion Matrix Analysis

Figure 6: System Performance data

tion achieved 100% (58/58) and timing vali-
dation reached 100% (28/28), demonstrating
robust day-to-day reliability. Performance on
NOT_PRESCRIBED cases shows 48.6% accu-
racy by design, reflecting a conservative policy
that flags uncertain or unrecognized medica-
tions for manual review to avoid false-safe out-
comes. The safety-first treatment of unknowns
is visualized in Figure 5, underscoring that no
unsafe instance is misclassified as safe.
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System Input Types AI Processing Awareness Intelligent Matching Smart Feedback

ScripTalk (En-Vision America, 2024) Audio only None Limited Basic Static
YOLO-OCR (Dang et al., 2024) Vision only Basic None Simple Static
RMAIS (McCall et al., 2010) RFID only None None Direct None
Smart Pillboxes (Doe and Roe, 2024) RFID only None Limited Direct Basic

DRISHTI Tri-modal Advanced Full Multi-level Adaptive

Table 6: Intelligence and AI capability comparison across medication assistance systems

Safety Level Correct/Total Accuracy (%)

Safe Scenarios 54/70 77.1
Dangerous Scenarios 43/43 100.0

Table 7: Performance across safety-critical and op-
erational categories.

5.4 Comparison with Existing
Solutions

To contextualize DRISHTI’s capabilities, Ta-
ble 6 contrasts DRISHTI with traditional med-
ication aids that focus on pill identification or
static audio (e.g., YOLO-OCR imprint read-
ing, ScripTalk label playback, RFID-only ad-
herence logs). DRISHTI delivers broader, in-
telligent management: 86.57% overall accuracy
with 100% detection of safety-critical cases (ex-
pired drugs, dosage mismatches, interaction
risks). Running fully offline on edge hard-
ware preserves privacy, usability, and reliabil-
ity. Moving beyond lookup, DRISHTI enables
context-aware decisions via the Gemma3 4B
model, multi-level matching (exact, generic,
therapeutic, fuzzy), patient history and timing
awareness, and adaptive urgency-based audio
feedback. This comprehensive AI integration
positions DRISHTI as a first, safety-first, truly
intelligent assistive medication system.

6 Conclusion

DRISHTI is an assistive system that enhances
medication safety for visually impaired users
by integrating RFID identification, AI-driven
visual recognition, and real-time audio inter-
action. Running entirely offline on low-cost
edge hardware, it ensures multimodal verifi-
cation with strong privacy and no cloud de-
pendency. Evaluation across 149 scenarios
shows 86.57% overall accuracy and 100% de-
tection of safety-critical events (expired drugs,
dosage mismatches, interaction risks), support-
ing home and institutional use. Real-time per-
formance (<1 ms) with urgency-aware feedback

enables daily integration, while the tri-modal
architecture ensures fault tolerance and auton-
omy through voice prompts.

Future work targets multilingual scalability
by integrating OCR for non-English scripts (In-
dic, Bangla, Arabic), expanding brand–generic
mappings, and adopting multilingual text-to-
speech, alongside fine-tuning vision models for
diverse scripts. Prior works on Multilingual
Neural Machine Translation (MNMT) for Indic-
to-Indic languages (Bala Das et al., 2024) pro-
vide a foundation, while DRISHTI-Plus may
leverage MNMT for multilingual dialogue and
audio description (Bala Das et al., 2023). Inte-
gration with secure mobile/cloud dashboards
could enhance monitoring with federated or
edge-assisted learning approaches(Paul et al.,
2025). To extend device capability, error anal-
ysis of language translations using the MQM
framework (Das et al., 2025b) is included. Col-
lectively, DRISHTI demonstrates real-world
readiness and a clear pathway toward accessi-
ble, intelligent, and inclusive medication man-
agement for underserved populations.

7 Ethics Statement and Limitations

DRISHTI is designed to run fully offline, en-
suring user control of sensitive data. . A con-
servative confidence threshold minimizes safety
risks, and drug information comes from public,
anonymized sources to reduce bias, although
cultural and linguistic diversity remain chal-
lenges. The system is meant to assist, not
replace, professional medical care. DRISHTI
performs better on printed than handwritten
prescriptions and is currently limited to English
and Western pharmaceutical data, restricting
usability in multilingual regions. Conserva-
tive detection of non-prescribed drugs increases
false alerts, and hardware limitations prevent
real-time updates. Clinical validation is pend-
ing, and the audio-tactile interface is insuffi-
cient for users with multiple impairments.
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