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Abstract

Large language models (LLMs) excel at mul-
tilingual tasks, yet their internal language pro-
cessing remains poorly understood. We an-
alyze how Aya-23-8B, a decoder-only LLM
trained on balanced multilingual data, handles
code-mixed, cloze, and translation tasks com-
pared to predominantly monolingual models
like Llama 3 and Chinese-LLaMA-2. Using
logit lens and neuron specialization analyses,
we find: (1) Aya-23 activates typologically re-
lated language representations during transla-
tion, unlike English-centric models that rely on
a single pivot language; (2) code-mixed neu-
ron activation patterns vary with mixing rates
and are shaped more by the base language than
the mixed-in one; and (3) Aya-23’s language-
specific neurons for code-mixed inputs concen-
trate in final layers, diverging from prior find-
ings on decoder-only models. Neuron overlap
analysis further shows that script similarity and
typological relations impact processing across
model types. These findings reveal how multi-
lingual training shapes LLM internals and in-
form future cross-lingual transfer research. The
code and dataset are publicly available'.

1 Introduction

Large language models (LLMs) excel in multilin-
gual tasks (Srivastava et al., 2022; Bang et al., 2023;
Gurgurov et al., 2025b), but their internal handling
of multiple languages remains underexplored (Kad-
dour et al., 2023). While methods like logit lens
(Wendler et al., 2024; Schut et al., 2025) and neu-
ron specialization (Tang et al., 2024; Kojima et al.,
2024; Tan et al., 2024) have been applied, prior
work mainly targets English-centered models on
monolingual tasks (e.g., cloze or repetition tasks),
rather than balanced multilingual architectures and
their processing of code-mixed texts.

*Equal contribution
"https: //github.com/KatharinaTrinley/
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Multilingual models often default to English
during intermediate processing, as described by
the Multilingual Workflow (MWork) hypothesis
(Zhao et al., 2024), which suggests LLMs convert
non-English inputs into English internally before
generating outputs. Supporting this, studies on
reasoning language models (RLMs) (Wang et al.,
2025) find reliance on internal “pivot” languages
or scripts, even with other input languages. How-
ever, it remains unclear if this preference is unique
to RLMs or a general pattern in all multilingual
LLMs. Therefore, we ask:

H1: How do balanced multilingual models process transla-
tion tasks — do they activate multiple languages simultane-
ously, unlike English-centric models that rely on a single
pivot language?

Neuron-level analyses have identified language-
specific patterns (Kojima et al., 2024; Tang et al.,
2024), but these studies predominantly examine
English-based models, leaving open whether mul-
tilingual training leads to fundamentally different
internal processing mechanisms. While LLMs’ lan-
guage capabilities are tied to specific neuron sub-
sets, particularly in early and late layers (Kojima
et al., 2024; Tang et al., 2024), these patterns may
not apply to models trained on diverse multilingual
data (Zhong et al., 2024a; Schut et al., 2025). We
thus investigate the following hypotheses:

H2: What patterns of neuron sharing of language specific
neurons emerge in balanced multilingual models, and do
these align more strongly with language similarity com-
pared to predominantly monolingual models?

H3: Where do language-specific neurons concentrate in
multilingual architectures — do they cluster predominantly
in final layers, contrary to prior findings showing distribu-
tion across early and late layers in decoder-only models?

In real-world contexts, speakers often mix lan-
guages within a single utterance, requiring models
to dynamically switch between language-specific
representations. Code mixing (CM) provides a
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valuable lens for studying multilingual processing
in language models (Xie et al., 2025), and while
multilingual LLMs perform well on some tasks,
they still struggle with code-switched text (Gun-
dapu and Mamidi, 2020). The development of
more balanced multilingual models, such as Aya-
23 (Aryabumi et al., 2024), offers an opportunity to
examine how different training approaches affect
internal language representations, especially when
handling the linguistic complexity of code-mixed
inputs. Thus, we ask:

H4: How does the processing of code-mixed inputs vary
based on language pair characteristics and models?

To address these questions, we perform a
neuron-level comparison of a balanced multilin-
gual model (Aya-23-8B), a predominantly English-
trained model (Llama 3.1-8B), and a language-
specialized model (Chinese-LLaMA-2-7B). Specif-
ically, we:

I. Analyze internal language representations
across 13-language translation tasks using logit
lens to test H1, checking whether Aya-23 activates
multiple languages simultaneously, unlike English-
pivot processing in mostly monolingual models.

II. Create a controlled code-mixed dataset
with varying mixing ratios across 10 typologically
diverse pairs ({fr, zh} x {en, es, it, ja, ko}) and use
neuron specialization (activation frequency (Tan
et al., 2024)) to investigate H2 and H4, exploring
how script similarity and language relationships
affect neuron sharing across models.

I11. Examine layer-wise distribution of language-
specific neurons via activation strength (Kojima
et al., 2024) to test H3, determining whether bal-
anced multilingual training concentrates language-
specific neurons mainly in final layers, contrasting
prior findings of early-and-late layer distributions
in decoder-only models.

2 Methodology

We investigate the internal language representa-
tions in multilingual decoder-only LL.Ms through
complementary experimental approaches: logit
lens analysis (Section 2.3) and neuron specializa-
tion analysis (Section 2.4). Each methodology of-
fers unique insights into how models process infor-
mation across languages.

2.1 Models

We evaluate three models with varying multilin-
gual focus. Aya-23-8B by Cohere Al is an open-
source decoder-only model instruction fine-tuned
on 23 languages—including ar, zh (simplified &
traditional), en, fr, it, ja, ko, and more—using
a two-stage process: pretraining on a balanced
multilingual corpus (not public) and multilingual
instruction fine-tuning (Aryabumi et al., 2024).
Llama 3.1-8B supports 8 languages (en, fr, de,
hi, it, pt, es, th) but was mainly trained on En-
glish data (ca. 8% multilingual tokens) and re-
tains English-centric processing patterns, serving
as a baseline for predominantly English-trained
models (Grattafiori et al., 2024; Wendler et al.,
2024). Chinese-LLaMA-2-7B is a Mandarin-
adapted LLaMA-2 variant with an expanded to-
kenizer (+20,000 tokens), pretrained on large Chi-
nese corpora using parameter-efficient fine-tuning
(LoRA(Hu et al., 2021)) and instruction-tuned on
millions of Chinese instruction-response pairs, en-
abling strong Chinese performance at low compu-
tational cost (Cui et al., 2023a,b; Hu et al., 2021).

2.2 Datasets

In this work, we focus on two primary datasets:
the Dumas dataset (Dumas et al., 2024) for logit
lens experiments and introduce a new code-mixed
dataset that will be publicly released.

Dumas Dataset For logit lens experiments, we
use the dataset from Dumas et al. (2024), which
includes word translation and cloze tasks in 13 lan-
guages (de, en, es, et, fi, fr, hi, it, ja, ko, nl, ru,
zh). It minimizes token overlap between languages
while maintaining semantic consistency. Note that
model support varies: Aya-23-8B lacks et and fi;
Llama 3.1-8B excludes et, fi, ja, ko, nl, ru, and zh;
Chinese-LLaMA-2-7B supports only zh and has
limited en capabilities, lacking official support for
the other 11 languages. Each prompt consists of
randomly selected 5-shot word translation exam-
ples followed by a final query word. For instance,
an English-to-Chinese task may appear as:

English:
English:
English:
English:
English:
English:

"computer" — F3C: FLIN
"ant" — HC: B
"cloud" — P =
"heart" — W3 OE
enife” — 1 T F
"book" — H:

The task is to predict the correct translation of
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the final word. Synonyms for the target word are
included across all supported languages.

Code-mixed Dataset To study how models pro-
cess mixed-language inputs, we construct a code-
mixed dataset derived from the WMT24++ par-
allel corpus (Deutsch et al., 2025), containing
998 sentence pairs across 55 languages. We fo-
cus on a subsection of 7 languages and take fr
and zh as base languages, each mixed with five
partner languages (en, es, it, ja, and ko) result-
ing in ten language pairs. These combinations
span a wide typological and script range, including
closely related Romance/Indo-European languages
(fr/es, fr/it, fr/en), typologically distinct but his-
torically linked pairs (zh/ja, zh/ko), and diverse
scripts: Latin (en, fr, es, it), Simplified Chinese
(zh), Kanji/Kana (ja), and Hangul (ko).

We generate code-mixed sentences using a three-
step rule-based method (Figure 1) with controlled
mixing ratios of 25%, 50%, and 75%.

We tokenize Latin script using whitespace and
Han script with the Jieba library (Junyi, 2012). Al-
though this may yield ungrammatical outputs, it en-
sures consistent mixing ratios critical for controlled
experiments. To address limited dictionary cover-
age in prior work (Conneau et al., 2017), we create
comprehensive bilingual dictionaries via Google
Translate for all WMT24++ words, ensuring equal
vocabulary coverage across language pairs. How-
ever, lacking word sense disambiguation, polyse-
mous words are translated identically regardless of
context, possibly causing meaning mismatches.

To evaluate translation accuracy, we manually
assessed word-level translation quality in code-
mixed data, focusing on semantic mistranslations
rather than grammatical errors common in code-
mixing. From 50% mixing datasets, we sampled
10 sentences per language pair (246—-399 words)
and found translation error rates of fr-en 4.76% ,
fr-es 4.78% , zh-en 4.87% , and zh-es 8.94% , with
higher errors for zh-es due to greater linguistic dis-
tance and weaker model performance.

To compare code-mixed and monolingual pro-
cessing, we include corresponding monolingual
datasets from WMT24++ (fr, es, it, ja, and ko) as
baselines. All code-mixed pairs were evaluated on
translation tasks directed from code-mixed input
to en (i.e., Chinese-Spanish code-mixed input to
en). We do not evaluate the reverse direction, as en-
forcing controlled code-mixing in model-generated
outputs is challenging.

To further examine model behavior, we ana-
lyze neuron activation patterns (Section 2.4) across
code-mixed inputs for Aya-23-8B, LLaMA 3.1-
8B, and Chinese-LLaMA-2-7B, testing whether
code-mixed processing differs by language pair
and model architecture (H4).

2.3 Logit Lens

Logit lens (Nostalgebraist, 2020) interprets trans-
former hidden states by projecting intermediate rep-
resentations into vocabulary space. At each layer /,
the model produces a hidden state h, € R?, which
is mapped to logits using the unembedding matrix
U € RIVIXd: logits, = Uh,.

These logits approximate the model’s predic-
tions at layer ¢. Following Nostalgebraist (2020),
we use the residual stream before layer normaliza-
tion to better align with the final outputs. Building
on prior multilingual analyses (Wendler et al., 2024;
Zhong et al., 2024b; Saji et al., 2025), we apply
the logit lens at each layer, extract token proba-
bilities via softmax, and sum over synonyms in
13 languages using the dataset from Dumas et al.
(2024) (see Section 2.2). To reduce false matches,
we apply a 0.1 threshold. This approach allows us
to track the emergence of language-specific signals
across layers and test H1.

2.4 Neuron Specialization

Neuron specialization refers to individual neurons
within language models developing preferences for
processing specific types of input, such as particu-
lar languages.

Tan et al.’s Approach Tan et al. (2024)’s method
identifies language-specific neurons by measuring
how frequently they activate when processing dif-
ferent languages. Following Tan et al. (2024),
we identify language-specific neurons via binary
ReLU activations in FFNs across WMT24++ and
code-mixed data.

For task ¢ with validation set Dy, each sample x;
has activation a!. Summing gives a’ = le eD; al.
Specialized neurons S}, are the top activations sat-
isfying 3= g1 a'(i) > kY, a’(i). Neuron over-

lap is measured by IoU(S?, $7) = % Using
k = 90% per Tan et al. (2024), we identify neu-
rons covering most activations per language and
plot IoU matrices to expose cross-linguistic pat-
terns. Unlike Tan et al. (2024), we exclude neurons
shared by all languages to isolate language-specific

neurons. This tests H2.
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§ create word2word translation random word selection replace with target language

N dictionary

S cece =
o000 P

hello» CAICBIE

o world » mundo

Target ratio: 25%, 50%, 75%

what » qu'est-ce
asked » M 7/c

Figure 1: Our code-mixed dataset creation pipeline. Starting with parallel sentences from WMT24++, we create
comprehensive bilingual dictionaries using Google Translate for all vocabulary. For each sentence, we randomly
select words based on the target mixing ratio (25%, 50%, or 75%) and replace them with their translations in the
partner language. For example, from the English source “The World Bank hopes to spread that message,” we
generate the code-mixed Chinese output “World bank 7y 22 {2 #5iX — & (50%).

Kojima et al.’s Approach Kojima et al. (2024)
identified language-specific neurons in multilingual
models, concentrated in early and late layers with
minimal cross-language sharing. Their approach
identifies neurons that discriminate between target
language content and other languages by measuring
activation strength.

We extend this to code-mixing neurons in Aya-
23-8B’s MLP layers. For each code-mixed pair
l;, texts are labeled positive (b; = 1) or nega-

tive (b; = 0). For neuron m and text z; =
{wi,l, . ,wi,T}, activations {Zm,i,h RN Zm,i,T}
are averaged as 2, ; = f(2m,i1,.-- ,zm,LT) (ex-

cluding padding). We compute Average Precision
AP,, = AP(zm,b) € [0,1] to classify neurons
into top-k (high), medium-£ (none), and bottom-k
(negative correlation). Applied to fr and zh code-
mixed with en, it, es, jp, ko (10 pairs), this tests H3
and H4.

3 Results and Discussion

3.1 Logit Lens Analysis

To test if balanced multilingual training affects in-
ternal processing (H1), we applied logit lens analy-
sis (Wendler et al., 2024) to Aya-23-8B (balanced),
LLaMA 3.1-8B (English-dominant), and Chinese-
LLaMA-2-7B (Chinese-specialized).

Using Dumas et al. (2024)’s dataset, we tracked
language-specific token probabilities across lay-
ers during translation. From 54 tasks, we com-
puted AUCs for each language probability curve
and used Mann-Whitney U tests with Bonferroni
correction to compare: (1) model effects — whether
Aya shows more diverse language representations
than LLaMA (p < 0.05/(13 x 3) = 0.0013),
and (2) task effects — whether input vs. out-
put languages differ in internal processing (p <
0.05/(13 x 3 x 2) = 0.0006).

Aya-23-8B demonstrates multilingual process-
ing with cross-linguistic activation.  During

1.0

Probability
e
Y

14
IS

/‘Cﬁ‘-fr—a
00 NG =— =
10 15 20 25 30
Layer

— fr — es fi
de — ja nl
ru ko —— hi
en et it

— zh

Figure 2: Logit lens language probabilities for English-
to-Chinese translation in Aya-23-8B reveal activation of
an increased number of languages in mid-to-late layers,
with English being dominant.

English-to-Chinese translation (Figure 2), Aya ac-
tivates multiple languages in intermediate-to-late
layers (20-27), including Japanese tokens despite
Japanese being neither source nor target. This sug-
gests Aya leverages typological relationships rather
than relying solely on English as a pivot.

Llama 3.1-8B follows English-centric process-
ing. In contrast (Figure 3), Llama demonstrates the
English-dominated pattern established by Wendler
et al. (2024), with English maintaining highest acti-
vation across all layers until final output generation.
Chinese activates only in final layers, aligning with
the “English-ization” process (Zhao et al., 2024).

Chinese-LLaMA-2-7B  exhibits  Chinese-
dominant processing. This model shows Chinese
representations dominating across most layers
even for English-to-Chinese translation (Figure
4), with English activation decreasing in final
layers while Japanese remains stable, reflecting its
specialized training.

Our statistical analysis across all 54 translation
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Figure 3: Logit lens language probabilities for English-
to-Chinese translation in Llama 3.1-8B show dominant
English representations across most layers with few
other languages showing significant activation.
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Figure 4: Logit lens language probabilities for English-
to-Chinese translation in Chinese-LLaMA-2-7B show
strong dominance of Chinese representations across
most layers.

tasks provides quantitative support for H1: Aya
demonstrates significantly different language ac-
tivation patterns compared to both Llama (8/13
languages with p < 0.0013: de, ru, zh, es, ja, ko,
it) and Chinese-LLaMA (8/13 languages including
en, zh, es, ja, ko, it). Critically, output languages in-
fluence internal representations more strongly than
input languages across all models, when analyzing
task composition effects, output language presence
produces significant changes in 12/13 languages
compared to only 7/13 for input languages.

This analysis partially supports our hypothesis
that Aya-23 incorporates multiple languages in in-

Aya-23

s
% 080 W‘WWM

Chinese-Llama

Llama-3

éoao MWM

0 5 10 15 20 25 30

Figure 5: Three-phase neuron clustering patterns across
transformer layers. French-based (orange) and Chinese-
based (blue) code-mixed language pairs show distinct
IoU overlap patterns in Aya-23, Chinese-LLaMA, and
Llama-3.1. All models exhibit consistent French pro-
cessing advantages.

ternal processing, rather than relying solely on En-
glish. However, English still shows significantly
higher activation probabilities, necessitating care-
ful interpretation of these multilingual patterns.
The statistical evidence highlights that both task
language and model training paradigm significantly
shape internal processing strategies, with task lan-
guage particularly influencing language-specific
activation probabilities.

3.2 Neuron Specialization Analysis

Activation Frequency Experiments Following
Tan et al. (2024), we conducted neuron activation
frequency experiments to examine how balanced
multilingual training influences language-specific
processing mechanisms (H2, H4).

To investigate base-language dependencies sys-
tematically, we conducted statistical analysis com-
paring French-based and Chinese-based code-
mixed language pairs across all 32 transformer lay-
ers (see Figure 5). For each layer, we computed
IoU overlap values within French-based pairs (105
combinations from 15 tasks) and within Chinese-
based pairs (105 combinations from 15 tasks),
yielding two distributions of IoU scores per layer.
We applied the Wilcoxon signed-rank test to as-
sess whether French-based pairs show significantly
different neuron clustering patterns than Chinese-
based pairs, using this non-parametric paired test
since we’re comparing corresponding layers be-
tween the two language groups.

French-based code-mixed inputs demonstrate
significantly higher neuron clustering than Chinese-
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BLEU Scores by Language Pair and Model
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Figure 6: Translation qualities on code-mixed datasets using Aya23-8B, LLaMA 3.1-8B, and Chinese LLaMA,

presented in BLEU.

based inputs across all three models. Wilcoxon
signed-rank tests reveal strong statistical signifi-
cance: Aya-23 (p = 4.66 x 10719, mean difference
= +0.0050), Chinese-LLaMA (p = 4.66 x 10710,
mean difference = +0.0041), and Llama-3 (p =
9.31 x 1071%, mean difference = +0.0029). This
French advantage persists even in Chinese-LLaMA,
a model specifically adapted for Chinese process-
ing.

Our findings contradict H2, as neuron sharing
patterns do not align with expected base-language
training effects. Instead, they reveal a universal
French processing advantage that transcends model
architecture and training paradigm (p < 107
across all models). This pattern strongly supports
H4 — that code-mixed processing varies system-
atically with language pair characteristics — and
indicates that factors beyond training data compo-
sition, potentially including script characteristics
or tokenization efficiency, drive neuron activation
patterns in multilingual models.

Translation Performance on Code-Mixed Inputs
Figure 6 presents BLEU scores for all three models
on monolingual and code-mixed datasets. Aya-
23-8B consistently outperforms the others, with a
clear advantage on fr-based code-mixed inputs. All
models show better performance on Latin-script
pairs (fr-en, fr-es, fr-it) than on cross-script ones
(fr-ja, fr-ko). For zh code-mixing, Aya-23-8B and
Llama 3.1-8B perform better on zh-ja and zh-ko
than on zh-en, zh-fr, and zh-it, suggesting that
shared vocabulary and typological features help
transfer despite script differences. In contrast,
Chinese-LLaMA-2-7B performs poorly across all
code-mixed inputs, regardless of typological simi-

larity.

Performance generally degrades as code-mixing
rate increases across all models, likely reflecting
limitations of our rule-based word-to-word transla-
tion approach. However, Aya-23-8B shows greater
resilience to this degradation, supporting our find-
ing that balanced multilingual training improves
robustness to code-mixing.

Activation Strength Experiments To address
H4, we followed Kojima et al. (2024)’s method-
ology by processing both monolingual and code-
mixed texts and capturing neuron activations at the
MLP layers. Our findings for Aya reveal an inter-
esting divergence from previous work on decoder-
only model. While Kojima et al. (2024) found
language-specific neurons (both top-k and bottom-
k) concentrated in first and last layers of other
decoder-only models, Aya-23-8B exhibits a dif-
ferent pattern when processing code-mixed input:
top-k language-specific neurons appear predomi-
nantly in final layers (27-31), with a pronounced
spike in layer 31 across all language pairs (see Fig-
ure 7). This pattern confirms our hypothesis H3.

This pattern only partially aligns with Tang et al.
(2024), who observed a skewed “U”-shaped distri-
bution, with language processing concentrated in
both early and late layers. In contrast, it supports
the findings of Mondal et al. (2025), who reported
that language-specific neurons in modern LLMs
are primarily concentrated in later layers. Our re-
sults suggest that Aya-23-8B’s balanced multilin-
gual training may promote a shift toward language-
specific processing concentrated at the generation
stage, diverging from the more distributed patterns
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Number of Neurons.

Figure 7: Layer-wise distribution of £ = 1000 language-
specific neurons in Aya-23-8B for code-mixed process-
ing across all CM language pairs in Aya-23-8B.

Neuron Overlap for Top Neurons
(Organized by Base Language)

Figure 8: The number of overlapping language-specific
neurons between code-mixing language pairs in Aya-23-
8B.

seen in predominantly monolingual models.

This pattern remains consistent across all lan-
guage pairs. Bottom-k neurons (‘“‘anti-correlated”
neurons) similarly concentrate in final layers, while
medium-k neurons distribute more evenly across
early (0-5) and middle (10-20) layers.

This distinctive concentration pattern may stem
from Aya’s explicitly balanced multilingual train-
ing, resulting in an internal structure different from
the predominantly monolingual models studied by
Kojima et al. (2024). The pronounced spike of
language-specific neurons in the final layer likely
reflects Aya-23-8B’s processing strategy for code-
mixed inputs: earlier layers handle distributed mul-
tilingual representations for understanding, while
the concentration at the generation stage resolves
which language to output in mixed-language con-
texts.

Our analysis of neuron overlap shows that the

base language influences neuron sharing more than
the secondary mixed-in language. Chinese-based
pairs consistently exhibit higher neuron overlap
(17.5%—60.6%) compared to French-based pairs,
regardless of the secondary language (Figure 8).
This indicates that the foundational language’s
structural properties strongly shape neural organiza-
tion. This pattern holds on average (French-based
pairs: 138.25 neurons; Chinese-based pairs: 331.7
neurons; cross-base pairs: 82.65 neurons).

Cross-script connections also appear, with ja-zh
and ko-zh pairs showing moderate neuron over-
lap (20.7% and 41.1%, respectively), likely due to
shared vocabulary and writing systems from his-
torical contact. Within the fr-based group, neuron
sharing varies: it-fr pairs have the highest over-
lap (19.7%), followed by en-fr (17.5%) and es-
fr (8.9%), suggesting that typological similarity
within the Romance family shapes neural process-
ing patterns.

4 Related Work

Pivot Languages in Multilingual LLMs Train-
ing data composition fundamentally shapes multi-
lingual processing patterns. Llama models, heav-
ily trained on English (89% in Llama-2 (Touvron
et al., 2023)), use English as a “pivot language”
in multilingual tasks — translating French to En-
glish before Chinese, reducing quality (Wendler
et al., 2024). This English bias extends beyond
translation, with models defaulting to English in in-
termediate layers for reasoning (Zhao et al., 2024;
Zhong et al., 2024a). The Multilingual Workflow
(MWork) hypothesis (Zhao et al., 2024) formalizes
this as: convert inputs to English for reasoning,
integrate multilingual knowledge, then generate
target output.

However, English-centric processing varies with
architecture and training. Language-specific mod-
els like Swallow (Japanese-adapted Llama-2) and
LLM-jp default to their dominant training language
rather than English (Zhong et al., 2024a). Schut
et al. (2025) found Aya-23 activated English ca.
50% versus ca. 70% in Gemma-2-27B, suggest-
ing balanced training reduces English dominance.
Similarly, Lindsey et al. (2025) identified language-
agnostic conceptual representations in Claude 3.5

“Notable exceptions exist where typological similarity
overrides base language effects, such as fr-ja with zh-ja (396
neurons) and ko-fr with ko-zh (411 neurons), likely reflecting
historical Japanese-Chinese and Korean-Chinese linguistic
contact
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Haiku, indicating some models develop universal
processing spaces beyond pivot strategies.

Language-Specific Neurons Language-specific
neurons in decoder-only models cluster distinctly
with minimal cross-language sharing. Kojima et al.
(2024) and Tang et al. (2024) found these neurons
concentrate in top and bottom layers of LLaMA-
2, BLOOM, and Mistral, comprising only 1% of
parameters. However, Mondal et al. (2025) ob-
served newer models (Mistral Nemo, Llama 3.1)
concentrate language-specific neurons primarily
in later layers, indicating architectural evolution.
Training data biases models toward English, de-
grading performance with increasing linguistic dis-
tance (Zhong et al., 2024a; Wendler et al., 2024),
though positive cross-lingual transfer remains pos-
sible.

Recent work reveals dynamic language-specific
processing. Tan et al. (2024) found feed-forward
neurons in encoder-decoder models activate in
language-specific patterns, with overlaps reflect-
ing linguistic proximity. Deng et al. (2025)
demonstrated that models dynamically shift activa-
tions based on context — Spanish prefixes amplify
Spanish-specific features while suppressing others
— suggesting sophisticated contextual language pro-
cessing beyond fixed neuron assignments.

Code-Mixing and Script-Based Processing
Code-mixing (CM) research reveals systematic bi-
ases in multilingual processing. Wang et al. (2025)
showed reasoning language models activate Latin
and Han scripts even when processing Arabic,
Hindi, or Japanese, with performance gains up to
110% when constraining reasoning to preferred
scripts. This suggests script-based processing pref-
erences shaped by training data composition.

CM poses significant challenges for multilin-
gual LLMs, particularly for low-resource lan-
guages. Gupta et al. (2024) found GPT models per-
form worse on English-Gujarati CM compared to
English-French, reflecting training data imbalances
toward high-resource monolingual corpora (Gun-
dapu and Mamidi, 2020). Yang et al. (2020) demon-
strated CM-specific pre-training improves transla-
tion performance, indicating models can learn to
handle language transitions within utterances.

Our study addresses the underexplored gap
between predominantly English-trained models
(Llama) and balanced multilingual models (Aya-
23), investigating whether reduced English re-

liance corresponds to distinct internal architec-
tures through comprehensive neuron-level analysis
across languages and code-mixed contexts.

5 Conclusion

Our investigation reveals that balanced multilingual
training fundamentally alters how decoder-only
LLMs process language internally. Through logit
lens analysis, we show that Aya-23-8B employs
distinct multilingual processing strategies, activat-
ing typologically related languages (e.g., Japanese
during Chinese translation) and exhibiting signif-
icantly different activation patterns compared to
English-centric models across 8/13 languages. We
find that output languages influence internal repre-
sentations more strongly than input languages.

Our neuron specialization analysis reveals that
Aya-23-8B concentrates language-specific neurons
predominantly in final layers (27-31) rather than
distributing them across early and late layers as
found in previous studies of decoder-only mod-
els (Kojima et al., 2024; Tang et al., 2024). This
architectural difference suggests that balanced mul-
tilingual training creates models that maintain
language-agnostic processing through most layers,
with language-specific differentiation emerging pri-
marily at generation time.

Code-mixed processing reveals systematic pat-
terns driven by base language characteristics and
script similarity. Base languages drive neuron
sharing more strongly than mixed-in languages,
with French-based code-mixed inputs maintain-
ing consistent neuron overlap regardless of mix-
ing rate, while Chinese-based inputs show pro-
portional degradation. Translation performance
demonstrates clear advantages for same-script lan-
guage pairs, though Chinese-Japanese and Chinese-
Korean pairs benefit from shared historical vocabu-
lary despite script differences.

Limitations

Our study has several important limitations. A
key one is the quality of our code-mixed dataset,
created using rule-based word-to-word translation.
This method overlooks grammatical structure and
often yields unnatural sentences that may not re-
flect authentic code-switching. However, it allows
systematic control of mixing ratios, which is essen-
tial for our neuron-level analysis.

Our methodology requires binarizing continu-
ous neuron activations, leading to potential infor-
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mation loss and obscuring subtle cross-language
patterns. In our logit lens experiments, some token
overlap likely remains between Japanese—Chinese
and French—English, despite efforts to minimize
it, which may affect analysis of language-specific
activations. Additionally, our implementation of
Tan et al. (2024)’s neuron specialization analysis
revealed weak sharing patterns in heatmap visual-
izations, limiting the strength of our conclusions
on language-specific processing.

Our analysis is limited to three models (Aya-23-
8B, Llama 3.1-8B, and Chinese-LLaMA-2-7B) and
may not generalize to other multilingual architec-
tures or sizes. While our findings on final-layer
specialization may extend to models like BLOOM
(Workshop et al., 2023) and newer architectures
with similar late-layer concentration (Tang et al.,
2024; Mondal et al., 2025), the reduced English
pivot behavior appears more specific to balanced
multilingual training. Model English-centricity
varies with training data, and recent work shows
many multilingual models still rely on English-
proximal representation spaces regardless of in-
put/output languages (Schut et al., 2025).

Our focus is primarily on high-resource lan-
guages, with limited analysis of low-resource lan-
guage processing. Recent work suggests that low-
resource languages are harder to control via neu-
ron manipulation, likely due to weaker or less dis-
tinct representations from limited pretraining expo-
sure (Gurgurov et al., 2025a), indicating our find-
ings may not directly extend to medium- and low-
resource languages.

Our findings on Kojima et al. (2024)’s approach
reveal a notable discrepancy. While they observed
language-specific neurons in both early and late
layers of decoder-only models, our analysis of Aya-
23-8B on code-mixed input shows such neurons
concentrated mainly in the final layers (27-31),
peaking at layer 31. This likely reflects that we
are identifying “code-mixing neurons” rather than
pure language neurons, as our task distinguishes
code-mixed from non-code-mixed inputs. These
results suggest that code-mixing neurons align with
language neurons in early layers but diverge signif-
icantly in later layers.

Thus, for hypothesis H4, we can only conclude
that code-mixed inputs are processed differently in
the model’s very late layers. Similarly, our findings
from the Tan et al. experiment show language-
pair-specific processing across all layers but do not

reveal clear patterns by language family or script,
offering limited support for hypothesis H3.

Ethics Statement

We identify no ethical concerns directly related to
this research. All models and datasets used in this
study are employed in accordance with their respec-
tive license terms, including the custom use license
for Llama 3.1-8B, the Apache 2.0 license for Aya-
23-8B, and the research-permitted use of Chinese-
LLaMA-2-7B. The Dumas dataset and WMT24++
corpus are used under their standard research li-
censes. Our code-mixed dataset, created through
rule-based translation, contains no sensitive per-
sonal information and will be made publicly avail-
able to support reproducible research. The neuron-
level analysis conducted in this work focuses purely
on model internals without generating potentially
harmful content or reinforcing linguistic biases.
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