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Abstract

Clinical federated learning faces critical chal-
lenges from statistical heterogeneity across
healthcare institutions and privacy require-
ments for sensitive medical data. This work im-
plements the foundational components of Fed-
CliMask and proposes a comprehensive frame-
work for privacy-preserving federated learn-
ing in clinical settings that combines ontology-
guided semantic masking with context-aware
federated aggregation. Our framework ad-
dresses the dual challenges of privacy preserva-
tion and statistical heterogeneity through two
key innovations: (1) ontology-guided semantic
masking using UMLS hierarchies to provide
graduated privacy protection while preserv-
ing clinical semantics, and (2) context-aware
federated aggregation that considers hospital-
specific features including medical specialties,
data complexity, privacy levels, and data vol-
ume. The semantic masking component is
implemented and evaluated on synthetic clini-
cal data, demonstrating effective privacy-utility
tradeoffs across four masking levels. The
context-aware analysis component is also im-
plemented successfully profiling 12,996 syn-
thetic clinical notes across 6 diverse hospitals
to demonstrate meaningful hospital differenti-
ation. The complete framework is designed to
enable privacy-preserving clinical trial recruit-
ment through federated learning while adapting
to institutional heterogeneity.

1 Introduction

Clinical trial recruitment remains one of the most
significant challenges in modern medical research,
with over 80% of trials failing to meet enrollment
targets and experiencing substantial delays (Fogel,
2018). The traditional approach requires central-
ized data sharing, creating significant privacy and
regulatory barriers. While electronic health records
(EHRs) contain rich patient information, privacy
regulations such as HIPAA and GDPR severely
limit cross-institutional data sharing.

Federated learning (FL) has emerged as a promis-
ing paradigm for collaborative machine learning
without centralizing sensitive data (Li et al., 2020).
However, existing FL approaches in healthcare face
critical limitations. First, raw patient data can still
leak sensitive information through model updates
(Zhu et al., 2019). Second, and critically for real-
world performance, federated networks suffer from
statistical heterogeneity: the data distribution can
vary dramatically between a specialized cancer cen-
ter and a rural community hospital. A standard fed-
erated learning algorithm that treats all hospitals
equally will struggle to produce a global model that
performs well for everyone.

To address these challenges, a comprehensive
framework, FedCliMask is proposed to combine
context-aware federated learning with ontology-
guided semantic masking and differential pri-
vacy. The first and foundational component, imple-
mented and evaluated in this work, is an ontology-
guided semantic masking technique that leverages
the Unified Medical Language System (UMLS) to
create hierarchical semantic abstractions of patient
data. The second component is proposed as the sub-
sequent stage of the framework, integrates this with
a context-aware federated learning algorithm that
intelligently adapts to each hospital’s unique data
context.This paper focuses on the implementation
and evaluation of the first component (semantic
masking) and the design of the second component
(context-aware federated learning), with full feder-
ated training left for future work

The key contributions of this paper are:

• A hierarchical masking system is developed
and implemented that leverages UMLS to cre-
ate graduated privacy levels while preserving
clinical semantics.

• A context-aware analysis system is designed
and implemented that automatically extracts
hospital characteristics (medical specialties,
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data complexity, privacy levels) from clinical
data.

• A complete federated learning framework is
proposed that integrates semantic masking
with context-aware aggregation for clinical
trial recruitment.

• Hospital profiling capabilities are demon-
strated on 12,996 synthetic clinical notes
across 6 diverse hospital types, showing mean-
ingful institutional differentiation.

This paper presents the complete framework de-
sign with implementation and evaluation of the se-
mantic masking and context analysis components,
establishing the foundation for full federated learn-
ing deployment.

2 Literature Review

The evolution of privacy-preserving machine learn-
ing in healthcare began with traditional data
anonymization techniques like data masking, sup-
pression, and generalization (Sweeney, 2002).
These led to formal privacy models like k-
anonymity, ensuring individuals are indistinguish-
able from at least k-1 others (Immuta, 2025a; PMC,
2025). However, k-anonymity’s vulnerability to
homogeneity and background knowledge attacks
prompted stricter models like l-diversity and t-
closeness (Vaz et al., 2023; Keerthana and Jaya-
balan Manoj, 2017). Despite these advancements,
"modify-and-release" approaches face a fundamen-
tal trade-off: increasing anonymization severely
degrades data utility (Ideas2IT, 2025). More-
over, growing public data availability means re-
identification through linkage attacks remains a
persistent threat (Sherpa.ai, 2025; Immuta, 2025b),
demonstrating this paradigm’s inherent limitations.
Federated Learning (FL) emerged as a paradigm-
shifting response, inverting traditional machine
learning by bringing algorithms to data rather
than centralizing sensitive information (SPRY PT,
2025; Oh and Nadkarni, 2023). This decentral-
ized framework, typically using Federated Averag-
ing (FedAvg), has succeeded across medical do-
mains including radiology, oncology, and epidemi-
ology (Teo et al., 2024a; Oh and Nadkarni, 2023;
Crowson et al., 2022). Recent work demonstrates
that federated learning is also feasible for privacy-
preserving wearable sensor analytics on edge de-
vices, achieving strong accuracy for IMU-based
gait recognition (Paul et al., 2025). FL’s key benefit

is improved model generalizability through train-
ing on diverse, multi-institutional datasets (SPRY
PT, 2025). However, a critical gap persists between
algorithmic development and clinical implementa-
tion, with real-world deployments remaining rare
due to logistical, ethical, and organizational hur-
dles (Choudhury et al., 2025; Teo et al., 2024b).
Although FL provides strong baseline privacy, it
faces vulnerabilities. Sophisticated adversaries can
exploit model updates (gradients) to infer sensitive
information through Gradient Inversion Attacks
(GIAs), reconstructing original training data with
high fidelity (Zheng et al., 2025a,b). This drove
integration of additional security layers: Differ-
ential Privacy (DP) provides mathematical guar-
antees against information leakage through cali-
brated noise injection (Flower AI, 2025), while
cryptographic methods like Secure Multi-Party
Computation (SMPC) and Homomorphic Encryp-
tion (HE) enable secure aggregation (Teo et al.,
2024a). This "triple lock" combination creates ro-
bust, multi-layered defense aligning with "privacy
by design" principles expected by regulations like
GDPR (Brauneck et al., 2023). Current privacy-
preserving AI frontiers move beyond mathemati-
cal safeguards to incorporate semantic meaning.
Leveraging biomedical ontologies like the Uni-
fied Medical Language System (UMLS), which
standardizes clinical terminology from over 200
sources (U.S. National Library of Medicine, 2025),
researchers build intelligent utility-preserving pri-
vacy systems. Ontology-guided anonymization
uses structured knowledge bases for semantic gen-
eralization, broadening specific diagnoses to clin-
ically relevant higher-level categories that pre-
serve more analytical value than simple redaction
(Martínez et al., 2013). Multilingual transformer
models show effectiveness for domain-specific fact-
checking in low-resource languages using retrieval-
augmented generation (Das et al., 2025). Advanced
applications integrate domain knowledge directly
into machine learning pipelines—the scCello foun-
dation model uses Cell Ontology to guide training,
learning representations consistent with established
biological knowledge (Yuan et al., 2024). This fu-
sion of data-driven learning with knowledge-driven
reasoning represents significant field maturation,
pointing toward AI systems that are private, robust,
interpretable, and trustworthy.
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3 Data Preprocessing

3.1 Synthetic Clinical Data Generation
To address the privacy and regulatory challenges of
using real patient data, a data generation pipeline
using Synthea (Walonoski et al., 2018) was de-
veloped. Our synthetic dataset encompasses six
diverse healthcare institutions: Academic Medi-
cal Center (academic medical center), Community
Hospital (community hospital), California Neuro
Mental Center (neurological specialty center), Mas-
sachusetts General Academic (academic medical
center), Montana Rural Community (rural commu-
nity hospital), and Texas Heart Cancer Center (spe-
cialty oncology center). This diversity is essential
for evaluating privacy-preserving techniques in re-
alistic scenarios. Each synthetic hospital generates
between 2,000 and 3,000 clinical notes, resulting in
a comprehensive dataset of 12,996 synthetic clini-
cal notes across all institutions.

3.2 Clinical Note Generation and Processing
The synthetic data generation process produces
comprehensive clinical notes that resemble real-
world electronic health records. To process these
notes, a sophisticated Named Entity Recognition
(NER) pipeline is implemented using Clinical-
BERT (Alsentzer et al., 2019). Following entity ex-
traction, the identified medical terms are mapped to
standardized concepts in the Unified Medical Lan-
guage System (UMLS) 2025AA knowledge base
using QuickUMLS (Soldaini and Goharian, 2016).
This mapping process establishes semantic relation-
ships and hierarchical concept structures essential
for our ontology-guided masking approach. In par-
allel, we develop a comprehensive set of synthetic
clinical trial eligibility criteria spanning multiple
medical specialties to facilitate the evaluation of
data utility.

4 The FedCliMask Framework

Figure 1 presents the complete FedCliMask system
architecture, illustrating the proposed end-to-end
privacy-preserving federated learning pipeline. The
architecture shows how the foundational masking
layer integrates with the proposed context-aware
federated learning server.

4.1 Component 1: Ontology-Guided Semantic
Masking

The core innovation of FedCliMask lies in its four-
level ontology-guided semantic masking system,

which has been implemented and evaluated. This
system leverages UMLS concept hierarchies to pro-
vide graduated privacy protection while preserving
clinical semantics.

The masking framework operates across four hi-
erarchical levels of abstraction. At Level 0, patient
data retains its original clinical terminology. At
Level 1, medical terms are generalized to their im-
mediate parent concepts in the UMLS hierarchy
(e.g., “myocardial infarction” becomes “heart dis-
ease”). At Level 2, terms are abstracted to broader
categorical levels. Finally, Level 3 generalizes in-
formation to the highest semantic level, maximiz-
ing privacy at the cost of utility.

The masking process exploits the hierarchical
structure of UMLS concepts to generate semanti-
cally meaningful generalizations. A hierarchy pro-
cessor identifies parent–child relationships within
the UMLS knowledge base, enabling systematic
traversal from specific medical terms to progres-
sively abstract concepts. Figure 2 illustrates this
process, showing how a clinical statement is trans-
formed across the four levels.

4.2 Component 2: Context-Aware Federated
Learning Design (Proposed Framework)

The second component of FedCliMask is our pro-
posed context-aware federated learning system de-
signed to address statistical heterogeneity across
healthcare institutions. The system is designed to
automatically analyze hospital characteristics and
adapt aggregation weights during federated train-
ing.

4.2.1 Hospital Context Analysis
A comprehensive context analysis system was im-
plemented that automatically extracts a detailed
"context vector" for each hospital to capture its
unique institutional characteristics and operational
patterns. The context analysis pipeline systemati-
cally processes clinical notes and generates multi-
dimensional feature vectors that provide a holistic
view of each institution’s profile, including:

• Data Volume Features: Total clinical notes
count and average note length, with all metrics
normalized to [0,1] scale to ensure fair com-
parison across institutions of varying sizes.
This includes temporal consistency patterns
and documentation frequency distributions
that reflect institutional capacity and opera-
tional characteristics.
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Figure 1: Proposed FedCliMask System Architecture. A privacy-preserving federated learning pipeline with
ontology-guided masking and context-aware aggregation.

Figure 2: 4-Level Ontology-Guided Semantic Masking Framework with UMLS Integration. This figure illustrates
the core implemented component of our framework.

• Medical Specialty Distribution: Advanced
automatic detection of primary medical spe-
cialties using sophisticated regex pattern
matching algorithms to identify specialization

patterns across cardiology, psychiatry, internal
medicine, oncology, neurology, and other clin-
ical domains. The system computes specialty
concentration scores and diversity indices.
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• Text Complexity Analysis: Comprehen-
sive assessment including multiple readability
scores (Flesch-Kincaid, SMOG), vocabulary
diversity measures (type-token ratios, lexical
richness), average sentence length, syntactic
complexity metrics that reflect documentation
sophistication and clinical expertise levels.

• Privacy Assessment: Automated privacy
scoring mechanism that analyzes generic ver-
sus specific medical terminology usage pat-
terns, evaluating the inherent privacy charac-
teristics of clinical text by assessing terminol-
ogy specificity and sensitivity levels through-
out the documentation.

• Concept Diversity: Detailed UMLS semantic
type distribution analysis measuring clinical
focus breadth across medical domains, includ-
ing concept coverage assessment, semantic
richness quantification, and clinical domain
diversity evaluation that provides insights into
institutional expertise areas.

4.2.2 Context-Aware Aggregation Strategy
The proposed Context-Aware FedAvg (CA-
FedAvg) strategy will compute adaptive weights by
combining hospital context quality with traditional
data size weighting:

wi = α · qi∑
j qj

+ (1− α) · ni∑
j nj

(1)

where

qi =
1

3

(
volume_scorei+complexity_scorei
+ diversity_scorei

)
(2)

represents the context quality score, ni is the
data size, and α = 0.3 is the context weight factor.
This approach is designed to differentiate hospital
contributions based on their contextual character-
istics, moving beyond the uniform weighting of
standard FedAvg.

4.2.3 Privacy-Utility Analysis
The framework includes comprehensive privacy
assessment through automated analysis of clinical
text masking levels. The system is designed to
evaluate privacy-utility tradeoffs across hospitals
and integrate privacy awareness into the federated
aggregation process.

5 Implementation and Experimental
Evaluation

The core components of the FedCliMask frame-
work: the ontology-guided semantic masking sys-
tem and the context-aware hospital analysis. Our
evaluation uses 12,996 synthetic clinical notes
across 6 diverse hospitals: Academic Medical Cen-
ter (psychiatry focus), Community Hospital (cardi-
ology/emergency), California Neuro Mental Center
(internal medicine), Massachusetts General Aca-
demic (internal medicine), Montana Rural Commu-
nity (internal medicine), and Texas Heart Cancer
Center (internal medicine/oncology). We demon-
strate the semantic masking effectiveness and hos-
pital profiling capabilities that form the foundation
for the proposed federated learning system.

5.1 Implemented Components Evaluation

5.1.1 Semantic Masking Implementation
The four-level ontology-guided semantic masking
system was implemented using UMLS hierarchies
to progressively abstract clinical terminology in
electronic health records (EHRs). Each masking
level corresponds to a different degree of semantic
generalization: from fully detailed clinical terms
(Level 0), through concept-driven parent mapping
(Level 1), categorical abstraction (Level 2), and
maximal generalization with generic placeholders
(Level 3) (see Table 1).

This framework enables a balance between pre-
serving clinical relevance and ensuring patient pri-
vacy. Level 0 offers the highest information fi-
delity but maximal privacy risk, Level 3 provides
strongest de-identification at the cost of semantic
detail.

Privacy-utility analysis demonstrates that Level
2 masking provides the optimal balance for clinical
applications, preserving semantic meaning while
providing meaningful privacy protection.

5.1.2 Context-Aware Hospital Analysis
Our implemented context analysis system success-
fully profiles hospital characteristics across mul-
tiple dimensions. Figure 4 shows the correlation
analysis between different context features, reveal-
ing how hospital characteristics interrelate across
institutions:

The context analysis successfully identifies dis-
tinct hospital profiles, including specialized psychi-
atric care, diverse emergency/cardiology services,
and internal medicine focus patterns. The corre-
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Figure 3: Proposed Neural Network Architecture for Local Model Training in the Federated Setting.

Masking Level Description Example Mapping Example Clinical Note Snippet

Level 0: Original
Terminology

Medical terms retained in their original
form; maximum informational richness
but highest privacy risk.

“Anemia” → “Anemia”
“Lisinopril” → “Lisinopril”

HISTORY OF PRESENT ILLNESS: 79-year-old male with past medical
history of logMAR visual acuity left eye, logMAR visual acuity right
eye, left eye intraocular pressure presents for follow-up. ALLERGIES:
Allergic disposition, Lisinopril.

Level 1: Parent
Concept General-
ization

Terms mapped to immediate UMLS par-
ent concepts; reduces specificity but pre-
serves clinical relevance.

“Anemia” → “Hematologic
Disorder”
“Lisinopril” → “Arginine”

HISTORY OF PRESENT ILLNESS: 79-year-old male with past medical
history of Eye Diseases, Eye Diseases, Ocular Hypertension presents for
follow-up. ALLERGIES: Hypersensitivity, Arginine.

Level 2: Category-
Level Abstraction

Generalization into categorical placehold-
ers representing broader domains. Pro-
vides optimal trade-off between privacy
and utility.

“Hematologic Disor-
der” → HEMATO-
LOGIC_DISORDER
“Arginine” → MEDI-
CAL_CATEGORY

HISTORY OF PRESENT ILLNESS: 79-year-old male with past medical
history of [DISEASE], [DISEASE], [DISEASE] presents for follow-up.
ALLERGIES: [DISORDER], [MEDICAL_CATEGORY].

Level 3: Maximum
Abstraction

Full abstraction to highest semantic level;
replaces categories with generic place-
holders for maximal de-identification.

HEMATOLOGIC_DISORDER
→ MEDICAL_CONDITION
MEDICAL_CATEGORY →
MEDICAL_ENTITY

HISTORY OF PRESENT ILLNESS: 79-year-old male with past med-
ical history of MEDICAL_CONDITION, MEDICAL_CONDITION,
MEDICAL_CONDITION presents for follow-up. ALLERGIES: MEDI-
CAL_CONDITION, MEDICAL_ENTITY.

Table 1: Four-level ontology-guided semantic masking framework showing progressive abstraction of clinical
terminology in electronic health records.

lation analysis in Figure 4 demonstrates the inter-
dependencies between different hospital character-
istics, validating the multi-dimensional nature of
institutional profiles. Table 2 summarizes the key
characteristics identified for each institution. This
profiling capability provides the foundation for the
proposed context-aware federated aggregation.

5.2 Framework Integration Status

While we successfully implemented the semantic
masking and context analysis components, the com-
plete FedCliMask framework requires additional
development. These implemented components pro-
vide the foundation for future federated learning
deployment, but full system integration including
context-aware aggregation, differential privacy in-
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Figure 4: Context feature correlation analysis show-
ing relationships between hospital characteristics (data
volume, privacy levels, text complexity, medical special-
ties) and their interdependencies across institutions.

Hospital Primary Specialty Notes Context Profile

Academic Medical Psychiatry (86.6%) 2,000 High complexity,
specialized

Community Hospital Cardiology (28.6%) 2,996 Diverse, emergency-
focused

California Neuro Internal Med (87.7%) 2,000 Academic, internal
medicine

Mass General Internal Med (86.4%) 2,000 Academic, research-
oriented

Montana Rural Internal Med (88.4%) 2,000 Rural, general prac-
tice

Texas Heart Cancer Internal Med (86.8%) 2,000 Specialized, oncol-
ogy focus

Table 2: Hospital characteristics and contextual profil-
ing.

tegration, and multi-hospital federated training re-
mains future work. The current implementation
demonstrates our approach’s feasibility and pro-
vides validated building blocks for the complete
system.

6 Results and Interpretation

The implementation demonstrates the feasibility
and effectiveness of the core FedCliMask com-
ponents for privacy-preserving clinical federated

learning. The implemented ontology-guided se-
mantic masking successfully provides graduated
privacy protection while preserving clinical seman-
tics through UMLS hierarchical structures. It is
important to note that this work presents a founda-
tional implementation rather than a complete sys-
tem. We have successfully implemented and evalu-
ated the semantic masking component and hospital
context analysis, while the full context-aware fed-
erated aggregation represents our proposed frame-
work for future implementation.

The hospital profiling results reveal distinct insti-
tutional characteristics that validate the need for
context-aware approaches in federated learning.
Academic Medical Center’s psychiatry specializa-
tion (86.6%) contrasts sharply with Community
Hospital’s diverse focus on cardiology (28.6%) and
emergency care, while multiple hospitals show in-
ternal medicine dominance (87%+). This hetero-
geneity demonstrates that standard federated learn-
ing approaches treating all hospitals equally would
miss important institutional differences.

The successful implementation of automated
context analysis provides the foundation for adap-
tive federated aggregation. The system automat-
ically extracts hospital characteristics including
medical specialties, data complexity, privacy levels,
and data volume - all critical factors for intelligent
federated learning deployment.

The integration of privacy assessment into hospi-
tal profiling enables automatic privacy-utility eval-
uation without manual configuration. This capa-
bility is crucial for real-world deployment where
institutions have varying privacy requirements and
technical expertise.

7 Conclusion and Future Work

FedCliMask is a comprehensive framework for
privacy-preserving federated learning in clinical
settings that addresses both privacy requirements
and statistical heterogeneity. The core compo-
nents were successfully implemented and eval-
uated: ontology-guided semantic masking and
context-aware hospital analysis.

Future extensions of FedCliMask could inte-
grate multilingual models similar to Indic NMT
(Bala Das et al., 2023) (Bala Das et al., 2024), al-
lowing clinical trials to be more inclusive across
linguistic barriers.

Key achievements include: (1) Implementation
of four-level semantic masking using UMLS hierar-
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chies, demonstrating effective privacy-utility trade-
offs; (2) Successful hospital context analysis sys-
tem extracting medical specialties, data complexity,
privacy levels, and data volume from 12,996 clini-
cal notes across 6 hospitals; (3) Framework design
for context-aware federated aggregation that moves
beyond uniform weighting; (4) Demonstration of
meaningful hospital heterogeneity that validates
the need for adaptive approaches.

The implemented components demonstrate that
hospital characteristics vary significantly across
institutions, from specialized psychiatric centers
to diverse community hospitals. The automated
context analysis successfully identifies these dif-
ferences, providing the foundation for intelligent
federated aggregation.

Immediate future work includes: (1) Complete
implementation and evaluation of the context-
aware federated learning system; (2) Validation
of adaptive aggregation approaches compared to
standard FedAvg; (3) Integration of formal differ-
ential privacy mechanisms; (4) Evaluation on real
clinical data with appropriate ethical approvals; (5)
Extension to downstream clinical tasks beyond the
foundational components. This work establishes
the foundation for privacy-preserving clinical AI
collaboration that respects institutional diversity
while enabling effective collaborative learning.

8 Ethics Statement and Limitations

The framework follows privacy-by-design princi-
ples, and reliance on synthetic data eliminates im-
mediate privacy risks. Real-world deployment,
however, will require robust informed consent
mechanisms and ongoing bias assessment to en-
sure equitable recruitment.

While FedCliMask currently focuses on English
clinical trial eligibility texts, future work could in-
tegrate multilingual modeling approaches such as
those developed in the MultiIndicMT shared task
(Das et al.), enabling cross-lingual adaptability to
diverse patient populations. The evaluation is based
solely on synthetic data generated by Synthea, and
generalization to clinical settings requires IRB-
approved validation across more diverse institu-
tions, as the current sample is limited to six pri-
marily US-based hospitals. The implementation
includes semantic masking and context analysis,
while the full federated pipeline is still under devel-
opment. Medical specialty patterns are manually
defined but could benefit from automated ontology

integration. Privacy assessment relies on text-based
measures rather than formal differential privacy.
The proposed context-aware aggregation requires
validation through full federated experiments to
establish benefits over standard approaches and to
address heterogeneity in hardware and software
typical of real deployments.
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